
Journal of Scientific Computing          (2025) 102:57 
https://doi.org/10.1007/s10915-025-02791-7

Adaptive Deep Density Approximation for Stochastic
Dynamical Systems

Junjie He1 ·Qifeng Liao1 · Xiaoliang Wan2

Received: 28 June 2024 / Revised: 20 November 2024 / Accepted: 4 January 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
In this paper we consider adaptive deep neural network approximation for stochastic dynam-
ical systems. Based on the continuity equation associated with the stochastic dynamical
systems, a new temporal KRnet (tKRnet) is proposed to approximate the probability den-
sity functions (PDFs) of the state variables. The tKRnet provides an explicit density model
for the solution of the continuity equation, which alleviates the curse of dimensionality issue
that limits the application of traditional grid-based numerical methods. To efficiently train the
tKRnet, an adaptive procedure is developed to generate collocation points for the correspond-
ing residual loss function, where samples are generated iteratively using the approximate
density function at each iteration. A temporal decomposition technique is also employed to
improve the long-time integration. Theoretical analysis of our proposed method is provided,
and numerical examples are presented to demonstrate its performance.

Keywords Stochastic dynamical systems · Continuity equation · Deep neural networks ·
Normalizing flows

Mathematics Subject Classification 34F05 · 60H35 · 62M45 · 65C30

1 Introduction

Stochastic dynamical systems naturally emerge in simulations and experiments involving
complex systems (e.g., turbulence, semiconductors, and tumor cell growth), where the prob-
ability density functions (PDFs) of their states are typically governed by partial differential
equations (PDEs) [2, 8, 31, 50]. These include the Fokker–Planck equation [37, 42], which

B Qifeng Liao
liaoqf@shanghaitech.edu.cn

Junjie He
hejj1@shanghaitech.edu.cn

Xiaoliang Wan
xlwan@math.lsu.edu

1 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

2 Department of Mathematics and Center for Computation and Technology, Louisiana State University,
Baton Rouge, LA 70803, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-025-02791-7&domain=pdf
http://orcid.org/0000-0003-2033-6356


   57 Page 2 of 30 Journal of Scientific Computing           (2025) 102:57 

allows for assessing the time evolution of PDFs in Langevin-type stochastic dynamical sys-
tems driven by Gaussian white noise, and continuity equations [26, 28, 46, 51] which model
the evolution of PDFs in stochastic systems subject to random initial states and input param-
eters. However, it is challenging to solve these PDEs efficiently due to difficulties such as
high-dimensionality of state variables, low regularities, conservation properties, and long-
time integration [8]. This paper is devoted to developing new efficient deep learning methods
for the continuity equations to address these issues.

Themain idea of deep learningmethods for solving PDEs is to reformulate a PDE problem
as an optimization problem and train deep neural networks to approximate the solution by
minimizing the corresponding loss function. Based on this idea, many techniques have been
investigated to alleviate the difficulties existing in applying traditional grid methods (e.g., the
finite elementmethods [13]) to complexPDEs.These include, for example, deepRitzmethods
[11, 12], physics-informed neural networks (PINNs) [23, 41], deep Galerkin methods [45],
Bayesian deep convolutional encoder-decoder networks [61, 62], weak adversarial networks
[59] and deep multiscale model learning [55]. Deep neural network methods for complex
geometries and interface problems are proposed in [15, 44, 56], and domain decomposition
based deep learning methods [10, 17, 21, 24, 29, 30, 58] are studied to further improve the
computational efficiency. In addition, residual network based learning strategies for unknown
dynamical systems are presented in [5, 57].

As the solution of the continuity equation is a time-dependent probability density func-
tion, solving this problem can be considered as a time-dependent density estimation problem.
While density estimation is a central topic in unsupervised learning [43], we focus on the
normalizing flows [27] in this work. Normalizing flows are a class of generative models that
parameterize a family of probability distributions, allowing for both tractable PDF compu-
tation and efficient sampling. The idea behind normalizing flows is to construct an invertible
mapping from a simple prior distribution (e.g., a standard normal) to a more complex target
distribution, which estimates the unknown distribution of interest. The invertible mapping
transforms each sample from the unknowndistribution to the prior distribution, and thePDFof
the underlying unknown distribution can then be computed through the change of variables.
Constructing an efficient invertible mapping is crucial for normalizing flows. Real-valued
non-volume preserving (real NVP) flows address this by introducing non-volume-preserving
affine coupling layers, which have been widely applied in tasks like image density estimation
[9]. An extension of real NVP, called Glow, simplifies this architecture through the use of
invertible 1×1 convolution [25]. For continuous transformations, neural ordinary differential
equations [4] provide continuous normalizing flows, where the invertible mapping is param-
eterized as a continuous-time flow governed by an ordinary differential equation (ODE).
This continuous generalization enables normalizing flows to handle more complex distribu-
tions. In our recent work [47], based on the Knothe-Rosenblatt (KR) rearrangement [3] and
a modification of affine coupling layers in real NVP [9], a normalizing flow model called
KRnet is proposed. Normalizing flows are primarily applied to density estimation, where
they compute the exact likelihood of data and are trained by maximizing the log-likelihood.
They have also been successfully used in variational inference by approximating posterior
distributions [38], and more recently, they have been adapted to solve PDEs whose solutions
are probability densities. A systematic procedure to train the KRnet for solving the steady-
state Fokker–Planck equation is studied in [48]. In addition, an adaptive learning approach
based on temporal normalizing flows is proposed for solving time-dependent Fokker–Planck
equations in [14].

In order to efficiently solve the continuity equation, we generalize our KRnet to time-
dependent problems and develop an adaptive training procedure. The modified KRnet is

123



Journal of Scientific Computing           (2025) 102:57 Page 3 of 30    57 

referred to as the temporal KRnet (tKRnet) in this paper. The main contributions of this
work are as follows. First, the basic layers in KRnet (where the temporal variable is not
included) are systematically extended to be time-dependent, and the initial condition of the
underlying stochastic dynamical system is encoded in the tKRnet as a prior distribution.
Second, an adaptive training procedure for tKRnet is proposed. It is known that choosing
proper collocation points is crucial for solving PDEs with deep learning-based methods
[48, 49]. To result in effective collocation points, our adaptive procedure has the following
two main steps: training a tKRnet to approximate the solution of the continuity equation,
and using the trained tKRnet to generate collocation points for the next iteration. Through
this procedure, the distribution of the collocation points becomes more consistent with the
solution PDF after each iteration. Third, for the challenging problem of long-time integration
associatedwith the continuity equation, a temporal decompositionmethod is proposed,which
provides guidance for applying tKRnet in this challenging problem. Lastly, a theoretical
analysis is conducted to build the control of Kullback–Leibler (KL) divergence between the
exact solution and the tKRnet approximation.

The rest of the paper is organized as follows. Preliminaries of stochastic dynamical systems
and the corresponding continuity equations are presented in Sect. 2. Detailed formulations
of tKRnet are given in Sect. 3. In Sect. 4, our adaptive training procedure of tKRnet for
solving the continuity equation is presented, the corresponding temporal decomposition is
discussed, and the analysis for the KL divergence between the exact solution and the tKRnet
approximation is conducted. Numerical results are discussed in Sect. 5. Section6 concludes
the paper.

2 Problem Setup and Preliminaries

Let ξ ∈ R
m and y0 ∈ R

n denote random vectors, where m and n are positive integers. We
consider the following stochastic dynamical system

d y(t)
dt

= g( y, ξ , t), y(0) = y0, (1)

where t ∈ I := (0, T ] (T > 0 is a given final time), and the function g : Rn ×R
m × I → R

n

is a locally Lipschitz continuous vector function with respect to y. The vector y(t) :=
[y1(t), . . . , yn(t)]� ∈ R

n denotes a multi-dimensional stochastic process with the random
vector y0 as the initial condition, and y(t) is also driven by the randomness of the random
vector ξ . Let x(t) := [ y(t), ξ ]� ∈ R

d with d = n + m. The system (1) can be reformulated
as

dx(t)

dt
= f (x, t), x(0) := [ y0, ξ ]� and f (x, t) :=

[
g(x, t)

0

]
. (2)

Our objective is to approximate the time-varying PDF of the state x(t) and the associated
statistics.

The PDF of x(t), denoted as p(x, t) : Rd × I → R+, satisfies the following continuity
equation

∂ p(x, t)

∂t
+ ∇x · (p(x, t) f (x, t)) = 0, p(x, 0) = p0(x) := p y( y, 0)pξ (ξ), (3)

where ∇x · denotes the divergence in terms of x, p y( y, 0) is the PDF of y0, and pξ (ξ) is the
PDF of ξ . To improve the numerical stability, the logarithmic continuity equation is proposed

123



   57 Page 4 of 30 Journal of Scientific Computing           (2025) 102:57 

in [1, 51], which can be written as

∂ log p(x, t)

∂t
+ (∇x log p(x, t)) · f (x, t) + ∇x · f (x, t) = 0. (4)

As p(x, t) is a PDF for each t ∈ I , it is required that∫
Rd

p(x, t)dx ≡ 1 and p(x, t) ≥ 0.

In addition, for any time t , the boundary condition for p(x, t) is

p(x, t) → 0 as ‖x‖2 → ∞,

where ‖ · ‖2 indicates the �2 norm.

3 Temporal KRnet (tKRnet)

The KRnet [47] is a flow-based generative model for density estimation or approximation,
and its adaptive version is developed to solve the steady-state Fokker–Planck equation in
[49]. We systematically generalize the KRnet to a time-dependent setting in this section,
which is referred to as the temporal KRnet (tKRnet) henceforth, and develop an efficient
adaptive training procedure for tKRnet to solve the continuity equation in the next section.

Let X ∈ R
d be a random vector, which is associated with a time-dependent PDF pX (x, t).

In this work, pX (x, t) is used to model the solution of (3) (or (4)). Let Z ∈ R
d be a random

vector associated with a PDF pZ(z), where pZ(z) is a prior distribution (e.g., a Gaussian
distribution). Themain idea of time-dependent normalizing flows is to seek a time-dependent
invertible mapping T : Rd × R+ → R

d (i.e., z = T(x, t)), and by the change of variables,
the PDF pX (x, t) is given by

pX (x, t) = pZ(z)| det∇xT(x, t)|, where z = T(x, t). (5)

Once the prior distribution pZ is specified, the explicit PDF for any random vector X and
time t can be obtained through (5). Additionally, exact random samples from pX (x, t) can be
obtained using the samples of Z (from the prior) and the inverse of T, i.e., X = T−1(Z, t).
In the rest of this paper, we let T denote our tKRnet, which is constructed by a sequence of
time-dependent bijections. These include affine coupling layers, scale-bias, squeezing and
nonlinear layers, which are defined as follows.

3.1 Time-Dependent Affine Coupling Layers

A major part of tKRnet is affine coupling layers. Let xin ∈ R
d̃ denote the input of a time-

dependent affine coupling layer. The input xin is partitioned as xin = [x(1)
in , x(2)

in ]�, where
x(1)
in ∈ R

k , x(2)
in ∈ R

d̃−k , and k < d̃ is a positive integer. For t ∈ (0, T ], the output of a

time-dependent affine coupling layer xout = [x(1)
out, x

(2)
out]� is defined as

x(1)
out = x(1)

in

x(2)
out = x(2)

in + t

T

(
αx(2)

in 
 tanh(s(x(1)
in , t)) + eβ 
 tanh(n(x(1)

in , t))
)

,
(6)

where 0 < α < 1 is a fixed hyperparameter, β ∈ R
d̃−k is a trainable parameter, tanh is the

hyperbolic tangent function, and 
 is the Hadamard product or elementwise multiplication.

123



Journal of Scientific Computing           (2025) 102:57 Page 5 of 30    57 

Fig. 1 The structure of the neural network in affine coupling layers. The neural network includes one random
Fourier layer and M fully connected layers

We typically set α = 0.6 and k = �d̃/2�, where �a� (a ∈ R) is the largest integer that
is smaller or equal to a. Similar to the KRnet, we explicitly control the scaling coefficient
1+ t

T α tanh(s(x(1)
in , t)) ∈ [1− tα

T , 1+ tα
T ] using tanh(·) to ensure the condition number does

not increase too fast with the number of affine coupling layers. In (6), s : Rk+1 → R
d̃−k

and n : Rk+1 → R
d̃−k stand for scale and translation respectively, which are modeled by a

neural network, i.e., [
s

n

]
= N(x(1)

in , t),

where N : Rk+1 → R
2(d̃−k) is a feedforward neural network.

Inspired by the work [54], we apply a random Fourier feature transformation before
fully connected layers to mitigate possible challenges from multiscale structures. The neural
network N is defined as

h0 =[x(1)
in , t]�,

h1 =
⎡
⎣ sin

( 1
eσ Fh0 + b0

)
cos

( 1
eσ Fh0 + b0

)
h0

⎤
⎦ ,

hi = SiLU(Wi−1hi−1 + bi−1), for i = 2, 3, . . . , M,[
s

n

]
=WMhM + bM ,

(7)

where h0 ∈ R
k+1 is the input vector, h1 ∈ R

dh+k+1 is the output of the random Fourier layer,
and σ ∈ R is a learnable scaling parameter. In (7), F ∈ R

(dh/2)×(k+1) and b0 ∈ R
dh/2 are a

fixed weight matrix and a fixed bias vector, and the entries of F and b0 are sampled from the
Gaussian distribution N (0, 1) and the uniform distribution U(0, 2π) respectively. Figure1
illustrates the structure of the neural network in affine coupling layers, whereRandomFourier
and Fully connected are random Fourier layers and fully connected layers respectively, and
SiLU is the sigmoid linear unit (SiLU) function.

For the fully connected layers, W1 ∈ R
dh×(dh+k+1) and b1 ∈ R

dh are the weight and the
bias in the first fully connected layer, and Wi ∈ R

dh×dh and bi ∈ R
dh are weight and bias

coefficients in the i th fully connected layer, for i = 2, . . . , M − 1; hi ∈ R
dh is the hidden

feature output of the (i − 1)th fully connected layer. The output is computed by the final
layer with WM ∈ R

2(d̃−k)×dh and bM ∈ R
2(d̃−k). The SiLU function [18] is applied as the

123



   57 Page 6 of 30 Journal of Scientific Computing           (2025) 102:57 

nonlinear activation function in the neural network, which is defined as

SiLU(x) = x

1 − e−x
.

The trainable parameters of the fully connected layer are {Wi , bi |i = 1, . . . , M}.
The Jacobian of xout at time t with respect to xin can be obtained by

∇xin xout =

⎡
⎢⎢⎢⎢⎣

∂x(1)
out

∂x(1)
in

∂x(1)
out

∂x(2)
in

∂x(2)
out

∂x(1)
in

∂x(2)
out

∂x(2)
in

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎣

Ik 0

∂x(2)
out

∂x(1)
in

diag(1d̃−k + α
t

T
tanh(s(x(1)

in , t)))

⎤
⎥⎦ , (8)

where Ik ∈ R
k×k represents a k × k identity matrix, and diag(·) is a diagonal matrix. The

determinant of ∇xin xout can then be easily computed by multiplying the diagonal entries of
diag(1d̃−k + α t

T tanh(s(x(1)
in , t))).

It is noted that, in the affine coupling layer, only x(2)
in is transformed to x(2)

out, while x(1)
in

remains unchanged. To completely update all components of xin, the unchanged part x
(1)
in is

updated in the next affine coupling layer,

x(1)
out = x(1)

in + t

T

(
αx(1)

in 
 tanh(s(x(2)
in , t)) + eβ 
 tanh(n(x(2)

in , t))
)

x(2)
out = x(2)

in ,

where s and n are separate for each layer of the whole transformation.

3.2 Scale-Bias, Squeezing and Nonlinear Layers

We generalize the scale-bias layer introduced in [25] to a time-dependent setting. For an
input xin ∈ R

d̃ , the output of the time-dependent scale-bias layer is defined as

xout = etanh(φt)
a 
 xin + tanh(φt) 
 b, (9)

where a ∈ R
d̃ , b ∈ R

d̃ , and φ = [φ1, . . . , φd̃ ]� ∈ R
d̃ are trainable parameters, and each φi

(for i = 1, . . . , d̃) is required to be positive. This can be considered as a simplified version
of batch normalization for rescaling.

Squeezing layer LS is applied to deactivate some dimensions through a mask

m = [1, . . . , 1,︸ ︷︷ ︸
k

0, . . . , 0︸ ︷︷ ︸
d̃−k

]�, (10)

where the componentsm
 xin are updated and the rest components (1−m) 
 xin are fixed
from then on.

Time-dependent nonlinear layer LN extends the nonlinear layers introduced in [47] such
that it is consistent with an identity transformation at t = 0. For an input xin, where the
support of each dimension is (−∞,∞), the mapping F̂(·) : (−∞,∞) → (−∞,∞) is
defined as

F̂(x) =

⎧⎪⎨
⎪⎩

βs(x + a) − a, x ∈ (−∞,−a)

2aF( x+a
2a ) − a, x ∈ [−a, a]

βs(x − a) + a, x ∈ (a,∞),

(11)

123



Journal of Scientific Computing           (2025) 102:57 Page 7 of 30    57 

where βs ∈ R+ is a scaling factor, a ∈ R+ is a fixed hyperparameter, and F(·) : [0, 1] →
[0, 1] represents a nonlinear quadratic function. The inverse and the derivative with respect
to x of the nonlinear mapping F̂ can be explicitly computed [48].

The nonlinear function applied in (11) is constructed as follows. Let the interval [0, 1] be
discretized by a mesh 0 = s0 < s1 < · · · < sm̂+1 = 1 with the element size hi = si+1 − si ,
where m̂ is a given positive integer. For each sub-interval [si , si+1], a nonlinear quadratic
function defines the nonlinear mapping F(·) : [0, 1] → [0, 1]:

F(s) = wi+1 − wi

2hi
(s − si )

2 + wi (s − si ) +
i−1∑
k=0

wk + wk+1

2
hk . (12)

In (12), the parameters wi are normalized as wi = ŵi/cw where

ŵi = etanh(ϕi t)ψi , cw =
m̂∑
i=0

ŵi + ŵi+1

2
hi ,

and ϕi ∈ R+, ψi ∈ R are trainable parameters for i = 0, . . . , m̂.

3.3 The Overall Structure of tKRnet

Our tKRnet is inspired by the KR rearrangement [3], which defines a triangular transport
map between two probability measures. Before presenting the tKRnet, we review the KR
rearrangement following [3] as follows. Let μ and ν be two absolutely continuous Borel
probability density measures onRd . Denote by μ1 the first marginal of μ and by μi

(x1,...,xi−1)

the i th conditionalmeasure ofμgiven (x1, . . . , xi−1). Respectively, let ν1 be thefirstmarginal
of ν, and νi(z1,...,zi−1)

denote the i th conditionalmeasure of ν given (z1, . . . , zi−1). DefineT
(1)
KR

as the one-dimensional monotone nondecreasing transformation fromμ1 to ν1. Similarly, let
T(2)
KR(x1, x2) denote the monotone transformation in x2 from μ2

x1 to ν2z1 . The transformation

can be constructed iteratively until the map T(d)
KR(x1, x2, . . . , xd) is defined, which transports

μd
(x1,...,xd−1)

to νd(z1,...,zd−1)
. The KR rearrangement provides a transport map from μ to ν,

which is defined as

TKR(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

T(1)
KR(x1)

T(2)
KR(x1, x2)

...

T(d)
KR(x1, . . . , xd)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This map is a lower triangular map and is characterized by a triangular Jacobian matrix with
nonnegative diagonal entries.We incorporate the triangular structure of theKR rearrangement
to design our tKRnet, ensuring efficient transformation between probability distributions.

The forward computation of the tKRnet is then defined as a composite transformation

z = T(x, t;Θ) = LN ◦ T[K ] ◦ · · · ◦ T[1](x, t), (13)

where Θ represents the transformation parameters, and T[i] is defined as

T[i] :=
{
LS ◦ T[i,L] ◦ · · · ◦ T[i,1], i = 1, . . . , K − 1,

T[i,L] ◦ · · · ◦ T[i,1], i = K .
(14)

123



   57 Page 8 of 30 Journal of Scientific Computing           (2025) 102:57 

Fig. 2 The overall structure of tKRnet; tKRnet includes K invertible transformation blocks T[i] (for i =
1, . . . , K ) and a nonlinear layer LN ; each T[i] includes L scale-bias layers, L affine coupling layers and one
squeezing layer LS

In (13)–(14), each T[i] includes L invertible mappings T[·,·] for i = 1, . . . , K , and each
invertible mapping T[·,·] is composed by a scale-bias layer (9) and an affine coupling layer
(see Sect. 3.1). The terms LN , LS denote the nonlinear layer (12) and the squeezing layer
(10) respectively.

Let the state variable x be partitioned as x = [x(1), . . . , x(K )]�, where x(i) =
[x(i)

1 , . . . , x(i)
m ]� with 1 ≤ K ≤ d , 1 ≤ m ≤ d , and

∑K
i=1 dim(x(i)) = d . The

transformation x[i] = T[i](x[i−1], t) is applied iteratively, starting from x[0] = x. The
partitions x[i] = [x(1)

[i] , . . . , x
(K )
[i] ]� remain consistent for i = 1, . . . , K . At the begin-

ning, T[1] is applied to the partition x[0] = [x(1:K−1)
[0] , x(K )

[0] ]�, where x(1:K−1)
[0] includes

{x(1)
[0] , . . . , x

(K−1)
[0] }. Following this, x[1] = T[1](x[0], t) is computed, and after that, the last

partition x(K )
[1] remains fixed, i.e., x(K )

[i] = x(K )
[1] for i > 1. In general, after applying the trans-

formation T[i], the (K − i + 1)th partition of x[i], i.e., x(K−i+1)
[i] , is deactivated in addition

to the dimensions fixed at previous stages. Finally, the nonlinear layer LN transforms x[K ]
to z, where z = LN (x[K ], t). For brevity, denoting z̃ = x[K ], the inverse of the tKRnet
corresponds to a blockwise lower-triangular transport map, i.e.,

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

T−1
[K ]( z̃

(1), t)

T−1
[K−1]( z̃

(1), z̃(2), t)

...

T−1
[1] ( z̃

(1), . . . , z̃(K ), t)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The overall structure of tKRnet is depicted in Fig. 2.

123



Journal of Scientific Computing           (2025) 102:57 Page 9 of 30    57 

Based on the tKRnet T(·, ·;Θ), the PDF pΘ(x, t) can be obtained by (5) and the chain
rule,

pΘ(x, t) = pZ(T(x, t;Θ))| det∇xT(x, t;Θ)|

= pZ(T(x, t;Θ))| det∇x[K ]LN (x[K ], t)|
K∏
i=1

| det∇x[i−1]T[i](x[i−1], t)|,
(15)

where x[0] = x, x[i] = T[i](x[i−1], t), for i = 1, . . . , K . To use pΘ(x, t) as a PDF model
for the solution of the continuity equation (3), the prior distribution pZ is set to the initial
PDF p0. At time t = 0, all sublayers of tKRnet are identity mappings, and pΘ(x, 0) =
p0(T(x, 0;Θ))| det∇xT(x, 0;Θ)| = p0(x).

4 Adaptive Sampling Based Physics-Informed Training for Density
Approximation

In this section, tKRnet is applied to solve the time-dependent continuity equation (3) or its
variant (4). We pay particular attention to adaptive sampling and long-time integration.

4.1 Physics-Informed Training and Adaptive Sampling

Adaptivity is crucial for numerically solving PDF equations. The work [7] uses spectral
elements on an adaptive non-conforming grid to discretize the spatial domain of the PDF
equation and track the time-dependent PDF support. The work [48] shows that adaptive
sampling strategy can help normalizing flow models effectively approximate solutions to
steady-state Fokker–Planck equations. We propose a physics-informed method consisting of
multiple adaptivity iterations. Each adaptivity iteration has two steps: (1) training tKRnets
by minimizing the total PDE residual on collocation points in the training set; (2) generating
collocation points dynamically through the trained tKRnet to update the training set.

Let pΘ(x, t) be the approximate PDF induced by tKRnet. The residual given by the
continuity equation (3) is defined as

r(x, t;Θ) := ∂ pΘ(x, t)

∂t
+ ∇x · (pΘ(x, t) f (x, t)). (16)

In high-dimensional problems, the value of pΘ(x, t) may be too small, which results in
underflow such that the residual cannot be effectively minimized. To alleviate this issue, the
logarithmic continuity equation (4) is considered, and the corresponding residual is defined
as

rlog(x, t;Θ) := ∂ log pΘ(x, t)

∂t
+ (∇x log pΘ(x, t)) · f (x, t) + ∇x · f (x, t). (17)

It is clear that r(x, t;Θ) = pΘ(x, t)rlog(x, t;Θ). Letting pc(x, t) be a PDF in the space-time
domain, the following loss functional is defined,

L(pΘ(x, t)) := Epc(x,t)(|rlog(x, t;Θ)|2), (18)

where Epc refers to the expectation with respect to pc(x, t). A set of collocation points

S = {(x(i)
res, t

(i)
res)}Nr

i=1 are drawn from pc(x, t), and these points are employed to estimate the

123



   57 Page 10 of 30 Journal of Scientific Computing           (2025) 102:57 

loss function as

L(pΘ(x, t)) ≈ L̂(pΘ(x, t)) := 1

Nr

Nr∑
i=1

|rlog(x(i)
res, t

(i)
res;Θ)|2. (19)

Optimal parameters for pΘ(x, t) are chosen by minimizing the approximate loss function,
i.e.,

Θ∗ = argmin
Θ

L̂(pΘ(x, t)). (20)

A variant of the stochastic gradient descent method, AdamW [33], is applied to solve the opti-
mization problem (20). The learning rate scheduler for the optimizer is the cosine annealing
method [32]. More specifically, the set S is divided into Nb mini-batches {S(n)}Nb

n=1. LetΘe,n

be the model parameters at the nth step of epoch e with e = 1, . . . , NE and n = 1, . . . , Nb.
The model parameters are updated as

Θe,n = Θe,n−1 − τ∇Θe,n−1

1

|S(n)|
∑

(xres,tres)∈S(n)

|rlog(xres, tres;Θe,n−1)|2, (21)

where τ > 0 is the learning rate. After each optimization step, the learning rate is decreased
by the learning rate scheduler.

To enhance the accuracy of the final approximation, we propose the following adaptive
sampling strategy. Let Nr = MJ , where M and J are positive integers. On (0, T ], t (i)res (for
i = 1, . . . , Nr ) are set to

t (i)res = �i/M�Δt, (22)

where Δt = T /(J − 1) and �i/M� is the smallest integer that is larger or equal to i/M .
Letting Stime = {t (i)res}Nr

i=1, the training set is initialized as S0 := {(x(0,i)
res , t (i)res)}Nr

i=1, where

{x(0,i)
res }Nr

i=1 are the initial spatial collocation points (e.g., samples of a uniform distribution).

The set S0 is divided into Nb mini-batches {S(n)
0 }Nb

n=1. The tKRnet (introduced in Sect. 3.3)
is initialized as T(x, t;Θ(0)). In general, the i th (i = 1, . . . , Nr ) spatial collocation point
generated at the kth adaptivity iteration step is denoted by x(k,i)

res . The parameters at the kth
adaptivity iteration step, the eth epoch and the nth optimization iteration step is denoted by
Θ

(k)
e,n .

Starting with Θ
(1)
1,0 = Θ(0), the tKRnet is trained through solving (20) with collocation

pointsS0, and the trained tKRnet at adaptivity iteration step one is denoted byT(x, t;Θ∗,(1)),
where Θ∗,(1) are the parameters of the trained tKRnet at this step. The PDF pΘ∗,(1) =
p0(T(x, t;Θ∗,(1)))| det∇xT(x, t;Θ∗,(1))| (see (15)) is then used to generate new collocation
points S1 = {(x(1,i)

res , t (i)res)}Nr
i=1, where t (i)res ∈ Stime remains unchanged and each x(1,i)

res is

drawn from pΘ∗,(1) (x, t (i)res). To generate each x(1,i)
res , a sample point z(1,i) is first generated

using pZ = p0, and then x(1,i)
res = T−1(z(1,i), t (i)res;Θ∗,(1)). Next, starting with T(x, t;Θ

(2)
1,0)

where Θ
(2)
1,0 := Θ∗,(1), we continue the training process with the collocation points S1 to

obtain T(x, t;Θ∗,(2)). In general, at adaptivity iteration step k, the collocation points Sk are
generated using pΘ∗,(k) (x, t), and the tKRnet with the initial parameters Θ

(k+1)
1,0 := Θ∗,(k)

is subsequently updated to T(x, t;Θ∗,(k+1)) through solving (20). The adaptivity iteration
continues until themaximumnumber of iterations is achieved,which is denoted by Nadaptive ∈
N+. This adaptive procedure is summarized in Algorithm 1.

123



Journal of Scientific Computing           (2025) 102:57 Page 11 of 30    57 

Algorithm 1 Adaptive sampling based physics-informed training for tKRnet

Input: The initial tKRnet T(x, t; Θ(0)), the number of collocation points Nr , the number of epochs NE ,
the maximum number of adaptivity iterations Nadaptive, the learning rate τ , and the number of mini-batches
Nb .

1: Generate time points Stime = {t(i)res}Nri=1 (see (22)).

2: Draw initial samples {x(0,i)
res }Nri=1 from a given distribution, and let S0 = {(x(0,i)

res , t(i)res)}Nri=1.

3: Divide S0 into Nb mini-batches {S(n)
0 }Nb

n=1.
4: for k = 1,…,Nadaptive do
5: if k = 1 then
6: Let Θ(k)

1,0 = Θ(0).
7: else
8: Let Θ(k)

1,0 = Θ∗,(k−1).
9: end if
10: Initialize the AdamW optimizer and the cosine annealing learning rate scheduler.
11: for e = 1,…,NE do
12: for n = 1,…,Nb do
13: Compute the loss L̂(p

Θ
(k)
e,n−1

(x, t)) (see (19)) on the mini-batch S(n)
k−1.

14: Update Θ
(k)
e,n using the AdamW optimizer with the learning rate τ (see (21)).

15: The learning rate scheduler decreases the learning rate.
16: end for
17: if e < NE then
18: Let Θ(k)

e+1,0 = Θ
(k)
e,Nb

.

19: Shuffle the mini-batches {S(n)
k−1}

Nb
n=1 of the set Sk−1.

20: end if
21: end for
22: Let Θ∗,(k) = Θ

(k)
NE ,Nb

.

23: Draw x(k,i)
res from p

Θ∗,(k) (x, t(i)res), and let Sk = {(x(k,i)
res , t(i)res)}Nri=1.

24: Divide Sk into Nb mini-batches {S(n)
k }Nb

n=1.
25: end for
26: Let Θ∗ = Θ

∗,(Nadaptive).
Output: The trained tKRnet T(x, t; Θ∗), and the approximate solution pΘ∗ (x, t).

4.2 Temporal Decomposition for Long-Time Integration

The performance of PINN may deteriorate for evolution equations when the time domain
becomes large [53]. Algorithm 1 suffers a similar issue since it is defined in the framework
of PINN. Some remedies [35, 40] have been proposed to alleviate this issue. In this work,
we employ a temporal decomposition method when implementing Algorithm 1 on a large
time domain. We will demonstrate numerically that coupling temporal decomposition with
adaptive sampling yields efficient performance for long-time integration, although other
techniques [40, 53] can also be employed for further refinement.

We decompose the time interval (0, T ] into Nsub sub-intervals (Ti−1, Ti ] (for i =
1, . . . , Nsub), where 0 = T0 < T1 < · · · < TNsub = T . For the i th sub-interval (Ti−1, Ti ],
assuming that the PDF pΘ(·, Ti−1) is given (e.g., for the interval (T0, T1], pΘ(·, T0) is given a
priori), our goal is to train tKRnetT(·, ·;Θ(i,k)), whereΘ(i,k) includes the model parameters
and k denotes the adaptivity iteration step (see line 4 of Algorithm 1). The trained parameters
of the tKRnet for i th sub-interval are denoted by Θ(i),∗. The following two choices for tem-
poral decomposition are considered in this work to train the local tKRnets. The first choice is
to keep the same tKRnet structure for different sub-intervals (while the local tKRnet param-

123



   57 Page 12 of 30 Journal of Scientific Computing           (2025) 102:57 

eters are different), and to introduce the cross entropy to maintain the consistency between
two adjacent sub-intervals; the second choice is to use pΘ(·, Ti−1) as the prior distribution
to construct a new tKRnet for each sub-interval (Ti−1, Ti ].

In the first choice, the solution of (3) or (4) on (Ti−1, Ti ] is approximated by p(x, t) ≈
pΘ(i,k) (x, t) := p0(z)| det∇xT(x, t;Θ(i,k))| where z = T(x, t;Θ(i,k)) and T is introduced
in Sect. 3. Here, we let pΘ(i,k) (x, Ti−1) ≈ pΘ(i−1),∗(x, Ti−1), where pΘ(i−1),∗(x, Ti−1) is
the given tKRnet solution at t = Ti−1. The cross entropy between pΘ(i−1),∗(x, Ti−1) and
pΘ(i,k) (x, Ti−1) is next introduced to maintain the consistency at time t = Ti−1. That is, the
loss function on (Ti−1, Ti ] is defined as

L̂(pΘ(i,k) (x, t)) = 1

Nr

Nr∑
j=1

|rlog(x( j)
res , t

( j)
res ;Θ(i,k))|2

− 1

Nr

Nr∑
j=1

log pΘ(i,k) (x( j)
interface, Ti−1),

(23)

where x( j)
interface are drawn from pΘ(i−1),∗(·, Ti−1). Note that the loss function forT(·, ·;Θ(1,k))

(on the sub-interval (T0, T1]) is

L̂(pΘ(1,k) (x, t)) = 1

Nr

Nr∑
j=1

|rlog(x( j)
res , t

( j)
res ;Θ(1,k))|2, (24)

where only the residual is considered, because the initial distribution at t = 0 is used as the
prior distribution for the tKRnet. Then, Algorithm 1 is applied with (24) to obtain the local
solution pΘ(1),∗ for the first sub-interval (T0, T1]. After that, Algorithm 1 is applied with (23)
to train pΘ(2),∗ , and this procedure is repeated for computing (Ti−1, Ti ] for i = 3, . . . , Nsub.

In the second choice, the local tKRnet for each sub-interval is rebuilt with the prior
distribution obtained at the previous sub-interval. The local tKRnet for (Ti−1, Ti ] is denoted
by T(i)(x, t;Θ(i,k)). The tKRnet solution of (3) (or (4)) at t = Ti−1 in this choice is defined
as,

pΘ(x, Ti−1) = p0(x̂0)
i−1∏
j=1

| det∇x̂i− jT
(i− j)(x̂i− j , Ti− j ;Θ(i− j),∗)|, (25)

where

x̂i−1 = x, x̂i− j−1 = T(i− j)(x̂i− j , Ti− j ;Θ(i− j),∗), j = 1, . . . , i − 1. (26)

In (25)–(26), {Θ(i− j),∗| j = 1, . . . , i−1} denotes the set of trained parameters associatedwith
local tKRnets for the previous sub-intervals. With pΘ(·, Ti−1) defined in (25), the tKRnet
solution for t ∈ (Ti−1, Ti ] is obtained through

pΘ(x, t) = pΘ(T(i)(x, t;Θ(i,k)), Ti−1)| det∇xT(i)(x, t;Θ(i,k))|, (27)

where Θ = {Θ(i,k), Θ(i− j),∗| j = 1, . . . , i − 1}. Note that the trainable weights at this stage
are Θ(i,k) while the other parameters remain fixed, and T(i)(·, Ti−1;Θ(i,k)) is an identity
mapping, as pΘ(·, Ti−1) is the prior distribution. As the tKRnet T(i) implemented in this

123



Journal of Scientific Computing           (2025) 102:57 Page 13 of 30    57 

method is dependent on Ti−1 and t , and the affine coupling layer (see (6)) is modified as

x(1)
out = x(1)

in

x(2)
out = x(2)

in + t − Ti−1

Ti − Ti−1

(
αx(2)

in 
 tanh(s(x(1)
in , t, Ti−1)) + eβ 
 tanh(n(x(1)

in , t, Ti−1))
)

,

(28)
where [s, n]� = N(x(1)

in , t−Ti−1, Ti−1). In scale-bias layers and nonlinear layers (presented
in Sect. 3), the temporal variable t is replaced by t − Ti−1 in this setting. For example,
scale-bias layers here are defined as

xout = etanh(φ(t−Ti−1))
a 
 xin + tanh(φ(t − Ti−1)) 
 b. (29)

After these slight modifications, Algorithm 1 can be implemented to obtain a local solution
pΘ(x, t) (27) on each sub-interval (Ti−1, Ti ] for i = 1, . . . , Tsub.

4.3 Theoretical Properties

In this section, we show that theKullback-Leibler (KL) divergence between the exact solution
p(x, t) of (3) (or (4)) and the tKRnet solution pΘ(x, t) (see (16)) can be bounded by the
residual rlog(x, t;Θ) (17).

Theorem 1 (Control of KL divergence) Assume p(x, t) → 0, pΘ(x, t) → 0 as
‖x‖2 → ∞. Denote �C = {x|‖x‖2 ≤ C} with C > 0. For any t ∈ [0, T ], assume
limC→∞

∮
∂�C

log
(

p(x,t)
pΘ(x,t)

)
p(x, t) f (x, t) · �nds = 0, where �n is the outward pointing unit

normal. The KL divergence between the exact solution p(x, t) of (3) (or (4)) and the tKRnet
solution pΘ(x, t) (see (16)) satisfies

d

dt
DK L(p(x, t)||pΘ(x, t)) ≤

∫
Rd

|rlog(x, t;Θ)|p(x, t)dx.

Proof The detailed proof is in Appendix 7.

Remark 1 In Theorem 1, we bound the KL divergence between p(x, t) and pΘ(x, t) using
the residual rlog(x, t;Θ). The residual rlog(x, t;Θ) apparently depends on the modeling
capability of pΘ(x, t). Recently some progress on the universal approximation property of
invertible mapping has been achieved [20, 60]. For instance, it has been shown in [20] that
the normalizing flow model based on real NVP [9] can serve as a universal approximator for
an arbitrary PDF in the L p sense with p ∈ [1,∞). Note that our model is a generalization of
real NVP. Although tKRnet also has L p-universality for PDF approximation, more efforts
are needed to establish the convergence with respect to Sobolev norms for the approximation
of PDEs, which is beyond the scope of this paper.

5 Numerical Experiments

To show the effectiveness of our proposed method presented in Sect. 4, the following five test
problems are considered: the double gyre flowproblem, the 3-dimensional Kraichnan-Orszag
problem, the duffing oscillator, a 40-variable Lorenz-96 system, and a coupled oscillator. In
our numerical studies, all trainable weights in affine coupling layers (see (6)) are initialized
using the Kaiming uniform initialization [16], and the biases are set to zero. In each scale-bias

123



   57 Page 14 of 30 Journal of Scientific Computing           (2025) 102:57 

layer (see (9)), parameters a and b are initialized as zero, and φ is initially set to one. For the
nonlinear layer (see (11)), the coefficients are initialized as m̂ = 32, a = 50, and ψi and ϕi
are set to zero for i = 0, . . . , m̂ (see (11)). The AdamW optimizer [33] with a learning rate
of 0.001 is used to solve (20), and a cosine annealing learning rate scheduler fine-tunes the
learning rate. The training is conducted on an NVIDIA GTX 1080Ti GPU.

In order to assess the accuracy of the tKRnet solution pΘ(x, t) at time t ∈ (0, T ], we
compare it with the reference solution p(x, t) of (3) as follows, which is computed using
the method of characteristics. First, Nv = 104 initial states are sampled from the initial
condition p0(x) of (3). For each initial state, the corresponding solution state of (2) at time
t is computed using the ODE solver LSODA in SciPy, and the solution states are denoted by
{x(i)

val}Nv

i=1. Then, for each t ∈ (0, T ], the following relative error is computed

1

Nv

Nv∑
i=1

|p(x(i)
val, t) − pΘ(x(i)

val, t)|
|p(x(i)

val, t)|
, (30)

and the KL divergence between p(x, t) and pΘ(x, t) is estimated as

DKL (p(x, t)||pΘ(x, t)) ≈ 1

Nv

Nv∑
i=1

log

(
p(x(i)

val, t)

pΘ(x(i)
val, t)

)
. (31)

5.1 Double Gyre Flow

We start with the nonlinear time-dependent double gyre flow, which has a significant effect
of nonlinearities for long-time integration [34]. The following nonlinear ODE system is
considered ⎧⎪⎪⎨

⎪⎪⎩
dx1
dt

= − π A sin(π f (x1, t)) cos(πx2)

dx2
dt

=π A cos(π f (x1, t)) sin(πx2)
d f (x1, t)

dx1
,

(32)

where f (x1, t) = a(t)x21 + b(t)x1, a(t) = ε sin(wt), b(t) = 1 − 2ε sin(wt). In this test
problem, the coefficients are set to A = 0.1, w = 2π/10, and ε = 0.25. The time domain
is set as t ∈ (0, 5]. The initial condition p0(x) in (3) is set to a Gaussian distribution
N ([1, 0.5]�, 0.052I). The tKRnet (13) has ten time-dependent affine coupling layers, ten
scale-bias layers and one nonlinear layer. Each affine coupling layer includes one random
Fourier feature layer and two fully connected layers which have thirty two neurons (see (7)).
The time domain (0, 5] is discretized with step size Δt = 0.02, and the number of spatial
collocation points is set to M = 1000 (see (22)). The parameters in Algorithm 1 are set
as Nr = 251,000, NE = 100, Nadaptive = 6, Nb = 251, and the initial spatial collocation
points are generated through the uniform distribution with range [0, 2] × [0, 1].

Figure 3a and b show the reference solution obtained using the method of characteristics
and our tKRnet solution (obtained usingAlgorithm1) at three discrete time steps t = 1, 2.5, 5
respectively. Figure 3c shows the point-wise absolute error across the spatial domain between
the reference solution and the tKRnet solution. It can be seen that, the tKRnet solution and
the reference solution are visually indistinguishable. From Fig. 3c, it is observed that the
absolute error is around 1.254 range and the error in the spatial domain is locating at the
high density region. The relative errors (defined in (30)) and the values of the KL divergence
(defined in (31)) at iteration steps k = 1, 3, 6 (see line 4 of Algorithm 1) are shown in Fig. 4,
where it is clear that the errors and the values of the KL divergence significantly reduce as

123



Journal of Scientific Computing           (2025) 102:57 Page 15 of 30    57 

Fig. 3 Double gyre flow problem for t ∈ (0, 5]: the reference solution and the tKRnet solution

Fig. 4 Double gyre flow problem for t ∈ (0, 5]: error and KL divergence values of the tKRnet solutions

the number of adaptivity iterations increases. In addition, the absolute values of the residual
(17) are shown in Fig. 4b. It can be seen that, for each adaptivity iteration step (k = 1, 3, 6),
the absolute value of the residual is slightly larger than the value of the KL divergence at
each time step, which is consistent with Theorem 1. Training curves including the physics-
informed residuals (defined in (19)) and the KL divergence at time t = 5 for adaptivity
iteration steps k = 1, 3, 6 are shown in Fig. 5, where it is clear that the values of the residual
and the KL divergence reduce as the number of adaptivity iterations increases.

To show the impact of the numbers of affine coupling layers and neurons on the perfor-
mance of tKRnet, the following ablation study is conducted. Specifically, we test tKRnets
with L = 4, 10, 20 affine coupling layers and scale-bias layers, and for each fully connected
layer, we consider different numbers of neurons (the number is denoted dh) with dh = 10, 32

123



   57 Page 16 of 30 Journal of Scientific Computing           (2025) 102:57 

Fig. 5 Double gyre flow problem for t ∈ (0, 5]: physics-informed residuals and KL divergence values in the
training procedure

Table 1 Double gyre flow
problem for t ∈ (0, 5]: KL
divergence values with respect to
varying model capacity

dh=10 dh=32 dh=128

L=4 3.954 × 10−1 4.049 × 10−1 9.961 × 10−2

L=10 7.975 × 10−2 3.231 × 10−2 2.216 × 10−2

L=20 2.812 × 10−2 2.807 × 10−2 1.834 × 10−2

and 128. Table 1 shows the KL divergence values (defined in (31)) at t = 5 with respect to
tKRnets with different model capacities. It can be seen that the KL divergence reduces as the
depth and the width of tKRnet increase.

Next, we keep the other settings of this test problem unchanged but extend the time domain
to (0, 20], which results in a long-time integration problem. The reference solution and our
tKRnet solution (directly obtained using Algorithm 1) at t = 1, 10, 20 are shown in Fig. 6. It
can be seen that, directly applying Algorithm 1 to this long-time integration problem gives
an inaccurate approximation, which is consistent with the challenges addressed in [53]. To
resolve this problem, we apply the temporal decomposition method introduced in Sect. 4.2.
Here, the interval (0, 20] is divided into ten equidistant sub-intervals. Each temporal sub-
interval is discretized with time step size Δt = 0.02 (101 time steps), and the number of
spatial collocation points is set to M = 1000. So, the total number of collocation points
Nr for each sub-interval is 101,000 = 101 × 1000. For the first choice in Sect. 4.2, our
tKRnet is trained with the loss function (23), and the prior distribution for the tKRnet is set
to N ([1, 0.5]�, 0.052I). For the second choice in Sect. 4.2 (see (27)), our tKRnet is trained
with the loss function (19), where rlog is replaced by r defined (16) to result in an effective
training procedure, and the nonlinear layer is not included. Figure7 shows the results of the
two choices for the temporal decomposition. Compared with the reference solution shown
in Fig. 6a, both choices give efficient tKRnet approximations for this long-time integration
problem.

123



Journal of Scientific Computing           (2025) 102:57 Page 17 of 30    57 

Fig. 6 Double gyre flow problem for t ∈ (0, 20]: the reference solution and the tKRnet solution without
temporal decomposition

Fig. 7 Double gyre flow problem for t ∈ (0, 20]: tKRnet solutions with temporal decomposition

5.2 Kraichnan-Orszag

Here we consider the Kraichnan-Orszag problem [52],⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx1
dt

= x1x3

dx2
dt

= −x2x3

dx3
dt

= −x21 + x22 ,

(33)

where x1, x2, x3 are state variables. The initial condition p0(x) in (3) is set to a Gaussian
distribution N ([1, 0, 0]�, 0.52I), and the time domain in this test problem is set as t ∈
(0, 3]. The tKRnet (13) consists of T[1], T[2] and LN , where each of T[1],T[2] has eight
affine coupling layers and eight scale-bias layers. Each affine coupling layer includes one
random Fourier layer and three fully connected layers with thirty two neurons (see (7)).

123



   57 Page 18 of 30 Journal of Scientific Computing           (2025) 102:57 

Fig. 8 Kraichnan-Orszag problem: The reference solution and the tKRnet solution

The time domain is discretized with time step size Δt = 0.01, and the number of spatial
collocation points is set to M = 4000 (see (22)). The settings in Algorithm 1 are set as
Nr = 1204000, NE = 50, Nadaptive = 10, Nb = 1204, and initial spatial collocation points
are dawn from the uniform distribution with range [−5, 5]3.

Figure8 shows the reference solution, the tKRnet solution and the absolute error at t =
1, 2, 3, where it can be seen that the tKRnet solution and the reference solution are visually
indistinguishable. Figure8c shows the point-wise absolute error increases as time goes, and
the maximum error at t = 3 is around 2.537×10−2. The values of the relative error (30) and
the KL divergence (31) at three adaptivity iterations k = 1, 5, 10 (see line 4 of Algorithm 1)
are illustrated inFig. 9. It is clear that the errors and the values of theKLdivergence decrease as
the number of adaptivity iteration steps increases. Figure10 shows training curves including
the physics-informed residual (defined in (19)) and the KL divergence at time t = 3 for the
adaptivity iteration steps k = 1, 3, 6, where it is clear that the values of the residual and the
KL divergence reduce as the number of adaptivity iterations increases.

123



Journal of Scientific Computing           (2025) 102:57 Page 19 of 30    57 

Fig. 9 Kraichnan-Orszag problem: error and KL divergence values of the tKRnet solutions

Fig. 10 Kraichnan-Orszag problem: physics-informed residuals and KL divergence values in the training
procedure

5.3 Forced Duffing Oscillator

The forced Duffing oscillator system is defined as:

⎧⎪⎨
⎪⎩

dy1
dt

= y2

dy2
dt

= −δy2 − y1(α + β y21 ) + γ cos(ωt),
(34)

where y1 and y2 represent the state variables and δ, α, β, γ , andω represent uncertain param-
eters. The time domain is set to (0, 2]. The initial distribution of the state variables p y( y, 0)
and the distribution of the uncertain parameters pξ (ξ) in (3) are set as a Gaussian distribu-
tionN ([0, 0]�, I) and a Gaussian distributionN ([0.5,−1, 1, 0.5, 1]�, 0.252I) respectively.
Letting x = [ y, ξ ]�, the initial condition in (3) is constructed as p0(x) = p y( y, 0)pξ (ξ).
The tKRnet (13) consists of T[1],T[2],T[3] and LN , where each of T[1],T[2] and T[3] has
four affine coupling layers and four scale-bias layers. Each affine coupling layer has one
random Fourier layer and two fully connected layers with thirty two neurons (see (7)). The
coefficients in Algorithm 1 are set as Nr = 804000, NE = 100, Nadaptive = 6, Nb = 804.
The time domain is discretized with time step size Δt = 0.01, and the number of spatial
collocation points is M = 4000 (see (22)). Initial spatial collocation points are sampled from
the uniform distribution with range [−5, 5]7.

123



   57 Page 20 of 30 Journal of Scientific Computing           (2025) 102:57 

Fig. 11 Duffing oscillator problem: the reference solution and the tKRnet solution

Fig. 12 Duffing oscillator problem: error and KL divergence values of the tKRnet solutions

Figure11 shows the tKRnet solution and the reference solution at t = 1, 1.5, 2. From
Fig. 11, it can be seen that the tKRnet solution and the reference solution are visually indis-
tinguishable. The relative absolute errors (30) and the values of KL divergence (31) at three
adaptivity iterations k = 1, 3, 6 (see line 4 of Algorithm 1) are illustrated in Fig. 12. It is
clear that the errors and the values of KL divergence decrease as the number of adaptivity
iterations increases.

123



Journal of Scientific Computing           (2025) 102:57 Page 21 of 30    57 

5.4 Lorenz-96 System

In this test problem, the Lorenz-96 system is considered, which is a model used in numerical
weather forecasting [22]. The general form of the Lorenz-96 system is defined as

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, i = 1, . . . , d, (35)

where xi (for i = −1, . . . , d + 1) are the state variables, and F represents a constant force.
In this test problem, it is assumed that d ≥ 4, x−1 = xd−1, x0 = xd and xd+1 = x1. We set
d = 40, F = 1, and t ∈ (0, 1]. The initial condition p0(x) in (3) is set to the joint Gaussian
distribution

p0([x1, . . . , x40]�) =
(
25

2π

)20 40∏
i=1

exp

(
−25

2
(xi − (0.5 − | i

40
− 0.5|))2

)
.

The tKRnet (13) for this problem has a sequence of transformations T[1], . . . ,T[5] and one
nonlinear layer LN , where each T[1], . . . ,T[5] includes four affine coupling layers and four
scale-bias layers. Each affine coupling layer has one random Fourier layer and two fully
connected layers with 128 neurons. The time domain is discretized with time step size Δt =
0.01, and the number of spatial collocation points is set to M = 2000 (see (22)). Parameters
in Algorithm 1 are set as Nr = 202,000, NE = 50, Nadaptive = 10, Nb = 202, and initial
spatial collocation points are generated using the uniform distribution with range [−5, 5]40.

For this high-dimensional problem, the mean and the variance estimates of the reference
solution and the tKRnet solution are compared. For the reference solution, Nv = 104 initial
states are sampled from p0(x), and the states {x(i)

val}Nv

i=1 at time t ∈ (0, T = 1] are obtained
by solving (2) using the LSODA solver. The mean and the variance estimates are computed
as

Êp(x,t)[x; t] := 1

Nv

Nv∑
i=1

x(i)
val, (36)

V̂ar p(x,t)[x; t] := Nv

Nv − 1

⎛
⎝ 1

Nv

Nv∑
i=1

(x(i)
val)

2 −
(

1

Nv

Nv∑
i=1

x(i)
val

)2⎞⎠ . (37)

For tKRnet approximation solution, for a given time t ∈ (0, 1], samples of the states are
generated by pΘ(x, t), and the mean and variance estimates are obtained by putting the sam-
ples into (36) and (37), which are denoted by ÊpΘ(x,t) and V̂ar pΘ(x,t) respectively. Figure13
shows the mean and variance estimates of the reference solution and the tKRnet solution,
where it can be seen that the results of the reference solution and those of the tKRnet solution
are very close. Next, at time t ∈ (0, 1], the errors in the mean and variance estimates are
computed as ∣∣Êp(x,t)[x; t] − ÊpΘ(x,t)[x; t]∣∣ ,∣∣V̂ar p(x,t)[x; t] − V̂ar pΘ(x,t)[x; t]∣∣ .
Figure14 shows the errors, where it is clear that the errors are small—the maximum of the
errors in the mean estimate is around 7.420×10−3 and that in the variance estimate is around
2.657 × 10−3.

123



   57 Page 22 of 30 Journal of Scientific Computing           (2025) 102:57 

Fig. 13 Lorenz-96 problem: mean and variance of reference and tKRnet solutions

Fig. 14 Lorenz-96 problem: the absolute error to mean and variance in log scale

123



Journal of Scientific Computing           (2025) 102:57 Page 23 of 30    57 

5.5 Coupled Oscillator

In this test problem, the following coupled oscillator system is considered:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1
dt

= y2

dy2
dt

= −k1y1 + k2(y3 − y1) + k3(y5 − y1) + f1 cos(t)

dy3
dt

= y4

dy4
dt

= −k4y3 + k2(y1 − y3) + k5(y5 − y3) + f2 cos(t)

dy5
dt

= y6

dy6
dt

= −k6y5 + k3(y1 − y5) + k5(y3 − y5) + f3 cos(t)

(38)

where y1, . . . , y6 are the state variables, and k1, . . . , k6, f1, f2, f3 represent the uncertain
parameters. In this system, k2, k3 and k5 describe the interactions between state variables.
The time domain is set to (0, 2]. The initial distribution of state variables p y( y, 0) is set
as a Gaussian distribution N ([0, 0, 2, 0, 3, 0]�, 0.12I), and the distribution of the uncertain
parameters are set as

N ([0.1, 0.1, 0.1, 0.2, 0.1, 0.3, 1, 1, 1]�, 0.12I).

Denoting x = [ y, ξ ]�, the initial condition of (3) is p0(x) = p y( y, 0)pξ (ξ). The tKRnet
(13) consists ofT[1],T[2] and LN , where each ofT[1] andT[2] has eight affine coupling layers
and eight scale-bias layers. Each affine coupling layer has one random Fourier layer and two
fully connected layers with thirty two neurons (see (7)). The coefficients in Algorithm 1 are
set as Nr = 101,000, NE = 100, Nadaptive = 6, Nb = 101. The time domain is discretized
with time step size Δt = 0.02, and the number of spatial collocation points is M = 1000
(see (22)). Initial spatial collocation points are sampled from p0(x).

The relative absolute errors (30) and the values of KL divergence (31) at three adaptivity
iterations k = 1, 3, 6 (see line 4 of Algorithm 1) are shown in Fig. 15. Again, it can be seen
that the errors and the values of KL divergence decrease as the number of adaptivity iterations
increases. Next, the upper bound of the KL divergence in Theorem 1 is computed by applying
the trapezoidal rule to integrate the mean absolute value of the residual (17) over time domain
(0, 2]. Specifically, the time domain (0, 2] is discretized with a step size of 0.01, and 104

states at each time step computed using the LSODA solver, given the initial states drawn
from p0(x). The mean absolute residual is then estimated using the Monte Carlo method
with the computed states at each time step, and the trapezoidal rule is applied to estimate the
integral of these mean absolute residual values over the time domain (0, 2]. Figure16 shows
the values of the upper bound, which are consistent of Theorem 1.

Kernel density estimation (KDE) [19] is considered for comparison. Specifically, we use
the KDE function from the scikit-learn library [39], with a Gaussian kernel and a bandwidth
parameter of 0.2, while retaining the default settings for all other parameters within scikit-
learn. Here, 104 initial states are drawn from p0(x), and then the states at each time step t
are computed by solving the coupled oscillator problem using the LSODA solver. Given the
states at time t ∈ (0, 2], KDE is applied to estimate the PDF of the states. The KL divergence
values (31) for the PDF estimated by KDE (KDE solution) and the tKRnet solution are

123



   57 Page 24 of 30 Journal of Scientific Computing           (2025) 102:57 

Fig. 15 Coupled oscillator problem: error and KL divergence values of the tKRnet solutions

Fig. 16 Coupled oscillator problem: KL divergence values and the estimate bound

shown in Fig. 17, where it is clear that the our tKRnet solution is more accurate than the KDE
solution.

6 Conclusions

The uncertainty quantification of stochastic dynamical systems can be addressed by com-
puting the time-dependent PDF of the states. However, the states of the system can be
high-dimensional and the support of the PDFmay be unbounded. To address these issues, we
have proposed a physics-informed adaptive density approximation method based on tKRnets
to approximate the continuity equations. The tKRnet provides an explicit family of PDFs
via the change of variable rule with a trainable time-dependent invertible transformation.
The initial PDF of the continuity equation can be encoded in the tKRnet through the prior
distribution. Adaptive sampling plays a crucial role in achieving an accurate PDF approxi-
mation, where the training set needs to be updated according to the localized information in
the solution. By coupling the adaptive sampling with an efficient temporal decomposition,

123



Journal of Scientific Computing           (2025) 102:57 Page 25 of 30    57 

Fig. 17 Coupled oscillator
problem: KL divergence values
of the tKRnet solution and KDE
solution

the long-time integration can be effectively improved. Numerical results have demonstrated
the efficiency of our algorithm for high-dimensional stochastic dynamical systems. In this
work, we use uniform grids to discretize the time interval without paying much attention to
the causality in the time direction. Adaptivity can be introduced into temporal discretization
for further refinement. This issue is being investigated and will be reported elsewhere.

7 Proof of Theorem 1

The proof of Theorem 1 is as follows, while a similar theoretical result is provided in [6] for
Fokker–Planck equations.

Proof For KL divergence, we have

d

dt
DK L (p(x, t)||pΘ(x, t))

= d

dt

∫
Rd

log

(
p(x, t)

pΘ(x, t)

)
p(x, t)dx

=
∫
Rd

∂

∂t
log

(
p(x, t)

pΘ(x, t)

)
p(x, t)dx +

∫
Rd

log

(
p(x, t)

pΘ(x, t)

)
∂ p(x, t)

∂t
dx

=
∫
Rd

∂ p(x, t)

∂t
dx −

∫
Rd

p(x, t)

pΘ(x, t)

∂ pΘ(x, t)

∂t
dx +

∫
Rd

log

(
p(x, t)

pΘ(x, t)

)
∂ p(x, t)

∂t
dx

= ∂
∫
Rd p(x, t)dx

∂t
−
∫
Rd

(
p(x, t)

pΘ(x, t)

)
(r(x, t;Θ) − ∇x · (pΘ(x, t) f (x, t)))dx

−
∫
Rd

log

(
p(x, t)

pΘ(x, t)

)
∇x · (p(x, t) f (x, t))dx.

Since
∫
Rd p(x, t)dx = 1,

∂
∫
Rd p(x, t)dx

∂t
= ∂1

∂t
= 0.

123



   57 Page 26 of 30 Journal of Scientific Computing           (2025) 102:57 

Then,

d

dt
DK L (p(x, t)||pΘ(x, t)) =

∫
Rd

p(x, t)

pΘ(x, t)
∇x · (pΘ(x, t) f (x, t))dx︸ ︷︷ ︸

I1

−
∫
Rd

log

(
p(x, t)

pΘ(x, t)

)
∇x · (p(x, t) f (x, t))dx︸ ︷︷ ︸
I2

−
∫
Rd

r(x, t;Θ)

pΘ(x, t)
p(x, t)dx.

For I1, integration by parts yields that

∫
Rd

p(x, t)

pΘ(x, t)
∇x · (pΘ(x, t) f (x, t))dx

=
∫
Rd

∇x · (p(x, t) f (x, t))dx −
∫
Rd

∇x

(
p(x, t)

pΘ(x, t)

)
· f (x, t)pΘ(x, t)dx

= −
∫
Rd

∇x

(
p(x, t)

pΘ(x, t)

)
· f (x, t)pΘ(x, t)dx,

where the second equality is obtained using

∫
Rd

∇x · (p(x, t) f (x, t))dx = −
∫
Rd

∂ p(x, t)

∂t
dx = 0.

Similarly, I2 can be rewritten as

∫
Rd

log

(
p(x, t)

pΘ(x, t)

)
∇x · (p(x, t) f (x, t))dx

=
∫
Rd

∇x ·
(
log

(
p(x, t)

pΘ(x, t)

)
p(x, t) f (x, t)

)
dx

−
∫
Rd

∇x log

(
p(x, t)

pΘ(x, t)

)
· f (x, t)p(x, t)dx

=
∫
Rd

∇x ·
(
log

(
p(x, t)

pΘ(x, t)

)
p(x, t) f (x, t)

)
dx

−
∫
Rd

∇x

(
p(x, t)

pΘ(x, t)

)
· f (x, t)pΘ(x, t)dx.

By the divergence theorem,

∫
Rd

∇x ·
(
log

(
p(x, t)

pΘ(x, t)

)
p(x, t) f (x, t)

)
dx

= lim
C→∞

∮
∂�C

log

(
p(x, t)

pΘ(x, t)

)
p(x, t) f (x, t) · �nds = 0.

123



Journal of Scientific Computing           (2025) 102:57 Page 27 of 30    57 

Fig. 18 ODE based approximation

Finally, we get

d

dt
DK L (p(x, t)||pΘ(x, t)) = −

∫
Rd

r(x, t;Θ)

pΘ(x, t)
p(x, t)dx

= −
∫
Rd

rlog(x, t;Θ)p(x, t)dx

≤
∫
Rd

|rlog(x, t;Θ)|p(x, t)dx.

��

8 Additional Training Results with ODE Residual

The PDEs (3) and (4) can be solved using the method of characteristics [36], where the
characteristic lines evolve along the solution of the stochastic ODE system (2). Therefore,
an alternative approach to learn the solution of (3) (or (4)) is to construct a time-dependent
invertible mappingT (a deep neural network) to approximate the flowmap for (2). We define
z = T(x, t;Θ) and its inverse x = T−1(z, t;Θ), where z ∼ p0, x is the state variable in (2)
and Θ is the parameters of the neural network T. To ensure T−1 learns the solution of (2),
the following residual is defined

�ode(z, t;Θ) =
∥∥∥∥∂T−1(z, t;Θ)

∂t
− f (T−1(z, t;Θ), t)

∥∥∥∥
2

2
, where z = T(x, t;Θ);

the corresponding loss function is given by

Lode(z, t;Θ) = 1

Nr

Nr∑
i=1

�ode(z(i)res, t
(i)
res;Θ), where z(i)res = T(x(i)

res, t
(i)
res;Θ), (39)

where {x(i)
res}Nr

i=1 are spatial collocation points and {t (i)res}Nr
i=1 are temporal collocation points (see

(22)). Then, the deep neural networkT can be trained usingAlgorithm1with the loss function
(39), and the ODE based approximation is constructed as p0(T(x, t;Θ))| det∇xT(x, t;Θ)|
using the trained neural network T(x, t;Θ), while the PDE based approximation is the
approximate PDF by minimizing (19).

For the long-time integration problem considered in Sect. 5.1, the ODE based approxima-
tion and the PDE based approximation are compared as follows, where the second choice
for temporal decomposition (introduced in Sect. 4.2) is applied to both approximations. All
settings are the same as those in Sect. 5.1 for t ∈ (0, 20]. Figure18 shows the ODE based
approximation, which approximates the reference solution (Fig. 6(a)) well. Figure19 shows
relative errors (defined in (30)) of ODE and PDE approximations, where it is clear that the

123



   57 Page 28 of 30 Journal of Scientific Computing           (2025) 102:57 

Fig. 19 Relative errors of ODE
based approximation and PDE
based approximation

relative errors of both approximations are comparable. However, as the training procedure
with the loss function (39) requires computing ∂T−1(z, t;Θ)/∂t with backpropagation, the
cost for training the ODE based approximation is significantly larger than that for training
the PDE based approximation, especially when the state is high-dimensional.

Funding The first two authors are supported by the National Natural Science Foundation of China (No.
12071291) and the Model Reduction Theory and Algorithms for Complex Systems Program of Institute of
Mathematical Sciences, ShanghaiTech University (No. 2024X0303-902-01). The third author is supported by
NSF grant DMS1913163.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The authors have not disclosed any conflict of interest.

References

1. Ben-Hamu, H., Cohen, S., Bose, J., Amos, B., Nickel, M., Grover, A., Chen, R.T.Q., Lipman, Y.: Match-
ing normalizing flows and probability paths on manifolds. In: Proceedings of the 39th International
Conference on Machine Learning, pp. 1749–1763 (2022)

2. Brennan, C., Venturi, D.: Data-driven closures for stochastic dynamical systems. J. Comput. Phys. 372,
281–298 (2018)

3. Carlier, G., Galichon, A., Santambrogio, F.: From Knothe’s transport to Brenier’s map and a continuation
method for optimal transport. SIAM J. Math. Anal. 41(6), 2554–2576 (2010)

4. Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. In:
Advances in Neural Information Processing Systems 31, NeurIPS 2018, pp. 6572–6583 (2018)

5. Chen, Z., Churchill, V., Wu, K., Xiu, D.: Deep neural network modeling of unknown partial differential
equations in nodal space. J. Comput. Phys. 449, 110782 (2022)

6. Chewi, S.: Log-concave sampling. https://chewisinho.github.io/main.pdf (2024)
7. Cho, H., Venturi, D., Karniadakis, G.E.: Adaptive discontinuous Galerkin method for response-excitation

PDF equations. SIAM J. Sci. Comput. 35(4), B890–B911 (2013)
8. Cho, H., Venturi, D., Karniadakis, G.E.: Numerical methods for high-dimensional probability density

function equations. J. Comput. Phys. 305, 817–837 (2016)
9. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using Real NVP. In: 5th International Con-

ference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track
Proceedings. OpenReview.net (2017)

10. Dong, S., Li, Z.: Local extreme learning machines and domain decomposition for solving linear and
nonlinear partial differential equations. Comput. Methods Appl. Mech. Eng. 387, 114129 (2021)

11. E, W.: A proposal on machine learning via dynamical systems. Commun. Math. Stat. 1(5), 1–11 (2017)

123

https://chewisinho.github.io/main.pdf


Journal of Scientific Computing           (2025) 102:57 Page 29 of 30    57 

12. E, W., Yu, B.: The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational
problems. Commun. Math. Stat. 6(1), 1–12 (2018)

13. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With Applications
in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2014)

14. Feng, X., Zeng, L., Zhou, T.: Solving time dependent Fokker-Planck equations via temporal normalizing
flow. Commun. Comput. Phys. 32(2), 401–423 (2022)

15. Gao, H., Sun, L., Wang, J.X.: PhyGeoNet: physics-informed geometry-adaptive convolutional neural
networks for solving parameterized steady-state pdes on irregular domain. J. Comput. Phys. 428, 110079
(2021)

16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance
on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp.
1026–1034 (2015)

17. Heinlein,A.,Klawonn,A., Lanser,M.,Weber, J.: Combiningmachine learning and domain decomposition
methods for the solution of partial differential equations-a review. GAMM-Mitteilungen 44(1) (2021)

18. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)
19. Härdle, W., Werwatz, A., Müller, M., Sperlich, S.: Nonparametric and Semiparametric Models. Springer,

Berlin, Heidelberg (2004)
20. Ishikawa, I., Teshima, T., Tojo, K., Oono, K., Ikeda, M., Sugiyama,M.: Universal approximation property

of invertible neural networks. J. Mach. Learn. Res. 24, 1–68 (2023)
21. Jagtap,A.D.,Kharazmi,E.,Karniadakis,G.E.:Conservative physics-informedneural networks ondiscrete

domains for conservation laws: applications to forward and inverse problems. Comput. Methods Appl.
Mech. Eng. 365, 113028 (2020)

22. Karimi, A., Paul, M.R.: Extensive chaos in the Lorenz-96 model. Chaos: Interdiscip. J. Nonlinear Sci.
20(4), 043105 (2010)

23. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine
learning. Nat. Rev. Phys. 3(6), 422–440 (2021)

24. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-VPINNs: variational physics-informed neural networks
with domain decomposition. Comput. Methods Appl. Mech. Eng. 374, 113547 (2021)

25. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions. In: Advances in
Neural Information Processing Systems 31, NeurIPS 2018, pp. 10236–10245 (2018)

26. Klyatskin, V.: Chapter 3 - indicator function and Liouville equation. In: Klyatskin, V. (ed.) Dynamics of
Stochastic Systems, pp. 42–48. Elsevier Science, Amsterdam (2005)

27. Kobyzev, I., Prince, S.J., Brubaker, M.A.: Normalizing flows: an introduction and review of current
methods. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3964–3979 (2021)

28. Li, J., Chen, J.: Stochastic Dynamics of Structures. Wiley, Hoboken (2009)
29. Li, K., Tang, K., Wu, T., Liao, Q.: D3M: a deep domain decomposition method for partial differential

equations. IEEE Access 8, 5283–5294 (2020)
30. Li, W., Xiang, X., Xu, Y.: Deep domain decomposition method: Elliptic problems. In: Mathematical and

Scientific Machine Learning, pp. 269–286. PMLR (2020)
31. Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs, vol. 50.

Cambridge University Press, Cambridge (2014)
32. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. In: International Con-

ference on Learning Representations (2017)
33. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learn-

ing Representations (2019)
34. Luchtenburg, D.M., Brunton, S.L., Rowley, C.W.: Long-time uncertainty propagation using generalized

polynomial chaos and flow map composition. J. Comput. Phys. 274, 783–802 (2014)
35. Meng, X., Li, Z., Zhang, D., Karniadakis, G.E.: PPINN: parareal physics-informed neural network for

time-dependent PDEs. Comput. Methods Appl. Mech. Eng. 370, 113250 (2020)
36. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations: An Introduction.

Cambridge University Press, Cambridge (2005)
37. Moss, F., McClintock, P.V.: Noise in Nonlinear Dynamical Systems, vol. 1. Cambridge University Press,

Cambridge (1989)
38. Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows

for probabilistic modeling and inference. J. Mach. Learn. Res. 22(57), 1–64 (2021)
39. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P.,Weiss, R., Dubourg,V., Vanderplas, J., Passos, A., Cournapeau,D., Brucher,M., Perrot,M., Duchesnay,
E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

123

http://arxiv.org/abs/1606.08415


   57 Page 30 of 30 Journal of Scientific Computing           (2025) 102:57 

40. Penwarden, M., Jagtap, A.D., Zhe, S., Karniadakis, G.E., Kirby, R.M.: A unified scalable framework for
causal sweeping strategies for physics-informed neural networks (PINNs) and their temporal decompo-
sitions. J. Comput. Phys. 493, 112464 (2023)

41. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput.
Phys. 378, 686–707 (2019)

42. Risken, H.: The Fokker–Planck Equation:Methods of Solution and Applications, vol. 18. Springer, Berlin
(1996)

43. Scott, D.W.:Multivariate Density Estimation: Theory, Practice, andVisualization.Wiley, Hoboken (2015)
44. Sheng, H., Yang, C.: PFNN: a penalty-free neural network method for solving a class of second-order

boundary-value problems on complex geometries. J. Comput. Phys. 428, 110085 (2021)
45. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations.

J. Comput. Phys. 375, 1339–1364 (2018)
46. Sobczyk, K.: Stochastic Differential Equations: With Applications to Physics and Engineering. Springer,

Dordrecht (1991)
47. Tang, K., Wan, X., Liao, Q.: Deep density estimation via invertible block-triangular mapping. Theor.

Appl. Mech. Lett. 10(3), 143–148 (2020)
48. Tang,K.,Wan,X., Liao,Q.:Adaptive deepdensity approximation for Fokker-Planck equations. J.Comput.

Phys. 457, 111080 (2022)
49. Tang, K.,Wan, X., Yang, C.: DAS-PINNs: a deep adaptive samplingmethod for solving high-dimensional

partial differential equations. J. Comput. Phys. 476, 111868 (2023)
50. Tartakovsky, D.M., Gremaud, P.A.: Method of Distributions for Uncertainty Quantification, pp. 763–783.

Springer, Cham (2017)
51. Villani, C.: Optimal Transport: Old and New. Springer, Berlin, Heidelberg (2009)
52. Wan,X., Karniadakis, G.E.: An adaptivemulti-element generalized polynomial chaosmethod for stochas-

tic differential equations. J. Comput. Phys. 209(2), 617–642 (2005)
53. Wang, S., Perdikaris, P.: Long-time integration of parametric evolution equations with physics-informed

DeepONets. J. Comput. Phys. 475, 111855 (2023)
54. Wang, S., Wang, H., Perdikaris, P.: On the eigenvector bias of Fourier feature networks: from regression

to solving multi-scale PDEs with physics-informed neural networks. Comput. Methods Appl. Mech. Eng.
384, 113938 (2021)

55. Wang,Y., Cheung, S.W., Chung, E.T., Efendiev,Y.,Wang,M.:Deepmultiscalemodel learning. J. Comput.
Phys. 406, 109071 (2020)

56. Wang, Z., Zhang, Z.: A mesh-free method for interface problems using the deep learning approach. J.
Comput. Phys. 400, 108963 (2020)

57. Wu, K., Xiu, D.: Data-driven deep learning of partial differential equations in modal space. J. Comput.
Phys. 408, 109307 (2020)

58. Xu, Z., Liao, Q., Li, J.: Domain-decomposed Bayesian inversion based on local Karhunen–Loève expan-
sions. J. Comput. Phys. 112856 (2024)

59. Zang, Y., Bao, G., Ye, X., Zhou, H.: Weak adversarial networks for high-dimensional partial differential
equations. J. Comput. Phys. 411, 109409 (2020)

60. Zhu, A., Jin, P., Tang, Y.: Approximation capabilities of measure-preserving neural networks. Neural
Netw. 147, 72–80 (2022)

61. Zhu, Y., Zabaras, N.: Bayesian deep convolutional encoder-decoder networks for surrogate modeling and
uncertainty quantification. J. Comput. Phys. 366, 415–447 (2018)

62. Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P.: Physics-constrained deep learning for high-
dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys.
394, 56–81 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Adaptive Deep Density Approximation for Stochastic Dynamical Systems
	Abstract
	1 Introduction
	2 Problem Setup and Preliminaries
	3 Temporal KRnet (tKRnet)
	3.1 Time-Dependent Affine Coupling Layers
	3.2 Scale-Bias, Squeezing and Nonlinear Layers
	3.3 The Overall Structure of tKRnet

	4 Adaptive Sampling Based Physics-Informed Training for Density Approximation
	4.1 Physics-Informed Training and Adaptive Sampling
	4.2 Temporal Decomposition for Long-Time Integration
	4.3 Theoretical Properties

	5 Numerical Experiments
	5.1 Double Gyre Flow
	5.2 Kraichnan-Orszag
	5.3 Forced Duffing Oscillator
	5.4 Lorenz-96 System
	5.5 Coupled Oscillator

	6 Conclusions
	7 Proof of Theorem 1
	8 Additional Training Results with ODE Residual
	References


