Calendar
Posted January 28, 2026
Geometry and Topology Seminar Seminar website
1:30 pm 233 Lockett Hall
Nilangshu Bhattacharyya, Louisiana State University
TBA
Posted December 7, 2025
Last modified December 28, 2025
Control and Optimization Seminar Questions or comments?
9:30 am – 10:20 am Zoom (click here to join)
Richard Vinter, Imperial College London
IEEE Fellow
Control of Lumped-Distributed Control Systems
Lumped-distributed control systems are collections of interacting sub-systems, some of which have finite dimensional vector state spaces (comprising ‘lumped’ components) and some of which have infinite dimensional vector state spaces (comprising ‘distributed’ components). Lumped-distributed control systems are encountered, for example, in models of thermal or distributed mechanical devices under boundary control, when we take the control actuator dynamics or certain kinds of dynamic loading effects into account. This talk will focus on an important class of (possibly non-linear) lumped-distributed control systems, in which the control action directly affects only the lumped subsystems and the output is a function of the lumped state variables alone. We will give examples of such systems, including a temperature-controlled test bed for measuring semiconductor material properties under changing temperature conditions and robot arms with flexible links. A key observation is an exact representation of the mapping from control inputs to outputs, in terms of a finite dimensional control system with memory. (We call it the reduced system representation.) The reduced system representation can be seen as a time-domain analogue of frequency response descriptions involving the transfer function from input to output. In contrast to frequency response descriptions, the reduced system representation allows non-linear dynamics, hard constraints on controls and outputs, and non-zero initial data. We report recent case studies illustrating the computational advantages of the reduced system representation. We show that, for related output tracking problems, computation methods based on the new representation offer significantly improved tracking and reduction in computation time, as compared with traditional methods, based on the approximation of infinite dimensional state spaces by high dimensional linear subspaces.