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a b s t r a c t

In this paper, we study two types of weighted Hardy–Littlewood–Sobolev (HLS)
inequalities, also known as Stein–Weiss inequalities, on the Heisenberg group. More
precisely, we prove the |u| weighted HLS inequality in Theorem 1.1 and the |z| weighted
HLS inequality in Theorem 1.5 (where we have denoted u = (z, t) as points on the
Heisenberg group). Then we provide regularity estimates of positive solutions to integral
systems which are Euler–Lagrange equations of the possible extremals to the Stein–Weiss
inequalities. Asymptotic behavior is also established for integral systems associated to the
|u| weighted HLS inequalities around the origin. By these a priori estimates, we describe
asymptotically the possible optimizers for sharp versions of these inequalities.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The n-dimensional Heisenberg group is Hn
= Cn

× R with group structure given by

uv = (z, t)(z ′, t ′) = (z + z ′, t + t ′ + 2Im(z · z))

for any two points u = (z, t), v = (z ′, t ′) ∈ Hn, where z, z ′
∈ Cn, t, t ′ ∈ R and z · z =

n
j=1 zjz

′

j . Haar measure on Hn is the
Lebesgue measure du = dzdt , in which z = x + iywith x, y ∈ Rn.

The Lie algebra of Hn is generated by the left invariant vector fields

T =
∂

∂t
, Xj =

∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
.

For each real number d ∈ R, we denote the dilation δdu = δd(z, t) = (dz, d2t), the homogeneous norm on Hn as
|u| = |(z, t)| = (|z|4 + t2)1/4, and Q = 2n + 2 as the homogeneous dimension.
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Now we recall the famous Hardy–Littlewood–Sobolev inequality on RN . Let 1 < r, s < ∞ and 0 < λ < N such that
1
r +

1
s +

λ
N = 2, then

 
RN×RN

f (x)g(y)
|x − y|λ

dxdy

 ≤ Cr,λ,N∥f ∥r∥g∥s, (1.1)

for any f ∈ Lr(RN) and g ∈ Ls(RN), where ∥ · ∥r and ∥ · ∥s are the Lr and Ls norms on RN , respectively. And 0 < Cr,λ,N < ∞

is a constant depending on r , λ and N only.
This inequality was introduced by Hardy and Littlewood inR1 [1–3] and generalized by Sobolev [4] toRN . However, none

of them is in its sharp form. Namely, neither the sharp constant Cr,λ,N nor the extremal function such that the inequality
(1.1) holds with the sharp constant was known. For a special case when r = s = 2N/(2N − λ), Lieb [5] gave the sharp
version of (1.1), i.e., he proved the inequality with sharp (best) constant Cλ,r,N and showed its optimizers (functions for
which the equality (1.1) holds with the smallest constant Cλ,r,N ). For general case when r ≠ s, neither sharp constant Cr,λ,N
nor optimizers1 are known yet. See more details2 about Hardy–Littlewood–Sobolev inequality in RN , we refer the reader to
Lieb and Loss’s monograph [6]. Throughout this paper, the Hardy–Littlewood–Sobolev inequalities are simply denoted as
HLS inequalities.

In 1950s, Stein and Weiss introduced the weighted HLS inequality in [8], that is,
 

RN×RN

f (x)g(y)
|x|α|x − y|λ|y|β

dxdy

 ≤ Cα,β,r,λ,N∥f ∥r∥g∥s, (1.2)

where 1 < r, s < ∞, 0 < λ < N and α + β ≥ 0 such that λ + α + β ≤ N , α < N/r ′, β < N/s′ and 1
r +

1
s +

λ+α+β

N = 2
(where we have used the notation: For an index 1 ≤ r ≤ ∞, we let r ′ denote its conjugate index, that is, r + r ′

= rr ′.) The
sharp constant in the Stein–Weiss inequality (1.2) is still unknown as far as we are aware of, even in the special case when
r = s. When λ = N − 2, the Euler–Lagrange system of (1.2) consists of two Poisson’s equations. In Chen and Li’s paper [9],
they studied the integral systems in this case. In the work of Caristi, D’Ambrosio and E. Mitidieri [10], they also studied the
integral systems (inequalities) associated with the Stein–Weiss inequalities and nonexistence of solutions to such systems.
We refer the reader to their work and the references therein.

Much less is known on the Heisenberg group Hn. With the settings on the Heisenberg group Hn introduced in the
beginning, we shall move our attention to the analogous weighted HLS inequality, namely the Stein–Weiss inequality, on
Hn, and consider both |u| weights (Theorem 1.1) and |z| weights (Theorem 1.5).

Our first result in this paper is the following |u| weighted HLS inequality on Hn.

Theorem 1.1 (|u|Weighted HLS Inequality). For 1 < r, s < ∞, 0 < λ < Q = 2n+2 and α+β ≥ 0 such that λ+α+β ≤ Q ,
α < Q/r ′, β < Q/s′, and 1

r +
1
s +

λ+α+β

Q = 2, there exists a positive constant Cα,β,r,λ,n independent of the functions f and g
such that

 
Hn×Hn

f (u)g(v)

|u|α|u−1v|λ|v|β
dudv

 ≤ Cα,β,r,λ,n∥f ∥r∥g∥s. (1.3)

Here u = (z, t) and v = (z ′, t ′), u−1
= (−z, −t) and d(u, v) := |u−1v| = |v−1u| is a left-invariant metric.

Remark. It is easy to see if the above inequality (1.3) holds with a finite constant Cα,β,r,λ,n independent of the functions f
and g , then 1

r +
1
s +

λ+α+β

Q = 2 must hold.

Finding and studying sharp constants Cα,β,r,λ,n and its optimizers have attracted a great attention of many people. The
non-weighted version of the inequality of (1.3) (i.e., α = β = 0) was proved by Folland and Stein [11] in terms of fractional
integral (Proposition 8.7 and Lemma 15.3 in [11]).

 
Hn×Hn

f (u)g(v)

|u−1v|λ
dudv

 ≤ Cr,λ,n∥f ∥r∥g∥s. (1.4)

In conjunction with the CR Yamabe problem on the CR manifolds (see [12,13]), Jerison and Lee [13] proved the sharp
version and gave the optimizer of (1.4) for λ = Q − 2 and r = s = 2Q/(2Q − λ) = 2Q/(Q + 2). This is equivalent to the

sharp constant and extremal problem of the L2 to L
2Q
Q−2 Sobolev inequality on the Heisenberg group. It is worth mentioning

1 They are also referred as maximizers or extremals in the literature.
2 Lieb used rearrangement method in [5], and recently, Frank and Lieb developed a new method to prove the sharp version of the same special case of

(1.1) (r = s = 2N/(2N − λ)) without using rearrangement, see [7].
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that the sharp constant and extremal problem for general 1 ≤ p < Q is still widely open. Nevertheless, the sharp constant
for the borderline casewhen p = Q was established by Cohn and the second author [14], namely the sharpMoser–Trudinger
inequality on domains of finite measure.

Recently, Lam and the second author have established in [15] the sharp Moser–Trudinger inequality on the whole
Heisenberg group: There exists a positive constant

αQ = Q


2πnΓ ( 1

2 )Γ ( Q−1
2 )

Γ (Q2)Γ (n)

Q ′
−1

such that for any pair β and α satisfying 0 ≤ β < Q , 0 < α ≤ αQ (1 −
β

Q ) there holds

sup
∥f ∥1,τ ≤1


Hn

1
|u|β


exp(α|f (u)|Q/(Q−1)) −

Q−2
k=0

αk

k!
|f (u)|kQ/(Q−1)


du ≤ Cβ,τ ,Q < ∞.

The constant αQ (1 −
β

Q ) is best possible in the sense that the supremum is infinite if α > αQ (1 −
β

Q ). Here τ is any
positive number, and

∥f ∥1,τ =


Hn

|∇Hn f |Q + τ


Hn

|f |Q
1/Q

.

The above result of [15] sharpened theMoser–Trudinger inequality on unbounded domains of [16]where such inequality
was studied for the subcritical case α < αQ (1 −

β

Q ).
Returning to the sharp HLS inequality on the Heisenberg group, Frank and Lieb [17] have succeeded in extending the

result of Jerison and Lee [13] to all 0 < λ < Q . We state the result of Frank and Lieb in [17] as the following theorem.

Theorem 1.2 (Frank and Lieb, Theorem 2.1 in [17]). Let 0 < λ < Q and r = 2Q/(2Q − λ). Then for any f , g ∈ Lr(Hn),
 

Hn×Hn

f (u)g(v)

|u−1v|λ
dudv

 ≤


πn+1

2n−1n!

 λ
Q n!Γ ((Q − λ)/2)

Γ 2((2Q − λ)/4)
∥f ∥r∥g∥r ,

with equality if and only if

f (u) = cH(δ(a−1u)), g(v) = c ′H(δ(a−1v))

for some c, c ′
∈ C, δ > 0, a ∈ Hn (unless f ≡ 0 or g ≡ 0), and

H = [(1 + |z|2)2 + t2]−
2Q−λ

4 .

Their results also justified Branson et al. natural guess in [18] about the optimizerH . However, little about sharp constants
and optimizers has been known so far when r ≠ s in (1.4). Therefore, it is widely open for the sharp constants and extremal
functions for the weighted HLS inequalities, or also known as the Stein–Weiss inequalities (1.3) on the Heisenberg group
Hn. Recently, the first author has established in [19] the existence of extremal functions of the HLS inequality (1.4) on the
Heisenberg group in all the case of r and s using the concentrated compactness of Lions [20,21].

Our second main purpose of this paper is to initiate the investigation of the weighted HLS inequalities (1.3) on Hn by
studying the regularity estimates and asymptotic behavior of solutions to the Euler–Lagrange equations to the Stein–Weiss
inequalities.

Let

J(f , g) =

 
Hn×Hn

f (u)g(v)

|u|α|u−1v|λ|v|β
dudv. (1.5)

Maximizing the functional J(f , g) in (1.5) under the constraints that ∥f ∥r = ∥g∥s = 1, one can derive the Euler–Lagrange
system of equations for f , g ≥ 0 corresponding to (1.5),

λ1rf (u)r−1
=

1
|u|α


Hn

g(v)

|v|β |u−1v|λ
dv,

λ2sg(u)s−1
=

1
|u|β


Hn

f (v)

|v|α|u−1v|λ
dv,

(1.6)
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where λ1r = λ2s = J(f , g). Setting F(u) = c1f (u)r−1, G(u) = c2G(u)s−1 and taking p =
1

r−1 and q =
1

s−1 , and choosing c1
and c2 appropriately, (1.6) becomes

F(u) =
1

|u|α


Hn

Gq(v)

|v|β |u−1v|λ
dv,

G(u) =
1

|u|β


Hn

F p(v)

|v|α|u−1v|λ
dv,

(1.7)

where0 < p, q < ∞, 0 < λ < Q , α + β ≥ 0,

λ + α + β ≤ Q ,
1

p + 1
>

α

Q
,

1
q + 1

>
β

Q
,

1
p + 1

+
1

q + 1
=

λ + α + β

Q
.

(1.8)

Remark. Since α + β ≥ 0 in (1.8), we shall consider two cases that α, β ≥ 0 and α ≥ 0, β ≤ 0 without loss of generality.

We are interested in regularity estimates and asymptotic behavior of the solutions F and G of (1.7) and (1.8), which give
characterization of the possible optimizers for (1.3). The systems of integral equations are of independent interest as well,
e.g., the system when λ = N − 2 corresponds to ‘‘weighted’’ Lane–Emden system in critical case. See Li and Lim [22] for
more information about these systems in Euclidean space and the singularity analysis they carried out.

For the reader’s convenience, we will abuse the notations and use f , g to replace F and G in (1.7) respectively. Our main
regularity estimate theorem about solutions (f , g) to the Euler–Lagrange equations (1.7) to |u| weighted HLS inequality
states

Theorem 1.3 (Regularity Estimates for |u| Weighted HLS Inequality). Let (f , g) ∈ Lp+1(Hn) × Lq+1(Hn) be a pair of positive
solutions of the system (1.7) and (1.8). Suppose that p, q > 1 and denote λ = λ + α + β .
(1.3.i) If α, β ≥ 0, then (f , g) ∈ Lr(Hn) × Ls(Hn) for all r and s such that

1
r

∈


α

Q
,
λ + α

Q


∩


β

Q
−

1
q + 1

+
1

p + 1
,
λ + β

Q
−

1
q + 1

+
1

p + 1


and

1
s

∈


β

Q
,
λ + β

Q


∩


α

Q
−

1
p + 1

+
1

q + 1
,
λ + α

Q
−

1
p + 1

+
1

q + 1


.

(1.3.ii) If α ≥ 0 and β ≤ 0, then (f , g) ∈ Lr(Hn) × Ls(Hn) for all r and s such that

1
r

∈


α

Q
,

λ

Q


∩


−

1
q + 1

+
1

p + 1
,
λ + β

Q
−

1
q + 1

+
1

p + 1


and

1
s

∈


0,

λ + β

Q


∩


α

Q
−

1
p + 1

+
1

q + 1
,

λ

Q
−

1
p + 1

+
1

q + 1


.

Remark. The above regularity estimate is an ‘‘extrapolation’’ theorem, take (1.3.i) for instance, it asserts that if (f , g) ∈

Lr(Hn)×Ls(Hn) for one pair of (r, s) ∈ ( α
Q , λ+α

Q )×(
β

Q ,
λ+β

Q ), then (f , g) ∈ Lr(Hn)×Ls(Hn) for all pairs of (r, s) ∈ ( α
Q , λ+α

Q )×

(
β

Q ,
λ+β

Q ) (with proper restrictions of course).

While our main asymptotic behavior theorem about optimizers of |u| weighted HLS inequality states

Theorem 1.4 (Asymptotic Behavior for |u| Weighted HLS Inequality). Let (f , g) ∈ Lp+1(Hn) × Lq+1(Hn) be a pair of positive
solutions of the system (1.7) and (1.8). Suppose that p, q > 1, then if |u| ∼ 0,
(1.4.i)

f (u) ∼



A1

|u|α
if λ + β(q + 1) < Q ,

A2| ln |u ∥

|u|α
if λ + β(q + 1) = Q ,

A3

|u|β(q+1)+α+λ−Q
if λ + β(q + 1) > Q ,

where A1 =


Hn
gq(v)

|v|λ+β dv, A2 = |Σ1|(


Hn
f p(v)

|v|λ+α dv)q and A3 = (


Hn
f p(v)

|v|λ+α dv)q
 n

H
1

|v|β(q+1)|e−1v|λ
dv.
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(1.4.ii)

g(u) ∼



B1

|u|β
if λ + α(p + 1) < Q ,

B2| ln |u ∥

|u|β
if λ + α(p + 1) = Q ,

B3

|u|α(p+1)+β+λ−Q
if λ + α(p + 1) > Q ,

where B1 =


Hn
f p(v)

|v|λ+α dv, B2 = |Σ1|(


Hn
gq(v)

|v|λ+β dv)p and B3 = (


Hn
gq(v)

|v|λ+β dv)p


Hn
1

|v|α(p+1)|e−1v|λ
dv.

Remark. Combining (1.8)with further conditions p, q > 1,we haveλ < Q and eitherλ+β(q+1) < Q orλ+α(p+1) < Q .

We also refer the reader to [23] for asymptotic analysis for weighted HLS inequality in Euclidean spaces.
Let us switch our attention to the weighted HLS inequalities with different weights, i.e., |z| weights. More precisely,

Theorem 1.5 (|z| Weighted HLS Inequality). For 1 < r, s < ∞, 0 < λ < Q = 2n + 2 and 0 ≤ α + β ≤ nλ such that
λ + α + β ≤ Q , α < 2n/r ′, β < 2n/s′ and 1

r +
1
s +

λ+α+β

Q = 2,
 

Hn×Hn

f (u)g(v)

|z|α|u−1v|λ|z ′|β
dudv

 ≤ Cα,β,r,λ,n∥f ∥r∥g∥s. (1.9)

Here, u = (z, t) and v = (z ′, t ′).

Remark. 1. Comparing the conditions in Theorems 1.1 and 1.5, the reason why we need stronger assumptions on α and β
as α < 2n/r ′ and β < 2n/s′ is explained in Section 2, and α + β ≤ nλ is a direct consequence of α < 2n/r ′, β < 2n/s′

and 1
r +

1
s +

λ+α+β

Q = 2.
2. It is not hard to deduce that if the above inequality (1.9) holdswith a finite constant Cα,β,r,λ,n independent of the functions

f and g , then 1
r +

1
s +

λ+α+β

Q = 2 must hold.

For the above weighted HLS inequality with |z| weights on the Heisenberg group, Beckner gave the sharp constant
(Theorem 3 in [24]) when α = β = (Q − λ)/2 and r = s = 2, and proved nonexistence of optimizers under these
same conditions. However, it is completely open in other general cases including existence questions.

One can also derive the Euler–Lagrange system associated to the |z| weighted inequality (1.9), and it can be formulated
after renormalization as we did in (1.7)

f (u) =
1

|z|α


Hn

gq(v)

|z ′|β |u−1v|λ
dv,

g(u) =
1

|z|β


Hn

f p(v)

|z ′|α|u−1v|λ
dv,

(1.10)

where
0 < p, q < ∞, 0 < λ < Q , 0 ≤ α + β ≤ nλ,

λ + α + β ≤ Q ,
1

p + 1
>

α

2n
,

1
q + 1

>
β

2n
,

1
p + 1

+
1

q + 1
=

λ + α + β

Q
,

u = (z, t), v = (z ′, t ′).

(1.11)

The regularity estimates of solutions of (1.10) and (1.11) are as follows.

Theorem 1.6 (Regularity Estimates for |z| Weighted HLS Inequality). Let (f , g) ∈ Lp+1(Hn) × Lq+1(Hn) be a pair of positive
solutions of the system (1.10) and (1.11). Suppose that p, q > 1.

(1.6.i) If α, β ≥ 0, then (f , g) ∈ Lr(Hn) × Ls(Hn) for all r and s such that

1
r

∈


α

2n
,

λ

Q
−

β

2n


∩


β

2n
−

1
q + 1

+
1

p + 1
,

λ

Q
−

α

2n
−

1
q + 1

+
1

p + 1


and

1
s

∈


β

2n
,

λ

Q
−

α

2n


∩


α

2n
−

1
p + 1

+
1

q + 1
,

λ

Q
−

β

2n
−

1
p + 1

+
1

q + 1


.
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(1.6.ii) If α ≥ 0 and β ≤ 0, then (f , g) ∈ Lr(Hn) × Ls(Hn) for all r and s such that

1
r

∈


α

2n
,

λ

Q


∩


−

1
q + 1

+
1

p + 1
,

λ

Q
−

α

2n
−

1
q + 1

+
1

p + 1


and

1
s

∈


0,

λ

Q
−

α

2n


∩


α

2n
−

1
p + 1

+
1

q + 1
,

λ

Q
−

1
p + 1

+
1

q + 1


.

Finally, wemake the following remarks. All of Theorems 1.1, 1.3 and 1.4, namely the |u|weighted inequality (1.3), and the
regularity estimates and asymptotic behavior for solutions to the Euler–Lagrange equations to the |u| weighted inequality
hold in the more general setting of stratified groups (we refer to [25,26] for an introduction of stratified groups). The proofs
of these theorems given in this paper work out without any substantial changes on the stratified groups. Nevertheless,
Theorems 1.5 and 1.6 for |z| weighted HLS inequalities do involve the partial weight |z| and have to be formulated carefully
in the general settings. We should not discuss in details here.

We organize this paper as follows: In Section 2, we prove two weighted HLS inequalities in Theorems 1.1 and 1.5. We
then establish regularity estimates Theorems 1.3 and 1.6 in Section 3, while asymptotic behavior Theorem 1.4 is proved
in Section 4. We shall mention that although we focus on verifying |u| weighted HLS inequality and related theories, |z|
weighted version can be carried out mutatis mutandis in most of the discussion, and essential difference between them is
pointed out when it is necessary.

2. Proofs of weighted HLS inequalities (Stein–Weiss inequalities)

In this section, we prove two types of weighted HLS inequalities, that is, Theorems 1.1 and 1.5. One is with the weight
of the form of the power of |u|, the other one is with the weight of the form of power of |z|. We begin with |u| weighted
version, and state two alternative recordings of Theorem 1.1, thus we can prove and apply them by our convenience.

Theorem 2.1. Let 1 < p ≤ q < ∞, 0 < λ < Q = 2n+2 andα+β ≥ 0 such that α < Q/q,β < Q/p′ and 1
q =

1
p +

λ+α+β

Q −1,
then

∥Sf ∥q ≤ C∥f ∥p,

in which C = Cα,β,p,λ,n is independent of f , and

Sf (u) = Sλ,α,β f (u) =


Hn

f (v)dv
|u|α|u−1v|λ|v|β

.

Before we introduce the other equivalent theorem, let us set up the notations. We define the |u| weighted Lp norm as

∥f ∥Lpγ
=


Hn

|f (u)|p|u|γ du
 1

p

,

and Lpγ (Hn) as the space of all the measurable functions with finite Lpγ norm for all γ ∈ R.

Theorem 2.2. Let 1 < p ≤ q < ∞, 0 < λ < Q = 2n+2 andα+β ≥ 0 such that α < Q/q,β < Q/p′ and 1
q =

1
p +

λ+α+β

Q −1,
then

∥Tf ∥Lq
−αq

≤ C∥f ∥Lpβp
, (2.1)

in which C = Cα,β,p,λ,n is independent of f , and

Tf (u) = Tλf (u) =


Hn

f (v)dv
|u−1v|λ

. (2.2)

Thus (2.1) becomes ∥u |
−α Tf (u) ∥q ≤ C∥u|β f (u)∥p, or

Hn
|Tf (u)|q|u|−αqdu

 1
q

≤ C


Hn
|f (u)|p|u|βpdu

 1
p

. (2.3)

Remark. 1. Some basic computations and theorems on the Heisenberg group, including quasi-triangular inequality,
volume of balls and integrability of certain integrals etc. can be found in [11], Chapter 1 in [26] (More generally,
homogeneous groups are considered therein.) and Section 4 in [27]; Calculations using polar coordinates to evaluate
some integrals can be done similarly to those used in [14].



4302 X. Han et al. / Nonlinear Analysis 75 (2012) 4296–4314

2. The conditions p ≤ q and 1
q =

1
p +

λ+α+β

Q − 1 in Theorems 2.1 and 2.2 are equivalent with λ + α + β ≤ Q and
1
p +

1
q′ +

λ+α+β

Q = 2 in Theorem 1.1.
3. The analogous theorem in Euclidean space as Theorem 2.1 was first introduced by Hardy and Littlewood [1] in R1, and

generalized by Stein and Weiss in [8] to Rn.
4. The constants given in Theorems 2.1 and 2.2 above are obviously not sharp here. It is a challenging problem to find

best constants to these inequalities. In Rn, some work concerning the sharp bound has been done by Beckner [28],
Eilertsen [29].

5. Lieb studied the optimizers of the (double) weighted fractional integral in Euclidean spaces (Theorem 5.1 in [5]), under
a stronger assumption that α, β ≥ 0 instead of α + β ≥ 0. (The stronger condition is needed to use rearrangement
method.) His results conclude that the optimizers exist when p < q, and do not exist when p = q.

6. Sawyer and Wheeden in [30] gave some results about (2.3) with general weights on both Euclidean and homogeneous
spaces.

The equivalences between Theorems 1.1, 2.1 and 2.2 are not difficult to be verified, for reader’s convenience, we provide
a simple observation of the equivalence between Theorems 1.1 and 2.1 here.

Proposition 2.3. Theorems 1.1 and 2.1 are equivalent.

Proof of Proposition 2.3. Note that the conditions for indices are equivalent in both theorems by (1) in the remark above.
To prove sufficiency, compute that

∥Sf ∥q ≤ sup
∥g∥q′=1


Hn

Sf (u)g(u)du


= sup
∥g∥q′=1


 

Hn×Hn

f (v)g(u)
|u|α|u−1v|λ|v|β

dudv


≤ sup

∥g∥q′=1
C∥f ∥p∥g∥q′

= C∥f ∥p.

To prove necessity, compute that
 

Hn×Hn

f (u)g(v)

|u|α|u−1v|λ|v|β
dudv

 =


Hn

f (u)


Hn

g(v)dv
|u|α|u−1v|λ|v|β


du


=


Hn

f (u)Sg(u)du


≤ ∥f ∥r∥Sg∥r ′

≤ C∥f ∥r∥g∥s. �

We denote K(u, v) = |u−1v|
−λ

= d(u, v)−λ, thus we get Tf (u) =


Hn K(u, v)f (v)dv in (2.1). d(u, v) satisfies the trian-
gular inequality,

d(u1, u3) ≤ d(u1, u3) + d(u3, u2). (2.4)
Then we state a lemma from Sawyer and Wheeden’s paper (Theorem 4 in [30]), a simplified version is sufficient here to

prove Theorem 2.2, thus Theorems 1.1 and 2.1 follow immediately. We shall mention that the original theorem in [30] is
more general that it covers the cases for all the quasi-metric spaces with a doubling measure and properly equipped group
structure.

Lemma 2.4 (Sawyer andWheeden). The operator T defined in (2.2) is bounded from Lpβp(H
n) to Lq−αq(Hn), if both of the following

two statements are true.
1. There exists ε > 0 such that for any pair of balls B and B′ with radius r and r ′ satisfying B′

⊆ 4B,
r ′

r

Q−ε 
ϕ(B′)

ϕ(B)


≤ Cε. (2.5)

2. There exists t > 1 such that for any ball B ⊆ Hn,

ϕ(B)|B|
1
p′

+
1
q


1
|B|


B
|u|−αqtdu

 1
qt


1
|B|


B
|u|−βp′tdu

 1
p′t

≤ Ct . (2.6)

Here ϕ(B) = sup{K(u, v)|u, v ∈ B, d(u, v) ≥ 2−24r} for a ball B ∈ Hn with radius r. Cε and Ct are two finite constants
depending only on ε and t, respectively.
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Next we apply the above lemma to verify Theorem 2.2, that is, we only need to show that conditions (2.5) and (2.6) of
Lemma 2.4 are satisfied.

Proof of Theorem 2.2. To show (2.5), note that for K(u, v) = |u−1v|
−λ

= d(u, v)−λ here, ϕ(B) = 224λr−λ and thus the left
hand side of (2.5) becomes

r ′

r

Q−ε 
ϕ(B′)

ϕ(B)


=


r ′

r

Q−λ−ε

.

Since 0 < λ < Q , we choose ε > 0 small such that Q − λ − ε > 0, then for B′
⊆ 4B,

r ′

r

Q−λ−ε

≤ 4Q−λ−ε
:= Cε < ∞,

which shows (2.5).
To show (2.6), rewrite the left hand side of (2.6) as

ϕ(B)|B|
1
p′

+
1
q


1
|B|


B
|u|−αqtdu

 1
qt


1
|B|


B
|u|−βp′tdu

 1
p′t

= M1 × M2 × M3,

in which

M1 = ϕ(B)|B|
1
q +

1
p′ = Cr−λrQ ( 1

q +
1
p′

)
= rλ−λ,

since 1
q =

1
p +

λ
Q − 1 and 1

q +
1
p′ =

λ
Q .

M2 =


1
|B|


B
|u|−αqtdu

 1
qt

≤


C
rQ−αqt

rQ

 1
qt

= Cr−α, (2.7)

if αqt < Q , and

M3 =


1
|B|


B
|u|−βp′tdu

 1
p′t

≤


C
rQ−βp′t

rQ

 1
p′t

= Cr−β , (2.8)

if βp′t < Q . Because α < Q/q and β < Q/p′, we have min{
Q
αq ,

Q
βp′ } > 1, and it ensures the existence of t such that

1 < t < min{
Q
αq ,

Q
βp′ }, thus αqt < Q and βp′t < Q , furthermore M2 < ∞ andM3 < ∞. Then

ϕ(B)|B|
1
p′

+
1
q


1
|B|


B
|u|−αqtdu

 1
qt


1
|B|


B
|u|−βp′tdu

 1
p′t

= Crλ−λ−α−β
= Ct < ∞,

which shows (2.6), then by Lemma 2.4, the proof is completed. �

To prove Theorem 1.5, we also introduce two equivalent recordings.

Theorem 2.5. Let 1 < p ≤ q < ∞, 0 < λ < Q = 2n + 2 and 0 ≤ α + β ≤ nλ such that α < 2n/q, β < 2n/p′ and
1
q =

1
p +

λ+α+β

Q − 1, then

∥Sf ∥q ≤ C∥f ∥p,

in which C = Cα,β,p,λ,n is independent of f , and

Sf (u) =Sλ,α,β f (u) =


Hn

f (v)dv
|z|α|u−1v|λ|z ′|β

. (2.9)

Recall T defined in (2.2), we have
Hn

|Tf (u)|q|z|−αqdu
 1

q

≤ C


Hn
|f (u)|p|z|βpdu

 1
p

. (2.10)

Here, u = (z, t) and v = (z ′, t ′). As a result, Theorem 1.5 follows.
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Proof of Theorem 2.5. We only need to modify and verify (2.5) and (2.6) in the proof of Theorem 2.2. (2.5) stays the same
as the kernel K(u, v) = |u−1v|

−λ does not change. Then, we need to verify the revised version of (2.6).
There exists t > 1 such that for any ball B ⊆ Hn,

ϕ(B)|B|
1
p′

+
1
q


1
|B|


B
|z|−αqtdu

 1
qt


1
|B|


B
|z|−βp′tdu

 1
p′t

≤ Ct . (2.11)

Similarly we prove (2.11) as we did for (2.6) except that we need to replace (2.7) and (2.8) by computing the following

M2 =


1
|B|


B
|z|−αqtdu

 1
qt

and

M3 =


1
|B|


B
|z|−βp′tdu

 1
p′t

.

M2 and M3 are finite if we require αqt < 2n and βp′t < 2n,3 and these are guaranteed by the conditions α < 2n/q and
β < 2n/p′. �

3. Regularity estimates

In this section, we prove regularity estimates in Theorems 1.3 and 1.6. Let us begin with a theorem of regularity lifting
by contracting operators, that is, suppose V is a topological vector space with two extended norms,

∥ · ∥X , ∥ · ∥Y : V → [0, ∞],

let X := {v ∈ V : ∥v∥X < ∞} and Y := {v ∈ V : ∥v∥Y < ∞}. The operator T : X → Y is said to be contracting if

∥Tf − Th∥Y ≤ η∥f − h∥X ,

∀f , h ∈ X and some 0 < η < 1. And T is said to be shrinking if

∥Tf ∥Y ≤ θ∥f ∥X ,

∀f ∈ X and some 0 < θ < 1.

Remark. It is obvious that for a linear operator T , these two conditions above are equivalent. Thus the following theorem
is also true for linear shrinking operators.

Theorem 3.1 (Regularity Lifting by Contracting Operators). Let T be a contracting operator from X to itself and from Y to itself,
and assume that X, Y are both complete. If f ∈ X, and there exists g ∈ Z := X ∩ Y such that f = Tf + g in X, then f ∈ Z.

We omit the proof here since it is easy and can be found in [31]. One can also find in [32] some application of Theorem 3.1
on integral equations associated with Bessel potentials.

In the followingwork of this section, the proof of Theorem 1.3 is divided into two subsections as in Section 3.1 (α, β ≥ 0)
and in Section 3.2 (α ≥ 0, β ≤ 0), by applying the above regularity lifting. While we present the outline of the proof for
Theorem 1.6 in Section 3.3.

3.1. Proof of Theorem 1.3 if α, β ≥ 0

For a fixed real number a > 0, define

ga(u) =


g(u) if |g(u)| > a, or |u| > a,
0 otherwise.

Let gb(u) = g(u) − ga(u), and similarly we define fa and fb, then gb and fb are uniformly bounded by a in Ba(0) obviously.
It is evident that ga · gb = 0 and g t

= (ga + gb)t = g t
a + g t

b for all t > 0. Define the linear operator T1,

T1h(u) =
1

|u|α


Hn

gq−1
a (v)h(v)

|v|β |u−1v|λ
dv = Sλ,α,β(gq−1

a h)(u).

3 See Cohn and Lu’s computation of

|u|<1 |z|−tdt for t < 2n on p. 1574 in [14].



X. Han et al. / Nonlinear Analysis 75 (2012) 4296–4314 4305

Since f satisfies (1.5), we have

f (u) =
1

|u|α


Hn

gq(v)

|v|β |u−1v|λ
dv

=
1

|u|α


Hn

((ga + gb)q−1g)(v)

|v|β |u−1v|λ
dv

=
1

|u|α


Hn

(gq−1
a g + gq−1

b (ga + gb))(v)

|v|β |u−1v|λ
dv

= T1g(u) +
1

|u|α


Hn

gq
b (v)

|v|β |u−1v|λ
dv,

and f = T1g + F , in which

F(u) =
1

|u|α


Hn

gq
b (v)

|v|β |u−1v|λ
dv = Sλ,α,β(gq

b )(u).

Similarly, we define

T2h(u) =
1

|u|β


Hn

f p−1
a (v)h(v)

|v|α|u−1v|λ
dv = Sλ,β,α(f p−1

a h)(u)

and

G(u) =
1

|u|β


Hn

f qb (v)

|v|α|u−1v|λ
dv = Sλ,β,α(f pb )(u).

Then we have g = T2f + G. Define the operator T (h1, h2) = (T1h2, T2h1), equip the product space Lp+1(Hn) × Lq+1(Hn)
with norm ∥(h1, h2)∥p+1,q+1 = ∥h1∥p+1 + ∥h2∥q+1, and Lr(Hn) × Ls(Hn) with norm ∥(h1, h2)∥r,s = ∥h1∥r + ∥h2∥s. It is easy
to see they are both complete under these norms respectively.

Thus we immediately observe that (f , g) solves the equation (h1, h2) = T (h1, h2) + (F ,G). In order to apply regularity
lifting by contracting operators (Theorem 3.1), we fix the indices r and s satisfying

1
r

−
1
s

=
1

p + 1
−

1
q + 1

(3.1)

Note that the interval conditions in (1.3.i) of Theorem 1.3 guarantee the existence of such pairs (r, s). Then to arrive at
the conclusion that (f , g) ∈ Lr(Hn) × Ls(Hn), we need to verify the following conditions, for sufficiently large a. (Here T is
linear, by the remark above we only need to verify that it is shrinking.)

(1) T is shrinking from Lp+1(Hn) × Lq+1(Hn) to itself.
(2) T is shrinking from Lr(Hn) × Ls(Hn) to itself.
(3) (F ,G) ∈ Lp+1(Hn) × Lq+1(Hn) ∩ Lr(Hn) × Ls(Hn), i.e., F ∈ Lp+1(Hn) ∩ Lr(Hn) and G ∈ Lq+1(Hn) ∩ Lr(Hn).

(1) T is shrinking from Lp+1(Hn) × Lq+1(Hn) to itself.
First, we show that ∥T1h∥p+1 ≤

1
2∥h∥q+1 for all h ∈ Lq+1(Hn). Observe that α < Q/(p + 1), β < Q/(q + 1) = Q/(

q+1
q )′

from (1.6), and

q
q + 1

+
λ

Q
− 1 =

λ

Q
−

1
q + 1

=
1

p + 1
.

By |u| weighted fractional integral inequality in Theorem 2.1, together with Hölder inequality,

∥T1h∥p+1 = ∥Sλ,α,β(gq−1
a h)∥p+1

≤ C∥gq−1
a h∥ q+1

q

≤ C∥gq−1
a ∥ q+1

q−1
∥h∥q+1

= C∥ga∥
q−1
q+1∥h∥q+1,

in which we choose a sufficiently large that C∥ga∥
q−1
q+1 ≤

1
2 , since g ∈ Lq+1(Hn). Thus ∥T1h∥p+1 ≤

1
2∥h∥q+1 is verified.

Similarlywe can prove that ∥T2h∥q+1 ≤
1
2∥h∥p+1 for all h ∈ Lq+1(Hn) by choosing a large enough. Combining them together,
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we have no difficulty to get

∥T (h1, h2)∥p+1,q+1 = ∥T1h2∥p+1 + ∥T2h1∥q+1

≤
1
2
(∥h2∥q+1 + ∥h1∥p+1)

=
1
2
∥(h1, h2)∥p+1,q+1,

and this shows that T is shrinking from Lp+1(Hn) × Lq+1(Hn) to itself.
(2) T is shrinking from Lr(Hn) × Ls(Hn) to itself.

We use the same tool as we did in (1), that is, |u| weighted fractional integral inequality in Theorem 2.1 with assistance
of Hölder inequality, by properly choosing the indices. Here, we prove that ∥T2h∥s ≤

1
2∥h∥r first,

∥T2h∥s = ∥Sλ,β,α(f p−1
a h)∥s

≤ C∥f p−1
a h∥t

≤ C∥f p−1
a ∥ p+1

p−1
∥h∥r

= C∥fa∥
p−1
p+1∥h∥r ,

in which we choose a sufficiently large that C∥ga∥
q−1
q+1 ≤

1
2 , since g ∈ Lq+1(Hn). Thus, ∥T2h∥s ≤

1
2∥h∥r for all h ∈ Lr(Hn). The

indices r , s and t above satisfy
1
t

=
p − 1
p + 1

+
1
r

and by (3.1),

1
t

+
λ

Q
− 1 =

p − 1
p + 1

+
1
r

+
λ

Q
− 1

=
p − 1
p + 1

+
1
r

+
1

p + 1
+

1
q + 1

− 1

=
1
r

−
1

p + 1
+

1
q + 1

=
1
s
.

It is also easy to check that β < Q/s, since 1/s > β/Q , and α < Q/t ′, since

1
t ′

= 1 −
1
t

=
λ

Q
−

1
s

>
λ

Q
−

λ + β

Q
=

α

Q
.

Similarly we estimate T1 for h ∈ Ls(Hn), and easily pass the results to Lr(Hn) × Ls(Hn), i.e.,

∥T (h1, h2)∥r,s ≤
1
2
∥(h1, h2)∥r,s,

which shows that T is shrinking from Lr(Hn) × Ls(Hn) to itself.
(3) F ∈ Lp+1(Hn) ∩ Lr(Hn) and G ∈ Lp+1(Hn) ∩ Lr(Hn).

It is evident once one notices that gb and fb are uniformly bounded by a in Ba(0).
Applying regularity lifting we finish the proof of (1.3.i) in Theorem 1.3.

3.2. Proof of Theorem 1.3 if α ≥ 0, β ≤ 0

We repeat the same procedure as we did in Section 3.1, that is, we fix the pair r and s by (3.1), and then verify the same
three conditions, in order to apply regularity lifting. We adapt all the settings in Section 3.1 and only need to verify (2) to
make sure the interval conditions in (1.3.ii) of Theorem 1.3 are sufficient.
(2) T is shrinking from Lr(Hn) × Ls(Hn) to itself.

First, for T1,

∥T1h∥r = ∥Sλ,α,β(gq−1
a h)∥r

≤ C∥gq−1
a h∥t

≤ C∥gq−1
a ∥ q+1

q−1
∥h∥s

= C∥ga∥
q−1
q+1∥h∥s.
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We have α < Q/r , since 1/r > α/Q , and β < Q/t ′, since β ≤ 0 and

1
t ′

= 1 −
1
t

=
λ

Q
−

1
r

> 0.

Then, for T2,
∥T2h∥s = ∥Sλ,β,α(f p−1

a h)∥s

≤ C∥f p−1
a h∥t

≤ C∥f p−1
a ∥ p+1

p−1
∥h∥r

= C∥fa∥
p−1
p+1∥h∥r .

We have β < Q/s, since β ≤ 0, and α < Q/t ′, since

1
t ′

= 1 −
1
t

=
λ

Q
−

1
s

>
λ

Q
−

λ + β

Q
=

α

Q
.

Therefore we finish the proof of (2), and thus complete Theorem 1.3. Let us prove a proposition of the intervals in
Theorem 1.3.

Proposition 3.2. We assume the same conditions as in Theorem 1.3, then
(1) If α, β ≥ 0, and assume further that α

Q −
β

Q ≥
1

p+1 −
1

q+1 , then (f , g) ∈ Lr(Hn) × Ls(Hn) for all r and s such that

1
r

∈


α

Q
,
λ + β

Q
−

1
q + 1

+
1

p + 1


and

1
s

∈


α

Q
−

1
p + 1

+
1

q + 1
,
λ + β

Q


.

(2) If α ≥ 0, β ≤ 0, and assume further that α
Q ≥

1
p+1 −

1
q+1 , then (f , g) ∈ Lr(Hn) × Ls(Hn) for all r and s such that

1
r

∈


α

Q
,
λ + β

Q
−

1
q + 1

+
1

p + 1


and

1
s

∈


α

Q
−

1
p + 1

+
1

q + 1
,
λ + β

Q


.

Proof of Proposition 3.2. The proof is trivial andwe observe that in (1), α
Q −

β

Q ≥
1

p+1 −
1

q+1 if and only if (λ+2α)(p+1) ≥

2Q (or equivalently, (λ + 2β)(q + 1) ≤ 2Q ). While in (2), α
Q ≥

1
p+1 −

1
q+1 if and only if (λ + 2α + β)(p + 1) ≥ 2Q (or

equivalently, (λ + β)(q + 1) ≤ 2Q ). Similarly we can develop the contrary case that

(1’) If α, β ≥ 0, and assume further that α
Q −

β

Q < 1
p+1 −

1
q+1 , then (f , g) ∈ Lr(Hn) × Ls(Hn) for all r and s such that

1
r

∈


β

Q
−

1
q + 1

+
1

p + 1
,
λ + α

Q


and

1
s

∈


β

Q
,
λ + α

Q
−

1
p + 1

+
1

q + 1


.

(2’) If α ≥ 0, β ≤ 0, and assume further that α
Q < 1

p+1 −
1

q+1 , then (f , g) ∈ Lr(Hn) × Ls(Hn) for all r and s such that

1
r

∈


−

1
q + 1

+
1

p + 1
,

λ

Q


and

1
s

∈


0,

λ

Q
−

1
p + 1

+
1

q + 1


.

Wealso observe that in (1’), α
Q −

β

Q < 1
p+1−

1
q+1 if and only if (λ+2α)(p+1) > 2Q (or equivalently, (λ+2β)(q+1) > 2Q ).

While in (2’), α
Q < 1

p+1 −
1

q+1 if and only if (λ + 2α + β)(p + 1) < 2Q (or equivalently, (λ + β)(q + 1) > 2Q ). �
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3.3. Proof of Theorem 1.6

The proof of Theorem 1.6 follows similarly as we did in Section 3.1 and Section 3.2: First we define

T1h(u) =
1

|z|α


Hn

gq−1
a (v)h(v)

|z ′|β |u−1v|λ
dv =Sλ,α,β(gq−1

a h)(u),

F(u) =
1

|z|α


Hn

gq
b (v)

|z ′|β |u−1v|λ
dv =Sλ,α,β(gq

b )(u),

and

T2h(u) =
1

|z|β


Hn

f p−1
a (v)h(v)

|z ′|α|u−1v|λ
dv =Sλ,β,α(f p−1

a h)(u),

G(u) =
1

|z|β


Hn

f qb (v)

|z ′|α|u−1v|λ
dv =Sλ,β,α(f pb )(u).

Thus we immediately observe that (f , g) solves the equation (h1, h2) = T (h1, h2) + (F ,G), in which T (h1, h2) =

(T1h2,T2h1). We also fix the indices r and s satisfying (3.1) and only need to verify thatT is shrinking from Lr(Hn) × Ls(Hn)
to itself, that is, to prove the regularity estimates intervals (1.6.i) and (1.6.ii) in Theorem 1.6 are sufficient to guarantee that

∥T (h1, h2)∥r,s ≤
1
2
∥(h1, h2)∥r,s

for a large. We omit the details here.

4. Asymptotic behavior

In this section, we give the proof of Theorem1.4, asymptotic behavior for |u|weightedHLS inequality. Since the estimates
become trivial when α = 0 or β = 0, we only consider the nontrivial cases α, β > 0 in Section 4.1 and α > 0, β < 0
in Section 4.2. It is worthwhile to note here that our asymptotic behavior estimate is near the origin, to get its counterpart
around infinite, one might need to consider the change of the system under Kelvin-type transform, we refer the reader to
[33] for the study of Kelvin transform on the Heisenberg group and leave this for further investigation.

4.1. |u| ∼ 0 if α, β > 0

(1.4.i) If |u| ∼ 0, we show asymptotic behavior of f under three conditions λ+β(q+1) <,=, > Q . A lemma is necessary
to justify the eligibility of the constants in the theorem.

Lemma 4.1. The constants A1, A2 and A3 in (i) of Theorem 1.4 are all finite.

Proof of Lemma 4.1. (1) If λ + β(q + 1) < Q , to show A1 =


Hn
gq(v)

|v|λ+β dv < ∞, observe that

A1 =


Hn

gq(v)

|v|λ+β
dv =


Bδ

gq(v)

|v|λ+β
dv +


Hn\Bδ

gq(v)

|v|λ+β
dv := I1 + I2

in which Bδ is the Heisenberg ball in Hn centered at the origin with radius δ, i.e., Bδ = {v ∈ Hn
∥ v| < δ}. Then by Hölder

inequality,

I1 =


Bδ

gq(v)

|v|λ+β
dv ≤


Bδ

gqt(v)dv
 1

t


Bδ

1
|v|(λ+β)t ′

dv
 1

t′

,

where

Bδ

1
|v|(λ+β)t′ dv < ∞ if and only if (λ + β)t ′ < Q , that is,

1
t

< 1 −
λ + β

Q
,

and thus,
1
qt

<
1
q

−
λ + β

qQ
.

From (1.3.i) in Theorem 1.3, we have g ∈ Ls(Hn) for all s such that

1
s

∈


β

Q
,
λ + β

Q


∩


α

Q
−

1
p + 1

+
1

q + 1
,
λ + α

Q
−

1
p + 1

+
1

q + 1


.
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Given that 1
q+1 <

λ+β

Q , one can easily verify that

1
q

−
λ + β

qQ
>

α

Q
−

1
p + 1

+
1

q + 1
,

and λ + β(q + 1) < Q guarantees that

1
q

−
λ + β

qQ
>

β

Q
.

Then we are able to choose t such that (λ + β)t ′ < Q and ∥g∥qt < ∞, thus I1 < ∞ follows. To estimate I2,

I2 =


Hn\Bδ

gq(v)

|v|λ+β
dv ≤


Hn\Bδ

gqt(v)dv
 1

t


Hn\Bδ

1
|v|(λ+β)t ′

dv
 1

t′

,

we use the method with the same fashion, i.e., choosing t > 0 such that (λ + β)t ′ > Q , that is,

1
qt

>
1
q

−
λ + β

qQ

and

1
qt

∈


β

Q
,
λ + β

Q


∩


α

Q
−

1
p + 1

+
1

q + 1
,
λ + α

Q
−

1
p + 1

+
1

q + 1


.

We have I2 < ∞ and therefore A1 < ∞.
(2) If λ+β(q+1) = Q , by the remark below Theorem 1.4, we know that λ+α(p+1) < Q . Similar to the proof of A1 < ∞,
we obtain B1 =


Hn

f p(v)

|v|λ+α dv < ∞. Then simply note that A2 = |Σ1|(


Hn
f p(v)

|v|λ+α dv)q = |Σ1|B
q
1 < ∞.

(3) If λ + β(q + 1) > Q , by the same reason as in (2) above, B1 < ∞. Compute that

A3 =


Hn

f p(v)

|v|λ+α
dv
q 

Hn

1
|v|β(q+1)|e−1v|λ

dv = Bq
1


Hn

1
|v|β(q+1)|e−1v|λ

dv,

we only need to show
Hn

1
|v|β(p+1)|e−1v|λ

dv < ∞.

It is evident since |v|
β(q+1)

|e−1v|
λ

∼ |v|
β(p+1), when |v| ∼ 0 and β(q + 1) < Q . While |v|

β(q+1)
|e−1v|

λ
∼ |v|

λ+β(p+1),
when |v| ∼ ∞ and λ + β(p + 1) > Q , and we finish the proof of this lemma. �

Now we proceed to prove the asymptotic behavior of f around the origin.
Case 1. If λ + β(q + 1) < Q , we show f (u) ∼ A1/|u|α as |u| ∼ 0.

Since A1 is finite from Lemma 4.1, we only need to prove that

lim
|u|→0


Hn

gq(v)

|v|β |u−1v|λ
dv −


Hn

gq(v)

|v|λ+β
dv
 = 0. (4.1)

Given δ > 0,
Hn

gq(v)

|v|β |u−1v|λ
dv −


Hn

gq(v)

|v|λ+β
dv
 ≤


Hn

 gq(v)

|v|β |u−1v|λ
−

gq(v)

|v|λ+β

 dv
≤


Bδ


gq(v)

|v|β |u−1v|λ
+

gq(v)

|v|λ+β


dv +


Hn\Bδ

 gq(v)

|v|β |u−1v|λ
−

gq(v)

|v|λ+β

 dv
:= J1(u) + J2(u).

Here, we apply Young’s inequality

ab ≤
ak

k
+

bk
′

k′
,

where a, b ≥ 0 and 1
k +

1
k′ = 1. By letting a =

1
|v|β

, b =
1

|u−1v|λ
, k =

λ+β

β
and k =

λ+β

λ
, we have

1
|v|β |u−1v|λ

≤
1

k|v|kβ
+

1
k′|u−1v|k

′λ
≤

β

(λ + β)|v|λ+β
+

λ

(λ + β)|u−1v|λ+β
, (4.2)
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and hence,

J1(u) =


Bδ


gq(v)

|v|β |u−1v|λ
+

gq(v)

|v|λ+β


dv

≤
β

λ + β


Bδ

gq(v)

|v|λ+β
dv +

λ

λ + β


Bδ

gq(v)

|u−1v|λ+β
dv +


Bδ

gq(v)

|v|λ+β
dv

→ 0,

as δ → 0, since each of the three integrals above over Hn is finite according to the computation of I1 in Lemma 4.1. Next we
fix δ small so that J1(u) is small. For the same reason we can get

J2(u) =


Hn\Bδ

 gq(v)

|v|β |u−1v|λ
−

gq(v)

|v|λ+β

 dv
≤


Hn\Bδ

gq(v)

|v|β |u−1v|λ
dv +


Hn\Bδ

gq(v)

|v|λ+β
dv

≤
β

λ + β


Hn\Bδ

gq(v)

|v|λ+β
dv +

λ

λ + β


Hn\Bδ

gq(v)

|u−1v|λ+β
dv +


Hn\Bδ

gq(v)

|v|λ+β
dv

< ∞,

for any u ∈ Hn. By letting u → 0, note that |v| ≥ δ ≫ |u| for |u| small, we have J2(u) → 0 from Lebesgue bounded
convergence theorem, then (4.4) is verified and (1.4.i) is proved under λ + β(q + 1) < Q .
Case 2. If λ + β(q + 1) = Q , we show f (u) ∼ A2| ln |u ∥ /|u|α as |u| ∼ 0.

We prove that

lim
|u|→0

|u|α f (u)
| ln |u ∥

= lim
|u|→0

|u|α f (u)
− ln |u|

= A2.

Since B1 < ∞ from (2) of Lemma 4.1. We obtain g(u) ∼ B1/|u|β as |u| ∼ 0 in (1.4.ii) by a similar argument as in Case 1.
That is, g(u) =

B1+o(1)
|u|β as |u| → 0. For δ > 0 small we compute that

|u|α f (u)
− ln |u|

=
1

− ln |u|


Hn

gq(v)

|v|β |u−1v|λ
dv

=
1

− ln |u|


Bδ

(B1 + o(1))q

|v|β(q+1)|u−1v|λ
dv +

1
− ln |u|


Hn\Bδ

gq(v)

|v|β |u−1v|λ
dv

=
(B1 + o(1))q

− ln |u|


Bδ

1
|v|Q−λ|u−1v|λ

dv +
1

− ln |u|


Hn\Bδ

gq(v)

|v|β |u−1v|λ
dv.

Note that β(q + 1) = Q − λ, and the second term above tends to 0 when |u| is small since the integral in it is bounded.
Then,

lim
|u|→0

|u|α f (u)
− ln |u|

= lim
|u|→0

(B1 + o(1))q

− ln |u|


Bδ

1
|v|Q−λ|u−1v|λ

dv

= Bq
1 lim

|u|→0

1
− ln |u|


Bδ

1
|v|Q−λ|u−1v|λ

dv

= Bq
1 lim

|u|→0

1
− ln |u|


Bδ/|u|

1
|w|Q−λ|e−1w|λ

dw,

in which w = v/|u|, e = u/|u| is a unit vector in Hn. Then we fix δ > 0, we apply a result concerning polar coordinates on
Hn, see e.g. Proposition on p. 1574 in [14].

1
− ln |u|


Bδ/|u|

1
|w|Q−λ|e−1w|λ

dw =
1

− ln |u|

 δ/|u|

0
dr


Σ1

rQ−1dv
rQ−λ|e−1rv|λ

=
1

− ln |u|


Σ1

dv
 R

0

rλ−1

|e−1rv|λ
dr +

 δ/|u|

R

rλ−1

|e−1rv|λ
dr


=
1

− ln |u|


Σ1

dv

O(1) +

 δ/|u|

R

1
r
dr


→ |Σ1|.
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Thus,

lim
|u|→0

|u|α f (u)
− ln |u|

= |Σ1|B
q
1 = A2,

and (1.4.i) is proved under λ + β(q + 1) = Q .

Case 3. If λ + β(q + 1) > Q , we show f (u) ∼
A3

|u|β(q+1)+α+λ−Q as |u| ∼ 0.
We prove that

lim
|u|→0

|u|t f (u) = A3,

in which t = β(q + 1) + α + λ − Q . As in Case 2, we use g(u) =
B1+o(1)

|u|β as |u| → 0. For δ > 0 small we compute that

|u|t f (u) =
|u|t

|u|α


Hn

gq(v)

|v|β |u−1v|λ
dv

= |u|t−α


Bδ

(B1 + o(1))q

|v|β(q+1)|u−1v|λ
dv + |u|t−α


Hn\Bδ

gq(u)
|v|β |u−1v|λ

dv

= |u|t−α(B1 + o(1))q

Bδ

1
|v|β(q+1)|u−1v|λ

dv + |u|t−α


Hn\Bδ

gq(u)
|v|β |u−1v|λ

dv

and the second term above tends to 0 when |u| is small since the integral in it is bounded (See the proof in Case 1.) and
t − α = λ + β(q + 1) − Q > 0. Then,

lim
|u|→0

|u|t f (u) = lim
|u|→0

|u|t−α(B1 + o(1))q

Bδ

1
|v|β(q+1)|u−1v|λ

dv

= Bq
1 lim

|u|→0
|u|t−α


Bδ

1
|v|β(q+1)|u−1v|λ

dv

= Bq
1 lim

|u|→0


Bδ/|u|

1
|w|β(q+1)|e−1w|λ

dw

= Bq
1


Hn

1
|v|β(q+1)|e−1v|λ

dv

= A3,

and (1.4.i) is proved under λ + β(q + 1) > Q .
(1.4.ii) If |u| ∼ 0, repeat the same process above, we are able to get the asymptotic behavior estimates for g(u) as |u| ∼ 0,

and thus finish Section 4.1, α, β > 0.

4.2. |u| ∼ 0 if α > 0, β < 0

Weapply the samemethodwithmodified approach to estimate f and g near the origin, under its corresponding regularity
estimate (1.3.ii) in Theorem 1.3. Since f and g are not similar as they are in Section 4.1, we provide the proof for both of
them.

(1.4.i) Here β < 0 and λ < Q shows that λ + β(q + 1) < Q , and we only need to show f (u) ∼ A1/|u|α as |u| ∼ 0. We
shall begin with a lemma similar to Lemma 4.1, to provide the finiteness of the constant A1.

Lemma 4.2. The constant A1 in (1.4.i) of Theorem 1.4 is finite.

Proof of Lemma 4.2. To show A1 =


Hn
gq(v)

|v|λ+β dv < ∞, observe that

A1 =


Hn

gq(v)

|v|λ+β
dv =


Bδ

gq(v)

|v|λ+β
dv +


Hn\Bδ

gq(v)

|v|λ+β
dv := I1 + I2.

Then by Hölder inequality,

I1 =


Bδ

gq(v)

|v|λ+β
dv

≤
1
δβ


Bδ

gq(v)

|v|λ
dv

≤
1
δβ


Bδ

gqt(v)dv
 1

t


Bδ

1
|v|λt

′
dv
 1

t′

,
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where

Bδ

1
|v|λt

′ dv < ∞ if and only if λt ′ < Q , that is,

1
t

< 1 −
λ

Q
,

and thus,

1
qt

<
1
q

−
λ

qQ
.

From (ii) in Theorem 1.3, we have g ∈ Ls(Hn) for all s such that

1
s

∈


0,

λ + β

Q


∩


α

Q
−

1
p + 1

+
1

q + 1
,

λ

Q
−

1
p + 1

+
1

q + 1


.

One can easily verify that

1
q

−
λ

qQ
>

α

Q
−

1
p + 1

+
1

q + 1
,

and λ < Q implies that

1
q

−
λ

qQ
> 0.

Then we are able to choose t such that (λ + β)t ′ < Q and ∥g∥qt < ∞, thus I1 < ∞ follows. To estimate I2,

I2 =


Hn\Bδ

gq(v)

|v|λ+β
dv ≤


Hn\Bδ

gqt(v)dv
 1

t


Hn\Bδ

1
|v|(λ+β)t ′

dv
 1

t′

, (4.3)

choosing t > 0 such that (λ + β)t ′ > Q , that is,

1
qt

>
1
q

−
λ + β

qQ

and

1
s

∈


0,

λ + β

Q


∩


α

Q
−

1
p + 1

+
1

q + 1
,

λ

Q
−

1
p + 1

+
1

q + 1


.

We have I2 < ∞ and therefore A1 < ∞. �

Nownotice that Young’s inequality (4.2) we used in Section 4.1whenα, β > 0 is not valid here, thus a different approach
is needed. To show

lim
|u|→0


Hn

gq(v)

|v|β |u−1v|λ
dv −


Hn

gq(v)

|v|λ+β
dv
 = 0. (4.4)

Given δ > 0,
Hn

gq(v)

|v|β |u−1v|λ
dv −


Hn

gq(v)

|v|λ+β
dv
 ≤


Bδ


gq(v)

|v|β |u−1v|λ
+

gq(v)

|v|λ+β


dv +


Hn\Bδ

 gq(v)

|v|β |u−1v|λ
−

gq(v)

|v|λ+β

 dv
:= J1(u) + J2(u).

In which,

J1(u) =


Bδ


gq(v)

|v|β |u−1v|λ
+

gq(v)

|v|λ+β


dv

≤
1
δβ


Bδ

gq(v)

|u−1v|λ
dv +


Bδ

gq(v)

|v|λ
dv


→ 0,

as δ → 0, since both integrals above over Hn is finite according to the computation of I1 in Lemma 4.2. Next we fix δ small so
that J1(u) is small. Note that as u → 0, |v| ≥ δ ≫ |u|, we have |u−1v| ∼ |v|. In fact, applying the quasi-triangular inequality
(2.3), if |u| ≤

1
3δ ≤

1
3 |v|, then

|v| ≤ 2(|u| + |u−1v|) ≤
2
3
|v| + 2|u−1v|,
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thus |u−1v| ≥
1
6 |v|, and

J2(u) =


Hn\Bδ

 gq(v)

|v|β |u−1v|λ
−

gq(v)

|v|λ+β

 dv
≤


Hn\Bδ

gq(v)

|v|β |u−1v|λ
dv +


Hn\Bδ

gq(v)

|v|λ+β
dv

≤ 6


Hn\Bδ

gq(v)

|v|λ+β
dv +


Hn\Bδ

gq(v)

|v|λ+β
dv

< ∞.

By letting u → 0, we have J2(u) → 0 from Lebesgue bounded convergence theorem, then (4.4) is verified and (1.4.i) is
proved.

(1.4.ii) If |u| ∼ 0, we show the asymptotic behavior of g near the origin. Let us prove B1, B2, B3 < ∞ first.

Lemma 4.3. The constant B1, B2 and B3 in (1.4.ii) of Theorem 1.4 are all finite.

Proof of Lemma 4.3. If λ + α(p + 1) ≥ Q , then λ + β(q + 1) < Q and A1 < ∞ from Lemma 4.2. Thus B2 and B3 are finite,
since B2 = |Σ1|A

p
1 and B3 = Aq

1


Hn

1
|v|α(p+1)|e−1v|λ

dv. We just concentrate on B1 =


Hn
f p(v)

|v|λ+α if λ + α(p + 1) < Q .
As we did in Lemmas 4.1 and 4.2, we break the integral to the one around the origin and the one away from the origin.

B1 =


Hn

f p(v)

|v|λ+α
dv =


Bδ

f p(v)

|v|λ+α
dv +


Hn\Bδ

f p(v)

|v|λ+α
dv := K1 + K2.

A dedicate calculation shows that the regularity interval in (ii) of Theorem 1.3

1
r

∈


α

Q
,

λ

Q


∩


−

1
q + 1

+
1

p + 1
,
λ + β

Q
−

1
q + 1

+
1

p + 1


is sufficient to ensure K1 < ∞. For the integral away from the origin K2,

K2 =


Hn\Bδ

gq(v)

|v|λ+α
dv

=


Hn\Bδ

|v|
βgq(v)

|v|λ
dv

≤
1
δβ


Hn\Bδ

gq(v)

|v|λ
dv

≤
1
δβ


Hn\Bδ

gqt(v)dv
 1

t


Hn\Bδ

1

|v|λt
′
dv
 1

t′

.

One can easily verify the existence of t such that λt ′ > Q and

1
qt

∈


α

Q
,

λ

Q


∩


−

1
q + 1

+
1

p + 1
,
λ + β

Q
−

1
q + 1

+
1

p + 1


.

We have K2 < ∞ and therefore B1 < ∞. �

As α > 0 here, Young’s inequality is available and (1.4.ii) can be proved in the same way as in Section 4.1.
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