
Journal of Computational Physics 457 (2022) 111080
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Adaptive deep density approximation for Fokker-Planck

equations

Kejun Tang a,b, Xiaoliang Wan c, Qifeng Liao a,∗
a School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
b Peng Cheng Laboratory, Shenzhen 518055, China
c Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge 70803, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 March 2021
Received in revised form 14 December 2021
Accepted 12 February 2022
Available online 22 February 2022

Keywords:
Density estimation
Flow-based generative models
Fokker-Planck equations
Deep learning

In this paper we present an adaptive deep density approximation strategy based on
KRnet (ADDA-KR) for solving the steady-state Fokker-Planck (F-P) equations. F-P equations
are usually high-dimensional and defined on an unbounded domain, which limits the
application of traditional grid based numerical methods. With the Knothe-Rosenblatt
rearrangement, our newly proposed flow-based generative model, called KRnet, provides
a family of probability density functions to serve as effective solution candidates for
the Fokker-Planck equations, which has a weaker dependence on dimensionality than
traditional computational approaches and can efficiently estimate general high-dimensional
density functions. To obtain effective stochastic collocation points for the approximation
of the F-P equation, we develop an adaptive sampling procedure, where samples are
generated iteratively using the approximate density function at each iteration. We present
a general framework of ADDA-KR, validate its accuracy and demonstrate its efficiency with
numerical experiments.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

During the past few decades there has been a rapid development in numerical methods for Fokker-Planck equations. This
explosion in interest has been driven by the need of assessing time evolution of probability density functions in randomly
perturbed dynamical systems, which are widely used in physical and biological modeling [1–3]. It is known that there exist
two main challenges for efficiently solving the Fokker-Planck equations: the spatial variable can be high-dimensional, which
causes difficulties in applying grid based numerical methods, e.g. finite element methods [4,5]; the original spatial domain is
typically unbounded, and it is challenging to derive a well-posed boundary condition for a bounded computational domain.
To alleviate these difficulties, new numerical methods based on deep learning currently gain a lot of attention [6,7], and
this paper is devoted to deep learning for the Fokker-Planck equations.

Deep learning methods for partial differential equations (PDEs) are under active development. In [8,9], a deep Ritz
method is proposed based on variational methods. In [10–13], physics-informed neural networks are developed through
infusing PDEs into networks as a constraint. A deep Galerkin method is proposed in [14]. Bayesian deep convolutional
encoder-decoder networks for PDEs with high-dimensional random inputs are developed in [15,16]. Deep learning strate-
gies are also introduced to discover physical laws [17,18]. In addition, efficient deep learning methods based on domain

* Corresponding author.
E-mail addresses: tangkj@shanghaitech.edu.cn (K. Tang), xlwan@lsu.edu (X. Wan), liaoqf@shanghaitech.edu.cn (Q. Liao).
https://doi.org/10.1016/j.jcp.2022.111080
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111080
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111080&domain=pdf
mailto:tangkj@shanghaitech.edu.cn
mailto:xlwan@lsu.edu
mailto:liaoqf@shanghaitech.edu.cn
https://doi.org/10.1016/j.jcp.2022.111080

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
decomposition are studied in [19–24], and deep neural network methods for complex geometries and irregular domains are
proposed in [25,26]. The main idea of deep learning methods for PDEs is to reformulate a PDE problem as an optimization
problem and train deep neural networks through minimizing the corresponding loss functional. In these methods, stochas-
tic collocation points are required to estimate the loss functional. We note that the stochastic collocation points herein are
for the spatial variable, while stochastic collocation for PDEs with random inputs (especially for parameters) are discussed
in detail in [27–33]. To result in an efficient deep learning strategy for PDEs, properly choosing the collocation points is
crucial. Intuitively, the distribution of the collocation points should be consistent with the properties of the PDE solution
in a certain sense. In our recent work [19], a hierarchical sampling procedure is proposed based on domain decomposi-
tion iterations, while it focuses on low-dimensional problems. As the spatial variable of the Fokker-Planck equation can be
high-dimensional, it remains an open challenging problem to generate effective collocation points. We develop an effective
adaptive sampling procedure to alleviate this issue in this work. Adaptivity is widely used in machine learning techniques
to make the training process more effective by exploring the relation between the model and the data, e.g., active learning
selects the most helpful samples to increase efficiency [34,35] and meta-learning tries to match learning algorithms with
task properties [36]. In our problem, we will update the training set partially or completely according to the learned model,
i.e., the approximate solution of the F-P equation, and the updated training set will yield a better approximate solution.

As the solution of the Fokker-Planck equation is a probability density function, solving this problem can also be con-
sidered as a density estimation problem. It is known that density estimation is a central topic in unsupervised learning,
and it still remains an open challenge for high-dimensional density estimation [37]. Recently, two kinds of deep learn-
ing models have shown great promise for estimating high-dimensional probability density functions (PDFs), which include
the flow-based generative model [38,39] and the neural ordinary differential equation model [40,41]. In this work, we fo-
cus on the flow-based generative model, which is to construct invertible mappings from a prescribed prior distribution
to the empirical distribution given by data and build explicit probability density functions using the change of variables.
The Knothe-Rosenblatt (KR) rearrangement [42] shows that such an invertible mapping can be achieved with a triangular
structure. Incorporating with the KR rearrangement, we propose an invertible block-triangular mapping, called KRnet, which
generalizes the flow-based generative model given by real NVP [38]. We note that there are a lot of generative models
which can efficiently generate samples of the distributions under consideration but do not explicitly give the corresponding
density functions, e.g., generative adversarial networks (GANs) [43] and the variational autoencoder (VAE) [44]. In addition,
coupling flow-based generative models and reduced-order models into an importance sampling estimator is studied in [45].

In this work, we propose an adaptive deep density approximation method based on KRnet (ADDA-KR) for solving Fokker-
Planck equations. We first provide additional details and results for KRnet that was outlined in the letter [46]. After that,
we use KRnet to construct solutions of the Fokker-Planck equation. Since KRnet can induce a family of probability density
functions, normality and vanishing boundary conditions are satisfied naturally. Like other deep learning algorithms for
solving PDEs, our method is also meshfree. The PDE problem is converted into an optimization problem and it can be
solved through stochastic gradient descent on a set of collocation points, while traditional grid-based numerical methods
(e.g. finite element methods) rapidly become computationally infeasible since the number of grid points grows exponentially
with the dimensionality. The choice of the collocation points plays a crucial role in a meshless method. The distribution of
the collocation points should be consistent with the regularity of the solution for both accuracy and efficiency. Since the
solution of the F-P equation is a probability density function, one way to achieve this is to use the samples of the solution
PDF as the collocation points. Based on such an idea, we propose an adaptive approach ADDA-KR that has two main
steps: training a KRnet to approximate the solution of the Fokker-Planck equation, and using the trained KRnet to generate
collocation points for the next iteration. After each iteration, the distribution of the collocation points is more consistent
with the solution PDF.

The rest of the paper is organized as follows. In the next section, the Fokker-Planck equations and the problem setting
are introduced. Our KRnet is presented in section 3. In section 4, our novel adaptive deep density approximation approach
for the Fokker-Planck equation is presented. In section 5, we demonstrate the efficiency of our adaptive sampling approach
with numerical experiments. Finally section 6 concludes the paper.

2. Problem setup

Consider the state Xt modeled by the following stochastic differential equation

dXt = μ(Xt , t)dt + G(Xt, t)dwt, (1)

where μ = [μ1, . . . , μd]T is a vector field, G(Xt , t) ∈Rd×d is a matrix-valued function and wt is a d-dimensional standard
Wiener process. The Fokker-Planck equation, which describes the probability density function of Xt , is

∂ p(x, t)

∂t
= Lp(x, t) := ∇ · [p(x, t)∇V (x, t)] + ∇ · [∇ · (p(x, t)D(x, t))], ∀(x, t) ∈Rd ×R+,∫

Rd

p(x, t)dx = 1, p(x, t) ≥ 0, ∀(x, t) ∈Rd ×R+,

p(x,0) = p (x),

(2)
0

2

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
where x ∈Rd denotes a random vector, V (x, t) is a potential function, D(x, t) is a diffusion matrix, p(x, t) is the unknown
probability density function (PDF) of x with the initial PDF p0(x), and L denotes the partial differential operator. Following
[1], the potential function V (x, t) and the diffusion matrix D(x, t) can be expressed as

∇V (x, t) = −μ(x, t),

D(x, t)) = 1

2
G(x, t)G(x, t)T.

In this work, we focus on the stationary solution of Eq. (2), i.e., the invariant measure independent of time,

Lp(x) = ∇ · [p(x)∇V (x)] + ∇ · [∇ · (p(x)D(x))] = 0, (3)

with the boundary condition

p(x) → 0 as ‖x‖2 → ∞, (4)

and some extra constraints on p(x)∫
Rd

p(x)dx = 1, and p(x) ≥ 0, (5)

where ‖x‖2 indicates the �2 norm of x.
There are several difficulties for the approximation of equation (3). First, the boundary condition and the constraints of

p(x) may not be easily satisfied when we employ the traditional approaches such as the finite element method. Since the
support of p(x) is Rd , the computation domain has to be truncated, implying that the boundary condition must be approx-
imated, e.g., a homogeneous boundary condition. To preserve the nonnegativity of p(x), a projection step is needed for the
box constraint. Second, it requires a fine mesh to capture the whole information when the target density is multimodal, i.e.,
the potential function V (x) has many local minima [47], which is computationally infeasible when the dimension d is even
moderately large. We also note that a homogeneous boundary condition usually requires a large computational domain,
which makes a uniform refinement even more challenging, if no prior information can be used for certain adaptivity on
mesh generation. To address these issues, we will propose an adaptive deep density approximation method to solve the
Fokker-Planck equation (3) using a deep generative model for p(x). The flow-based generative model not only provides an
explicit density function that satisfies naturally all constraints on p(x), but also suggests a simple but effective adaptive
strategy for the approximation of equation (3) through sampling the current approximation of p(x).

3. KRnet

KRnet is a flow-based generative model for density estimation or approximation. In this section we briefly overview
KRnet that has been outlined in our recently published letter [46] and present more details that were not included in [46]
due to the page limit. Let X ∈Rd be a random vector associated with a given data set, and its probability density function
(PDF) is denoted by p X (x). The target is to estimate p X (x) using available data. Let Z ∈ Rd be a random vector associated
with a PDF p Z (z), where p Z (z) is a prior distribution (e.g., Gaussian distribution). The flow-based generative modeling is to
seek an invertible mapping z = f (x) where f (·) is a bijection: f : x
→ z [38]. By the change of variables, we have the PDF
of X = f −1(Z) as

p X (x) = p Z (f (x)) |det∇x f | . (6)

Once the prior distribution p Z (z) is specified, equation (6) provides an explicit PDF of X . Given a set of training data, the
invertible mapping f (·) can be learned by maximizing the likelihood or minimizing the cross entropy. The inverse of f (·)
provides a convenient way to sample X as X = f −1(Z).

3.1. A new affine coupling layer

In flow-based generative models, the invertible mapping f (·) is constructed by stacking a sequence of simple bijections,
each of which is a shallow neural network, and thus the overall mapping is a deep net. The mapping f (·) can be written in
a composite form:

z = f (x) = f[L] ◦ . . . ◦ f[1](x) and x = f −1(z) = f −1
[1] ◦ . . . ◦ f −1

[L] (z), (7)

where f[i] is called an affine coupling layer at stage i. The Jacobian matrix can be obtained by the chain rule

|det ∇x f | =
L∏∣∣det∇x[i−1] f[i]

∣∣ , (8)

i=1

3

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
where x[i−1] indicate the intermediate variables with x[0] = x and x[L] = z. Let x[i] = [x[i],1, x[i],2]T be a partition of x[i] with
x[i],1 ∈Rm and x[i],2 ∈Rd−m for i = 0, . . . , L − 1. One technique to define the affine coupling layer is the real NVP [38]:

x[i],1 = x[i−1],1
x[i],2 = x[i−1],2 � exp

(
log si(x[i−1],1)

)+ t i(x[i−1],1),
(9)

where si : Rm
→ Rd−m and t i : Rm
→ Rd−m are the scaling and the translation depending on x[i−1],1, and � is the
Hadamard product or element-wise product. Note that x[i−1],1 remains fixed and the modification of x[i−1],2 is linear with
respect to x[i−1],2 and nonlinear in terms of x[i−1],1. This way, the Jacobian matrix ∇x[i−1] f[i] is lower-triangular whose
determinant can be evaluated efficiently. Furthermore, (si, t i) is usually modeled by a neural network NN[i]

(si, t i) = NN[i](x[i−1],1). (10)

We proposed a new affine coupling layer f[i] as follows [46]

x[i],1 = x[i−1],1
x[i],2 = x[i−1],2 � (

1 + α tanh(si(x[i−1],1))
)+ eβ i � tanh(t i(x[i−1],1)),

(11)

where 0 < α < 1 is a hyperparameter and the parameter β i ∈Rd−m is trainable. Our affine coupling layer keeps the mech-
anism of the real NVP when updating the data, and it has the following advantages. First, the second equation in Eq. (11)
adapts the trick of ResNet [48], where an identity mapping is added to improve the training process. Second, the constant
α ∈ (0, 1) is introduced to improve numerical stability. It is seen that the range of det ∇x[i−1] f[i] is [(1 − α)d−m, (1 + α)d−m]
for our affine coupling layer and (0, +∞) for the original real NVP. Our formulation can alleviate the illnesses when the
determinant of the Jacobian in the original real NVP occasionally becomes too large or too small. Third, the trainable factor
eβ i depends on the whole training set, which helps avoid possible large oscillation in t i(x[i−1],1) such that the number of
outliers can be reduced for sample generation [46]. In our numerical experiments, we set α = 0.6 and it works well.

Since the affine coupling layer f[i] only updates a part of x[i−1] , another affine coupling layer is needed for a complete
update. In other words, the next affine coupling layer f[i+1] can be defined as

x[i+1],1 = x[i],1 � (
1 + α tanh(si+1(x[i],2))

)+ eβ i+1 � tanh
(
t i+1(x[i],2)

)
x[i+1],2 = x[i],2,

where the components x[i],1 are updated and x[i],2 remains unchanged. From the dynamical point of view, a long chain
of affine coupling layers may result in a highly nonlinear transformation of the input. To enhance the performance and
efficiency of the mapping f (x), we proposed KRnet to address the following questions: 1) How should we partition the
vector? 2) How can we increase the modeling capability except for increasing the depth L? 3) Can we provide a robust
nonlinear bijection at least in a component-wise way?

3.2. The overall structure of KRnet

The basic idea of KRnet is to define the structure of f (x) in terms of the Knothe-Rosenblatt rearrangement. Let μZ and
μX be the probability measures of two random variables X, Z ∈Rd respectively. A mapping T : Z
→ X is called a transport
map such that T#μZ = μX , where T#μZ is the push-forward of μZ such that μX (B) = μZ (T −1(B)) for every Borel set B
[42]. The Knothe-Rosenblatt rearrangement tells us that the transport map T may have a lower-triangular structure

z = T −1(x) =

⎡
⎢⎢⎢⎣
T1(x1)

T2(x1, x2)
...

Td(x1, . . . , xd)

⎤
⎥⎥⎥⎦ . (12)

This mapping can be regarded as a limit of sequence of optimal transport maps when the quadratic cost degenerates [42].
Noticing that the invertible mapping f (x) also defines a transport map, we then incorporate the triangular structure of the
Knothe-Rosenblatt rearrangement into the definition of f (x) which results in KRnet as a generalization of real NVP [38]. Let
x = [x(1), . . . , x(K)]T be a partition of x, where x(i) = [x(i)

1 , . . . , x(i)
m]T with 1 ≤ K ≤ d, 1 ≤ m ≤ d, and

∑K
i=1 dim(x(i)) = d. Our

KRnet takes an overall form

z = fKR(x) =

⎡
⎢⎢⎢⎣

f1(x(1))

f2(x(1), x(2))
...

f (x(1), . . . , x(K))

⎤
⎥⎥⎥⎦ , (13)
K

4

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 1. The flow chart of KRnet.

where each f i is an invertible mapping defined as in equation (7) for i = 2, . . . , K . Note that f1 is not included if K = d
because we need to partition a vector to two parts to define the affine coupling layer. KRnet consists of one outer loop
and K − 1 inner loops. The outer loop has K − 1 stages, corresponding to the K − 1 mappings f i in equation (13) with
i = 2, . . . , K , and for each stage, an inner loop of L affine coupling layers is defined. More specifically, we have

z = fKR(x) = LN ◦ f outer[K−1] ◦ · · · ◦ f outer[1] (x), (14)

where f outer
[i] is defined as

f outer
[k] = LS ◦ f inner

[k,L] ◦ · · · ◦ f inner
[k,1] ◦ LR . (15)

Here f inner
[k,i] indicates a combination of one affine coupling layer and one scale and bias layer, and LN , L S and LR indicate

the nonlinear layer, the squeezing layer and the rotation layer, respectively, which will be briefly overviewed in the next
section.

The flow chart of KRnet is illustrated in Fig. 1. Let us look at how the information flows in the KRnet. Each
x[k] = [x(1)

[k] , . . . , x
(K)

[k]]T has the same partition with x[k] = f outer
[k] (x[k−1]) with x[0] = x, k = 1, . . . , K − 1. At the beginning,

a sequence of affine coupling layers in f outer[1] is applied to the partition x[0] = [x(1:K−1)
[0] , x(K)

[0]]T , where x(1:K−1)
[0] includes x(i)

[0] ,
i = 1, . . . , K − 1. From then on, the last partition x(K)

[k] will remain fixed for k > 1. For the next iteration f outer[2] , the partition
[x(1:K−2)

[1] , x(K−1)
[1]]T will be used with x(K)

[1] being deactivated. In general, after the stage K − i + 1 of the outer loop, the i-th
partition of x(i)

[k] will become deactivated, in addition to the dimensions that are deactivated in the previous stages.

3.3. Other types of layer used in KRnet

Except for the affine coupling layers, several other types of layers are needed for the definition of KRnet. We briefly
overview these layers in this section and provide some details excluded in the letter [46]. Since each x[k] has the same
partition, we will drop the subscript for simplicity.

Squeezing layer L S is used to deactivate some dimensions using a mask

q = [1, . . . ,1︸ ︷︷ ︸
n

,0, . . . ,0︸ ︷︷ ︸
d−n

]T, (16)

where the components q � x will keep being updated and the rest components (1 − q) � x will be fixed from then on.
Scale and bias layer provides a simplification of the batch normalization [49], which is defined as

x̂ = a � x + b, (17)
5

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
where a and b are trainable and initialized by the mean and standard deviation of the data. After the initialization, a and
b will be treated as regular trainable parameters that are independent of the data. Numerical experiments show that the
scale and bias layer is simple but effective, which provides a comparable performance to the batch normalization layer in
our problem setting.

Rotation layer LR defines a linear mapping of the input x

x̂ = Ŵ x.

through a trainable matrix

Ŵ =
[

W 0
0 I

]
=
[

L 0
0 I

][
U 0
0 I

]
,

where W ∈ Rn×n , n is defined in the mask q, I ∈ R(d−n)×(d−n) is an identity matrix, and W = LU is the LU factorization
of W . We expect Ŵ to provide a rotation such that the less important dimensions will be put at the end and deactivated
by the next squeezing layer. Entries below the main diagonal of L and entries in the upper triangle of U are trainable.
In practice, we simply optimize the trainable entries of L and U without enforcing the orthonormality of Ŵ and such a
simplification works well.

Nonlinear layer LN provides a component-wise nonlinear transformation. For simplicity, we only consider one component
x of the data. We start with a nonlinear mapping F (s) : [0, 1]
→ [0, 1]:

F (s) =
s∫

0

p(t)dt, (18)

where p(s) is a probability density function. Let 0 = s0 < s1 < . . . < sm̂+1 = 1 be a mesh of the interval [0, 1] with element
size hi = si+1 − si . Define p(s) as a piece-wise linear polynomial

p(s) = wi+1 − wi

hi
(s − si) + wi, ∀s ∈ [si, si+1], (19)

where

p(si) = wi .

Then F (s), corresponding to a cumulative density function, is a quadratic function

F (s) = wi+1 − wi

2hi
(s − si)

2 + wi(s − si) +
i−1∑
k=0

wk + wk+1

2
hi, ∀s ∈ [si, si+1], (20)

whose inverse and derivative can be explicitly computed.
As the support of each dimension of x is (−∞, ∞), a question is how to apply F (s) to the data. A straightforward

strategy is to map (−∞, ∞) to (0, 1) before F (s) is applied. However, when the inverse is considered, the singularity of
mapping a finite interval to an infinite one may introduce issues on robustness. To alleviate this problem, we decompose
(−∞, ∞) = (−∞, −a) ∪ [−a, a] ∪ (a, ∞) with a > 0, and define the following nonlinear mapping

F̂ (x) =
⎧⎨
⎩

βs(x + a) − a, x ∈ (−∞,−a)

2aF
(x+a

2a

)− a, x ∈ [−a,a]
βs(x − a) + a, x ∈ (a,∞),

(21)

where βs > 0 is a scaling factor. It is seen that we only consider a nonlinear mapping for the data located in [−a, a] and
F̂ (x) maps [−a, a] to itself. On (−∞, −a) ∪ (a, ∞), F̂ (x) is simply a linear mapping. The reasoning of such a strategy is
that the range of data in the training set is always finite, and after being well scaled and shifted the data will be roughly
centered at the origin, implying that a nonlinear mapping on [−a, a] is sufficient as long as a is large enough. To maintain
the invertibility, we require some regularity at x = ±a. More specifically, F̂ ′(x) should exist at x = ±a. Since F̂ ′(x) = βs
on (−∞, −a) ∪ (a, ∞), we have, on [−a, a], F̂ ′(x)|x=±a = F ′(s)|s=0,1 = p(s)|s=0,1 = βs . So the trainable parameters include
p(si) = wi , i = 1, . . . , m̂, subject to the constraint

∫ 1
0 p(s)ds = 1.

Remark 1. The nonlinear layer is only employed before the final output (see Fig. 1), which can be applied to all dimensions
or simply the dimensions that have not been deactivated by the squeezing layer. In both cases, the nonlinear layer enlarges
the prescribed prior distribution by a nonlinear component-wise transformation. The parameter βs acts as an estimate of
the density p(s) at s = 0, 1. If a is sufficiently large, βs can be small accordingly. The prior distribution is often chosen as
the standard Gaussian, which means that the density is larger around the origin when the data pass the nonlinear layer.
This suggests we may consider an adaptive mesh for more effectiveness, in other words, the mesh is finer around s = 1/2
and coarser around s = 0, 1.
6

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
3.4. The complexity of KRnet

We count the number of trainable parameters in KRnet. For simplicity, we assume that each f outer
[k] has L general coupling

layers f inner
[k,i] . Let dk be the number of effective dimensions for f outer

[k] and NNN,k the number of model parameters for the
neural network Eq. (10) used in f inner

[k,i] . We note that the main characteristic of KRnet is that a portion of dimensions will
be deactivated as k increases. As dk decreases with k, we expect that the neural network Eq. (10) in f inner

[k,i] should become
simpler for a larger k. In other words, NNN,k may decrease as k increases. For simplicity, we let NNN,k = rNNN,k−1, where
0 < r < 1, without worrying about the detailed configuration of the neural network. The number of trainable parameters is
d2

k for LR , and m̂d for LN , and 2dk for the scale and bias layer. Assume that d = mK . We have dk = d − (k −1)m, k = 1, . . . , K .
According to the flow chart in Fig. 1, we have the total number of model parameters as

Ndof = m̂d +
K−1∑
k=1

(NNN,1rk−1L + (K − k + 1)2m2 + 2(K − k + 1)mL). (22)

The model complexity is mainly determined by the depth L and the number K for the partition of data.

3.5. KRnet for density estimation

We study the performance of KRnet for density estimation in this part and provide more results on the comparison
between the real NVP and the KRnet that were not included in [46]. Once the KRnet is constructed, we train the model
p X (x; �) by maximizing the likelihood of the data or minimizing the cross entropy between the data distribution and the
density model, where � includes all the trainable model parameters. Let S = {x(i)}Nt

i=1 be the training set and p X,data(x) the
underlying data distribution. The Kullback-Leibler (KL) divergence between p X,data(x) and p X (x; �) is

min
�

D K L(p X,data(x)||p X (x;�)) = Ex∼p X,data(x)

[
log

p X,data(x)

p X (x;�)

]
= H

(
p X,data(x), p X (x;�)

)− H
(

p X,data(x)
)

(23)

where H
(

p X,data(x)
)

is the entropy of p X,data(x) and H
(

p X,data(x), p X (x;�)
)

is the cross entropy of p X,data(x) and p X (x; �).
Since p X,data(x) is independent of �, minimizing the KL divergence is equivalent to minimizing the cross entropy. Note that

H(p X,data(x), p X (x;�)) ≈ − 1

Nt

Nt∑
i=1

log p X (x(i);�), (24)

which corresponds to the negation of the log-likelihood.
To measure the quality of KRnet, we compute the KL divergence Eq. (23) on a validation set between a reference PDF

and the trained density model. The training data sets S is generated as follows. Assume that X has i.i.d. components and
each component Xi ∼ Logistic(0, s) has a PDF ρ(xi; 0, s). We generate a sample x(i) of X , and then check if it satisfies the
following constraint:∥∥∥Rγ ,θ j [x(i)

j , x(i)
j+1]T

∥∥∥
2
≥ C, j = 1, . . . ,d − 1, (25)

where C is a specified constant, and

Rγ ,θ j =
[

γ 0
0 1

][
cosθ j −sinθ j
sinθ j cosθ j

]
, θ j =

{ π
4 , if j is even
3π
4 , otherwise

.

The sample x(i) will be accepted if the constraint Eq. (25) is satisfied and rejected otherwise. This way, an elliptic hole is
generated for any two adjacent dimensions of data points. The reference PDF is then defined as

p X,ref(x) = I B(x)
∏d

i=1 ρ(xi;0, s)

E[I B(X)] , (26)

where B is the set defined by equation (25) and I B(·) is an indicator function with I B(x) = 1 if x ∈ B; 0, otherwise. For
this test problem, we set d = 8, γ = 3 and C = 7.6. This case has been studied in [46], where the rotation layers and
nonlinear layers are turned off. In [46] an algebraic convergence has been observed numerically for both the real NVP and
the KRnet, where the convergence rate of KRnet is about twice as large as that of the real NVP. We here only demonstrate
the effectiveness of the rotation layer and the nonlinear layer.

We now compare the performance of KRnet and real NVP numerically. In KRnet, we deactivate the dimensions by one,
i.e., K = 7. We let NNN,k = 0.9NNN,k−1 by adjusting the width of the neural network NN[i] , i = 1, 2, 3, which consists of two
fully connected hidden layers of the same width. Other configurations of NN[i] can also be considered. One example is given
7

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Table 1
The effects of rotation and nonlinear layers in KRnet. δI , δII and δIII are relative errors of KRnet, respectively, for the aforementioned three stages. δ is the
relative error of real NVP, whose depth is chosen to roughly match the DOFs of the KRnets from the same column. For the nonlinear layers, we use 32
nonuniform elements to decompose [−30, 30], i.e., a = 30. Note that the rotation layers and the nonlinear layers do not introduce a significant increase in
the total number of DOFs. The percentages in parentheses indicate the degree of drop in terms of δI .

KRnet L = 2 L = 4 L = 6 L = 8

δI 7.54e-2 2.45e-2 1.44e-2 9.50e-3
δII 6.53e-2 (↓13%) 2.24e-2 (↓9%) 1.39e-2 (↓3%) 9.11e-3 (↓4%)
δIII 4.93e-2 (↓35%) 1.95e-2 (↓20%) 1.26e-2 (↓13%) 8.34e-3 (↓12%)
Real NVP L = 10 L = 20 L = 32 L = 42
δ 2.17e-2 1.98e-2 2.11e-2 2.05e-2

Fig. 2. The architecture of NN[i] for affine coupling layers, for i = 0, . . . , L − 1 (FC layers refer to fully connected layers).

in Fig. 2, which is used in section 5. The neural network NN[i] (for i = 0, . . . , L − 1) consists of three hidden layers and one
linear layer, where the first hidden layer and the linear layer have w neurons, and the middle two layers have w/2 neurons.
In this experiment, we combine the two middle hidden layers to one hidden layer with w neurons. We set w = 24 and use
the rectified linear unit function (ReLU) as the activation function [50]. The depth of the real NVP will be determined by
Ndof of the KRnet, since we split the dimensions into two halves in real NVP. The KRnet will be implemented as follows. We
train KRnet with three stages and record the errors of each stage. In the first stage, we switch off both the rotation layers
and the nonlinear layers and train the model for 8000 epochs; in the second stage, we switch on the rotation layers and
restart the training process for another 2000 epochs; finally, we switch on both the rotation layers and the nonlinear layers
and continue the training process for another 2000 epochs. For the real NVP, we simply run 8000 epochs. For each epoch,
we compute the relative error

δ = D K L(p X,ref(x)||p X (x;�))

H(p X,ref(x))
(27)

using the validation set, since the cross entropy should converge to the differential entropy of the reference PDF. We record
the minimum relative error of all epoches. Furthermore, to reduce the bias of δ, we will sample 10 independent training
sets and repeat the training process ten times to obtain an averaged relative error δ. The relative errors corresponding to
the above three stages of training KRnet are denoted as δI , δII and δIII . We will sample 3.2 × 105 data points for both the
training set and the validation set. We employ the Adam optimizer [51] with learning rate 0.001 and batch size 80000.

The results of numerical experiments have been summarized in Table 1. First of all, both δII and δIII are smaller than δI ,
indicating that the rotation layers and nonlinear layers are able to improve the model performance. Such an improvement is
more noticeable for a smaller L. Second, for the specific setup of the numerical experiments, the errors δi , i = I, I I, I I I , of the
KRnet decay consistently as L increases while the errors of the real NVP do not show consistent decay. Since we compute
the errors after 8000 epochs for all L, this shows that for a comparable model complexity the KRnet needs less epoches to
obtain a substantial decrease in error than the real NVP. Third, as also shown in [46], the real NVP performance better than
KRnet for a small L. The real NVP can be regarded as a KRnet with a half-half partition, i.e., K = 2 and m = d

2 = 4. For a
fixed complexity, the performance of KRnet depends on both K and L. In Fig. 3, we compare the approximated distributions
given by the real NVP with L = 42 and the KRnet with L = 8, where both the rotation layers and the nonlinear layers are
switched on.

4. Adaptive deep density approximation for the stationary Fokker-Planck equation

We intend to use KRnet as a PDF model to approximate the Fokker-Planck equation to alleviate the difficulties from the
curse of dimensionality. In particular, we will develop an adaptive deep density approximation (ADDA) approach, which con-
sists of two components: 1) solving the Fokker-Planck equation on a certain set of collocation points by a machine learning
technique; 2) choosing a new set of collocation points to refine the current approximate solution. These two components
are implemented alternately to achieve adaptivity such that both the accuracy and the efficiency will be improved.
8

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 3. Training data, and data sampled from KRnet and real NVP. The first row shows the components x1 and x2, and the second row shows the components
x4 and x5. We pick the two pairs of adjacent dimensions, where the real NVP performs the best and the worst, respectively.

4.1. Stochastic gradient descent based on stochastic collocation points

Let p X (x; �) be a probability density function associated with the random vector X , which is based on the KRnet. All
the constraints in Eq. (4) and Eq. (5) are naturally satisfied since p X (x; �) is a family of probability density functions,
implying that the difficulties caused by the boundary conditions and the nonnegativity of PDF have disappeared. We seek
to approximate the solution p(x) of the Fokker-Planck equation by p X (x; �) to take advantage of the weaker dependence
of deep neural networks on dimensionality than traditional computational approaches such as the finite element methods
[52–54].

The main idea of a machine learning approach to solve PDEs is to consider an optimization problem defined on a set
of collocation points where the equation is constrained. Let pdata(x) be a probability density function, based on which we
define a loss functional

J (p X (x;�)) = Epdata(x)

(
r2(x;�)

)
= Epdata(x)

(
L2(p X (x;�))

)
(28)

where Epdata(x) denotes the expectation with respect to the training set, and r is the residual loss. The solution p(x) of
Eq. (3) can be approximated by p X (x; �) through minimizing the loss functional J (p X (x; �)). In reality, we usually do
not have much prior understanding about the residual, and simply assign pdata(x) a simple distribution, e.g., a uniform
distribution defined on a finite computational domain. We then use pdata(x) to sample a set C = {x(i)}N

i=1 of collocation
points to approximate the loss functional, i.e.,

Ĵ (p X (x;�)) = 1

N

N∑
i=1

L2
(

p X (x(i);�)
)

≈ J (p X (x;�)) , (29)

based on which we choose the optimal parameter �∗:

�∗ = arg min
�

Ĵ (p X (x;�)). (30)

The optimization problem Eq. (30) will be solved by stochastic gradient-based optimization [55,51], which is summarized
as follows. The set of collocation points can be divided into nb mini-batches {Cib }nb

ib=1, where every mini-batch Cib contains

m samples such that N = mnb . Denoting the parameters at ib-th iteration of a certain epoch j as �(j)
ib

, for every mini-

batch Cib and x(l) ∈ Cib , l = 1, . . . , m, one can apply the mini-batch to estimate the expectation of the residual loss and the
stochastic gradient, and then update the parameters � based on the following scheme
9

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 4. An example of linear finite element meshes and stochastic collocation points in [0,1]2.

�
(j)
ib

= �
(j)
ib−1 − η∇�

[
1

m

m∑
l=1

(
r(x(l);�(j)

ib−1)
)2
]

for ib = 1, . . . ,nb, j = 1,2, . . . (31)

where η is a given learning rate. Compared with the gradient descent method, the stochastic gradient descent method only
requires computing the gradient on the mini-batch Cib . In this work we employ the Adam optimizer, which is widely used
to accelerate the training process for deep neural networks, as this method adopts adaptive learning rates for different
components of parameters through estimates of first and second moments of the gradients [51].

4.2. Adaptive sampling procedure

Compared with the standard finite element methods (FEM) [5], the deep learning approach does not require mesh gen-
eration to solve PDEs, which shares more similarities to meshless methods, and the approximation of Eq. (28) fits naturally
with stochastic gradient-based optimization. Fig. 4 shows a linear finite element mesh in [0, 1]2 and the collocation points
that are generated with a uniform distribution in [0, 1]2.

Adaptivity plays an important role in classical numerical methods for the approximation of PDEs. Considering a finite
element method subject to a certain mesh of the computation domain, we expect that the element-wise approximation
errors are distributed in a nearly uniform way. This means that the most effective mesh should be non-uniform since
the regularity of the solution varies in the computation domain. In our problem, the distribution pdata(x) of the collocation
points will affect the approximation of J (p X (x; �)) and the optimal parameter �∗ as well. Apparently a uniform distribution
is not an optimal choice for pdata(x) especially for high-dimensional problems. For a certain amount of collocation points,
the curse of dimensionality will weaken the contribution of each collocation point to our learning problem, which will
be worsen for the approximation of PDF if the exact solution p(x) is far away from being uniform. We then expect to use
samples from a nonuniform distribution pdata(x) for the approximation J (p X (x; �)), where a simple criterion is that pdata(x)

should be consistent with the true solution p(x) to some extent. This will result in adaptive deep density approximation
(ADDA) for the approximation of the Fokker-Planck equation.

It is, in general, difficult to generate samples that are adaptive to the true solution p(x). Fortunately, flow-based deep
generative models provide an opportunity for us to do this thanks to the invertible mapping. Our strategy is as follows.

Starting with an initial set of collocation points C0 =
{

x(i)
(0)

}N

i=1
drawn from a uniform distribution, we train and obtain the

KRnet Z = fKR,(0)(X; �∗,(0)), which corresponds to the PDF p(0)
X (x; �∗,(0)). We then generate a new set C1 =

{
x(i)
(1)

}N

i=1
of

collocation points by X = f −1
KR,(0)(Z) using N samples from the prior distribution of Z . Then C1 is a set of samples from

p(0)
X (x; �∗,(0)). We continue to update the KRnet using �∗,(0) as the initial parameters and C1 as the training set, which

yields fKR,(1)(X; �∗,(1)). Then another iteration starts. In general, we sample the current optimal PDF model p(k)
X (x; �∗,(k))

to generate a new training set Ck+1 =
{

x(i)
(k+1)

}N

i=1
and update the KRnet to fKR,(k+1)(x; �∗,(k+1)). This way, the samples

for the training process become more and more consistent with the true solution, if p(k)
X (x; �∗,(k)) approaches p(x) as k

increases. In other words, more collocation points will be chosen in the region of high density while less collocation points
in the region of low density. Our adaptive training process has been summarized in Algorithm 1, where Nadaptive ∈ N is
a given number of maximum adaptivity iterations, and this strategy is called the adaptive deep density approximation
based on KRnet (ADDA-KR) from now on. The final KRnet-induced PDF is the ADDA-KR approximation for the steady state
Fokker-Planck problem (3)–(5).
10

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
We note that the adaptivity in Algorithm 1 can be further tuned. One possible strategy is to update the training set
gradually for each training stage, e.g., up to a certain percentage. In this work, we replace the whole training set from the
previous stage just for simplicity.

4.3. Implementation issues

When minimizing the loss functional Eq. (29), numerical underflow issues can be encountered, especially when x is
relatively high-dimensional. That is, the loss functional can be too small to provide an effective gradient descent direction.
To alleviate this issue, we develop the following scaling strategy in our implementation. Multiplying both sides of equation
(3) by a constant Cs > 0 gives

L (Cs p(x)) = ∇ · [Cs p(x)∇V (x)] + ∇ · [∇ · (Cs p(x)D(x))] = 0. (32)

The solution of the above equation is the same as the solution of the original stationary Fokker-Planck equation (3). How-
ever, if Cs is large enough, Eq. (32) is numerically more stable than Eq. (3), and the loss functional Eq. (29) associated
with Eq. (32) can typically provide effective gradient descent directions to optimize the parameters �. In our practical
implementation, we usually set Cs = 100.

Algorithm 1 Adaptive deep density approximation based on KRnet (ADDA-KR) for the Fokker-Planck equation.

Input: Initial KRnet p(0)
X (x; �(0)

0), maximum epoch number Ne , maximum iteration number Nadaptive , learning rate η, batch size m, and initial training set
C0 =

{
x(i)
(0)

}N

i=1
.

1: Divide C0 =
{

x(i)
(0)

}N

i=1
into nb mini-batch {Cib

}nb
ib=1.

2: for k = 1 : Nadaptive do
3: for j = 0 : Ne − 1 do
4: for ib = 1 : nb do
5: Compute the values of the residual loss r(x(l)

(k−1)
; �(j)

ib−1) (see Eq. (29)) for l = 1, . . . , m, on the mini-batch Cib .

6: Update the parameters �(j)
ib

using the Adam optimizer with learning rate η.
7: end for
8: if j = Ne − 1 then
9: Let �∗,(k) := �

(Ne−1)
nb

.
10: else
11: Let �(j+1)

0 := �
(j)
nb

.
12: end if

13: Shuffle the set of collocation points Ck−1 =
{

x(i)
(k−1)

}N

i=1
.

14: Divide Ck−1 =
{

x(i)
(k−1)

}N

i=1
into nb mini-batch {Cib

}nb
ib=1.

15: end for
16: if k = Nadaptive then
17: Let � := �∗,(k) .
18: else

19: Generate Ck+1 =
{

x(i)
(k+1)

}N

i=1
by p(k)

X (x; �∗,(k)).

20: Let �(0)
0 := �∗,(k) .

21: end if
22: end for
23: Obtain the ADDA-KR solution p X (x; �) := p

(Nadaptive)

X (x; �).
Output: The ADDA-KR solution p X (x; �).

5. Numerical study

In this section, numerical experiments are conducted to illustrate the effectiveness of our ADDA-KR (adaptive deep den-
sity approximation based on KRnet) approach presented in Algorithm 1. Five test problems for the Fokker-Planck equation
are studied—one one-dimensional test problem, two two-dimensional test problems (one is a single modal distribution, and
the other is a bimodal distribution), one four-dimensional test problem, and one eight-dimensional test problem. The acti-
vation function of NN[i] (see Eq. (10)) is set to the hyperbolic tangent function for all test problems. For comparison, we also
test the performance of a direct adaptive version of classic real NVP, and as the real NVP utilizes a half-half partition (see
section 3.5), we refer to it as ADDA-HH. The implementation of ADDA-HH is to replace the KRnet in ADDA-KR (Algorithm 1)
by the classical real NVP, and we set the same input parameters for both ADDA-KR and ADDA-HH in all our test prob-
lems. In addition, results of non-adaptive versions of KRnet and real NVP are included for high-dimensional test problems
(the four-dimensional and the eight-dimensional test problems), which are referred to as Uniform-KR and Uniform-HH. In
Uniform-KR and Uniform-HH, collocation points are generated through uniform distributions, and other settings of KRnet
and real NVP are the same as the settings for ADDA-KR in these test problems.
11

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 5. The KL divergence with respect to epochs, one-dimensional test problem.

5.1. A one-dimensional test problem

We start with this one-dimensional case, where the governing equation is

∂(xp(x))

∂x
+ 1

2

∂2(p(x))

∂x2
= 0,∫

R

p(x)dx = 1, p(x) ≥ 0,
(33)

and the exact solution is

p(x) = exp(−x2)√
π

. (34)

For this one-dimensional problem, KRnet is the same as the classical real NVP, meaning that only the affine coupling layers
are needed. As the affine coupling layers (see section 3.1) need at least two-dimensions, we use [x, x] as an input in our
implementation of KRnet. We generate the initial parameters �(0)

0 for the inputs of Algorithm 1, using Glorot Gaussian
initialization [56], and then construct the initial KRnet p(0)

X (x; �(0)
0). The number of epochs is set to Ne = 300, and only one

adaptivity iteration is conducted for this one-dimensional problem, i.e., Nadaptive = 1. The learning rate for Adam optimizer
is set to η = 0.0002, and the batch size is set to m = 500. The initial training set C0 is generated through the uniform
distribution with range [−5, 5], and the sample size is set to |Ck| = 3000 for each iteration step k for k = 0, . . . , Nadaptive. In
addition, we take L = 8 affine coupling layers, and two fully connected layers with w = 48 neurons for NN[i] (see Eq. (10)).

To assess the accuracy of our ADDA-KR approach (Algorithm 1), we compute the KL divergence between the exact
solution p(x) and our ADDA-KR solution p X (x; �):

D K L(p(x)||p X (x;�)) =
∞∫

−∞
p(x) log p(x)dx −

∞∫
−∞

p(x) log p X (x;�)dx

= −1

2
(1 + logπ) −

∞∫
−∞

p(x) log p X (x;�)dx

where the last term of the above equation is approximated by Monte Carlo integration with 104 samples. Fig. 5 shows the
KL divergence decreases to zero quickly. Fig. 6 shows the exact solution p(x) and our ADDA-KR solution p X (x; �), where it
can be seen that they are visually indistinguishable.

5.2. Two-dimensional test problems

In this part, two-dimensional Fokker-Planck equations are considered, where the solution of the first one is a single
modal distribution and the solution of the second one is a bimodal distribution.
12

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 6. The exact solution and the ADDA-KR solution, one-dimensional test problem.

5.2.1. Two-dimensional single modal distribution
The stationary Fokker-Planck equation for this test problem is

∇ · [p(x)Ax]+∇ · [∇ · (p(x)D] = 0,∫
Rd

p(x)dx = 1, p(x) ≥ 0, (35)

where A and D are two constant matrices. This equation is corresponding to the following Ornstein-Uhlenbeck process

dXt = −A Xtdt + Gdwt, (36)

where D = G GT/2.
The solution of Eq. (35) exists if the real parts of the eigenvalues of A are larger than zero [1], and it can be written as

p(x) = (2π)−1(det�)−
1
2 exp(−1

2
xT�−1x), (37)

where the covariance matrix � is determined by the following Lyapunov equation

A� + �AT = 2D. (38)

The above Lyapunov equation has a unique solution if and only if the eigenvalues λi of A satisfy λi �= −λ j for all i, j = 1, 2.
In this test problem, the constant matrix A for the drift term and the diffusion matrix D are set to

A =
[

1.37096037 −0.48306187
−0.48306187 1.62903963

]
, D =

[
22.52429192 −6.55821381
−6.55821381 12.68972

]
,

which implies that the covariance matrix � is

� =
[

8.12186142 −0.26372569
−0.26372569 3.81664391

]
.

We generate the initial parameters �(0)
0 with Glorot Gaussian initialization [56], and then construct the initial KRnet

p(0)
X (x; �(0)

0) for Algorithm 1. The number of epochs is set to Ne = 300, and two adaptivity iterations are conducted for this
problem, i.e., Nadaptive = 2. The learning rate for Adam optimizer is set to η = 0.0002, and the batch size is set to m = 1000.
The initial training set C0 is generated through the uniform distribution with range [−6, 6]2, and the sample size is set to
|Ck| = 6 × 104 for each iteration step k for k = 0, . . . , Nadaptive. In addition, we take L = 8 affine coupling layers, and two
fully connected layers with w = 48 neurons for NN[i] (see Eq. (10)).

Fig. 7 shows the exact solution p(x) and our ADDA-KR solution p X (x; �), where it can be seen that they are visually
indistinguishable. For this test problem, there is no significant difference between the ADDA-KR solution and the ADDA-HH
solution, and we then only show the exact solution and our ADDA-KR solution. Fig. 8 shows samples drawn from the exact
solution of Eq. (35) and our ADDA-KR solution, which confirms that the corresponding distributions (p(x) and p X (x; �)) are
very close.
13

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 7. Solutions, two-dimensional single modal test problem.

Fig. 8. Samples, two-dimensional single modal test problem.

5.2.2. Two-dimensional bimodal distribution
In this test problem, the Fokker-Planck equation considered is

−∇ · [p(x)∇ log(β1 p1(x) + β2 p2(x))] + ∇2 p(x) = 0,∫
Rd

p(x)dx = 1, p(x) ≥ 0, (39)

where for k = 1, 2, each pk(x) is the probability density function of the normal distribution with mean μk and covariance
�k , and β1 + β2 = 1. The solution of Eq. (39) is the following Gaussian mixture distribution [47, p. 123],

p(x) = β1 p1(x) + β2 p2(x). (40)

Here, we set μk , �k and βk for k = 1, 2 as

β1 = 0.55, β2 = 0.45, μ1 = [−1,−1]T, μ2 = [2,2]T

�1 =
[

6.12186142 −0.26372569
−0.26372569 1.81664391

]
, �2 =

[
2.8828528 −0.70234742

−0.70234742 2.69199911

]
.

(41)

The matrices �1 and �2 are positive definite, and their entries are randomly constructed.
We again generate the initial parameters �(0)

0 with Glorot Gaussian initialization, and then construct the initial KRnet
p(0)

X (x; �(0)
0). The number of epochs is set to Ne = 200, and the maximum number of adaptivity iterations conducted for

this problem is set to Nadaptive = 5. The learning rate for Adam optimizer is set to η = 0.0001, and the batch size is set to
m = 1000. The initial training set C0 is generated through the uniform distribution with range [−5, 5]2, and the sample size
14

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 9. The relative error for ADDA-KR, two-dimensional bimodal test problem.

is set to |Ck| = 6 × 104 for each iteration step k for k = 0, . . . , Nadaptive. In addition, we take L = 8 affine coupling layers
for both KRnet and real NVP, and two fully connected layers with w = 48 neurons for NN[i] (see Eq. (10)). For KRnet, we
set K = 2 to focus on the effectiveness of the rotation layer and the nonlinear layer for this test problem. To assess the
effectiveness of our ADDA-KR approach, we generate a validation data set Cv = {x(i)}Nv

i=1, and compute the relative error
defined by Eq. (27). The KL divergence is approximated by Monte Carlo integration

D K L(p(x)||p X (x;�)) ≈ 1

Nv

Nv∑
i=1

(
log p(x(i)) − log p(x(i);�)

)
, (42)

where x(i) is drawn from the exact solution p(x), and the size of the validation data set is set to 3.2 × 105 such that the
KL-divergence can be approximated well.

Fig. 9 shows the relative error between the exact solution p(x) and our ADDA-KR solution p X (x; �) at each adaptivity
iteration step k. It is clear that, as the adaptivity iteration step increases, the relative error decreases quickly. In addition, it
can be seen that as the number of epochs increases, the relative error decreases. Fig. 10 shows the comparison between our
ADDA-KR and ADDA-HH. From Fig. 10(a), it can be seen that the relative error of ADDA-KR is smaller than that of ADDA-HH
at each adaptivity iteration step. Fig. 10(b), Fig. 10(c) and Fig. 10(d) show the relative error decreases as the number of
epochs increases, at adaptivity iteration steps k = 1, 3, 5 respectively. It can be seen that the relative error of ADDA-KR is
clearly smaller than that of ADDA-HH for each value of epochs, except for the situations that the epoch number is smaller
than 125 at the first adaptivity iteration in 10(b). Fig. 11 shows the exact solution p(x) and the ADDA-KR solution p X (x; �),
where it can be seen that this bimodal distribution is well approximated by our ADDA-KR solution.

5.3. High-dimensional bimodal distributions (four-dimensional and eight-dimensional test problems)

In this part, we again consider the Fokker-Planck equation with two peaks Eq. (39) and set β1 = 0.55, β2 = 0.45. However,
the dimensionality of the problem considered in this part is different from section 5.2. We here consider a four-dimensional
(d = 4) problem and an eight-dimensional (d = 8) problem. The exact solution of Eq. (39) is a Gaussian mixture distribution
Eq. (40). For d = 4, we set

μ1 = [−1,−1,−0.3,−0.3]T, μ2 = [2,2,0.6,0.6]T

�′
1 =

[
�1 0
0 0.6�1

]
, �′

2 =
[

�2 0
0 0.6�2

]
,

(43)

where �1 and �2 are given in Eq. (41), and �′
1 and �′

2 are the covariance matrices of p1 and p2 for this test problem.

Similarly to the previous settings, we generate the initial parameters �(0)
0 with Glorot Gaussian initialization, and then

construct the initial KRnet p(0)
X (x; �(0)

0). The number of epochs is set to Ne = 1, and the number of adaptivity iterations
conducted for this problem is set to Nadaptive = 16. Here, KRnet is trained and sampled in an interleaved manner. That is
for both the four-dimensional and the eight-dimensional test problems, samples Ck drawn at the k-th adaptivity iteration
are immediately used for training KRnet at the (k + 1)-th iteration, while p(k+1)

X (x; �) is immediately used for sampling.
The learning rate for Adam optimizer is set to η = 0.0001, and the batch size is set to m = 500. The initial training set
C0 is generated through the uniform distribution with range [−6, 6]4, and two cases of the collocation sample size are
considered: one is 105 and the other is 2 × 105. In addition, we take L = 8 affine coupling layers for KRnet, and L = 16
for real NVP. The architecture of NN[i] is the same as that shown in Fig. 2 with w = 120. For KRnet, we set K = 3. The
15

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 10. The relative error for ADDA-KR and ADDA-HH, two-dimensional bimodal test problem.

Fig. 11. Solutions, two-dimensional bimodal test problem.

rotation layer and the nonlinear layer are turned on. To assess the accuracy of ADDA-KR, we again compute the relative
error Eq. (27) between p(x) and p X (x; �) using 3.2 × 105 validation samples drawn from the exact solution.

Fig. 12 shows the relative error between p(x) and p X (x; �) for ADDA-KR and ADDA-HH, where different numbers of
collocation points are considered. From Fig. 12(a), it can be seen that the relative error of ADDA-KR is smaller than that of
ADDA-HH. From Fig. 12(b) and Fig. 12(c), as the number of epochs increases, the relative errors of ADDA-KR and ADDA-HH
decrease quickly, while the relative errors of the uniform sampling strategies (Uniform-KR and Uniform-HH) decrease slowly.
In addition, it can be seen that the relative error decreases as the number of training points increases from 105 to 2 × 105

for ADDA-KR, ADDA-HH, Uniform-KR and Uniform-HH.
16

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
Fig. 12. Relative errors, four-dimensional test problem.

Fig. 13. Relative errors, eight-dimensional test problem.

Finally, we consider an eight-dimensional bimodal distribution. For this problem, we set

μ1 = [−1,−1,−0.3,−0.3,−0.4,−0.4,−1.6,−1.6]T, μ2 = [2,2,0.6,0.6,0.8,0.8,2.3,2.3]T

�̃1 =

⎡
⎢⎢⎣

�1 0 0 0
0 0.6�1 0 0
0 0 0.8�1 0
0 0 0 1.2�1

⎤
⎥⎥⎦ , �̃2 =

⎡
⎢⎢⎣

�2 0 0 0
0 0.6�2 0 0
0 0 0.8�2 0
0 0 0 1.2�2

⎤
⎥⎥⎦ ,

(44)

where �1 and �2 are given in Eq. (41), and �̃1 and �̃2 are the covariance matrices of p1 and p2 for this test problem.
Again, we generate the initial parameters �(0)

0 with Glorot Gaussian initialization, and then construct the initial KRnet
p(0)

X (x; �(0)
0). The number of epochs is set to Ne = 1, and the maximum number of adaptivity iterations conducted for this

problem is set to Nadaptive = 120. The learning rate for Adam optimizer is set to η = 0.0001, and the batch size is set to
m = 4000. The initial training set C0 is generated through the uniform distribution with range [−6, 6]8, and two cases of
the collocation sample size are considered: one is 3.2 × 105 and the other is 6.4 × 105. In addition, we take L = 10 affine
coupling layers for KR, and L = 20 for real NVP. The architecture of NN[i] is the same as that shown in Fig. 2 with w = 160.
For KRnet, we set K = 3. The rotation layer and the nonlinear layer are turned on. We again compute the relative error
Eq. (27) using 3.2 × 105 validation samples drawn from the exact solution.

Fig. 13 shows the relative error between p(x) and p X (x; �) for ADDA-KR and ADDA-HH. From Fig. 13(a), it can be seen
that the relative error of ADDA-KR is smaller than that of ADDA-HH, when the number of epochs is larger than 60. From
Fig. 13(b) and Fig. 13(c), as the number of epochs increases, the relative errors of ADDA-KR and ADDA-HH decrease quickly,
while the relative errors of the uniform sampling strategies (Uniform-KR and Uniform-HH) decrease slowly. In addition, it
can be seen that the relative error decreases as the number of collocation points increases from 3.2 × 105 to 6.4 × 105 for
ADDA-KR, ADDA-HH, Uniform-KR and Uniform-HH.

6. Conclusions

Conducting adaptivity is of fundamental importance for the efficient approximation of high-dimensional Fokker-Planck
equations. With a focus on deep learning methods, we have developed an adaptive deep density approximation strategy
17

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
based on KRnet (ADDA-KR) in this work. Our KRnet, which is built on a block-triangular structure inspired by the Knothe-
Rosenblatt rearrangement, gives an explicit family of probability density functions, which can serve as solution candidates
of the Fokker-Planck equation. We also showed that KRnet is effective for estimating high-dimensional density functions
in general. The fact that KRnet can efficiently generate samples integrates the two main steps in our ADDA-KR strategy to
achieve efficient iterations: train KRnet for the Fokker-Planck equation with current collocation points, and generate new
collocation points using the KRnet for the next iteration. Compared to real NVP, which is a widely used generative model,
numerical results show that our ADDA-KR gives much more accurate numerical solutions for the Fokker-Planck equation.
ADDA-KR in general works very well for Fokker-Planck equations with dimension of O(10). For higher-dimensional cases, the
sparsity of high-dimensional data will induce more severe difficulties, where we may need to consider dimension reduction
to adapt more problem properties into the algorithm.

CRediT authorship contribution statement

Kejun Tang: Programming, Methodology, Writing-Original draft preparation. Xiaoliang Wan: Conceptualization, Method-
ology, Programming, Writing. Qifeng Liao: Conceptualization, Methodology, Writing-Reviewing and editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

K. Tang and Q. Liao are supported by the National Natural Science Foundation of China (No. 12071291) and the Science
and Technology Commission of Shanghai Municipality (No. 20JC1414300), and X. Wan’s work was supported by the National
Science Foundation under grant DMS-1913163.

References

[1] H. Risken, Fokker-Planck-Kolmogorov Equation, Springer, 1984.
[2] S. Jin, B. Yan, A class of asymptotic-preserving schemes for the Fokker–Planck–Landau equation, J. Comput. Phys. 230 (2011) 6420–6437.
[3] Y. Li, A data-driven method for the steady state of randomly perturbed dynamics, Commun. Math. Sci. 17 (2019) 1045–1059.
[4] B. Spencer, L. Bergman, On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems, Nonlinear Dyn. 4 (4) (1993) 357–372.
[5] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University

Press, USA, 2014.
[6] M. Dobson, Y. Li, J. Zhai, An efficient data-driven solver for Fokker-Planck equations: algorithm and analysis, arXiv:1906 .02600, 2019.
[7] X. Chen, L. Yang, J. Duan, G.E. Karniadakis, Solving inverse stochastic problems from discrete particle observations using the Fokker-Planck equation

and physics-informed neural networks, SIAM J. Sci. Comput. 43 (3) (2021) B811–B830.
[8] W. E, A proposal on machine learning via dynamical systems, Commun. Math. Stat. 5 (1) (2017) 1–11.
[9] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1) (2018)

1–12.
[10] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations,

arXiv:1711.10561, 2017.
[11] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations,

arXiv:1711.10566, 2017.
[12] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[13] G. Pang, L. Lu, G.E. Karniadakis, fPINNs: fractional physics-informed neural networks, SIAM J. Sci. Comput. 41 (4) (2019) A2603–A2626.
[14] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[15] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys. 366

(2018) 415–447.
[16] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty

quantification without labeled data, J. Comput. Phys. 394 (2019) 56–81.
[17] K. Wu, D. Xiu, Numerical aspects for approximating governing equations using data, J. Comput. Phys. 384 (2019) 200–221.
[18] K. Wu, T. Qin, D. Xiu, Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data, SIAM J. Sci. Comput. 42 (6)

(2020) A3704–A3729.
[19] K. Li, K. Tang, T. Wu, Q. Liao, D3M: a deep domain decomposition method for partial differential equations, IEEE Access 8 (2020) 5283–5294.
[20] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to

forward and inverse problems, Comput. Methods Appl. Mech. Eng. 365 (2020) 113028.
[21] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations, Comput.

Methods Appl. Mech. Eng. 387 (2021) 114129.
[22] W. Li, X. Xiang, Y. Xu, Deep domain decomposition method: elliptic problems, in: J. Lu, R. Ward (Eds.), Proceedings of the First Mathematical and

Scientific Machine Learning Conference, in: Proceedings of Machine Learning Research, PMLR, vol. 107, Princeton University, Princeton, NJ, USA, 2020,
pp. 269–286.

[23] A. Heinlein, A. Klawonn, M. Lanser, J. Weber, Combining machine learning and domain decomposition methods—a review, Technical report, Universität
zu Köln, October 2020.

[24] E. Kharazmi, Z. Zhang, G.E. Karniadakis, hp-VPINNs: variational physics-informed neural networks with domain decomposition, Comput. Methods Appl.
Mech. Eng. 374 (2021) 113547.
18

http://refhub.elsevier.com/S0021-9991(22)00142-5/bibD9B94876854CC3818C254E28F054069Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibA7FA48F2D5B3D86A39F07D94A285EE0Cs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib4F048D70EE33FC24906A2C0C8C0725BFs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib70BF64CBCD09736487B8471332848547s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibDDD2FC6FD34F410A7BE8B130014178BCs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibDDD2FC6FD34F410A7BE8B130014178BCs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibBE1BBFE47ADEDE028FCD308A3B22FC73s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib4A84C5AB9D50801E766551FF30C90003s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib4A84C5AB9D50801E766551FF30C90003s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibC882CE334754AE4ACF75BC943E72EC3Ds1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibA31A36C2181C15008B755E9EBFA14078s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibA31A36C2181C15008B755E9EBFA14078s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibFFA5E2782054945610B5541EFD9A5D6As1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibFFA5E2782054945610B5541EFD9A5D6As1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib8312833327733E95FE310710804B7029s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib25D61E965DFE01B8ECFE9A56A6283631s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib25D61E965DFE01B8ECFE9A56A6283631s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibB44B5A04EE57CC20CE4E094FF8700351s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibDF4FC3E17D2B7633F2EA5D691FF41DFFs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibDF4FC3E17D2B7633F2EA5D691FF41DFFs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib81AEC82E835F07C5B41BAC3629B5BF67s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib7256898973646E392113504091EB755Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib7256898973646E392113504091EB755Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibC1DA4C9D074D84BEAE2609D926A92D64s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibC1DA4C9D074D84BEAE2609D926A92D64s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib075A67DDF5CAF6137A7C820791A006DFs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib075A67DDF5CAF6137A7C820791A006DFs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib075A67DDF5CAF6137A7C820791A006DFs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib117D7F17AEF61A2C6A78993EBF72C654s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib117D7F17AEF61A2C6A78993EBF72C654s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib9C36ABC7B01088B0CB3F45B59A039CA6s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib9C36ABC7B01088B0CB3F45B59A039CA6s1

K. Tang, X. Wan and Q. Liao Journal of Computational Physics 457 (2022) 111080
[25] H. Sheng, C. Yang, PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries,
J. Comput. Phys. (2020) 110085.

[26] H. Gao, L. Sun, J.-X. Wang, Phygeonet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs
on irregular domain, J. Comput. Phys. 428 (2021) 110079.

[27] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010.
[28] D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput. 27 (3) (2005) 1118–1139.
[29] I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer.

Anal. 45 (3) (2007) 1005–1034.
[30] J. Foo, X. Wan, G.E. Karniadakis, The multi-element probabilistic collocation method (ME-PCM): error analysis and applications, J. Comput. Phys.

227 (22) (2008) 9572–9595.
[31] X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys.

228 (8) (2009) 3084–3113.
[32] A. Narayan, D. Xiu, Stochastic collocation methods on unstructured grids in high dimensions via interpolation, SIAM J. Sci. Comput. 34 (3) (2012)

A1729–A1752.
[33] H. Lei, X. Yang, B. Zheng, G. Lin, N.A. Baker, Constructing surrogate models of complex systems with enhanced sparsity: quantifying the influence of

conformational uncertainty in biomolecular solvation, Multiscale Model. Simul. 13 (4) (2015) 1327–1353.
[34] P. Ren, Y. Xiao, X. Cheang, P.-Y. Huang, Z. Li, X. Chen, X. Wang, A survey of deep active learning, arXiv:2009 .00236v1, 2020.
[35] R. Cang, H. Yao, Y. Ren, One-shot generation of near-optimal topology through theory-driven machine learning, Comput. Aided Des. 109 (2019) 12–21.
[36] R. Vilalta, Y. Drissi, A perspective view and survey of meta-learning, Artif. Intell. Rev. 18 (2001) 77–95.
[37] D.W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley & Sons, 2015.
[38] L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real NVP, arXiv:1605 .08803, 2016.
[39] D.P. Kingma, P. Dhariwal Glow, Generative flow with invertible 1 × 1 convolutions, in: Advances in Neural Information Processing Systems, 2018,

pp. 10215–10224.
[40] L. Zhang, W. E, L. Wang, Monge-Ampère flow for generative modeling, arXiv:1809 .10188, 2018.
[41] T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, in: Advances in Neural Information Processing Systems,

2018, pp. 6571–6583.
[42] G. Carlier, A. Galichon, F. Santambrogio, From Knothe’s transport to Brenier’s map and a continuation method for optimal transport, SIAM J. Math. Anal.

41 (6) (2010) 2554–2576.
[43] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural

Information Processing Systems, 2014, pp. 2672–2680.
[44] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, Stat 1050 (2014) 1.
[45] X. Wan, S. Wei, Coupling the reduced-order model and the generative model for an importance sampling estimator, J. Comput. Phys. 408 (2020)

109281.
[46] K. Tang, X. Wan, Q. Liao, Deep density estimation via invertible block-triangular mapping, Theor. Appl. Mech. Lett. 10 (2020) 143.
[47] G.A. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations, vol. 60, Springer, 2014.
[48] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 770–778.
[49] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv:1502 .03167, 2015.
[50] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Proceedings of the Fourteenth International Conference on Artificial Intelli-

gence and Statistics, 2011, pp. 315–323.
[51] D.P. Kingma, J. Ba Adam, A method for stochastic optimization, arXiv:1412 .6980, 2014.
[52] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (4) (1989) 303–314.
[53] M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,

Neural Netw. 6 (6) (1993) 861–867.
[54] Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, The expressive power of neural networks: a view from the width, in: Advances in Neural Information Processing

Systems, 2017, pp. 6231–6239.
[55] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2) (2018) 223–311.
[56] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Confer-

ence on Artificial Intelligence and Statistics, 2010, pp. 249–256.
19

http://refhub.elsevier.com/S0021-9991(22)00142-5/bib65A4096EF5F2CE04470EF95E481B2773s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib65A4096EF5F2CE04470EF95E481B2773s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibCEA9F89087A5611CFC2F9713E79B653Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibCEA9F89087A5611CFC2F9713E79B653Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib2828E260053342E9849937C7D26C07B1s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib371903E9F17969596DFB5A799E8D0D35s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib3CBB8909D872BEA81A7FDC82DDFFDA2Cs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib3CBB8909D872BEA81A7FDC82DDFFDA2Cs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib386F73C4C110E935FC6A12DAEA618C0Fs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib386F73C4C110E935FC6A12DAEA618C0Fs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibE217643872E92301C85B1377A2763669s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibE217643872E92301C85B1377A2763669s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib321E093B2606F87BD14427924ABE9C2Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib321E093B2606F87BD14427924ABE9C2Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib73286D5A2C290F127BEBC1CE33BB7D4Cs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib73286D5A2C290F127BEBC1CE33BB7D4Cs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibA0CE7D724F4EDE2DB4BAA5DFCC106892s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibEF0D61579D115F3A2C37D16392566152s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib14E7E784DB97A6EFCAF71F9AF5BD3482s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibBD72B8ACAB1A7AB8F30E9216F9A4AA9Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib18689FBB3B676B94C5AA639662C803FBs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib84DA56592FCF5A214C057187BDB9496As1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib84DA56592FCF5A214C057187BDB9496As1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibD2724EC9135BF4C8B018BE95E4B12A5Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibC714594EA189B8F9B30F0C4739D8DCADs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibC714594EA189B8F9B30F0C4739D8DCADs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib47F0FA1194A7FD04DA0AEA385E98910Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib47F0FA1194A7FD04DA0AEA385E98910Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib89F74001219F9D8744F123046467D48Fs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib45F582BCEF897A1F0E8C2444A8F98724s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib45F582BCEF897A1F0E8C2444A8F98724s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib80A54DA3534F3A0EF16CE7CE7B9E0B62s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib50E6F7B9ADEE65AB14F3058C8BDA2EF0s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib438B4F8A50D28D81E16E3577FA78826Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib438B4F8A50D28D81E16E3577FA78826Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib27BD822024C5F6D2B86381BF4D8F1DACs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib01AD37B87E80448AC7A8054C8BF08D9Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib01AD37B87E80448AC7A8054C8BF08D9Bs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib7C1BC1F9205D66540C060701CBACD75Es1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib389EF6677188C627E38B6DD2E7F47418s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib389EF6677188C627E38B6DD2E7F47418s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib14C7C4D682F30107AA8B5A6F28CB4B1As1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib14C7C4D682F30107AA8B5A6F28CB4B1As1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bibE99F2F2B4AAB70EE17DF94B5B40F5C3As1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib7D49A3E95768F824C80E5D1A8A0D9AB0s1
http://refhub.elsevier.com/S0021-9991(22)00142-5/bib7D49A3E95768F824C80E5D1A8A0D9AB0s1

	Adaptive deep density approximation for Fokker-Planck equations
	1 Introduction
	2 Problem setup
	3 KRnet
	3.1 A new affine coupling layer
	3.2 The overall structure of KRnet
	3.3 Other types of layer used in KRnet
	3.4 The complexity of KRnet
	3.5 KRnet for density estimation

	4 Adaptive deep density approximation for the stationary Fokker-Planck equation
	4.1 Stochastic gradient descent based on stochastic collocation points
	4.2 Adaptive sampling procedure
	4.3 Implementation issues

	5 Numerical study
	5.1 A one-dimensional test problem
	5.2 Two-dimensional test problems
	5.2.1 Two-dimensional single modal distribution
	5.2.2 Two-dimensional bimodal distribution

	5.3 High-dimensional bimodal distributions (four-dimensional and eight-dimensional test problems)

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

