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In this work, we consider a non-standard preconditioning strategy for the numerical approximation of the classical
elliptic equations with log-normal random coefficients. In earlier work, a Wick-type elliptic model was proposed by
modeling the random flux through the Wick product. Due to the lower-triangular structure of the uncertainty prop-
agator, this model can be approximated efficiently using the Wiener chaos expansion in the probability space. Such
a Wick-type model provides, in general, a second-order approximation of the classical one in terms of the standard
deviation of the underlying Gaussian process. Furthermore, when the correlation length of the underlying Gaussian
process goes to infinity, the Wick-type model yields the same solution as the classical one. These observations imply that
the Wick-type elliptic equation can provide an effective preconditioner for the classical random elliptic equation under
appropriate conditions. We use the Wick-type elliptic model to accelerate the Monte Carlo method and the stochastic
Galerkin finite element method. Numerical results are presented and discussed.

KEY WORDS: Wiener chaos expansion, Wick product, stochastic elliptic PDE, uncertainty quantifica-
tion, log-normal random coefficient

1. INTRODUCTION

Numerical approximation of elliptic problems with log-normal random coefficients has received a lot of attention. We
consider the following mathematical model,

Model I:

{
−∇ · (a(x,ω)∇u(x, ω))= f(x), x ∈ D,

u(x, ω)= 0, x ∈ ∂D,
(1)

whereln a(x, ω) is a second-order homogeneous Gaussian random process, and the force term is assumed to be
deterministic for simplicity. We call problem (1) model I in this paper. Theoretical difficulties of problem (1) are
mainly related to the lack of uniform ellipticity, where the Lax-Milgram lemma is not applicable. The existence and
uniqueness of the solution of problem (1) are usually established with respect to a weighted norm [1–3] or a weighted
measure [4], or by using the Fernique theorem [5,6]. Considering the Wiener chaos approach and Galerkin projection
[1,7], the difficulties of numerical approximation of problem (1) are two-fold: First, if we start from the theoretical
study [2,4], a different test space rather thanL2(F;H1

0(D)) is required, which may be not easy to construct. Here
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F := (Ω,F , P ) is the probability space forω; a detailed presentation ofF is given in Section 2. Second, if we choose
L2(F;H1

0(D)) as the test space and use Wiener chaos as the basis for the probability space, although no divergence
with respect to theL2(F;H1

0(D)) norm has been numerically observed (the solution of problem (1) actually belongs
to L2(F; H1

0(D)) [6]), the stiffness matrix is full and dense. In other words, an efficient preconditioner is required.
Studies of elliptic problems with other types of random coefficients can be found in [8–10], etc.

The elliptic equation with a log-normal random coefficient has been studied by means of the perturbation tech-
nique (see, e.g., [11,12]), which has been also employed for other types of random coefficients (see, e.g., [13]).
However, the perturbation method only works for small variability of the random coefficient and a low degree of the
Taylor polynomial [11].

Another approach is to construct an auxiliary problem as some sort of preconditioner of the original problem;
e.g., the idea of using a smoother version of the original problem (generated by a smoothing kernel) in a Monte Carlo
control variate approach has been discussed by Nobile et al. [14,15]. Other known preconditioning skills include the
traditional algebraic preconditioner [16,17] and the bifidelity method [18].

In this paper we take a new approach to construct an auxiliary problem used as a preconditioner of model I. From
the modeling point of view, the randomness can be introduced in different ways. A typical strategy is to replace the
flux a∇u asa ¦ ∇u with ¦ being the Wick product [19–21], motivated by the observations that the Wick product is
consistent with the Skorokhod stochastic integral in a Hilbert space and can smooth the irregularity induced by white
noise. Once the Wick product is adopted, the equations for the coefficients of Wiener chaos expansion are decoupled
and can be solved one-by-one. Although this is a very nice property for numerical computation, the original equation
is changed and the model difference becomes the main concern. In [22,23], a new Wick-type model was proposed by

modeling the flux as
(
a−1

)¦(−1) ¦ ∇u:

Model II:

{
−∇ ·

((
a−1

)¦(−1) (x,ω) ¦ ∇u(x,ω)
)

= f(x), x ∈ D,

u(x, ω)= 0, x ∈ ∂D,
(2)

which we call model II in this paper. In general, both fluxesa ¦ ∇u and
(
a−1

)¦(−1) ¦ ∇u will introduce a second-
order approximation of the solution of model I in terms of the standard deviation (σ < 1) of the underlying Gaussian
process. However, the latter choice provides a much smaller difference. Actually, when the correlation length of the
underlying Gaussian process goes to infinity, model II has the same solution as model I. In addition, the uncertainty
propagator of model II is also lower-triangular, which can be solved efficiently. Another way to approximate the flux
a∇u using the Wick product is to employ the Mikulevicius-Rozovskii (M-R) formula [24], which shows that the
product of two random variables, sayX andY , has a Taylor-like expansion,

XY = X ¦ Y +
∞∑

n=1

DnX ¦ DnY

n!
, (3)

whereD indicates the Malliavin derivative [25]. It is seen thatX ¦ Y is the lowest-order term in this expansion.
We can include more terms from the M-R formula to get a better approximation ofa∇u [26,27]. It is shown in [27]
that with respect to the truncation orderQ of the Malliavin derivative and the standard deviation of the underlying
Gaussian process such a strategy provides a difference ofO(σ2(Q+1)) from the solution of model I. However, upon
doing so, the corresponding uncertainty propagator will not be lower-triangular anymore, although the coupling in
the upper-triangular part will be weak if the truncation order in the M-R formula is relatively small.

In this work, we will explore the possibility to use model II as a predictor to improve some algorithms for model
I since model II can be approximated efficiently and the difference between models I and II can be very small.
Depending on the properties of the random coefficient, we mainly consider the Monte Carlo method and the Wiener
chaos approach with Galerkin projection for model I.

This paper is organized as follows. In Section 2, we define the Wiener chaos space and the Wick product. Stochas-
tic elliptic models are discussed in Section 3 and the corresponding uncertainty propagators are given in Section 4.
Numerical algorithms are proposed in Section 5. We present numerical results in Section 6, followed by a summary
section.
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2. WIENER CHAOS SPACE AND WICK PRODUCT

Since the underlying random variables of the model are i.i.d. Gaussian, whose corresponding stochastic orthogonal
polynomials are Hermite, we first introduce the basic properties of Hermite polynomials.

2.1 Hermite Polynomials

The one-dimensional (probabilistic) Hermite polynomials of degreen are defined as

Hn(ξ) := (−1)neξ2/2 dn

dξn
e−ξ2/2. (4)

Hn(ξ) are orthogonal with respect to the weight(1/
√

2π)e−ξ2/2, in the sense
∫ ∞

−∞
Hm(ξ)Hn(ξ)

1√
2π

e−ξ2/2dξ = n!δnm. (5)

The values of Hermite polynomials can be evaluated using the following three-term recurrence formula:

H0(ξ) = 1, H1(ξ) = ξ,

Hn+1(ξ) = ξHn(ξ)− nHn−1(ξ), n ≥ 2.

Hermite polynomials satisfy a very simple derivative relation:

H′n(ξ) = nHn−1(ξ), ∀n ≥ 0. (6)

We list below in Lemma 1 several properties of Hermite polynomials, which will be used later.

Lemma 1. For one-dimensional Hermite polynomials, the following properties hold:

exp
(

sξ− 1
2
s2

)
=

∞∑

i=0

si

i!
Hi(ξ), (7)

Hn(ξ + s) =
n∑

i=0

(
n

i

)
sn−iHi(ξ), (8)

Hi(ξ)Hj(ξ) =
∑

k≤i∧j

χ(i, j, k)Hi+j−2k(ξ). (9)

wheres ∈ R, i ∧ j := min{i, j} and

χ(i, j, k) =
i!j!

k!(i− k)!(j − k)!
.

2.2 Wick Product

Now we list the definition and some basic properties of the Wick product, which can be found in the existing literature
(e.g., [19,28]).

The Wick product of a set of random variables with finite moments is defined recursively as follows:

〈∅〉 = 1,
∂ 〈X1, . . . , Xk〉

∂Xi
= 〈X1, . . . , Xi−1, Xi+1, . . . , Xk〉, k ≥ 1,

together with the constraint that the average is zero,

E 〈X1, . . . , Xk〉 = 0, k ≥ 1.
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It follows that

〈X〉 = X − E[X], 〈X,Y 〉 = XY − E[Y ]X − E[X]Y + 2E[X]E[Y ]− E[XY ].

If X, Y are independent, from the above formula, we know

〈X, Y 〉 = 〈X〉 〈Y 〉.

On the other hand, ifY = X, we get

〈X,X〉 = X2 − 2E[X]X + 2E[X]2 − E[X2].

DefineX ¦ Y := 〈X, Y 〉 and
Pn(X) := X¦n = 〈X, . . . ,X〉︸ ︷︷ ︸

n times

,

thenP ′n(x) = nPn−1(x).
The Wick product is closely related to Hermite polynomials. Ifξ is a normally distributed variable with variance

1, then
ξ¦n = Hn(ξ), (10)

and
Hn(ξ) ¦Hm(ξ) = Hn+m(ξ). (11)

Using a Taylor series, one can define the exponential function of the Wick product as

e¦X :=
∞∑

n=0

1
n!

X¦n. (12)

For a normally distributed variableξ, it can be checked that [19]

e¦[σξ] = eσξ−σ2/2, (13)

e¦[σξ] ¦ e¦[−σξ] = 1, (14)

and the following statistics hold:

E
[
e¦[σξ]

]
= 1, Var

[
e¦[σξ]

]
= eσ2 − 1. (15)

2.3 Wiener Chaos Space

We defineF := (Ω,F , P ) as a complete probability space, whereF is theσ-algebra generated by the countably
many i.i.d. Gaussian random variables{ξk}k≥1. Defineξ := (ξ1, ξ2, . . .). LetJ be the collection of multi-indicesα
with α = (α1,α2, . . .) so thatαk ∈ N0 and|α| := ∑

k≥1 αk < ∞. Forα,β ∈ J , we define

α + β = (α1 + β1, α2 + β2, . . .), α! =
∏

k≥1

αk!,
(

α

β

)
=

∏

k≥1

(
αk

βk

)
.

We use(0) to denote the multi-index with all zero entries:(0)k = 0 for all k. Define the collection of random variables
Ξ as follows:

Ξ := {hα,α ∈ J }, hα(ξ) :=
∏

k≥1

1√
αk!

Hαk
(ξk), (16)
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whereHn(ξ) are the one-dimensional (probabilistic) Hermite polynomials. For convenience, we also define

Hα(ξ) :=
∏

k≥1

Hαk
(ξk). (17)

For any fixedk-dimensional i.i.d. Gaussian random variableξ, the following relations hold:

E[Hα(ξ)Hβ(ξ)] = δαβα!, E[hα(ξ)hβ(ξ)] = δαβ. (18)

The setΞ forms an orthonormal basis forL2(F) [29]; that is, ifη ∈ L2(F), then

η =
∑

α∈J
ηαhα, ηα = E[ηhα] (19)

and
E[η2] =

∑

α∈J
η2

α. (20)

The Wick products of multidimensional stochastic Hermite polynomials are

Hα(ξ) ¦Hβ(ξ) = Hα+β(ξ), hα(ξ) ¦ hβ(ξ) =

√
(α + β)!

α!β!
hα+β(ξ). (21)

Note that if we consider the expansion ofHα(ξ)Hβ(ξ) using the base setΞ, it is obvious that there exist low-order
terms in addition toHα+β(ξ); however, in the definition of the Wick product, all these low-order terms are removed;
cf. Eqs. (9) and (21). Such a difference of the Wick product from the regular multiplication stems from the fact that
the Wick product should be interpreted from the viewpoint of the stochastic integral. The correspondence between
the Wick product and the Ito-Skorokhod integral can be found in [19,21,25,30].

For the numerical approximation, the number of Gaussian random variables and the polynomial order need to be
truncated. We define

JM,p = {α|α = (α1, . . . , αM ), |α| ≤ p}, (22)

wherep ∈ N0 is the maximum total degree. (To reduce the number of stochastic bases, one can also consider the
sparse grids or sparse spectral Galerkin method; see, e.g., [13,15,31–33], where the overall procedure is similar.)
Correspondingly,ξ is split into two parts:

ξ = ξ1 ⊕ ξ2 = (ξ1, . . . , ξM )⊕ (ξM+1, . . .).

For simplicity, we useξ for both finite-dimensional and infinite-dimensional cases, and the dimensionality will be
indicated by the setJ or JM,p for the index. LetNM,p be the cardinality ofJM,p. It is obvious that there exists a
one-to-one correspondence between1≤ i ≤ NM,p andα ∈ JM,p. We usei(α) or α(i) to indicate such a one-to-one
mapping whenever necessary.

Given a real separable Hilbert spaceX, we denote byL2(F; X) the Hilbert space of square-integrableF-
measurableX-valued random elementsf . WhenX = R, we writeL2(F) instead ofL2(F;R). Given a collection
R = {rα, α ∈ J } of positive real numbers with an upper boundR, i.e., rα < R for all α, we define the space
RL2(F; X) as the closure ofL2(F;X) in the norm

‖u‖2
RL2(F;X) =

∑

α∈J
rα‖uα‖2

X , (23)

whereu =
∑

α∈J uαhα(ξ). The spaceRL2(F; X) is called a weighted chaos space, it is a natural norm for the
stochastic space using the Karhunen-Loéve expansion. In this work,X is chosen asH1

0(D) for elliptic problems with
homogeneous boundary conditions.
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3. STOCHASTIC ELLIPTIC MODELS

In this paper, we consider the following two stochastic elliptic models:

Model I: −∇ · (a(x,ω)∇uI(x,ω)) = f(x), (24a)

Model II: −∇ ·
((

a−1
)¦(−1)

(x, ω) ¦ ∇uII(x, ω)
)

= f(x), (24b)

with boundary conditionu(x,ω) = 0 on ∂D, wherea−1(x,ω) ¦ (
a−1(x,ω)

)¦(−1) = 1. In particular, we assume
that the force termf(x) is deterministic for simplicity and the random coefficienta(x,ω) takes the following form:

a(x,ω) = e¦(σG(x,ω)) = eσG(x,ω)−(1/2)σ2

, (25)

whereG(x,ω) is a stationary Gaussian random process with zero mean and unit variance, subject to a normalized
covariance kernelK(x1, x2) = K(|x1 − x2|) = E[G(x1, ω)G(x2,ω)]. According to the Mercer theorem [34],
K(x1, x2) has an expansion as

K(x1,x2) =
∞∑

i=1

λiφi(x1)φi(x2), (26)

where{λi,φi(x)}∞i=1 are eigenpairs ofK(x1, x2) satisfying
∫

D

K(x1, x2)φi(x2)dx2 = λiφi(x1),
∫

D

φi(x)φj(x)dx = δij . (27)

ThenG(x,ω) has the following Karhunen-Lòeve (K-L) expansion:

G(x,ω) =
∞∑

i=1

√
λiφi(x)ξi, (28)

whereξk are independent Gaussian random variables. Furthermore,

∞∑

i=1

λiφ
2
i (x) = K(x,x) = E[G2(x,ω)] = 1, ∀x ∈ D. (29)

Using Eqs. (28), (29), and (7), we can obtain the Wiener chaos expansion of the log-normal random process
a(x, ω),

a(x,ω) = e
∑∞

i=1 σ
√

λiφi(x)ξi−(σ2/2)λiφ
2
i(x) =

∑

α∈J

Φα

α!
Hα(ξ), (30)

whereΦ(x) =
(
σ
√

λ1φ1(x), σ
√

λ2φ2(x), . . .
)
.

From Eq. (14), it can be easily derived that

(a−1(x,ω))¦(−1) = e−σ2

e¦(σG(x,ω)). (31)

Hence, the difference between Wiener chaos expansions of
(
a(x,ω)−1

)¦(−1)
anda(x, ω) is just a scaling factor

e−σ2
.
To make the difference between models I and II clearer, we look at the following two linear systems:

I :

{
∇uI = a−1 ∗ FI,

−∇ · FI = f,
II:

{
∇uII = a−1 ¦ FII,

−∇ · FII = f,
(32)
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where∗ denotes the operation of the regular product. Thus, model II is basically making the gradient “smoother”
through the Wick product. Then the equation foruI − uII can be obtained as

{
∇(uI − uII)= a−1 ∗ (FI − FII) + a−1(∗ − ¦)FII,

−∇ · (FI − FII)= 0,
(33)

which corresponds to a second-order elliptic equation foruI − uII as

−∇ · (a∇(uI − uII)) = −∇ · (a ∗ (
a−1(∗ − ¦)FII

))
. (34)

Note that we express explicitly the regular products on the right-hand side since the regular and Wick products do not
commute. It is seen that Eq. (34) corresponds to model I while the force term is related to model II throughFII.

Theorem 1 ([23]). Let F = −∇ · (a ∗ (
a−1(∗ − ¦)FII

))
, where∗ indicates the regular product. Assume thatF ∈

RL2(F; H−1(D)), whereD ∈ Rd, d = 1, 2, 3. Then there exists a set of weightsR̃ = {r̃α,α ∈ J }, such that

‖uI − uII‖R̃L2(F;H1
0(D)) = C(lc)σ2 = O(σ2), (35)

wherelc is the correlation length. Furthermore,C(lc) → 0 aslc →∞.

Remark1. It can be shown theoretically that for one-dimensional casesD ∈ R1, C(lc) → 0 aslc → 0. For high-
dimensional cases, according to the Landau-Lifshitz-Matheron conjecture [35,36] in the homogenization theory for
log-normal random coefficients, whenlc → 0, C(lc) → 1/2 if d = 2, andC(lc) → 1/3 if d = 3.

Remark2. By noting the Mikulevicius-Rozovskii formula [24],

hαhβ =
∞∑

n=0

Dnhα ¦ Dnhβ

n!
, (36)

whereDn denotes thenth-order Malliavin derivative, model I can be approximated arbitrarily well as

−∇ ·
( ∞∑

n=0

Dna(x, ω) ¦ ∇Dnu

n!

)
= f(x). (37)

Whenn = 0, Eq. (37) recovers the Wick-type model:

−∇ (a(x,ω) ¦ ∇u(x, ω)) = f(x). (38)

More discussions about the new Wick-type model given by Eq. (37) can be found in [27].

4. STOCHASTIC GALERKIN METHOD

4.1 Uncertainty Propagators

We now look at the uncertainty propagator of model I. Substituting the Wiener chaos expansion

uI(x,ω) ≈
∑

α∈JM,p

uI,α(x)Hα(ξ)

into Eq. (24a) and implementing Galerkin projection in the probability space, we obtain the uncertainty propagator
for model I as

−
∑

α∈JM,p

∇ · (E [a(x, ω)HαHγ]∇uI,α(x)) = f(x)δ(0),γ, ∀γ ∈ JM,p. (39)

It is seen that all chaos coefficients in Eq. (39) are coupled together, which means that they must be solved together.
From the numerical point of view, a proper choice would be iterative methods. Before we look into the numerical
algorithms, we now address the properties of the matrixE [a(x, ω)HαHγ] for anyx ∈ D.
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Lemma 2. For any givenx ∈ D, the matrixBI,ij(x) = E
[
a(x, ω)Hα(i)Hγ(j)

]
is symmetric and positive definite,

wherea(x,ω) is a log-normal random process defined in Eq.(25)andα, γ ∈ JM,p.

Proof. Apparently, the matrixBI(x) is symmetric for anyx ∈ D. For any nonzero vectorc = (c1, c2, . . . , cNM,p
) 6=

0, the following inequality holds for anyx ∈ D:

cT BI(x)c =
NM,p∑

i,j=1

cicjE
[
e¦σG(x,ω)Hα(i)Hγ(j)

]
= E




NM,p∑

i,j

cicje
¦σG(x,ω)Hα(i)Hγ(j)




= E







NM,p∑

i=1

(
e¦σG(x,ω)

)1/2
Hα(i)ci




2

 ≥ 0.

In other words,BI is non-negative definite.
We subsequently show that ifcT BI(x)c = 0, thenc = 0. Let b ∈ RM . It is easy to generalize Eq. (8) to the

high-dimensional case:

Hα(ξ + b) =
M∏

k=1

Hαk
(ξk + bk) =

M∏

k=1

αk∑

i=0

(
αk

i

)
bαk−i
k Hi(ξk) =

∑

β≤α

(
α

β

)
bα−βHβ(ξ). (40)

Let Φ(x) = Φ1(x)⊕ Φ2(x), where

Φ1(x) = (σ
√

λ1φ1(x), · · · ,σ
√

λMφM (x)) andΦ2(x) = (σ
√

λM+1φM+1(x),σ
√

λM+2φM+2(x), · · · ).

Let ξ̂ = (ξM+1, ξM+2, . . .). We then have

cTBI(x)c = E







NM,p∑

i=1

(
e¦σG(x,ω)

)1/2
Hα(i)ci




2

 = E


eΦT

1 ξ+ΦT
2 ξ̂−(1/2)σ2




NM,p∑

i=1

Hα(i)ci




2



= E
[
eΦT

2 ξ̂−(1/2)σ2
]
E


eΦT

1 ξ




NM,p∑

i=1

Hα(i)ci




2



= e(1/2)ΦT
2 Φ2−(1/2)σ2

e(1/2)ΦT
1 Φ1E






NM,p∑

i=1

Hα(i)(ξ + Φ1)ci




2



= E







NM,p∑

i=1

∑

β≤α(i)

(
α(i)
β

)
Φα(i)−β

1 Hβ(ξ)ci




2



= E





 ∑

β∈JM,p


 ∑

α(i)≥β

(
α(i)
β

)
Φα(i)−β

1 ci


 Hβ(ξ)




2

 =

∑

β∈JM,p


 ∑

α≥β

(
α

β

)
Φα−β

1 ci(α)




2

β!.

If cT BI(x)c = 0, we have

∑

α≥β

(
α

β

)
Φα−β

1 (x)ci(α) = 0, ∀β ∈ JM,p, x ∈ D.
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We note that the matrix in the above linear system is an upper-triangular matrix and the entries on the diagonal line
are 1. In other words, the solution of the above linear system isc = 0. To this end, we can conclude that the matrixB
is symmetric and positive definite.

Remark3. In numerical computation, we often take

BI,ij(x) = E
[
eΦ1(x)T ξ−(1/2)σ2

Hα(i)Hγ(j)

]
,

which is the truncated version of the matrixBI in Lemma 2. From the proof of Lemma 2, such a matrix is also
symmetric and positive definite.

ActuallyE [a(x,ω)HαHβ] can be computed exactly as in the following lemma.

Lemma 3. Leta(x,ω) = exp¦ (σG(x,ω)). We then have

E [a(x,ω)HαHβ] =
∑

κ≤α∧β

χ(α,β, κ)Φα+β−2κ(x), (41)

where(α ∧ β)k = αk ∧ βk, k = 1, 2, . . ..

Proof. First, Eq. (9) can be generalized straightforwardly to the multidimensional case as

HαHβ =
∑

κ≤α∧β

χ(α, β,κ)Hα+β−2κ

with

χ(α, β,κ) =
α!β!

κ!(α− κ)!(β− κ)!
.

Using Eq. (30), we have

E [a(x, ω)HαHβ] =
∑

γ∈J

Φγ(x)
γ!

E [HγHαHβ] =
∑

γ∈J

Φγ

γ!

∑

κ≤α∧β

χ(α,β, κ)E [Hα+β−2κHγ]

=
∑

κ≤α∧β

χ(α,β, κ)Φα+β−2κ.

Remark4. Whenα = β, we have

E
[
a(x, ω)H2

α

]
=

∑

κ≤α

χ(α,α,κ)Φ2(α−κ)(x) ≥ χ(α,α, α) = α!.

Remark5. Lemma 3 implies that to computeE[a(x,ω)Hβ(i)Hγ(j)] exactly, we require the coefficients of the Wiener
chaos expansion ofa(x,ω) up to order2β(NM,p).

We now look at the uncertainty propagators of model II. Letâ(x,ω) =
(
a−1

)¦(−1)
. Using Eqs. (30) and (31),

the Wiener chaos expansion ofâ(x,ω) can be explicitly derived as

â(x, ω) =
∑

α∈J
âα(x)Hα(ξ) =

∑

α∈J
e−σ2 Φα

α!
Hα(ξ). (42)

Following the same procedure for model I, we can obtain the uncertainty propagator of model II as

−
∑

α≤γ

∇ · (âγ−α(x)∇uII,α(x)) = f(x)δ(0),γ, ∀γ ∈ JM,p. (43)
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It is seen thatuII,γ only depends on the chaos coefficientsuII,α with α < γ, which introduces a lower-triangular
structure into the matrixBII,ij(x) = âγ(j)−α(i)(x). In other words, the deterministic PDEs foruII,γ are naturally
decoupled and can be solved one-by-one. Furthermore, Eq. (43) can be rewritten as

−∇ · (â(0)(x)∇uII,γ(x)
)

=
∑
α<γ

∇ · (âγ−α(x)∇uII,α(x)) + f(x)δ(0),γ.

Thus, if we employ the finite element method to solve the PDE system (43), the bilinear form remains the same for
all chaos coefficientsuII,γ, which only depends on̂a(0)(x).

4.2 Finite Element Discretization of Uncertainty Propagators

We now look at the finite element discretization of uncertainty propagators of models I and II. LetTh be a family of
triangulations ofD with straight edges andh the maximum size of the elements inTh. We assume that the family
is regular; in other words, the minimal angle of all the elements is bounded from below by a positive constant. We
define the finite element space as

V K
h,q =

{
v

∣∣∣ v ◦ F−1
K ∈ Pq(R)

}
, Vh,q =

{
v ∈ H1

0(D)
∣∣∣ v|K ∈ V K

h,q, K ∈ Th

}
,

whereFK is the mapping function for the elementK which maps the reference elementR (for example, an equilateral
triangle or an isosceles right triangle) to the elementK andPq(R) denotes the set of polynomials of degree at mostq
onR. We assume thatv|∂D = 0 for anyv ∈ Vh,q. Thus,Vh,q is an approximation ofH1

0(D) by piecewise polynomial
functions. There exist many choices of basis functions on the reference elements, such ash-type finite elements [37],
spectral/hp elements [38,39], etc. Let

Vh,q = span{θ1(x),θ2(x), . . . , θNx(x)} ⊂ H1
0(D),

whereNx is the total number of basis functions in the finite element spaceVh,q.
The truncated Wiener chaos spaceWM,p is defined as

WM,p =





∑

α∈JM,p

cαHα(ξ)
∣∣∣ cα ∈ R



, (44)

The stochastic finite element method for model I can be formulated as follows: FinduI,h ∈ Vh,q ⊗WM,p, such
that for allv ∈ Vh,q ⊗WM,p

BI(uI,h, v) = L(v), (45)

where the bilinear form is

BI(v1, v2) =
∫

D

E [a(x, ω)∇v1 · ∇v2] dx, (46)

and the linear form is

L(v) =
∫

D

E[fv]dx. (47)

Lemma 4. The stiffness matrix for the stochastic finite element method of model I is symmetric and positive definite.

Proof. Consider the approximation

uI,h(x,ξ) =
∑

α∈JM,p

uI,h,αHα(ξ) =
∑

1≤i≤Nx,
α∈JM,p

uI,h,α,iθi(x)Hα(ξ), (48)

whereuI,h,α,i 6= 0 for somei andα. We have
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BI(uI,h, uI,h) =
∑

1≤i≤Nx,
α∈JM,p

∑

1≤j≤Nx,
β∈JM,p

∫

D

uI,h,α,iuI,h,β,jE [a(x,ω)HαHβ]∇θi(x) · ∇θj(x)dx

=
∫

D

∑

α,β∈JM,p

E [a(x, ω)HαHβ]∇uI,h,α · ∇uI,h,βdx

=
∫

D




d∑

j=1

∂xj (ûI(x))T BI(x)∂xj ûI(x)


 dx,

where the vector̂uI(x) is defined as(ûI(x))k = uI,h,α(k)(x), k = 1, . . . , NM,p. Due to the homogeneous boundary
conditions, a nonzero constant mode does not exist in the spaceVh,q. Using Lemma 2, we know thatBI(uI,h, uI,h) > 0,
and the conclusion follows.

4.3 Structures of Stiffness Matrices of the sFEM

Based on Eq. (48), we define some matrix notations:

uI =




uI,1

uI,2

...
uI,NM,p



, uI,i =




uI,h,α(i),1

uI,h,α(i),2
...

uI,h,α(i),Nx



, i = 1, . . . , NM,p. (49)

Obviously, the total number of unknowns isNx × NM,p. The weak form (45) leads to the linear systemAIuI = f
with the block structure

AI =




AI,11 AI,12 . . . AI,1NM,p

AI,21 AI,22 . . . AI,2NM,p

...
...

...
...

AI,NM,p1 AI,NM,p2 . . . AI,NM,pNM,p




, f =




f1

f2
...

fNM,p




. (50)

We considering the approximation ofa(x,ω) as [see Eq. (30)]

aM,p̂(x,ξ) =
∑

α∈JM,p̂

aM,p̂
α (x)Hα =

∑

α∈JM,p̂

Φα(x)
α!

Hα(ξ), (51)

wherep̂ is the polynomial order of the Wiener chaos expansion. Then the blocksAI,ij can be expressed as

AI,ij =
∑

α∈JM,p̂

E
[
HαHβ(i)Hγ(j)

]
Sα, i, j = 1, . . . , NM,p, (52)

where

(Sα)ij =
∫

D

aM,p̂
α (x)∇θi(x) · ∇θj(x)dx. (53)

Define matrixCα as
(Cα)ij = E

[
HαHβ(i)Hγ(j)

]
. (54)

Then the matrixAI can be rewritten in the tensor-product form as

AI =
∑

α∈JM,p̂

Cα ⊗ Sα. (55)
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Then the matrix-vector multiplication ofAIuI can be computed in a relatively efficient way. We rewrite the vector
AIuI of lengthNxNM,p to anNM,p-by-Nx matrix and denote such a matrix as[AIuI]. Then we have

[AIuI] =
∑

α∈JM,p̂

[SαuI,1 SαuI,2 . . . SαuI,NM,p ]CT
α, (56)

whereSαuI,i is theith column vector of anNM,p-by-Nx matrix.

4.4 Comments on the Bilinear Form BI

Using the log-normal random coefficienta(x,ω), we have shown that the bilinear formBI(·, ·) is positive definite.
However, we do not have the ellipticity here becausea(x, ω) is not strictly positive. Instead of using the Lax-Milgram
lemma, the existence and uniqueness of a solutionu(x, ω) ∈ L2(H1

0(D)) can be established by the Fernique theorem
with appropriate regularity assumptions for the covariance function of the underlying Gaussian field [6]. The key
observation is that the random variablea−1

min(ω) = minx∈D a(x,ω) ∈ Lp(F), p > 0. From the theoretical point of
view, an inf-sup condition can be established for the continuous bilinear formBI(v1, v2), wherev1 ∈ L2(F;H1

0(D))
andv2 ∈ L2(F̂ = (Ω,F , a2

min(ω)P (dω)); H1
0(D)) [4,6]. Note here that the measure of the probability space for test

functionsv2 is weighted by the random variablea2
min(ω). According to theoretical observations, one choice for the

test functions can be {
v

amin(ω)
: v ∈ L2(F; H1

0(D))
}

.

However, it is not clear how to deal withamin(ω) numerically. For numerical studies of model I with the Galerkin
projection, we usually choose test functions fromv2 ∈ L2(F;H1

0(D)). Since the stiffness matrixAI is symmetric and
positive definite, the existence and uniqueness of solutionuI is guaranteed. No divergence of the solution with respect
to L2(F;H1

0(D)) norm has been observed for such a procedure.

5. NUMERICAL ALGORITHMS

Based on the properties of the Wick product and the assumptions of Theorem 1, we have the following asymptotic
results [23] for Eq. (34) satisfied byuI − uII. With respect toσ, we have the following power series:

−∇ · (a ∗ (
a−1(∗ − ¦)FII

))
= σ2f̃2(x, ξ) + σ3f̃3(x,ξ) + . . . .

Substituting
a(x, ω) = a0(x) + σa1(x,ω) + σ2a2(x, ω) + . . . ,

and the following ansatz ofuI − uII,

uI − uII = ũ0(x) + σũ1(x,ξ) + σ2ũ2(x, ξ) + . . . ,

into Eq. (34) and comparing the coefficients ofσi, we obtain

−∇ · (a0∇ũ0) = 0,

−∇ · (a0∇ũ1) = ∇ · (a1∇ũ0),

−∇ · (a0∇ũ2) = ∇ · (a2∇ũ0) +∇ · (a1∇ũ1) + f̃2(x, ξ),
......,

which results in
ũ0(x) = ũ1(x, ξ) = 0, ũi(x, ξ) 6= 0, i = 2, 3, . . . .

Thus,uI − uII has the following power series expansion with respect toσ:

uI − uII = σ2ũ2(x,ξ) + σ3ũ3(x,ξ) + . . . , (57)
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which holds for anyx ∈ D. Then both the mean and standard deviation ofuI − uII are ofO(σ2) if they exist.
Whenlc →∞, the random coefficient becomes

a(x, ω) = eσξ−(1/2)σ2

, (58)

whereξ ∼ N (0, 1). In other words, the noise is spatially independent. Model II becomes

−∇ ·
(
(a−1)¦(−1) ¦ ∇u

)
= −(a−1)¦(−1) ¦∆u = f(x), (59)

which is equivalent to model I, since
−∆u = a−1 ¦ f(x) = a−1f(x). (60)

We now consider a perturbation of the coefficient given in Eq. (58)

a(x, ω) = eσ(1+εφ(x))ξ−(1/2)σ2

, (61)

whereε is a small positive number. Whenε → 0, uII → uI. We use the random coefficient (61) to mimic the case
thatlc →∞.

Example1. Consider a one-dimensional exponential covariance kernel onx ∈ [0, 1]:

K(x1, x2) = e−(|x1−x2|/lc).

Its eigenvalues satisfy

w2 =
2ε− ε2λi

λi
, (w2 − ε2) tan(w)− 2εw = 0, (62)

whereε = 1/lc. Its eigenfunctions are

φi(x) =
w cos(wx) + ε sin(wx)√

(1/2)(ε2 + w2) + (w2 − ε2)(sin(2w)/4w) + (ε/2)(1− cos(2w))
. (63)

It can be shown that asε → 0, w ∼ √
2ε1/2, which results in thatλ1 = 1 +O(ε) andφ1(x) = 1 +O(ε). Thus it is

reasonable to consider a perturbation given in Eq. (61) withε = 1/lc.

We here use a one-dimensional elliptic problem to examine the random coefficient (61) and present a numerical
study of the convergence behavior ofuII → uI asε → 0. In Fig. 1 we plot the relative difference betweenuI anduII

defined as

εr =
‖uI − uII‖L2(Ω;H1

0(D))

‖uI‖L2(Ω;H1
0(D))

,

with respect toσ andε. It is seen that the dominant error takes a form

log(εr) = log(ε) + 2 log(σ) + C, (64)

i.e.,
εr ∼ Cεσ2, (65)

whereC is a general constant. This suggests that although model II provides a general second-order approximation
of model I, the constant beforeσ2 goes to zero linearly with respect to1/lc aslc goes to infinity.

To accelerate the numerical algorithms for model I, such as the Monte Carlo method and the Galerkin projec-
tion method, we take advantage of the small difference betweenuI anduII either whenσ is relatively small or the
correlation length is relatively large such that the constantC(lc) is close to 0, and the fact thatuII can be obtained
effectively. Based on this idea, we use the solutionuII as a predictor ofuI, or the stiffness matrixAII of model II as a
preconditioner ofAI.
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FIG. 1: Relative difference betweenuI anduII with respect toσ andε for one-dimensional elliptic problem subject to the random
coefficient (61)

5.1 Variance Reduction for the Monte Carlo Method

When the correlation lengthlc is relatively small, eigenvalues of the covariance kernel decay slowly implying that
a relatively large number of Gaussian random variables need to be kept for a good approximation of the log-normal
random coefficient. For such a case, the Monte Carlo method can be more efficient than the Wiener chaos expansion.
We then propose the following two-step methodology:

(i) Predictor given by uII,h: We first consider Wiener chaos expansion of model II to obtain the numerical
solutionuII,h. Its mean will be just the zeroth-order coefficientuII,h,(0).

(ii) A predictor-corrector method : Using the solutionuII,h as a control variate for variance reduction, we further
refine the Monte Carlo simulations ofuI,h in the following way:

ũI,h(x,ξ) := uII,h,(0)(x) + (uI,h(x;ξ)− uII,h(x;ξ)), (66)

EIS[uI,h](x) := Emc[ũI,h](x) :=
1

Nmc

Nmc∑

i=1

ũI,h(x; ξ(i)), (67)

whereNmc indicates the number of samples ofξ, andξ(i) theith sample.

Based on Eq. (57), we have the following lemma:

Lemma 5. We have the following error estimate:

∥∥EIS[uI,h]− E[uI,h]
∥∥2

L2(F;H1
0(D))

=
∫

D

Var(EIS[uI,h])(x)dx = O(σ4)N−1
mc . (68)

Proof. Firstly, it is easy to check thatE
[
EIS[uI,h]

]
= E[uI,h], so the first equal sign holds. Secondly,

Var(EIS[uI,h]) = N−1
mc Var(ũI,h) = N−1

mc Var(uI,h − uII,h) = N−1
mc

(
E[(uI,h − uII,h)2]− E2[uI,h − uII,h]

)

≤ N−1
mc E[(uI,h − uII,h)2] = N−1

mc

∫
(uI,h − uII,h)2ρ(ξ)dξ = O(σ4)N−1

mc ,
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where the last step is obtained using Eq. (57). Then the second equal sign of Eq. (68) is obtained by taking integration
of the above equation with respect to spatial variablex.

From Eq. (68), we have ∥∥EIS[uI,h]− E[uI,h]
∥∥

L2(F;H1
0(D))

= O(σ2)N−1/2
mc . (69)

Since a direct Monte Carlo method to calculateE[uI,h] has an errorO(1)N−1
mc , so the standard deviation reduction is

quadratic with respect toσ.
We now look at the computation cost. For the brute-force Monte Carlo method, the cost isO((τ1 + τ2)N̂mc),

whereτ1 is the time for construction of the stiffness matrix andτ2 the time for solving a linear system. For the
proposed strategy, the cost isO((τ1 + τ2 + τ3)Nmc + τ4), whereτ3 is the time for the evaluation ofuII,h(x;ξ(i)),
which is much smaller thanτ1 + τ2, andτ4 is the time to obtainuII,h. To obtainuII,h, only one stiffness matrix is
needed. Since the uncertainty propagator is decoupled,τ4 ≈ τ1 + NM,pτ2. Then the cost for the proposed strategy is
aboutO((τ1 +τ2)Nmc+τ2NM,p +τ1). Thus, if a low-order Wiener chaos solutionuII,h serves as an effective control
variate, the proposed strategy can be much more efficient than the brute-force Monte Carlo method, sinceNmc can be
much smaller than̂Nmc for the same accuracy.

Remark6. Consider
ũI,h(α;x, ξ) = uI,h(x;ξ)− α(uII,h(x; ξ)− uII,h,(0)(x)), (70)

whereα is a real number. It is well known that for allα ∈ (−∞,∞), ũI,h(α) provides an unbiased estimator of
E[uI,h] through

Emc[ũI,h] =
1

Nmc

Nmc∑

i=1

ũI,h(α;x, ξ(i)), (71)

which holds for anyx ∈ D. For a fixedx ∈ D, we know that if we chooseα∗ = σI,II/σ2
I with

σi = E[(ui,h − ūi,h)2]1/2, i = I, II and σI,II = E[(uI,h − ūI,h)(uII,h − ūII,h)],

the variance of̃uI,h is minimized with respect toα such that

Var(ũI,h)(α∗) = σ2
I (1− ρI,II)2,

whereρI,II = σI,II/(σIσII) is the autocorrelation function ofuI,h anduII,h. Due to the fact given by Eq. (57) and
Theorem 1,ρI,II ≈ 1 for smallσ or largelc, whenuI,h anduII,h are almost linear corresponding toα∗ ≈ 1 (see more
numerical experiments in [23]). This is the reason we chooseα = 1 in Eq. (67).

5.2 Stochastic Galerkin Projection Method

Due to the large number of unknowns and the strong coupling between the chaos coefficientsuI,α, iterative numerical
methods are more appropriate for solving the linear system given by the finite element discretization of the uncertainty
propagator (39) of model I. In other words, an effective preconditioner is required. Consider the linear system

AIuI = f . (72)

Algorithm 1: Variance reduction for Monte Carlo simulations

Solvemodel II to obtain the Wiener chaos expansion ofuII,h(x,ξ).
for i = 1, 2, . . . , Nmc do

Samplemodel I to obtainuI,h(x,ξ(i));
Samplethe solution of model II to obtainuII,h(x,ξ(i));
Update the statistics using an unbiased estimator as Eq. (67).

end
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Let uII be a vector consisting of unknowns from the discretization ofuII,h based on the same basis as that foruI,h.
DefineAII as the stiffness matrix corresponding to the discretization of the uncertainty propagator of model II. Then
the stochastic finite element method for model II has the following matrix form:

AIIuII = f . (73)

Based on the structure of the uncertainty propagator of model II, we know thatAII is a block lower-triangular matrix,

AII =




AII,11 0 . . . 0
AII,21 AII,22 . . . 0

...
...

...
...

AII,NM,p1 AII,NM,p2 . . . AII,NM,pNM,p




, (74)

where the blocksAII,ij are defined as
AII,ij = Sγ(i)−α(j), i ≥ j. (75)

with

(Sγ(i)−α(j))m,n =
∫

D

âγ(i)−α(j)(x)∇θm(x) · ∇θn(x)dx. (76)

Note that
AII,11 = AII,22 = . . . = AII,NM,p,NM,p

= S(0). (77)

Lemma 6. Consider the stiffness matricesAI andAII. We have that the condition number

κ
(
A−1

II AI

) ≤ 1 +O(σ2). (78)

Proof. Since the difference betweenuI anduII is ofO(σ2), we have in the matrix form

‖uI − uII‖ = ‖A−1
I f −A−1

II f‖ = O(σ2), (79)

which holds for anyf . Hence
‖A−1

I −A−1
II ‖ = O(σ2). (80)

Then the condition number ofA−1
II AI is

κ = ‖A−1
II AI‖‖A−1

I AII‖ = ‖ (
A−1

II −A−1
I + A−1

I

)
AI‖‖

(
A−1

I −A−1
II + A−1

II

)
AII‖ (81)

= ‖I +
(
A−1

II −A−1
I

)
AI‖‖I +

(
A−1

I −A−1
II

)
AII‖ ≤ 1 + ‖AI‖‖AII‖

(O(σ2) +O(σ4)
)
.

Remark7. Whenσ is relatively small, we expect thatAII can provide a good preconditioner for linear system (73).
Instead of solving Eq. (73), we can solve

A−1
II AIuI = A−1

II f . (82)

5.2.1 Preconditioned Richardson’s Iteration

One commonly used iterative method for the uncertainty propagator (39) of model I is the block Gauss-Seidel method,
which can be expressed as

−∇ · (E [
a(x,ω)H2

γ

]∇uI,n+1
γ (x)

)
=

k(γ)−1∑

i=1

∇ ·
(
E

[
a(x,ω)Hα(i)Hγ

]∇uI,n+1
α(i) (x)

)

+
NM,p∑

i=k(γ)+1

∇ ·
(
E

[
a(x,ω)Hα(i)Hγ

]∇uI,n
α(i)(x)

)
+ f(x)δ(0),γ, ∀γ ∈ JM,p, (83)
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where the superscriptn indicates the iteration step. It is shown in Lemma 3 thatE
[
a(x, ω)H2

γ

]
is strictly positive.

We know that the block Gauss-Seidel method corresponds to a fixed point iteration on a preconditioned system,

M−1AIuI = M−1f ,

whereM is the lower-triangular part of matrixAI. Based on the comparability of models I and II, we can construct
the following preconditioned Richardson’s iterative method [40]:

u(k+1)
I = u(k)

I + γA−1
II (AIu

(k)
I − f), (84)

whereγ is the non-negative acceleration parameter. We know that the Richardson’s iterative method converges when
γ < 2/ρ(A−1

II AI), whereρ(·) indicates the spectral radius of a matrix. Based on the relation betweenAI andAII, we
expect thatρ((AII)−1AI) is close to 1 whenσ is relatively small.

5.2.2 Preconditioned GMRES Method

We also consider Krylov subspace methods. SinceAI is symmetric and positive definite, a common choice to solve the
linear system is the preconditioned conjugate gradient (CG) method. We here consider to useAII as a preconditioner,
which is not symmetric. Hence we use a preconditioned GMRES method [40] instead of the CG method.

6. NUMERICAL RESULTS

We consider both one-dimensional and two-dimensional (D = [−1, 1]d, d = 1, 2) elliptic problem with random
coefficient subject to a nonzero force term

f(x) =
d∏

i=1

(x2
i + 4xi + 1)exi , (85)

and homogeneous boundary conditions. Assume the underlying Gaussian random field of the log-normal coefficient
a(x, ω) = eσG(x,ω)− 1

2σ2
, with G’s correlation function is given by

K(x1,x2) = e−|x1−x2|2/2l2
c , (86)

or

K(x1,x2) = e−|x1−x2|/lc , (87)

wherelc is the correlation length andσ the standard deviation. Due to the analyticity of the Gaussian kernel, the
eigenvalues decay exponentially [9]. The decay rate is determined by the value of the correlation length, where a
largerlc corresponds to a faster decay rate. The physical discretization is given by25 uniform finite elements with
orderq = 4 for the one-dimensional case, and 32×32 uniform quadratic finite elements for the two-dimensional
cases. We test the parametersσ = 0.2, 0.6, 1 andlc = 20, 2, 0.2. The solution differences of model I and model II are
similar to the results in [23,27], so we only sketch the results for the two-dimensional case here.

The results for the two-dimensional case with Gaussian type kernel are given in Figs. 2–4 forlc = 20, 2, 0.2,
respectively. The results for the two-dimensional exponential kernel withlc = 20, 2, 0.2 are given in Figs. 5–7,
respectively. The truncation errors of the K-L expansion for the Gaussian kernel and exponential kernel are set to be
2× 10−3 and3× 10−2, respectively. For model I, if the dimension of the stochastic spaceM is less than 20, we use
the stochastic Galerkin method, otherwise we use the Monte Carlo method. From these figures, we say for smallσ

values, the results of model II agree very well with the results of model I. A larger correlation length`c also makes a
better agreement between the results of models I and II. This is consistent with the theoretical results.
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FIG. 2: The average (left) and standard deviation (right) of models I and II at the horizontal liney = 0: Gaussian kernel with
`c = 20, M = 1, andp = 16 is used for the stochastic Galerkin approximation of both models I and II
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FIG. 3: The average (left) and standard deviation (right) of models I and II at the horizontal liney = 0: Gaussian kernel with
`c = 2, M = 6, andp = 6 is used for the stochastic Galerkin approximation of both models I and II

6.1 Using uII,h as a Control Variate

When the correlation length is relatively small, a large number of random variables are required to represent the
random coefficient and the Monte Carlo method would be a better choice for computation. The mean and variance
are given by the following unbiased estimators, respectively:

ūI,h =
1

Nmc

Nmc∑

i=1

uI,h(x, ξ(i)),
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FIG. 4: The average (left) and standard deviation (right) of models I and II at the horizontal liney = 0: Gaussian kernel with
`c = 0.2, M = 94, andp = 1 is used for the stochastic Galerkin approximation of model II.M = 94andNmc = 10,000are used
for the Monte Carlo method of model I
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FIG. 5: The average (left) and standard deviation (right) of models I and II at the horizontal liney = 0: exponential kernel with
`c = 20, M = 3, andp = 8 is used for the stochastic Galerkin approximation of both models I and II

Var(uI,h) ≈ 1
Nmc− 1

Nmc∑

i=1

(uI,h(x, ξ(i))− ūI,h(x))2.

The average and standard deviations of Monte Carlo solutions at liney = 0 for model I with and without using
model II as a control variate are given in Fig. 8 (exponential kernel in 1D), and Fig. 9 (exponential kernel in 2D). The
results for a Gaussian kernel are similar but easier to obtain. It is seen that variance reduction is achieved for allσ, but
for a smallσ value, the reduction is significant. To numerically verify how the variance reduction is related toσ and
lc, we solved the two models with different parameters:lc = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 andlc = 8, 4, 2, 1, 0.5, 0.25.
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FIG. 6: The average (left) and standard deviation (right) of models I and II at the horizontal liney = 0: exponential kernel with
`c = 2, M = 28, andp = 2 is used for the stochastic Galerkin approximation of model II.M = 28 andNmc = 10,000are used
for the Monte Carlo method of model I
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FIG. 7: The average (left) and standard deviation (right) of models I and II at the horizontal liney = 0: exponential kernel with
`c = 0.2, M = 86andp = 1 is used for the stochastic Galerkin approximation of model II.M = 86andNmc = 10,000are used
for the Monte Carlo method of model I

The corresponding results for one-dimensional and two-dimensional cases with exponential kernel are given in Figs.
10 and 11, respectively. The standard deviation reduction (69) derived from Lemma 5 is clearly verified.

6.2 Using AII as a Preconditioner

The results of using model II to precondition model I is given in Tables 1 and 2 (for 1D cases) and Tables 3 and 4 (for
2D cases). We set the default relaxation parameter in the Richardson iteration toγ = 1/(1 + 3σ2).
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FIG. 8: The mean and standard deviation of the Monte Carlo method for model I with and without important sampling in one-
dimensional case. The exponential kernel with correlation lengthlc = 1 is used.M = 12, p = 4 for the stochastic Galerkin
approximation of model II.M = 12, Nmc = 10,000 for the Monte Carlo method. Note thatlog scale is used for the standard
deviation
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FIG. 9: The mean and standard deviation of the Monte Carlo method for model I with and without important sampling in the
two-dimensional case. The exponential kernel with correlation lengthlc = 2 is used.M = 19, p = 2 for the stochastic Galerkin
approximation of model II.M = 19, Nmc = 1000 for the Monte Carlo method. Note thatlog scale is used for the standard
deviation

For almost all the cases, the preconditioned Richardson iteration and GMRES are both better than the commonly
used Gauss-Seidel iteration, especially for largelc or small σ. The iteration numbers of the Richardson method
and GMRES are much smaller than the Gauss-Seidel method; meanwhile their increases with respect to the standard
deviation parameterσ are also slower, except for the cases withp = 1. For large variance, the preconditioned GMRES
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FIG. 10: The variance reduction for the one-dimensional case with an exponential kernel having different correlation lengths and
different values ofσ . They axes are‖Var(ũI,h)‖H1

0(D)/‖Var(uI,h)‖H1
0(D). Nmc = 10,000 samples are used for the Monte

Carlo method. The tolerance of the K-L expansion is set to3× 10−2. The values ofM, p corresponding to the stochastic Galerkin
approximation of model II withlc = 8, 4, 2, 1, 0.5, 0.25 are(3, 6), (4, 6), (7, 5), (12, 4), (19, 3), (27, 3), respectively. Note that
log scales are used for bothx andy axes
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FIG. 11: The variance reduction for the two-dimensional case with an exponential kernel having different correlation lengths
and different values ofσ. They axes are‖Var(ũI,h)‖H1
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0(D). Nmc = 1000samples are used for the Monte

Carlo method. The tolerance of the K-L expansion is set to3× 10−2. The values ofM, p corresponding to the stochastic Galerkin
approximation of model II withlc = 8, 4, 2, 1, 0.5, 0.25are(5, 5), (11, 4), (19, 3), (28, 3), (35, 2), (40, 2), respectively. Note that
log scales are used for bothx andy axes

method behaves much better than Gauss-Seidel and Richardson methods. Note that we use the solution of model II
as initial values for the Richardson and GMRES iterations, so in the cases that model II is a very good approximation
of model I, the corresponding iteration numbers are 0.
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TABLE 1: Preconditioning results of one-dimensional problem with a Gaus-
sian kernel.nGS, nγ, nGMRES mean the iteration number of Gauss-Seidel,
Richardson, and GMRES, respectively. We takeγ = 1/(1 + 3σ2) for the
Richardson method. The tolerance of K-L expansion is set to2× 10−3. The
relative tolerance for the iteration solvers is set to10−3

lc σ M p NM,p nGS nγ nGMRES

20 0.2 1 10 11 3 0 0

20 0.6 1 10 11 27 0 0

20 1 1 10 11 > 100 22 5

2 0.2 3 10 286 3 1 1

2 0.6 3 10 286 22 3 1

2 1 3 10 286 > 100 19 9

0.2 0.2 11 3 364 3 1 1

0.2 0.6 11 3 364 10 5 5

0.2 1 11 3 364 29 12 9

TABLE 2: Preconditioning results of one-dimensional problem with an expo-
nential kernel.nGS, nγ, nGMRES mean the iteration number of Gauss-Seidel,
Richardson, and GMRES, respectively. We takeγ = 1/(1 + 3σ2) for the
Richardson method. The tolerance of K-L expansion is set to3× 10−2. The
relative tolerance for the iteration solvers is set to10−3

lc σ M p NM,p nGS nγ nGMRES

20 0.2 2 10 66 3 0 0

20 0.6 2 10 66 24 2 1

20 1 2 10 66 > 100 16 9

2 0.2 8 5 1287 3 1 1

2 0.6 8 5 1287 17 4 3

2 1 8 5 1287 > 100 9 9

0.2 0.2 51 2 1378 3 1 1

0.2 0.6 51 2 1378 7 5 3

0.2 1 51 2 1378 15 7 6

According to our understanding ofuII, the worst scenario for the proposed preconditioners is whenlc is small
andσ is large. In a very few cases (e.g.,lc = 0.2 andσ = 0.6, 1 in Tables 3 and 4), the preconditioned Richardson
iteration requires more iterations to converge than Gauss-Seidel. This is probably because a first-order Wiener chaos
approximation is used; the big approximation error together with the big modeling error deteriorate the performance
of the preconditioning and the parameterω in the Richardson method is not optimal.

Based on the above observations, we advocate to use GMRES with model II as a preconditioner for solving
model I.

In the end, we compare our approach with some existing methods by solving a test problem studied in [17].
The physical domain is set to[0, 1]2, and the force termf(x) = 1. The underlying Gaussian field of the log-normal
coefficienta(x, ω) has a correlation functionK(x1,x2) = σ2rK1(r), wherer = ‖x1−x2‖2 andK1 is the modified
Bessel function of the second kind with order one. SetM = 5 in the K-L expansion, such that 97% of the Gaussian
field’s total variance is captured. The iteration numbers of the Richardson and GMRES methods for the stochastic
Galerkin method of model I with model II as preconditioner for differentσ andp are given in Table 5. From the table,
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TABLE 3: Preconditioning results of two-dimensional problem with Gaus-
sian kernel.nGS, nγ, nGMRES mean the iteration number of Gauss-Seidel,
Richardson, and GMRES, respectively. We takeγ = 1/(1 + 3σ2) for the
Richardson method. The tolerance of K-L expansion is set to10−2. The
relative tolerance for the iteration solvers is set to10−3

lc σ M p NM,p nGS nγ nGMRES

20 0.2 1 16 17 3 0 0

20 0.6 1 16 17 25 0 0

20 1 1 16 17 29 1 1

2 0.2 4 5 126 3 0 0

2 0.6 4 5 126 17 5 4

2 1 4 5 126 48 14 7

0.2 0.2 80 1 81 2 1 1

0.2 0.6 80 1 81 3 4 2

0.2 1 80 1 81 4 7 3

TABLE 4: Preconditioning results of two-dimensional problem with ex-
ponential kernel.nGS, nγ, nGMRES mean the iteration number of Gauss-
Seidel, Richardson, and GMRES, respectively. We takeγ = 1/(1 + 3σ2)
for the Richardson method. The tolerance of K-L expansion is set to
3× 10−2. The relative tolerance for the iteration solvers is set to10−3

lc σ M p NM,p nGS nγ nGMRES

20 0.2 3 8 165 3 0 0

20 0.6 3 8 165 12 1 1

20 1 3 8 165 41 14 10

2 0.2 28 2 435 3 1 1

2 0.6 28 2 435 4 3 3

2 1 28 2 435 10 9 4

0.2 0.2 86 1 87 2 1 1

0.2 0.6 86 1 87 2 3 2

0.2 1 86 1 87 4 7 3

TABLE 5: The iteration numbers of Richardson and GMRES method solving the two-dimensional problem with
Matern-tye kernel studied in [17]. We takeγ = 1/(1+ 3σ2) for the Richardson method. The relative tolerance for
the iteration solvers is set to10−8. M = 5

Richardson GMRES
σ p = 1 p = 2 p = 3 p = 4 p = 5 p = 1 p = 2 p = 3 p = 4 p = 5
0.2 5 6 5 6 6 3 3 4 4 4

0.4 10 10 11 10 10 3 4 5 6 7

0.6 14 16 17 18 19 4 5 6 7 8

0.8 16 19 21 23 25 5 6 7 8 9

1.0 16 19 21 24 26 5 7 8 9 11
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we see that both the Richardson and GMRES methods are efficient. Asp increases, the iteration numbers increase
slowly. Asσ increases, the iteration numbers also increase slowly. The preconditioning effects are still very good for
the cases withσ = 1. These results are very competitive comparing to the algebraic preconditioners studied in [17]
for this test example.

7. SUMMARY

In this work, we consider the Wick approximation of two stochastic elliptic problems with log-normal random co-
efficients, where model II is a second-order approximation of model I with respect toσ. Model II can be used as a
precondition for model I in a stochastic Galerkin method. The numerical results show that the preconditioned Richard-
son iteration is better than the commonly used Gauss-Seidel method whenσ is small orlc is large. Meanwhile, the
former method has a parameter to tune. The preconditioned GMRES method works very well for all the values ofσ

andlc tested using default parameters. Model II can also be used as an efficient important sampling process for model
I to reduce the variance of a Monte Carlo approach when the stochastic dimension in a Karhunen-Loève expansion is
very high.
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