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A MINIMUM ACTION METHOD FOR DYNAMICAL SYSTEMS
WITH CONSTANT TIME DELAYS∗
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Abstract. In this work, we construct a minimum action method for dynamical systems with
constant time delays. The minimum action method (MAM) plays an important role in seeking
the most probable transition pathway induced by small noise. There exist two formulations of the
minimum action method: one is the geometric formulation based on the Maupertuis principle, and
the other one is the temporal formulation. The geometric formulation relies on the conservation
of Hamiltonian corresponding to the Freidlin–Wentzell action functional. For systems with time
delays, the Hamiltonian does not conserve due to the explicit dependence on the time delay, which
implies that the geometric MAM is not applicable. We work with the temporal formulation of MAM
for problems with time delays. By defining an auxiliary path, we remove the optimization with
respect to time through the optimal linear time scaling. The pointwise correspondence between the
auxiliary path and the delayed transition path is dealt with by a penalty term included into the action
functional. The action functional is then discretized by the finite element method, and strategies
for h-adaptive mesh refinement have been developed. Numerical examples have been presented to
demonstrate the effectiveness of our algorithm.

Key words. minimum action method, rare events, mesh refinement, large deviation, uncertainty
quantification
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1. Introduction. As differential equations are used to model the dynamics in
the real world, scientists and engineers want to make their models more realistic.
Noting that the imperfect environment makes random perturbations ubiquitous in
physical, chemical, biological, and engineering applications, we may consider stochas-
tic differential equations (SDEs) instead of deterministic ones by including random
noise. One critical phenomenon beyond the deterministic models is the transition
in the configuration space despite the small noise amplitude. Such a transition may
rarely occur but have extreme impact. Many important application problems can be
considered as a small-noise-induced transition, e.g., nonequilibrium interface growth
[7, 24], regime change in climate [35], switching in biophysical network [33], hydrody-
namic instability [30, 31], wetting transitions on patterned surfaces [36], etc. Another
way of model generalization is to include time delays into the system, which means
that the dynamics may depend on not only the current state but also the past ones.
A typical example is a mathematical model that regulates self-driving vehicles [18].
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A542 XIAOLIANG WAN AND JIAYU ZHAI

Other applications include communication networks [3, 4], networked control systems
[15, 34], traffic model and control [19], etc. We also note that model reduction re-
sults in low-order time-delay systems [13, 14]. In this paper, we seek numerically
the most probable transition pathway induced by small noise in a time-delay system.
This technique can be applied to study phase transitions in physical and biological
applications. For example, experimental evidence of an absorbing phase transition
was given recently for a bistable semiconductor laser with long delayed optoelectronic
feedback and multiplicative noise [6].

To study the small-noise-induced transitions in dynamical systems, Freidlin and
Wentzell introduced the large deviations theory for differential equations [8]. It gives a
rigorous mathematical framework to quantify the probability of these rare events and
to find the most possible transition path, which correspond to the minimum and the
minimizer, respectively, of the so-called Freidlin–Wentzell (F-W) action functional.
Due to the lack of an analytical solution, minimizing the F-W action functional nu-
merically becomes critical from the application point of view. For a general dynamical
system perturbed by small noise,

dXt = b(Xt) dt+
√
ε dWt,(1.1)

where ε is a small positive number and Wt is a standard Wiener process in Rn, we
have the following optimization problem:

ST∗(φ∗t ) = inf
T∈R+

inf
φ0=x1,
φT=x2

ST (φt),(1.2)

where

ST (φt) =
1

2

∫ T

0

|φ̇t − b(φt)|2 dt(1.3)

is the F-W action functional and φ∗t defined on [0, T ∗] is the minimizer among all
transition paths φt connecting the two states x1 and x2 on the time interval [0, T ].
The optimization problem (1.2) corresponds to the quasi-potential defined in (2.2).
φ∗t is often called the minimal action path (MAP), and numerical algorithms that
approximate φ∗t are in general called minimum action methods (MAMs) [5]. Available
MAMs include adaptive MAM (aMAM) [37, 26, 27, 25], geometric MAM (gMAM)
[16, 9, 10], and MAM with optimal linear time scaling (tMAM) [28, 29, 32].

Consider the following SDE with a discrete time delay 0 < τ <∞:{
dXt = b(Xt,Xt−τ )dt+

√
εdWt, t ∈ (0, T ],

Xt = ϕ(t), t ∈ [−τ, 0].
(1.4)

Some results on large deviation of SDEs with constant time delays can be found in
[1, 20, 21]. The F-W action functional for (1.4) is defined as

Sτ,T (φt) =
1

2

∫ T

0

∣∣∣φ̇t − b(φt,φt−τ )
∣∣∣2 dt.(1.5)

In this work, we focus on the optimization problem (1.2) with respect to the F-W
action functional (1.5), i.e.,

Sτ,T∗(φ∗t ) = inf
T∈R+

inf
φ0=x1.
φT=x2

Sτ,T (φt),(1.6)
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MAM FOR TIME-DELAY DYNAMICAL SYSTEMS A543

It is not straightforward to generalize the available MAMs to deal with the time-delay
systems. First of all, gMAM is not applicable. We note that gMAM is based on the
Maupertuis principle, which means that a geodesic metric on the surface of constant
Hamiltonian can be used to represent the action functional. However, the existence
of an explicit time delay implies that the Hamiltonian is not conservative anymore,
meaning that the assumption of gMAM is not valid. We then need to work with
time as the parameterization parameter. Both aMAM and tMAM can be employed.
Considering that tMAM is more general than aMAM in the sense that aMAM is not
able to deal with the case that T ∗ is finite, we focus on the generalization of tMAM
in this paper.

In addition to the numerical difficulties for systems without time delays (see [32]),
we need to pay attention to some extra difficulties induced by the time delay. First,
the dynamical behavior of a time-delay system can be significantly different compared
to a system without time delays. This implies that the initial guess of the optimization
problem (1.6) should also depend on τ . Second, the change in the regularity of the
solution of a time-delay system needs to be taken into account when we choose the
approximation space and adaptivity strategy. Third, the optimal linear time scaling
for time-delay systems is the root of a highly nonlinear equation, meaning that the
uniqueness of the solution is not guaranteed such that a straightforward application
of tMAM is not robust. Fourth, the time delay makes the problem nonlocal, meaning
that the efficiency deserves some attention.

The main trick we use is the introduction of an auxiliary path ψt such that we
can consider the minimization of

Sτ,T (φt,ψt) =
1

2

∫ T

0

∣∣∣φ̇t − b(φt,ψt)∣∣∣2 dt
subject to the constraint ψt = φt−τ . With respect to φt and ψt, the time delay
does not show explicitly in the F-W action functional, meaning that the procedure of
tMAM can be readily applied. To deal with the pointwise constraint ψt = φt−τ , we
will include a penalty term in the action functional. Generally speaking, we decrease
the complexity of the problem by increasing the dimensionality, where the number of
unknowns is doubled. We then use finite elements to discretize the action functional
and an a posteriori error estimator based on the derivative-recovery technique to
guide the h-adaptivity. For now we do not look into the p-adaptivity because of the
possible low regularity of the MAP, although such a low regularity might be local.
Since the dynamical behavior may change significantly with respect to τ , we propose
to increase the time delay from zero, where we assume a good initial guess is known
for the minimization of Sτ,T with τ = 0. Then the minimizer of Sτ,T will be used as
the initial guess for the minimization of Sτ+δτ,T such that the algorithm will be more
robust. Furthermore, we will interweave the increment of τ and the mesh refinement
to increase the efficiency.

The rest of this paper is organized as follows. We recall the tMAM in section
2. The penalty method for the time-delay systems combined with some analysis is
developed in section 3. In section 4, we provide a detailed discussion on the finite
element discretization and the adaptivity strategy. Numerical results are given in
section 5 followed by a discussion section.

2. tMAM. We briefly recall the tMAM for dynamical systems perturbed by
small noise [28]. Consider the following stochastic ODE:
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A544 XIAOLIANG WAN AND JIAYU ZHAI

dXt = b(Xt) +
√
εdWt,(2.1)

where ε is a small positive number and Wt ∈ Rn is a standard Wiener process.
To address the most probable transition path from x1 to x2 induced by the small
perturbations, we consider the quasi-potential

V (x1,x2) = inf
T>0

inf
φ0=x1,
φT=x2.

[
ST =

1

2

∫ T

0

|φ̇t − b(φt)|2dt

]
,(2.2)

where ST is called the F-W action functional and the minimizer of ST is called the
MAP. According to the large deviation principle, we know that

Pr(transition from x1 to the vicinity of x2) ≈ Ce−
V (x1,x2)

ε(2.3)

when ε is small enough. The Large deviation Principle also implies that the MAP is
the most probable transition pathway, which is also called the maximum likelihood
transition pathway. The tMAM was introduced in [28] to deal with the optimization
problem in (2.2) required by the quasi-potential. The basic idea of tMAM is to remove
the optimization parameter T by replacing it with an optimal linear time scaling,

T̂ (φ̄s) =
‖φ̄′s‖L2(Γ1)

‖b(φ̄s)‖L2(Γ1)

,(2.4)

where φ̄s = φt=sT , i.e., the time is mapped linearly from ΓT = [0, T ] to Γ1 = [0, 1],
and ′ indicates the derivative with respect to the rescaled parameterization parameter
s. The most straightforward way to obtain T̂ (φ̄s) is to solve the following subproblem
for any given φ̄s with s ∈ [0, 1]:

T̂ (φ̄s) = arg min
T>0

T

2

∫ 1

0

|T−1φ̄s − b(φ̄s)|2ds,

which admits a unique solution given by T̂ (φ̄s). Another way to obtain T̂ is the
zero-Hamiltonian constraint used in gMAM. Taking the Legendre transform of the
integrand of ST with respect to φ̇t, we obtain the Hamiltonian

H(φ,p) = bTp+
1

2
pTp.(2.5)

The conservation H ≡ 0 yields the following pointwise constraint on the transition
path [16]:

|φ̇t| = |b(φt)| ∀t.(2.6)

In terms of the variable s, the zero-Hamiltonian constraint becomes

|φ̄′s|T−1 = |b(φ̄s)| ∀s ∈ [0, 1].

Integrating the above equation, we also obtain (2.4). The zero-Hamiltonian constraint
(2.6) actually defines a nonlinear mapping between time and the geodesic metric on
the surface H ≡ 0.
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MAM FOR TIME-DELAY DYNAMICAL SYSTEMS A545

Replacing T in (2.2) with the optimal linear time scaling T̂ (φ̄s), the optimization
problem for the quasi-potential is reformulated as

min
φ̄0=x1,
φ̄1=x2.

[
ST̂ =

T̂

2

∫ 1

0

|T̂−1φ̄′s − b(φ̄s)|2ds

]
.(2.7)

If the optimal transition time is finite, this rescaled optimization problem is equivalent
to the original one. If the optimal transition time is infinite, the rescaled optimiza-
tion problem can still be used in the sense that the discrete version of the rescaled
optimization problem is always well-posed. When there exists at least one critical
point on the MAP, the optimal transition time is ∞. However, the discretization of
the action functional can introduce a natural regularization such that the optimal
transition time for the discrete action functional is always finite. Then an optimal
linear time scaling always exists for the discrete action functional. The convergence
analysis of a finite element discretization of ST̂ can be found in [32].

The main numerical difficulty for the optimization problem (2.7) can be explained
by the Euler–Lagrange equation associated with ST̂ :

T̂−2(φ̄s)φ̄
′′
s + T̂−1(φ̄s)

(
(∇φ̄sb)

T −∇φ̄sb
)
φ̄′s − (∇φ̄sb)

Tb = 0.(2.8)

When the optimal transition time is large, the euler–hagrange equation can be re-
garded as a singularly perturbed problem. In other words, the solution has bound-
ary/internal layers, which means that adaptive discretization is necessary for numeri-
cal approximation. We have developed an hp-adaptive MAM based on an a posteriori
error estimate in [29] to approximate the optimization problem (2.7), where the opti-
mal convergence rate of the finite element approximation has been recovered.

3. Penalty method for a dynamical system with time delays. We now
consider the following stochastic ODE subject to a constant time delay:{

dXt = b(Xt,Xt−τ )dt+
√
εdWt, t ∈ (0, T ],

Xt = ϕ(t), t ∈ [−τ, 0],
(3.1)

where 0 < τ < ∞ indicates the time delay. The solution of a time-delay system
is not uniquely defined by the sole knowledge of the pointwise initial condition at
t = 0 but also depends on a functional initial condition ϕ(·) defined over the interval
[−τ, 0] [12]. In some literature, this is also referred to as a memory effect. Due to
the dependence on a function instead of a point, (1.4) is not a finite-dimensional
system but an infinite-dimensional one. The F-W action functional for problem (1.4)
is defined as [20, 21]

Sτ,T (φt) =
1

2

∫ T

0

∣∣∣φ̇t − b(φt,φt−τ )
∣∣∣2 dt.(3.2)

We intend to consider the double-layered optimization problem

inf
T>0

inf
φ(0)=x1,
φ(T )=x2

Sτ,T (φt)(3.3)

to seek the most probable transition in the sense of large deviation. Due to the explicit
dependence on τ , the Hamiltonian will not be conservative, implying that the gMAM
is not applicable for this problem.
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We work with the temporal formulation of MAM. In particular, we intend to
generalize the tMAM described in the previous section to deal with the optimization
problem (3.3). Letting t = sT , we rewrite Sτ,T as

Sτ,T (φt) = Sτ (T, φ̄s) =
T

2

∫ 1

0

|T−1φ̄′s − b(φ̄s, φ̄s−τ/T )|2ds.(3.4)

We will use 〈v,w〉 to indicate the inner product of vectors v,w∈Rn, and 〈g1(s),
g2(s)〉s to indicate the inner product of vector functions g1(s), g2(s) ∈ Rn defined for
s ∈ [0, 1]. More specifically,

〈g1(s), g2(s)〉s =

∫ 1

0

〈g1(s), g2(s)〉ds.

For any given φs, the optimization of Sτ (T, φ̄s) with respect to T , i.e., ∂TSτ (T, φ̄s) =
0, yields that

∂TSτ (T, φ̄s) =
1

2
〈b, b〉s −

1

2
T−2〈φ̄′s, φ̄′s〉s − 〈∇̂bφ̄′ŝT−1τ, T−1φ̄′s − b〉s = 0,(3.5)

where we write φ̄s−τ/T = φ̄ŝ and let ∇̂b indicate the gradient with respect to φ̄ŝ.
It is seen that this is a nonlinear equation of T for any given φ̄s. In particular, the
subscript ŝ is a function of T . In contrast to the systems without time delays, the
optimal linear time scaling given by (3.5) might not be unique. Although a root-
finding algorithm is always possible, it is difficult to clarify the robustness of such a
strategy.

To define a unique optimal linear time scaling for time-delay systems, we introduce
an auxiliary path ψ̄s, which is also defined on [0, 1] and satisfies the following point-
wise constraint:

ψ̄s = φ̄ŝ = φ̄s−τ/T .(3.6)

The action functional is rewritten as

Sτ (φ̄s, ψ̄s) =
T

2

∫ 1

0

|T−1φ̄′s − b(φ̄s, ψ̄s)|2ds.(3.7)

Assuming that φ̄s and ψ̄s are independent, there exists a unique optimal linear time
scaling satisfying ∂TSτ (φ̄s, ψ̄s) = 0, i.e.,

T̂ (φ̄s, ψ̄s) =
〈φ̄′s, φ̄′s〉

1/2
s

〈b(φ̄s, ψ̄s), b(φ̄s, ψ̄s)〉1/2s

(3.8)

for any given φ̄s and ψ̄s, which actually shares the same form as T̂ defined in (2.4)
for dynamical systems without time delays. To deal with the constraint (3.6), we add
a penalty term into the action functional and define

Ŝτ (φ̄s, ψ̄s) =
T̂

2

∫ 1

0

|T̂−1φ̄′s − b(φ̄s, ψ̄s)|2ds+
β2

2

∫ 1

0

|ψ̄s − φ̄ŝ|2ds,(3.9)

where 0 6= β ∈ R and φ̄ŝ = φ̄s−τ/T̂ . Instead of minimizing the original action

functional, we will work with its penalized form Ŝτ (φs,ψs). More specifically, we will
consider the following optimization problem:

min
φ̄s∈H1

Γ1
,ψ̄s∈L2

Γ1
,

φ̄0=x1, φ̄1=x2

Ŝτ (φ̄s, ψ̄s).(3.10)
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3.1. Calculus of variation for Ŝτ . For convenience, we split Ŝτ into two parts,

Ŝτ (φ̄s, ψ̄s) = Ja(φ̄s, φ̄
′
s, ψ̄s) + Jp(φ̄s, φ̄ŝ, ψ̄s),

corresponding to the two integrals, respectively, in (3.9), i.e.,

Ja =
T̂

2

∫ 1

0

|T̂−1φ̄′s − b(φ̄s, ψ̄s)|2ds, Jp =
β2

2

∫ 1

0

|ψ̄s − φ̄ŝ|2ds,

where the dependence of Jp on φ̄s is reflected through the relation ŝ = s − τ/T̂ .
Consider two test functions δφ̄s ∈ H1

Γ1
, with δφ̄s|s=0 = δφ̄s|s=1 = 0, and δψ̄s ∈ L2

Γ1
.

We first look at Ja. Note that we can treat T̂ in Ja as a constant because
∂T̂J

a = 0 by the definition of T̂ . Then δJa can be easily obtained as〈
δJa

δφ̄′s
, δφ̄′s

〉
s

= 〈T̂−1φ̄′s − b, δφ̄′s〉s,〈
δJa

δφ̄s
, δφ̄s

〉
s

= −T̂ 〈(∇φ̄sb)
T(T̂−1φ̄′s − b), δφ̄s〉s,〈

δJa

δψ̄s
, δψ̄s

〉
s

= −T̂ 〈(∇ψ̄sb)
T(T̂−1φ̄′s − b), δψ̄s〉s.

We now look at Jp. In contrast to Ja, we need to take into account the contribution
from the first-order variation of T̂ for Jp, which is

∂T̂J
pδT̂ = −τβ

2

T̂
〈ψ̄s − φ̄ŝ, φ̄′ŝ〉sδT̂ = BδT̂ ,

where

B = −τβ
2

T̂
〈ψ̄s − φ̄ŝ, φ̄′ŝ〉s,(3.11)

and δT̂ can be obtained from (3.8) as

δT̂ =
〈φ̄′s, δφ̄′s〉s
T̂ 〈b, b〉s

−
T̂ 〈(∇φ̄sb)

Tb, δφ̄s〉s
〈b, b〉s

−
T̂ 〈(∇ψ̄sb)

Tb, δψ̄s〉s
〈b, b〉s

.(3.12)

Fixing T̂ , we have 〈
δJp

δψ̄s
, δψ̄s

〉
s

∣∣∣∣
T̂

= β2〈ψ̄s − φ̄ŝ, δψ̄s〉s
∣∣
T̂
,〈

δJp

δφ̄ŝ
, δφ̄ŝ

〉
s

∣∣∣∣
T̂

= − β2〈ψ̄s − φ̄ŝ, δφ̄ŝ〉s
∣∣
T̂
.

Combining all the above information, we obtain the first-order variation of Ŝτ as

δŜτ (δφ̄s, δψ̄s)

(3.13)

= 〈T̂−1φ̄′s − b, δφ′s〉s +
B

T̂ 〈b, b〉s
〈φ̄′s, δφ̄′s〉s

− T̂ 〈(∇φ̄sb)
T(T̂−1φ̄′s − b), δφ̄s〉s −

BT̂ 〈(∇φ̄sb)
Tb, δφ̄s〉s

〈b, b〉s
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− T̂ 〈(∇ψ̄sb)
T(T̂−1φ̄′s − b), δψ̄s〉s −

BT̂ 〈(∇ψ̄sb)
Tb, δψ̄s〉s

〈b, b〉s
+ β2〈ψ̄s − φ̄ŝ, δψ̄s〉s

− β2〈ψ̄s − φ̄ŝ, δφ̄ŝ〉s.

Choosing the test functions δφ̄s and δψ̄s from a finite element space, we will develop
a numerical solver for problem (3.10) in section 4.

3.2. Change of variable. Although the constraint that the Hamiltonian is con-
servative does not hold for time-delay systems, a related constraint can be found
through the change of variable. We look at the following formulation of the action
functional:

Sτ (φt,ψt) =
1

2

∫ T

0

|φ̇t − b(φt,ψt)|2dt(3.14)

subject to the constraint ψt = φt−τ . Consider a change of variable α = α(t). We
have

Sτ (φt,ψt) =
1

2

∫ α(T )

α(0)

|φ′αt′(α)−1 − b(φα,ψα)|2t′(α)dα

=
1

2

∫ α(T )

α(0)

(|b(φα,ψα)|2t′ + |φ′α|2(t′)−1)dα−
∫ α(T )

α(0)

〈b,φ′α〉dα

≥
∫ α(T )

α(0)

|b(φα,ψα)||φ′α|dα−
∫ α(T )

α(0)

〈b,φ′α〉dα,(3.15)

where ′ indicates the derivative with respect to α. To achieve the lower bound of Sτ ,
the equality in the last step will hold when

|φ′α| = t′(α)|b(φα,ψα)| ∀α(3.16)

or

|φ̇| = |b(φt,ψt)| ∀t.(3.17)

Taking into account the constraint ψt = φt−τ , the function t(α) is given by the
following differential equation:

dt

dα
=

|φ′α(t)|
|b(φα(t),φα(t−τ))|

.(3.18)

Without loss of generality, we assume that α indicates the arc length. Starting from
φα there exist many different ways to define t(α), since a particle can travel along
the curve at a varying speed. However, the condition (3.17) yields a particular way to
parameterize the path with respect to time such that the action functional can reach
its lower bound in (3.15). Let

α̂(t) =

∫ 0

t

|ϕ̇t|dt ∀t ∈ [−τ, 0].(3.19)

The initial condition of (3.18) can be defined as

t = α̂−1(α)
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for α ∈ [−
∫ 0

−τ |ϕ̇|dt, 0]. Note that for any α1 > α2, t1 = α̂−1(α1) ≥ α̂−1(α2) = t2,
which implies that

α(t− τ) < α(t).

Thus in terms of α, (3.18) is a delayed differential equation when τ > 0. The delay
given by α(t)− α(t− τ) is time dependent although τ is a constant.

The constraint (3.17) is a necessary condition satisfied by the minimizer of the
action functional, which specifies the relation between the time and a more effective
parameterization for the MAP. With respect to α, there also exist infinitely many
curves connecting x1 and x2, among which the MAP will be sought. However, due
to the existence of time delay τ , we are not able to obtain a closed formulation of
the action functional with respect to α. This is the main reason that gMAM is not
applicable.

4. Finite element approximation. For dynamical systems without time de-
lays, we provided in [32] a finite element approximation framework for the discretiza-
tion of the action functional, where the well-posedness of optimizing ST and the
convergence of the linear finite element approximation of the MAP have been ana-
lyzed. We also showed in [29] that the tMAM based on the adaptive finite element
approximation is able to recover the optimal convergence rate for both h-refinement
and hp-refinement (see section 4.3) no matter whether the optimal transition time is
finite or infinite. In this work, we will use finite elements to discretize Ŝτ , where we
pay particular attention to the effectiveness of the penalty method that deals with
the time delays.

4.1. Approximation spaces. Consider a partition of the interval Γ1 = [0, 1]:

Th : 0 = s0 < s1 < · · · < sN = 1.

Let R = [−1, 1] be a reference element and Fei an affine mapping from the element
ei = [si, si+1], i = 0, 1, . . . , N − 1, to the reference element R. Then in each element
ei, we can define a linear space spanned by polynomials

W p
ei = {v : v ◦ F−1

ei ∈Pp(R)},(4.1)

where Pp(R) denotes the set of polynomials of degree up to p over R. In particular,

we choose Pp(R) = span{θ̃i(s̃)}mi=0, where

θ̃i(s̃) =


1−s̃

2 , i = 0,
1+s̃

2 , i = 1,
1−s̃

2
1+s̃

2 P 1,1
i−2(s̃), 2 ≤ i ≤ m,

(4.2)

where P 1,1
i (s̃) denotes orthogonal Jacobi polynomials of degree i with respect to the

weight function (1− s̃)(1 + s̃) [17]. The polynomial order of θ̃i is equal to i for i ≥ 2.
Let us call θ̃0 the left boundary mode and θ̃1 the right boundary mode. All interior
modes with i ≥ 2 are equal to zero at the element boundaries.

With the partition Th, we define the following finite element approximation space
for φ̄s:

W p
h =

{
v : v ∈ Rn, vi ∈ H1(Γ1), vi|ej ∈W (p)

ej , v(0) = x1, v(1) = x2

}
⊂H1(Γ1; Rn),

where i = 1, . . . , n, and j = 0, . . . , N − 1. For ψ̄s, we use the same approximate space
by removing the constraints at the starting and ending points:

V ph =
{
v : v ∈ Rn, vi ∈ L2(Γ1), vi|ej ∈W (p)

ej

}
⊂ L2(Γ1; Rn).
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We then discretize problem (3.10) as

min
(φ̄h,s,ψ̄h,s)∈Wp

h⊗V
p
h

Ŝτ,h = Ŝτ (φ̄h,s, ψ̄h,s).(4.3)

Let us order the finite element basis functions defined on Th from 0 to M +1, and
let φ̄h,s and ψ̄h,s have the following representations in W p

h and V ph , respectively:

φ̄h,s =

M∑
i=1

φiθW,i,s + x1θW,0,s + x2θW,M+1,s, ψ̄h,s =

M+1∑
i=0

ψiθV,i,s,

where θW,0,s and θW,M+1,s for φ̄h,s indicate the left boundary mode in element e0

and the right boundary mode in element eN−1, respectively. Although we use the
same finite element basis functions to define W p

h and V ph , we still differentiate them

for clarity by adding subscripts ·W and ·V . The first-order variation of Ŝτ given in
(3.13) gives the gradient of the discrete action functional Ŝτ,h. More specifically,

∂Ŝτ,h
∂φi,j

= δŜτ (θW,i,sej ,0),
∂Ŝτ,h
∂ψi,j

= δŜτ (0, θV,i,sej),(4.4)

where δŜτ is given in (3.13), and ej is the unit vector in Rn with its jth component
being 1 and the rest being 0. To this end, we obtain an unconstrained optimization
problem, for which a gradient-type optimization algorithm such as L-BFGS, nonlinear
conjugate gradient method, etc., can be employed to seek the approximate MAP.

Remark 4.1. One popular strategy to reduce the possibility of ill conditioning
induced by the penalty term in (3.9) is the augmented Lagrangian method, which
introduces explicit Lagrange multiplier estimates for the constraint [22]. In this work,
we do not employ the augmented Lagrangian method not only for simplicity but also
due to the observation that the pointwise constraint (3.6) cannot be achieved exactly
in the finite element space W p

h ⊗ V
p
h , where the same mesh is used for both W p

h and
V ph .

Remark 4.2. We include more details about (4.4):

∂Ŝτ,h
∂φi,j

= 〈T̂−1φ̄′h,s − b, θ′W,i,sej〉s −
B

T̂ 〈b, b〉s
〈φ′h,s, θ′W,i,sej〉s

− T̂ 〈(∇φ̄h,sb)
T(T̂−1φ̄′h,s − b), θW,i,sej〉s −

BT̂ 〈(∇φ̄h,sb)
Tb, θW,i,sej〉s

〈b, b〉s
− β2〈ψ̄h,s − φ̄h,ŝ, θW,i,ŝej〉s, i = 1, . . . ,M,(4.5)

and

∂Ŝτ,h
∂ψi,j

=− T̂ 〈(∇ψ̄h,sb)
T(T̂−1φ̄′h,s − b), θV,i,sej〉s −

BT̂ 〈(∇ψ̄h,sb)
Tb, θV,i,sej〉s

〈b, b〉s
+ β2〈ψ̄h,s − φ̄h,ŝ, θV,i,sej〉s, i = 0, . . . ,M + 1,(4.6)

where B is given in (3.11).
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Remark 4.3. From the optimization point of view, we should increase the value
of the penalty parameter gradually to achieve a better approximation. Since the
pointwise constraint (3.6) cannot be exactly satisfied in the approximation space,
the penalty parameter cannot be too large; otherwise, the action term may be over-
whelmed by the penalty term. In other words, a lower bound of the penalty parameter
is expected to achieve the convergence of the numerical solution. This problem will be
left for future study. In this work we simply increase the penalty parameter to exam-
ine the possible improvement. See Remark 4.6 and more discussions about adaptivity
in section 4.4.2.

4.2. The computation of gradient. The time delay introduces some com-
plexities for the computation of the gradient ∇Ŝτ,h. It is seen in (4.5) and (4.6) that
there exist some terms, such as 〈φ̄h,ŝ, θV,i,sej〉s, that may not be achieved within one
element due to the existence of time delay no matter whether the mesh is uniform
or not. Among all the inner products needed for the gradient, we only look at two
cases that are related to time delay: (1) the time delay is in the transition path φ̄h,s
or ψ̄h,s, e.g., 〈φ̄h,ŝ, θV,i,sej〉s, and (2) the time delay is in the basis functions, e.g.,
〈ψ̄h,s, θW,i,ŝej〉s. For these two cases, information from different regions is requested
for integration. These two cases are illustrated by Figures 4.1 and 4.2, where we use
two identical horizontal lines to indicate the mesh shared by the transition path φ̄h,s
and the basis function θV,i,s.

Let us first assume that the delay exists in the transition path and consider
〈φ̄h,ŝ, θV,i,sej〉s. The basis function θV,i,s is defined on a certain element, say, ek. For

integration, we need the information of the path on [sk−τ/T̂ , sk+1−τ/T̂ ]. First of all,
T̂ depends on φ̄h,s and ψ̄h,s, meaning that interval [sk−τ/T̂ , sk+1−τ/T̂ ] varies at each

optimization iteration. Second, the boundaries of the interval [sk − τ/T̂ , sk+1 − τ/T̂ ]
are, in general, not grid points; see the illustration in Figure 4.1. To achieve the
integration, we need to know how the interval [sk − τ/T̂ , sk+1 − τ/T̂ ] overlaps with

Fig. 4.1. The inner product of a basis function and a delayed path.

Fig. 4.2. The inner product of a delayed basis function and the path.
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previous elements. For the scenario in Figure 4.1, it is seen that the interval has
overlap with three elements. In contrast to the case without time delays, the inner
product involves three elements instead of one. This means on each element, we may
need to compute the Gauss-type quadrature points for a subinterval, one of whose
boundaries is an interior point of this element. This information cannot be pre-
computed on the reference element. In reality, we can maintain a list for each element
[sk, sk+1], which contains all the elements that have overlap with [sk − τ/T̂ , sk+1 −
τ/T̂ ] and will be updated for each optimization iteration after T̂ is updated. For
example, suppose that θV,i,s is located in element ek. Let s_backward[i][j] be a
two-dimensional array, where i = 0, . . . , N − 1 indicates the element index and j
indicates the elements that have overlap with [si − τ/T̂ , si+1 − τ/T̂ ]. In Figure 4.1,
we have s_backward[k][j]=k-1-j, j = 0, 1, 2, such that

〈φ̄h,ŝ, θV,i,sej〉s = 〈φ̄h,ŝ, θV,i,sej〉s
∣∣
ŝ∈ek−1

+ 〈φ̄h,ŝ, θV,i,sej〉s
∣∣
ŝ∈ek−2

+ 〈φ̄h,ŝ, θV,i,sej〉s
∣∣
ŝ∈ek−3

.

We now assume that delay exists in the basis function, illustrated by Figure 4.2,
and consider the inner product 〈φ̄h,s, θV,i,ŝej〉s. We let θV,i,s be a bubble function,
i.e., nonzero on one element and zero elsewhere. It is seen that although θV,i,s = 0 on
the element [sk, sk+1] in which we take information of φ̄h,s, the inner product is not

zero due to the time delay, i.e., θV,i,ŝ 6= 0 on [sk−τ/T̂ , sk+1−τ/T̂ ]. In particular, due
to the compact support of θV,i,s, the valid part for integration, given by the thicker
line in Figure 4.2, is the only part of the element on which the nonzero part of θV,i,s is
defined. If we use θV,i,s as a reference instead of φ̄h,s, we need to know what elements

have overlap with [sk+T̂ , sk+1+T̂ ]. Similar to the previous case, we can maintain a list
for each element and update it as soon as T̂ is updated. We still assume that θV,i,s is
located in element ek. This time we define a two-dimensional array s_forward[i][j]

where i indicates the element index while j indicates the elements that have overlap
with [si+τ/T̂ , si+1 +τ/T̂ ]. In Figure 4.2, we have s_forward[k][j]=k+2+j, j = 0, 1.
Thus

〈φ̄h,s, θV,i,ŝej〉s = 〈φ̄h,s, θV,i,ŝej〉s
∣∣
s∈ek+2

+ 〈φ̄h,s, θV,i,ŝej〉s
∣∣
s∈ek+3

.

Remark 4.4. It is seen that due to the variation and the time delay, the computa-
tion of the gradient is much more complicated than in the cases without time delays
[28]. On the other hand, we note that the finite element basis θV,i,s is much more
flexible to deal with the time delay than other types of discretization, such as the
finite difference method, in the sense that the basis function itself is able to carry the
effect of time delay.

4.3. Mesh refinement. Mesh refinement is an important issue for MAM for-
mulated with respect to time. Due to the existence of both slow and fast dynamics,
the nonuniform mesh is a necessity for an accurate approximation. Simply speaking,
the mesh for the transition path φ̄s should be consistent with the dynamics [28]. In
the region of slow dynamics, the element size can be larger, while in the region of fast
dynamics, the element size should be small. For problems without time delays, this
physically based adaptivity criterion was further refined by a regularity-consistent a
posteriori error estimator in [29].

In our penalized action functional for time-delay systems, we define an auxiliary
path ψ̄s = φ̄ŝ=s−τ/T̂ . From the approximation point of view, the mesh for φ̄s on
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[0, 1 − τ/T̂ ] should be comparable to the mesh of ψ̄s on [τ/T̂ , 1]. If one nonuniform
mesh is used for both φ̄s and ψ̄s, it is difficult to achieve such a translation invari-
ance. The simplest solution is to use different meshes for φ̄s and ψ̄s, which certainly
introduces more computation cost. We note that if τ � T̂ , it may still be reasonable
to use the same mesh for both φ̄s and ψ̄s.

4.3.1. A posteriori error estimator. We have two choices here for mesh re-
finement: (1) φ̄h,s and ψ̄h,s use the same mesh and (2) φ̄h,s and ψ̄h,s use different
meshes. For both choices, we can use the derivative-recovery technique, which was
developed in [29] for tMAM and dynamical systems without time delays, to obtain
an a posteriori error estimate for φ̄h,s. The reason we can achieve this is that the
a posteriori error estimator in [29] only depends on the regularity of the path; in
other words, it does not depend explicitly on the problem itself. For the first choice,
we can construct an elementwise error indicator as follows. Suppose that we have
an estimated solution φ̂h,s given by the derivative-recovery technique, which is more
accurate than φ̄h,s in a certain sense. We define an error estimator ηek on element
ek = [sk, sk+1]:

η1,ek = |φ̂h,s − φ̄h,s|H1(D)

∣∣∣
ek

+ |ψ̄h,s − φ̄h,s−τ/T̂ |L2(D)

∣∣∣
ek
,(4.7)

where the first term in ηek is the estimated error of φ̄h,s on ek and the second term
measures the deviation from the pointwise constraint (3.6). For the second choice, we
first update the mesh for φ̄h,s using the error indicator

η2,ek = |φ̂h,s − φ̄h,s|H1(D)

∣∣∣
ek
,(4.8)

where we only keep the first term in η1,ek , and then generate the mesh for ψ̄h,s(s)
according to the constraint ψ̄s = φ̄ŝ. More specifically, we can use the mesh of
[0, 1 − τ/T̂ ] for φ̄h,s as the mesh of [τ/T̂ , 1] for ψ̄h,s(s). The mesh of [0, τ/T̂ ] for
ψ̄h,s can be easily generated according to the initial condition. Compared to the
first choice, the second choice is more expensive since a global operation is needed to
project ψ̄h,s from the old mesh to the new one. In this work, we will only consider
the first choice, where only local projection is needed after the mesh is refined.

We now outline the computation of η1,ek , and more details can be found in [29].
For robustness, we only consider h-refinement, meaning that we split one element
into two equal elements if it is associated with a relatively large error estimate η1,ek .

Assume that φ̄h,s ∈ W p
h . Then the pth-order derivative φ̄

(p)
h,s ∈ Rn is a piecewise

constant vector. The derivative recovery with respect to φ̄
(p)
h,s consists of two steps.

The first step is a projection step, where we define a projection operator Qh such that〈
Qhφ̄(p)

h,s, ϕ̄h,s

〉
s

=
〈
φ̄

(p)
h,s, ϕ̄h,s

〉
s
∀ϕh,s ∈W 1

h .(4.9)

In other words, we project a piecewise constant function onto the linear finite element

space for each component of φ̄
(p)
h,s. The second step is a smoothing step using the

operator Sh = I − λ−1Ah, where I is an identity operator, Ah : W 1
h → W 1

h is
uniquely determined by

〈Ahϕ̄h,s, ξ̄h,s〉s = 〈ϕ̄′h,s, ξ̄′h,s〉s + 〈ϕ̄h,s, ξ̄h,s〉s ∀ϕ̄h,s, ξ̄h,s ∈W 1
h ,(4.10)

and λ = ρ(Ah) ' h−2 with h being the element size. We then have the recovered

pth-order derivative Rφ̄(p)
h,s = Smh Qhφ̄

(p)
h,s, where m is the number of smoothing steps.
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Roughly speaking, we will use Rφ̄(p)
h,s to replace the p-th order derivative φ̄

∗(p)
s of the

exact or reference solution φ̄∗s.

We now use Rφ̄(p)
h,s to construct a piecewise polynomial ˜̄φh,s of degree p+ 1 such

that

˜̄φh,s − φ̄h,s
∣∣∣
ek

= diag(c)(I − Pp)ϕ̄ek,p+1
h,s ,(4.11)

where c ∈ Rn, ϕ̄ek,p+1
h,s = θ̃p+1◦F−1

ek
(s)[1, 1, . . . , 1]T ∈ Rn, and θ̃p+1◦F−1

ek
(s) is the local

polynomial basis of degree p+1 defined on element ek, and Pp indicates a L2 projection

operator onto the space span{θ̃p+1 ◦F−1
ek

(s)}pi=0 since the local basis functions are not

mutually orthogonal. We then use the approximation ˜̄φ
(p+1)
h,s ≈ (Rφ̄(p)

h,s)
′ to determine

the coefficient vector c. To this end, we can define the error indicator

η2
1,ek

= α2
ek
| ˜̄φh,s − φ̄h,s|2H1(D)

∣∣∣
ek

+ β2|ψ̄h,s − φ̄h,s−τ/T̂ |
2
L2(D)

∣∣∣
ek
,(4.12)

where the coefficient αek satisfies

αek =

∥∥∥(I −R)φ̄
(p)
h,s

∥∥∥
L2(D)

∣∣∣∣
ek∥∥∥ ˜̄φ

(p)
h,s − φ̄

(p)
h,s

∥∥∥
L2(D)

∣∣∣∣
ek

.

The total error is defined as

η1 =

(
N−1∑
k=0

η2
ek

)1/2

.(4.13)

Let J = {i|0 ≤ i ≤ N − 1} be the set of indices of all finite elements. We look for a
subset Ĵ ⊂ J such that for rη ∈ (0, 1],

rη
∑
i∈J

η2
ei ≤

∑
i∈Ĵ

η2
ei .(4.14)

To uniquely specify Ĵ , we choose the elements that have the largest estimated error,
i.e.,

min
i∈Ĵ

ηei ≥ max
i∈J\Ĵ

ηei .

This is sometimes referred to as Dörfler’s marking strategy. Then all elements whose
indices belong to Ĵ will be refined to two equidistant elements, i.e., h-refinement.
Let Mold be the number of degrees of freedom (DOFs) of the old mesh and MD the
number of DOFs after h-refinement based on Dörfler’s marking strategy.

4.3.2. Maintaining constraint (3.17). The constraint (3.17) is a necessary
condition satisfied by the MAP. To measure the deviation from this constraint, we
define the following elementwise indicator as in [29]:

θ2
ei =

∫ T̂ si+1

T̂ si

(|φ̇h,t| − |b|)2dt

= T̂

∫ si+1

si

(T̂−1|φ̄′h,s| − |b|)2ds, i = 0, 1, . . . , N − 1.(4.15)
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Algorithm 1. h-adaptive tMAM for time-delay systems.

Solve problem (3.10) to obtain φ̄∗,0h,s and ψ̄∗,0h,s on the initial partition T 0
h .

while ε > εtol do
Compute ηei , αei .
Define the set Ĵ in (4.14).
for ei with i ∈ Ĵ do

Refine element ei to two equidistant elements.
end for
if θmax/θmin > θc then

while M −MD ≤ rM (MD −Mold) do
Do h-refinement for the element with largest θei .
Set the local indicator θei = 0 for child elements.

end while
end if
Solve problem (3.10) using the new partition T k+1

h to obtain MAP φ̄∗,k+1
h,s and

ψ̄∗,k+1
h,s .

ε←
(
Sτ

(
φ̄∗,kh,s, ψ̄

∗,k
h,s

)
− Sτ

(
φ̄∗,k+1
h,s , ψ̄∗,k+1

h,s

))/
Sτ

(
φ̄∗,k+1
h,s , ψ̄∗,k+1

h,s

)
.

end while

Let θmax and θmin be the maximum and minimum values of θei , respectively. If
the ratio θmax/θmin is larger than a threshold θc, we will implement h-refinement
in elements with large θi such that the deviation from the constraint (3.17) is not
too skewed. More specifically, we will refine the element with the largest θei until
(M −MD) ≥ rM (MD −Mold). In other words, after refining the mesh according to
ηei , we add rM (MD −Mold) more DOFs by refining the mesh according to θei . We
usually choose rM = 10% [29].

To this end, we can define an h-adaptive tMAM for time-delay systems; see
Algorithm 1.

4.4. The delay parameter. Intuitively, when the memory goes further to the
past, i.e., τ is larger, the problem itself will become more nonlinear. One obvious
effect of a larger τ on the computation is that the computation of gradient is more ex-
pensive since one element is correlated to more other elements. More importantly, the
delay can significantly change the dynamical behavior, which makes the optimization
problem (3.10) more ill-conditioned.

4.4.1. The effect of delay on stability. We illustrate the effect of delay on
stability using the following linear system:{

ẋt = Axt +Bxt−τ , t ∈ [0, T ],
xt = θ(t), t ∈ [−τ, 0],

(4.16)

where we assume that the linear system is stable when the time delay τ = 0. In other
words, we assume that (A+B) is normal and (A+B) + (A+B)T is negative definite
such that when τ = 0,

|xt|2 =
〈
eCtx0, e

Ctx0

〉
=
〈
e(C+CT)tx0,x0

〉
≤ |x0|

∣∣∣e(C+CT)tx0

∣∣∣→ 0 as t→∞,

where C = A + B. Equation (4.16) can be solved by the method of steps, where
the solution is obtained on the time intervals [iτ, (i+ 1)τ ] with i = 0, 1, . . . using the

D
ow

nl
oa

de
d 

07
/1

6/
21

 to
 9

6.
12

5.
26

.1
00

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A556 XIAOLIANG WAN AND JIAYU ZHAI

information in the previous interval as the initial condition. For example, for t ∈ [0, τ ],
we can integrate (4.16) to obtain

xt = eAtx0 +

∫ t

0

eA(t−q)Bxq−τdq.(4.17)

Once we obtain xt with t ∈ [0, τ ], we can use the same formula to compute xt with
t ∈ [τ, 2τ ]. This process can be repeated to obtain xt with t ∈ [−τ,∞). Consider the
Laplace transform of (4.16):

s̃X̃s̃ − θ(0) = AX̃s̃ +B

[
e−s̃τX̃s̃ +

∫ 0

−τ
e−ŝ(q+τ)θ(q)dq

]
,

where X̃s̃ is the Laplace transform of xt. We have

X̃s̃ = (s̃I −A− e−s̃τB)−1

[
θ(0) +B

∫ 0

−τ
e−ŝ(q+τ)θ(q)dq

]
.(4.18)

We define the following characteristic function:

g(s̃; e−τs̃) = (s̃I −A− e−s̃τB).(4.19)

For a certain delay τ , if

g(s̃; e−τs̃) 6= 0 ∀s̃ ∈ C̄+,(4.20)

where C̄+ is the closed right half complex plane, we say the system is stable (see
Definition 2.1 in [11]). When τ is beyond a certain threshold, the condition (4.20)
may fail and the system loses its stability. Although the main numerical difficulties
for approximation remain similar no matter that the system is stable nor not, the dy-
namics may change significantly as τ increases, which makes it challenging to propose
a good initial path for the optimization iteration. Let us illustrate this issue using an
example.

Example 4.5. Consider

A =

[
−2 0
0 −0.9

]
, B =

[
−1 0
−1 −1

]
.

Apparently when τ = 0, the system is stable. We now increase the time delay with
the following initial conditions:

x1,t = t2 + 0.1, x2,t = −t2 + 0.1.

It can be verified through (4.20) that (0, 0) will lose its stability when τ ' 6.1725.
In Figure 4.3, we compared the dynamics given by different time delays. It is seen
that as τ increases the trajectory of the delayed system changes significantly. If we
use the points (0.1, 0.1) and (0, 0) as the starting and ending points for the MAM,
the minimizer should be consistent with the trajectory. For the case τ = 0, we can
use a linear path as the initial guess to obtain the trajectory. However, for the case
τ = 0.8, we are not able to obtain the trajectory starting from a linear initial guess.
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4.4.2. Growing the MAP. To alleviate the possible difficulties in the initial-
ization of tMAM for time-delay systems, we propose a simple strategy: growing the
MAP of a time-delay system from the case that τ = 0. The strategy is illustrated
in Figure 4.3. Let (0, 0) indicate the coarsest mesh with zero time delay and (1, 1)
indicate the finest mesh with the desired time delay, where the coordinates are un-
derstood as a degree for the corresponding task. We then need to select a pathway
from (0, 0) to (1, 1). There exist many choices for such a purpose. The two simplest
choices include (1) fully refining the mesh first for τ = 0 and then increasing the time
delay from 0 to τ and (2) increasing the time delay from 0 to τ on the coarse mesh
and then implementing mesh refinement. Both choices are not effective. For the first
choice, we do not know if the fine mesh for τ = 0 is sufficient for τ 6= 0. For the
second choice, a coarse mesh is obviously not able to handle the possible complexity
induced by the time delay (see Figure 4.3). In this work, we pick a zigzag pathway
close to the straight line from (0, 0) to (1, 1), which interweaves the mesh refinement
and the increasing of the time delay; see Figure 4.4 and Algorithm 2.

-0.1 -0.05 0 0.05 0.1

x
1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x
2

=0

=0.1

=0.4

=0.8

Fig. 4.3. The comparison of dynamics given by different time delays for the problem defined
in Example 4.5.

0 1

Mesh quality

0

1

T
im

e
 d

e
la

y

(1,1)

Fig. 4.4. Our adaptivity strategy is illustrated by the “stairs,” where each mesh refinement is
followed by an increase of time delay. The starting point (0, 0) indicates a coarse mesh with zero
time delay, and the ending point (1, 1) indicates the finest mesh with the desired time delay.
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Algorithm 2. Adaptive tMAM for time-delay systems by interweaving h-refinement
and the increment in time delay.

Choose an initial partition T old
h = T new

h and a step size ∆τ . Let N = τfinal/∆τ ,
τ = 0, and ε = 1.
for k ← 1 to N do
τ ← τ + ∆τ
Solve problem (3.10) to obtain φ̄∗,oldh,s and ψ̄∗,oldh,s on partition T old

h .
if ε > εtol then

Refine the partition using Algorithm 1 to obtain new partition T update
h .

Solve problem (3.10) using the partition T update
h to obtain φ̄∗,updateh,s and

ψ̄∗,updateh,s .

ε ←
∣∣∣Sτ (φ̄∗,updateh,s , ψ̄

∗,update
h,s

)
− Sτ

(
φ̄∗,oldh,s , ψ̄∗,oldh,s

)∣∣∣/Sτ (φ̄∗,updateh,s , ψ̄
∗,update
h,s

)
.

T old
h ← T new

h .

T new
h ← T update

h .
else

Solve problem (3.10) using the new partition T new
h to obtain φ̄∗,newh,s and ψ̄∗,newh,s .

ε←
∣∣∣Sτ (φ̄∗,newh,s , ψ̄∗,newh,s

)
− Sτ (φ̄∗,oldh,s , ψ̄∗,oldh,s )

∣∣∣/Sτ (φ̄∗,newh,s , ψ̄∗,newh,s

)
.

end if
end for
while ε > εtol do

Implement Algorithm 1 to refine the mesh.
end while

Remark 4.6. The idea of Algorithm 2 can also be applied to the penalty parameter
β such that we can interweave the mesh refinement and the increment of β to obtain
more accuracy and efficiency.

5. Numerical experiments. In this section, we present some numerical exper-
iments to demonstrate the effectiveness of our algorithm. For verification, we mainly
use the MAM to approximate the trajectory of an unperturbed system, along which
the action functional is zero. Considering the regularity of the solution of ODEs with
constant time delays [2], the main characteristic is the propagation of discontinuities
at time iτ , i = 0, 1, 2, . . .. At t = 0, we usually have θ̇(0)− 6= ẋ+

0 (see (4.16)), where
− and + indicate the left and right derivative, respectively. At t = τ , the jump in ẋ0

will induce a jump in ẍτ although ẋτ is continuous. In general, the derivative jump
at t = 0 will propagate along the integration interval and give rise to subsequent
discontinuity points at t = iτ where the solution is smoothed out more and more. As
a consequence, even the force term is C∞; the solution xt is simply C1-continuous.
Based on such an observation, we only consider linear finite elements in the numerical
experiments if the convergence rate is needed. However, since the regularity of the
solution is improved as the evolution time t increases, high-order finite elements are
in general more efficient. In MATLAB, the trajectory φdt can be computed by the
subroutine dde23() [23].

5.1. Adaptivity behavior. We consider a simple linear system with time
delays: {

dXt = AXt +BXt−τdt+
√
εdWt, t ∈ [0, T ],

Xt = θ(t), t ∈ [−τ, 0].
(5.1)
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Let

A =

[
a −b
b a

] [
λ1 0
0 λ2

] [
a b
−b a

]
, B =

[
−1 0
0 −1

]
with a = 1/3, b =

√
8/3, λ1 = −5, and λ2 = −1. We use the MATLAB solver dde23

to compute a trajectory φdt for the unperturbed system.

5.1.1. Small time delay. We first look at the case that the time delay is rela-
tively small using Algorithm 1. We consider (5.1) with the following initial conditions:

θ(t) = [0.5et, 0.5et]T.(5.2)

Let τ = 0.05. Let the starting point be φdt=0 = (0.5, 0.5)T and the ending point be
φdt=10 ≈ (9.5 × 10−8, 2.5 × 10−7)T such that the minimizer of the action function is
φdt with t ∈ [0, T ∗ = 10]. Note that φdt=∞ = (0, 0) is a stable fixed point for the
unperturbed system. Due to the fact that φdt=10 ≈ φdt=∞, seeking the minimizer φdt
with t ∈ [0, T ∗ = 10] shares similar difficulties to the case that T ∗ =∞. For this case,
we simply use a linear path as the initial guess. In Figure 5.1, we plot the convergence
behavior of tMAM with adaptive h-refinement and uniform h-refinement on the left,
and the distribution of element size of the adaptive mesh on the right. First, the
uniform refinement achieves algebraic convergence with a rate that is smaller than
the optimal one O(N−2p). Since xt is C1-continuous, the optimal convergence rate
is achievable for p = 1. This is similar to the results for systems without time delays
[32]. More specifically, (2.8) becomes degenerate as the optimal integration time goes
to infinity, and uniform refinement is not able to achieve the optimal convergence rate
for this kind of problem. Note that this issue is independent of the time delay. Second,
the adaptive h-refinement based on the a posteriori error estimate can significantly
improve the convergence rate. For the problem studied, the optimal rate has actually
been recovered. Third, the element size |ei| = |si − si−1| becomes larger as the
path approaches the stable fixed point (0, 0), which means that the a posteriori error
estimator effectively captures the fact that the regularity is low in the region of fast
dynamics [29].
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Fig. 5.1. The convergence of tMAM with adaptive h-refinement and uniform h-refinement.
Linear finite elements are used for discretization. The penalty parameter is fixed as β = 1.0. The
bulk parameter for adaptivity is rη = 0.4. The optimal convergence rate is N−2. The initial coarse
mesh is given by six equidistant linear finite elements. Left: Convergence rates of adaptive tMAMs.
Right: The distribution of element size of the adaptive mesh.
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Fig. 5.2. The trajectories φdt for (5.1) subject to initial condition (5.2). Left: φdt on t ∈ [0, 10]
for τ = 0.05, 1. Right: Close-up view of the region enclosed by the rectangle in the previous plot.

5.1.2. Large time delay. We now look at the application of Algorithm 2 to the
case that the time delay is relatively large. The initial condition θ(t) is the same as the
previous case except that the time delay changes from τ = 0.05 to τ = 1. In Figure
5.2, we plot the trajectories φdt for τ = 0.05, 1. Compared to a small time delay, the
large time delay τ = 1 introduces dramatic oscillations when the trajectory converges
to (0, 0), which makes the linear path not effective as an initial guess for the MAM. In
other words, starting from the linear path, the optimization solver will converge to a
local minimizer that is not the solution. Let φdt=10 be the ending point. Starting from
τ = 0.05 and an initial linear path, we increase τ by 1−0.05

10 = 0.095 after each mesh
refinement. After τ = 1 is reached, we keep refining the mesh until the prescribed
tolerance in action function is achieved. In Figure 5.3, we compare the exact solution
and the approximate solution given by Algorithm 2. It is seen that Algorithm 2 works
effectively, which captures not only the overall path but also the details around (0, 0).
From plot (a) to plot (d), the characteristic scale of the path decays approximately
from O(1) to O(10−3), where all abrupt turns in the path, except the last one shown
in plot (d), have been well captured.

5.2. Phase transition problem. We add a pair of time-delay terms to a classi-
cal physical model to look at the effect of time delay on phase transition. We consider
the following modified Maier–Stein model [16]:{

dXt =
(
Xt −X3

t − βXtY
2
t − 1

2 (Xt−τ −Xt)
)
dt+

√
εdW x

t ,
dYt = −

(
Yt +X2

t Yt + 1
2 (Yt−τ − Yt)

)
dt+

√
εdW y

t ,
(5.3)

where W x
t and W y

t are independent Wiener processes and β > 0 is a parameter.
When τ = 0, the original Maier–Stein (MS) model will be recovered. In this work, the
delayed terms are only added for numerical purpose without any physical motivations.

The original MS model has two stable fixed points, a1 = (−1, 0)T and a2 =
(1, 0)T, and one saddle point a3 = (0, 0)T. We choose τ such that the stability of ai,
i = 1, 2, 3, remains the same. For numerical experiments, we set β = 10. We start
with a coarse mesh with 6 quadratic elements, increase the time delay τ from 0.05
to 1, increase the penalty parameter β from 10 to 200. We increase τ and β at the
same time for each mesh refinement, where the maximum values of both τ and β are
reached in 10 steps. Let us write Ŝτ (φ̄s, ψ̄s) = Ŝτ,action + Ŝτ,penalty, where

Ŝτ,action =
T̂

2

∫ 1

0

|T̂−1φ̄′s − b(φ̄s, ψ̄s)|2ds, Ŝτ,penalty =
β2

2

∫ 1

0

|ψ̄s − φ̄ŝ|2ds.
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Fig. 5.3. The approximate solution is computed by Algorithm 2, where the value of the action
function is 1.34 × 10−8. The final mesh has 79 quadratic finite elements, and the grid points for
the finite element mesh are indicated by the red dots. β = 1. (a): Compare the exact solution and
the approximate one. (b)–(d): Close-up view of the region enclosed by the rectangle in the previous
plot.
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Fig. 5.4. The MAP has been computed by Algorithm 2. The final mesh has 56 quadratic finite
elements with β = 200. The ratio between the penalty term and the action term is about 10−4. Left:
The comparison between the MAPs of the MS model without time delay and the modified MS model
with τ = 1. Right: Close-up view of the region enclosed by the rectangle in the previous plot.

For the approximated MAP, we have
Ŝτ,penalty

Ŝτ,action
≈ 10−4, meaning that the constraint

is sufficiently enforced. In Figure 5.4, we compare the most probable transition paths
of the MS model and the modified MS model with τ = 1, where the grid points
correspond to the finite element mesh. On the one hand, the transition mechanism
is similar for both cases, where both MAPs approach the saddle point first and then
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follow the unstable manifold to the other fixed point; on the other hand, the effect
of the time delay is substantial, where the actions of the MAPs are 0.34 and 0.18,
respectively, for the cases without and with time delays, although it seems that the
MAPs do not differentiate that much. It is seen that in the right plot of Figure
5.4, the MAP does not exactly reach the saddle point (0, 0), which is mainly due to
the fact that the number of finite elements is relatively small. The saddle point will
be captured better by setting the tolerance εtol in Algorithms 1 and 2 smaller such
that more elements will be constructed around the saddle point. More discussions
about the approximation around unknown critical points can be found in [25, 29].
The relation between the action of the MAP and the time delay has been plotted
in Figure 5.5. For the problem studied, as the time delay increases, the action of
the MAP decreases, meaning that the time delay makes the transition easier for the
problem studied; see (2.3). The relation between different forms of time delay and
the action of the MAP is in general an open question, which deserves further study.
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Fig. 5.5. The time delay versus the action of the MAP for the modified MS model.
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Fig. 5.6. The convergence behavior of the h-adaptive tMAM with linear finite elements for
the MS model. The penalty parameter is β = 300. The bulk parameter for adaptivity is rη = 0.5.
Starting from τ = 0 and β = 10, we increase τ by 1−0

10
and β by 300−10

10
before each mesh refinement

until the desired τ = 1 and β = 300 are achieved.
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In Figure 5.6, we plotted the convergence behavior of h-adaptive tMAM with
linear elements, i.e., p = 1, for the MS model. The reference solution is computed by
h-adaptive tMAM with 2584 linear elements. The initial coarse mesh has 3 elements.
Starting from τ = 0 and β = 10, we increase τ by 1−0

10 and β by 300−10
10 before each

mesh refinement until the desired values τ = 1 and β = 300 are reached. The bulk
parameter is rη = 0.5 for mesh refinement. Data have been collected when τ = 1 and
β = 300. It is seen in Figure 5.6 that the overall convergence rate agrees well with
the optimal rate O(N−2) in terms of the error of the action functional.

6. Summary and discussions. In this work, we have developed an MAM to
seek the most probable transition path in systems with constant time delays. Since
the Hamiltonian is not conservative anymore, the Maupertuis principle does not ap-
ply, and we need to work with the action functional formulated with respect to time.
We define an auxiliary path ψt = φt−τ such that the action functional will not depend
on τ explicitly, which means that we can use a simple optimal linear scaling to re-
move the optimization with respect to T . The constraints ψt = φt−τ will be enforced
through a quadratic penalty term included in the original action functional. Adaptive
discretization is necessary for the MAM formulated with respect to time. We have
adapted an a posteriori error estimate, developed in [29] for systems without time
delays, for our problem by including the difference ψt− φt−τ into the error indicator.
Another difficulty comes from large time delays, which may significantly change the
dynamics. For the optimization iteration in the MAM, the initial guess that is valid
for the systems without time delays may not work anymore. To deal with this issue,
we consider a sequence of time delays, where the time delay increases gradually. More
specifically, we interweave the mesh refinement and the increment of time delay such
that the MAP will grow from a coarse mesh for a system without time delays to a fine
adaptive mesh for a system with a desired time delay. Preliminary numerical results
have verified the effectiveness of the proposed strategy. Many possible improvements
can be made, e.g., the augmented Lagrangian method can be employed for the opti-
mization, and different meshes can be used for φt and ψt, etc. Theoretical issues, such
as the convergence of the approximated solution and choice of the penalty parameter,
etc., need to be analyzed. The study on these issues will be reported elsewhere.
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