LSU Mathematics Student Colloquium
Student Colloquium Menu
The goal of the LSU Mathematics Student Colloquium is to give both undergraduate and graduate students the opportunity to hear and interact with speakers from across the country, providing information and perspective possibly relevant to their graduate and postgraduate careers.
Each invited speaker will spend several days at LSU, giving multiple talks and making himself or herself available to undergraduates.
Talks are not confined to the math department but open to everyone. Those majoring in related fields are encouraged to come.
We are a chartered LSU student organization (constitution and bylaws). We are munificently funded by the Student Government Programming, Support, and Initiatives Fund (PSIF), and the LSU Mathematics Department. We are grateful for the generous past funding made by grants from the National Science Foundation (a VIGRE grant) and the Board of Regents.
October 2, 2024: Ian Tobasco
Ian is an Associate Professor of Mathematics at Rutgers University. His research interests include Calculus of Variations, Partial Differential Equations, Elasticity Theory, Mechanical Metamaterials, Fluid Dynamics, Spin Glasses. The talk he is giving for the SCC is accessible to all STEM majors!
Undergraduate Talk ( Lockett 237; Wednesday, October 2, 3:30- 4:30 PM)
Title: Rigidity and Elasticity
Abstract: This talk will introduce elasticity theory from the geometric point of view for students from mathematics and related disciplines. Our basic objects of study will be (nearly) length preserving maps that arise from (nearly) minimizing an energy functional having to do with the amount of work required to deform a body. After defining the basic quantities of interest, we will discuss Fritz John's seminal study of small strain maps, along with his counterexample to rigidity and its ultimate resolution in the early 2000s by Friesecke, James, and Müller. Time permitting, we will discuss a bit about elastic patterns --- fine structures that occur in naturally wrinkled or crumpled sheets that show us what we do not yet understand about the rigidity of thin elastic domains.