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In this work, we develop an importance sampling estimator by coupling the reduced-order 
model and the generative model in a problem setting of uncertainty quantification. The 
target is to estimate the probability that the quantity of interest (QoI) in a complex system 
is beyond a given threshold. To avoid the prohibitive cost of sampling a large scale system, 
the reduced-order model is usually considered for a trade-off between efficiency and 
accuracy. However, the Monte Carlo estimator given by the reduced-order model is biased 
due to the error from dimension reduction. To correct the bias, we still need to sample the 
fine model. An effective technique to reduce the variance reduction is importance sampling, 
where we employ the generative model to estimate the distribution of the data from the 
reduced-order model and use it for the change of measure in the importance sampling 
estimator. To compensate the approximation errors of the reduced-order model, more data 
that induce a slightly smaller QoI than the threshold need to be included into the training 
set. Although the amount of these data can be controlled by a posterior error estimate, 
redundant data, which may outnumber the effective data, will be kept due to the epistemic 
uncertainty. To deal with this issue, we introduce a weighted empirical distribution to 
process the data from the reduced-order model. The generative model is then trained 
by minimizing the cross entropy between it and the weighted empirical distribution. We 
also introduce a penalty term into the objective function to deal with the overfitting for 
more robustness. Numerical results are presented to demonstrate the effectiveness of the 
proposed methodology.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Generative modeling has become a central object in modern machine learning. The goal of generative modeling is to 
model all dependencies within high-dimensional data using a full joint probability density function (PDF), and to generate 
new samples from the learned distribution. The ability to manipulate the joint PDF enables the probabilistic unsupervised 
learning of realistic world models. Generative modeling has found a wide range of applications such as image process-
ing, speech synthesis, text analysis, etc. Significant advances have been achieved in the recent development of generative 
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modeling. Typical approaches include variational autoencoders [11], autoregressive models [5,12–14], flow-based generative 
models [1,2,9], and generative adversarial networks (GANs) [4].

Meanwhile we note that multivariate density estimation is a classical topic in statistics [15], where it shows the equiv-
alent sample size with respect to a dimensionless measure of accuracy will increase at least exponentially with respect to 
the dimensionality. In contrast to the thousands of dimensions considered in generative modeling, practical applications of 
nonparametric density estimators in more than three dimensions often suffer a great deal from the curse of dimensional-
ity. Although it is not quite fair to consider a direct comparison between nonparametric density estimators and generative 
models, where nonparametric density estimators focus on the asymptotic behavior of mean integrated square error while 
the generative models focus on the learning ability and flexibility, generative models, which can be regarded as parametric 
models, seems able to provide a very general representation of data like the nonparametric estimator, thanks to the capabil-
ity of deep neural networks for high-dimensional nonlinear approximation. In this work, we are trying to understand if we 
are able to adapt the generative modeling into a problem setting of uncertainty quantification as a flexible means to estab-
lish communications between two mathematical models through data. In particular, we consider an importance sampling 
estimator

Eρ [I B ] =
∫

I B(y)ρ(y)

η(y)
η(y)d y = Eη[I B

ρ

η
],

where ρ and η are two PDFs, and I B is an indicator function in terms of the set B . Each sample y may be related to 
the solution u(t, x, Y ) of a PDE subject to random inputs Y ∈ Rn , where t and x indicate the time and space variable 
respectively. The random event B is defined by a functional of u(t, x, Y ), e.g., the L2 norm on a space-time domain is larger 
than a prescribed threshold. ρ(y) is the PDF of Y and η(y) is the candidate for the change of measure. We assume that 
our best a prior knowledge of η(y) is given by a set of data such that we need to estimate the data distribution first 
before implementing the importance sampling estimator. We then use a generative model to represent η(y). The study of 
generative modeling usually focuses on the minimization of a certain measure on the distance between the model and the 
data distribution while our main concern is the effectiveness of the importance sampling estimator which can be measured 
quantitatively by the degree of variance reduction. Due to the overfitting, η(y) that is closer to the data distribution might 
not introduce variance reduction. Thus the robustness is an important issue in addition to the dimensionality of y. Our 
problem setting requires an explicit evaluation of the density function, which makes the adaption of some generative models 
such as GAN and variational autoencode not straightforward. In this work, we will employ the flow-based generative models 
[2,9], which provide tractable likelihood and exact inference due to the invertible transport map.

We will construct an importance sampling estimator using multi-fidelity models: one fine model and its reduced-order 
model. The goal is to obtain the probability Pr(B) or E[I B ] with respect to the fine model. However, since each sample 
corresponds to solving a large scale problem, which is time consuming, we want to collect some data from a reduced-order 
model, and use them to construct η(y) for the importance sampling on the fine model. To make the strategy practical, 
we have considered the following two issues: First, with respect to the fine model, there exists noise in the data from the 
reduced-order model, which means we cannot simply keep the data satisfying B for the reduced-order model. We need to 
enlarge the data set to tolerate the errors from model reduction. Unfortunately because of the epistemic uncertainty in the 
errors of the reduced-order model, redundant data, which do not satisfy B for the fine model, might be kept. To alleviate 
this issue, we have proposed a weighted empirical distribution such that the important data have a larger weight while 
the less important data have a smaller weight. We then approximate the weighted empirical distribution using a flow-based 
generative model. Second, the importance sampling estimator may not perform well when the original flow-based generative 
model is employed. There are two reasons for this issue: one is the overfitting and the other one is the bad conditioning in 
the original generative model. When the overfitting occurs, less or no variance reduction may be obtained. This implies that 
extra regularization is needed other than that provided by the stochastic optimization. We will show that incorporating the 
properties of the problem can provide a much more robust regularization than the general regularization techniques such as 
early stopping. More specifically, we add a penalty term to balance the minimization of the cross entropy and the fact that 
the ratio I Bρ

η should be close to a constant for the maximization of variance reduction. Because the flow-based generative 
model has an explicit density function, such a penalty term can be easily implemented. The bad conditioning of the original 
generative model may produce outliers with a very small density η(y) such that ρ

η will be vary large. This problem can also 
be alleviated by our proposed regularization term. A more direct way of resolving this problem is to improve the original 
flow-based generative model to make it more suitable for scientific computing. We will not focus on this possibility in this 
work.

This paper is organized as follows. In the next section we specify the problem setting and develop a guiding principle for 
our methodology. In section 3 we build up the flow-based generative model used in this work. The main numerical strategy 
is developed in section 4. Some details related to implementation are given in section 5. We present numerical experiments 
in section 6 followed by a summary section.
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2. Problem description

We are interested in simulating the random events given by a partial differential equation (PDE) subject to uncertainty. 
We present our methodology using the following general mathematical model:

L(u(t, x); Y ) = 0, (1)

where L is a space-time differentiation operator, t the time, x ∈Rd the space variable, and Y ∈Rn a n-dimensional random 
vector. Let B = {y|g(u) > 0}, where g(·) is a functional indicating the Quantity of Interest (QoI). We intend to estimate the 
following probability

� = Pr(Y ∈ B) = E[I B ],
where I B(·) is an indicator function such that I B (y) = 1 if y ∈ B , and 0 otherwise. To make our target problem more specific, 
we introduce the following two assumptions:

1. The random variable Y can be effectively sampled.
2. The probability E[I B ] is not too small.

These two assumptions simply mean that we are able to obtain a moderate number of effective samples satisfying g(u) ≥ 0
by directly sampling Y . We can then consider the Monte Carlo estimator:

PMC = 1

N

N∑
i=1

I B(y(i)). (2)

To sample u, equation (1) is usually solved numerically. Let Lh, f and Lh,c indicate a fine and a coarse discretization of 
L, where h indicates a discretization parameter such as the element size in the finite element method. Let uh, f (t, x, Y ) and 
uh,c(t, x, Y ) be the two approximate solutions induced by Lh, f and Lh,c respectively. Since each sample of Y corresponds to 
solving a PDE, it can be very expensive if only Lh, f is employed for sampling. Then Lh,c is often used for variance reduction 
such that less samples from the fine model are needed to reach a certain accuracy, e.g., the multi-level Monte Carlo method 
[3]. In this work, we consider a predictor-corrector strategy, which is widely used in scientific computing:

1. Predictor: We sample the reduced-order model to obtain the distribution of data satisfying I Bh,c = 1, where Bh,c indi-
cates the approximation of B by Lh,c .

2. Corrector: Note that

{y|g(uh, f ≥ 0)} ∩ {y|g(uh,c) < 0} �= ∅.

We need to correct the prediction given by the reduced-order model by sampling the fine model.

The reasoning of the predictor-corrector strategy is as follows. The predictor given by the reduced-order model is rela-
tively cheap to sample. Although the Monte Carlo estimator based on the reduced-order model is biased due to the error 
from dimension reduction, it provides useful information for variance reduction, meaning that the corrector based on the 
fine model does not require a large number of samples. In the next section, we will give a detailed presentation of the 
predictor-corrector strategy in the framework of importance sampling.

Remark 1. In this work, we will not take into account the error of Lh, f . When we say the reduced-order model induces a 
biased estimator, the bias is up to the accuracy of the fine model.

Remark 2. Although we refer to Lh,c as a reduced-order model, it can be understood in a more general sense. Lh,c can be 
any approximation model of L with a relatively low resolution. It can be regarded as a means to generate data efficiently 
subject to the approximation error in uh,c .

2.1. Importance sampling

Let ρ(y) be the probability density function of Y . The basic idea of importance sampling is to compute the expectation 
with respect to another density function η(y) such as

� =
∫

I B(y)
ρ(y)

η(y)
η(y)d y =Eη

[
I B(y)

ρ(y)

η(y)
.

]
(3)

The corresponding estimator is
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�̂ = 1

N

N∑
i=1

I B(y(i))W (y(i)), (4)

where W (y) = ρ(y)/η(y) is the likelihood ratio, and the superscript ∗(i) is the index for samples. It is well known that the 
best candidate for the change of measure is

η∗(y) = I B(y)ρ(y)

�
, (5)

i.e., the conditional PDF of y satisfying I B(y) = 1. For this case, we have

I B(y(i))ρ(y(i))

η∗(y(i))
= �,

meaning that the variance of this estimator is zero. Since � is unknown, η∗(y) is only of theoretical importance.
In reality, we usually replace η∗(y) with an approximate one, which is, among a family of parameterized PDFs, the 

closest one to the data set {y(i)|I B(y(i)) = 1}. In our problem setting, extra difficulties come from the fact that each sample 
y(i) corresponds to solving a PDE, which can be time consuming. One commonly used strategy to alleviate this difficulty is 
to take advantage of the reduced-order model to achieve a trade-off between efficiency and accuracy. To estimate η∗ , two 
cases can be considered depending on the source of the data: (1) The data are just from the reduced-order model, or (2) 
The data are from both the reduced-order model and the fine model. For simplicity, we will only consider the first case in 
this work, where we need to resolve the following two general issues:

1. How to use the data from the reduced-order model Lh,c to estimate η∗? A straightforward way is to approximate data 
distribution given by Bh,c = {y(i)|g(uh,c) ≥ 0}. The problem of doing this is that the data satisfying g(uh,c) ≥ 0 may not 
satisfy g(uh, f ) ≥ 0 due to the approximation errors of model reduction. In other words, η∗ is not absolutely continuous 
to its approximation.

2. How to choose a model η(y; θ) for the density estimation, where θ indicates the model parameter. A widely used 
model is the Gaussian mixture, which can be viewed as a kind of kernel method. It is well known that learning 
high-dimensional Gaussian mixtures is difficult due to the curse of dimensionality, where the sample size needs to 
increase exponentially.

2.2. Our general methodology

Corresponding to the aforementioned two general issues, our methodology consists of two parts: 1) data preparation, 
where we include some extra data that satisfy g(uh,c) < 0 and define a weighted empirical distribution, and 2) density 
estimation, where we resort to deep learning to construct an explicit model η(y; θ).

Before a detailed presentation of our methodology, we generalize the understanding of η∗(y) for the change of measure 
in the importance sampling. The effectiveness of the importance sampling estimator is determined by the variance of the 
function

w(Y ) = I B(Y )ρ(Y )

η(Y )
. (6)

When w(Y ) provides an unbiased estimator, i.e., Eη[w] = Eρ [I B ], the effectiveness of the estimator is determined by the 
second-order moment of w(Y ):

Eη[w2] =
∫
B

ρ2

η
d y. (7)

Due to the introduction of reduced-order model, we cannot guarantee that all data from the reduced-order model satisfy 
g(uh, f ) ≥ 0. Instead we can assume that the density estimation will be implemented on a set B̂ that is larger than B , i.e., 
B ⊂ B̂ . This means that∫

B

η(y)d y = α < 1. (8)

We now look for the best η which satisfies equation (8), and minimizes the second-order moment of w . In other words, 
we consider the optimization problem

min
η

⎡
⎣ J (η) =

∫
ρ2

η
d y + λ

⎛
⎝∫

ηd y − α

⎞
⎠

⎤
⎦ ,
B B
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where λ is a Lagrange multiplier. Considering the first-order variation, we have

δ J = −
∫
B

ρ2

η2
δηd y + λ

∫
B

δηd y,

where δη is a perturbation function. This means that the optimal η satisfies

ρ2

η2
= λ, ∀y ∈ B, (9)

from which we obtain the minimizer

η∗
α(y) = α

E[I B ]ρ(y), ∀y ∈ B. (10)

The value of η∗
α on B̂\B does not affect the performance of η∗

α . The variance of I B is

Var(I B) = E[I B ] −E[I B ]2. (11)

The variance of w(Y ) is

Var(w) = 1

α
E[I B ]2 −E[I B ]2. (12)

Thus, the closer α is to 1, the smaller the variance of w is. When α = 1, i.e., B̂ = B , we have the best scenario with zero 
variance. Note that Var(w) > Var(I B) if α <E[I B ].

To this end, we obtain the following two general principles to guide the development of our methodology: 1) η must 
provide a substantial probability on B , i.e., α should be close to 1; and 2) On B , the ratio between η∗

α and ρ is always a 
constant even if η∗

α has a larger support than B .

3. Change of measure via generative models

3.1. Flow-based generative models

Density estimation is a difficult problem, especially for high-dimensional data. Many techniques have recently been de-
veloped in the framework of machine learning under the term generative modeling. Generative models are usually with 
likelihood-based methods, such as the autoregressive models [5,12,13], variational autoencoders [11], and flow-based gen-
erative models [1,2,9]. A particular case is the generative adversarial networks (GANs) [4], which requires finding a Nash 
equilibrium of a game. All generative models rely on the ability of deep nets for the nonlinear approximation of high-
dimensional mapping. To incorporate the generative modeling into our problem setting, we here pay particular attention 
to the flow-based generative model. Simply speaking, the flow-based generative model implements a change of variable 
though an invertible mapping, which can be regarded as a transport map. It has two distinct features: 1) it provides an ex-
plicit form of the probability density function (PDF), and 2) it is easy to sample the estimated distribution. Other generative 
models usually do not have these two features at the same time. For example, GANs do not require an explicit form of the 
PDF, which makes it very flexible, but not straightforward for our purpose.

Let Y ∈ Rn be a random variable associated with the given data. Our target is to estimate the PDF of Y using the 
available data. Consider another random variable Z = f (Y ) ∈ Rn , where f (·) is a bijection: f : Y 
→ Z . Let pY and p Z be 
the PDFs of Y and Z , respectively. We have

pY (y) = p Z ( f (y))
∣∣det∇y f

∣∣ . (13)

Once a prior distribution p Z (z) is specified for Z , equation (13) provides a model for the density estimation of Y . The key 
component of this model is the nonlinear mapping f (·). In flow-based generative models, an invertible mapping f (·) is 
constructed by deep nets. After the density estimation, the samples of Y can be easily generated as Y = f −1(Z), thanks to 
the invertible mapping.

To construct f (·), the main difficulties are twofold: (1) f (·) is highly nonlinear since the prior distribution for Z must 
be simple enough, and (2) the mapping f (·) is a bijection. Flow-based generative models deal with these difficulties by 
stacking together a sequence of simple bijections, each of which is a shallow neural network, and the overall mapping is a 
deep net. Mathematically, the mapping f (·) can be written in a composite form:

z = f (y) = f[L] ◦ . . . ◦ f[1](y), (14)

where f[i] indicates a coupling layer at stage i. The mapping f[i](·) is expected to be simple enough such that its inverse 
and Jacobi matrix can be easily computed. Then given any z, we can efficiently compute the inverse
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y = f −1(z) = f −1
[1] ◦ . . . ◦ f −1

[L] (z). (15)

Using the chain rule of differentiation, the determinant of the Jacobian matrix is obtained as

|det ∇y f | =
L∏

i=1

|det∇y[i−1] f[i]|, (16)

where y[i−1] indicate the intermediate variables with y[0] = y and y[L] = z.
One way to define f[i] is given by the real NVP [2]. Consider a partition Y = (Y 1, Y 2) with Y 1 ∈ Rm and Y 2 ∈ Rn−m . 

A simple bijection f[i] is defined as

z1 = y1, (17)

z2 = y2 � exp(s(y1)) + t(y1), (18)

where s and t correspond to scaling and translation depending only on y1, and � indicates the Hadamard product or 
component-wise product. Note that only part of the input vector is updated using the information that depends on the rest 
of the input vector. The inverse of this mapping is also simple:

y1 = z1, (19)

y2 = (z2 − t(y1))/exp(s(y1)), (20)

where the division is component-wise. Note that the mappings s(y1) and t(y1) can be arbitrarily complicated, which will 
be modeled as a neural network (NN), i.e.,

(s, t) = NN(y1). (21)

The simple bijection given by equations (17) and (18) is also referred to as an affine coupling layer [2]. Since only part of 
the input vector is updated, at least two affine couple layers need to be stacked together to update the whole input vector. 
The Jacobian matrix induced by one affine coupling layer is lower triangular:

∇y z =
[

I 0
∇y1 z2 diag(exp(s(y1)))

]
, (22)

whose determinant can be easily computed as

log |det ∇y z| =
n−m∑
i=1

si(y1). (23)

Remark 3. Note that exp(si(y1)) ∈ (0, +∞) and ti(y1) ∈ (−∞, +∞) in equation (18). It is possible that si can be really 
large or small at a certain sample, which makes the problem ill-posed. This implies that the robustness of the flow-based 
generative model deserves more attention for scientific computing problems.

3.2. Improve the multi-layer invertible mapping f (·)
It is seen that the multi-layer invertible mapping f (y) relies on the stacking of some simple coupling layers f[i] . For the 

effectiveness of this strategy, we need to pay attention to several issues.

3.2.1. The depth L
If y is partitioned to two parts, at least two affine coupling layers are needed for a complete modification of y. Note 

that the update in equation (18) is linear in terms of y2, meaning that a large depth L may be needed to obtain a good 
transport map between Y and Z . It usually is enough to define a shallow neural network NN (see equation (21)) for each 
affine coupling layer since the update given by f[i] is limited by its definition. In this work, we use two fully coupled hidden 
layers for NN. The capability of f (y) mainly relies on the depth L.

3.2.2. The partition of Y
The key to maintain the invertibility of the mapping is to partition Y , such that each part can be updated in an inter-

weaving way. We have several available options for the partition of Y :

1. Fixed partition. This is the choice we are using so far for the presentation, which is also the simplest one. In every 
affine coupling layer, the first m components are modified or remain unchanged, where we usually let m = �n/2�. The 
drawback of this choice is twofold: (1) we treat the two halves of Y equally although they may not be of the same 
importance; and (2) The degree of mixing of all components of Y is limited. For example, if y1 is nearly independent 
of y2, we expect to mix the components of y1 instead of modifying y1 linearly using a function of y2.
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2. Random partition. If we do not have a prior knowledge of the importance or independence of each dimension of Y , 
a random partition provides a simple way to increase the correlation between the components of Y . The random 
partition shuffles all the components of y before implementing a fixed partition such that each coupling layer f[i] may 
have a different partition pattern.

3. Linear transformation of Y . We can define a new random variable Ŷ = WY , where W is a non-singular matrix and 
can be regarded as a rotation between two coordinate systems. We then consider a fixed partition of Ŷ instead of Y . 
Furthermore, W can be included into the trainable parameters. In other words, although we do not know the importance 
of each dimension of Y for the desired nonlinear mapping, we can let the algorithm learn from the data a better 
coordinate system for the fixed partition. In [9] a similar strategy was used to improve the performance of real NVP for 
image processing.

In this work, we mainly stick to the fixed partition of Y to test the effectiveness of our methodology for importance 
sampling. Once the effectiveness is verified, the second and third options can be considered for further improvement.

3.2.3. Scale and bias layer
It is well known that batch normalization can improve the propagation of training signal in a deep net. Let μ̃ and σ̃ 2 be 

the mean and variance estimated from the mini batch [7]. The batch normalization algorithm includes two steps: the first 
step defines for each layer of the neural network the following normalization

yi ← yi − μ̃i√
σ̃ 2

i + ε
, i = 1, . . . ,n, (24)

and the second step refines the previous step by a trainable scale-shift operation:

ŷ = γ y + β. (25)

When the size of minibatch is small, batch normalization (24) becomes less effective due to the noise in the computation 
of μ̃ and σ̃ . A compromise of the two steps in the batch normalization algorithm is proposed in [9], i.e.,

ŷ = a � y + b, (26)

where a and b are trainable, and initialized by μ̃ and σ̃ associated with the initial data. After the initialization, a and b will 
be treated as regular trainable parameters that are independent of the data. In this work, we simplify the procedure (26)
further by only applying the scale and bias layer given by equation (26) to the input of f[i] . In other words, we do not apply 
any normalization techniques to the shallow neural network for s(·) and t(·). The only motivation of this simplification is 
to study the robustness of the generative model in our problem setting.

Combining the above discussions, we can refine the coupling layer f[i] as shown in Fig. 1, where the input of an affine 
coupling layer is partitioned in a certain way after a scale and shift layer is implemented.

Fig. 1. The diagram of a general coupling layer f[i] .

4. Cross entropy by the weighted empirical distribution

4.1. Likelihood and cross entropy

The generative model will be trained by maximizing the likelihood. In terms of data, the minimum cross entropy is the 
same as the maximum likelihood. Consider the set of data {y(i)}N

i=1 from the distribution of Y . Specifying a distribution for 
Z in equation (13), we obtain a model for the PDF of Y . Let θ be the parameter from the definition of the mapping f (y). 
The maximum likelihood estimator of θ is
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θML = argmaxθ

N∏
i=1

pY (y(i); θ) = argmaxθ

N∑
i=1

log pY (y(i); θ). (27)

Let μdata(y) be the empirical distribution of the data. Multiplying 1/N to the right-hand side of the above equation, the 
maximum likelihood estimator can also be regarded as

θML = argmaxθEμdata [log pY (y; θ)], (28)

where the expectation is with respect to μdata . To estimate θ , we can also minimize the distance between μdata and μY

using the Kullback-Leibler (KL) divergence:

DKL(μdata||μY ) = Eμdata

[
log

dμdata

dμY

]
= H(μdata,μY ) − H(μdata) (29)

where μY (d y) = pY d y, H(μdata, μY ) is the cross entropy of μdata and μY , and H(μdata) is the entropy of the empirical 
distribution solely determined by the data. It is seen that to minimize the KL divergence, we only need to minimize the 
cross entropy

H(μdata,μY ) = −Eμdata [log pY ] = − 1

N

N∑
i=1

log pY (y(i); θ), (30)

because the entropy H(μdata) only depends on data. Comparing equations (28) and (30), we know that maximizing the 
maximum likelihood is equivalent to minimizing the cross entropy. Let us assume that the components of Z are i.i.d. 
normal random variables. We then have

log pY (y) = log |det ∇y f | − 1

2

n∑
i=1

z2
i (y) − d log

√
2π

=
L∑

i=1

log |det∇y[i−1] f[i]| − 1

2

n∑
i=1

z2
i (y) − d log

√
2π.

4.2. Weighted empirical distribution

We still consider the set of data {y(i)}N
i=1 from the distribution μY of Y . The empirical measure μN associated with the 

data set is defined as

μN(A) = 1

N

N∑
i=1

I A(y(i)) = 1

N

N∑
i=1

δy(i) (A), (31)

where δy is the Dirac measure. We also define a weighted version of μN as follows:

μ̂N(A) =
N∑

i=1

wiδy(i) (A), (32)

with 
∑N

i=1 wi = 1. It recovers the empirical measure when wi = 1
N . For the empirical measure, each sample in the data set 

is equally important in the sense of the law of large numbers, since all samples have the same weight 1/N and are obtained 
independently. However, in reality we are often more interested in the information of Y that satisfies a certain constraint. 
A simple and flexible way to incorporate constraints into the data is to associate the data with varying weights.

Let us consider a simple scenario to illustrate the weighted empirical measure. We partition data set {y(i)}N
i=1 =

{y(i)}i∈I1 ∪ {y(i)}i∈I2 with I1 ∩ I2 = ∅, where Ii indicates an index set with i = 1, 2. We let

wi = π1, ∀i ∈ I1 and wi = π2, ∀i ∈ I2,

where π1, π2 ≥ 0 are two constants, satisfying N1π1 + N2π2 = 1 with Ni being the cardinality of Ii , i = 1, 2. We expect 
to emphasize the information given by the data set {y(i)}i∈I1 by increasing the value of π1. For simplicity, we assume that 
{y(i)}i∈I1 ⊂ A ⊂Rn , and {y(i)}i∈I2 ⊂ Ac with Ac being the complement of A. Let

ρ1(y) = ρY (y)

EμY [I A] , ρ2(y) = ρY (y)

EμY [I Ac ]
be the two conditional PDFs. We then seek a PDF of the form
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ρw(y;γ ) = γρ1(y) + (1 − γ )ρ2(y), (33)

that is closest to the weighted measure μ̂N in terms of the KL divergence, where 0 < γ < 1. For the given data set, 
minimizing the KL divergence is equivalent to minimizing the cross entropy

H(μ̂N , η) =Eμ̂N
[logρw(y)] (34)

=
∑
i∈I1

π1 log(ρw(y(i);γ )) +
∑
i∈I2

π2 log(ρw(y(i);γ )),

where η(d y) = ρwd y. Then ∂γ H = 0 yields that

N1π1

γ
− N2π2

1 − γ
= 0 ⇒ γ = N1π1. (35)

When π1 = 1/N as in the empirical distribution, γ = N1
N ≈EμY [I A]. It is seen that if we increase the weights for the data 

in {y(i)}i∈I1 , the corresponding PDF ρw(y) will increase the probability of taking values in A, compared to the PDF ρY (y).
When considering the weighted empirical distribution, we only need a slight modification of the objective function for 

the minimization of the cross entropy, where equation (30) becomes

H(μ̂N ,μY ) = −Eμ̂N
[log pY ] = −

N∑
i=1

wi log pY (y(i); θ), (36)

which corresponds to the maximization of a weighted likelihood:

N∏
i=1

pγi
Y (y(i); θ) (37)

with γi = N wi .

4.3. Weight the data given by the reduced-order model

Recall that the optimal choice for the change of measure in importance sampling is

η∗(y) = I B(y)ρ(y)

�
.

Sampling the reduced-order model, a straightforward approximation of η∗(y) is

η∗
h,c(y) = I Bh,c (y)ρ(y)

�h,c
, (38)

where �h,c = E[I Bh,c ]. Due to the errors induced by the model reduction, η∗(y) is not absolutely continuous with respect 
to η∗

h,c(y). More specifically, when I Bh,c = 0 or η∗
h,c(y) = 0, it is possible that I B = 1, i.e., η∗(y) > 0. If η∗

h,c(y) is used 
for importance sampling, the estimation will be obviously biased, although the convergence can still be reached as the 
numerical discretization of u is refined. An easy way to fix this problem is to enlarge the support of η∗

h,c by incorporating 
the error estimate of g(uh,c). Note that for any y, we have

g(uh,c) = g(u) +
〈
δg

δu
, uh,c − u

〉
+ O(‖uh,c − u‖2),

where δg
δu indicates the functional derivative and 〈·, ·〉 the inner product in the physical space. The first-order variation of 

g(u) in terms of u − uh,c yields the leading term in the error of g(uh,c). Instead of g(uh,c) = 0, we can obtain a better guess 
of g(u) = 0 using

g(uh,c) ≈ 0 +
〈
δg

δu
, uh,c − u

〉
,

which is possibly smaller than 0. When sampling the reduced-order model, we need to keep the data satisfying

g(uh,c) ≥ −
∣∣∣∣
〈
δg

δu
, uh,c − u

〉∣∣∣∣ , (39)

such that we will not reject the data satisfying g(uh,c) < 0 while g(u) ≥ 0. In reality, the error of g(uh,c) can be estimated 
by a posterior error estimate techniques, which has a general form
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|g(uh,c) − g(u)| ≤ C yhm, (40)

where C y is a positive constant depending on y, and m is an index indicating the accuracy of the reduced-order model. 
Instead of using equation (39), we can use

g(uh,c) ≥ −Chm (41)

as the acceptance criterion of data, where C is a positive constant chosen according to C y(i) . Unfortunately, by doing this, 
we often accept a lot of redundant data. We rewrite

g(uh,c) = g(u) + ε(y)

and look at the discrepancy between I{g(uh,c )≥0} and I{g(u)≥0} . Note that {g(uh,c) ≥ 0} = {g(u) ≥ −ε(y)}. If ε ≥ 0, {g(u) ≥
0} ⊆ {g(uh,c) ≥ 0}; if ε ≤ 0, {g(uh,c) ≥ 0} ⊆ {g(u) ≥ 0}. Thus the information missed by I{g(uh,c)≥0} is that {0 ≤ g(u) < −ε(y)}
subject to the condition that ε(y) ≤ 0. In terms of uh , what is missing is that {ε(y) ≤ g(uh,c) < 0} when ε(y) ≤ 0. Then the 
following data included by equation (41), are unnecessary:{ {g(uh,c) < 0}, if ε(y) ≥ 0,

{−Chm ≤ g(uh,c) < ε(y)}, if ε(y) ≤ 0.

The portion of the redundant data in {−Chm ≤ g(uh,c) < 0} is

Pr({−Chm ≤ g(uh,c) < 0})Pr(ε ≥ 0) + Pr({−Chm ≤ g(uh) < ε})Pr(ε ≤ 0)

Pr({−Chm ≤ g(uh,c) < 0})
= Pr(ε ≥ 0) + Pr({−Chm ≤ g(uh,c) < ε})Pr(ε ≤ 0)

Pr({−Chm ≤ g(uh,c) < 0})
≈1

2
+ 1

2

Pr({−Chm ≤ g(uh,c) < ε})
Pr({−Chm ≤ g(uh,c) < 0}) ,

where we assume that Pr(ε ≤ 0) ≈ Pr(ε ≥ 0) ≈ 1
2 . In other words, at least 50% of the data in {−Chm ≤ g(uh,c) < 0} are not 

necessary, and if the a posterior error estimate is not tight, most of the data are redundant. If E[I{g(uh,c )>0}] is relatively 
small, the scenario is worse since the probability induced by the unnecessary data might be larger than E[I{g(uh,c )>0}]. For 
this case, most of the data may be nothing but pollution (see the example in section 6.3) in terms of the approximation 
of η∗(y). According to equation (12), a large amount redundant data implies a small α which makes it difficult to achieve 
variance reduction.

To deal with this issue, we will adjust the weights of the data such that the undesired data do not contribute too much 
in the empirical distribution. Following is our plan to weight the data from the reduced-order model:

• All data points satisfying g(uh,c) ≥ 0 share the same weight, which mimics equation (9).
• For the data points satisfying g(uh,c) ∈ [−Chm, 0], the weight decreases exponentially as g(uh,c) decreases away from 0, 

as illustrated in Fig. 2. We will use a half-normal distribution in terms of g(uh,c) to weight the data.

More details about the implementation will be given in section 5.

Fig. 2. The diagram of the weight distribution for the data points from sampling the coarse model.
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4.4. A penalty term

Let η∗
h,c(y) be the estimated PDF using the weighted data from the reduced-order model. If the generative model is overly 

complex or the size of data set for training is not large enough, we need to pay particular attention to the overfitting. Many 
general techniques such as early stopping have been developed in machine learning [18]. We here focus on regularization 
related to our problem setting. If the conditional PDF η∗(y) can be well approximated, we should expect that

wh,c(y) = I B(y)ρ(y)

η∗
h,c(y)

≈ C, (42)

or

∇y log wh,c(y) ≈ 0, (43)

where C is a positive constant. If the overfitting is not a concern, equation (42) is a natural result given by the density 
estimation. However, when the overfitting occurs, the minimization of the cross entropy H(μdata, μY ) may yield an approx-
imate distribution such that wh,c has a large standard deviation, which means that the important sampling estimator based 
on η∗

h,c may fail to induce variance reduction.
To increase the robustness of the algorithm, we want to balance the minimization of the cross entropy and the condition 

(42). A convenient way to do this is to add a penalty term

βEpY

[∣∣∇y log wh,c(y)
∣∣2

]1/2

=β

(∫ ∣∣∣ρ−1∇ρ − p−1
Y ∇pY

∣∣∣2
pY d y

)1/2

, (44)

into the objective function, where β is a penalty parameter. The term ∇pY in the integrand provides an H1 regularization 
of the objective function. Note that the condition y ∈ B is determined by the fine model, which is unknown. In reality, we 
compute the penalty term with respect to the weighted empirical distribution, i.e.,

βEμ̂N

[
|∇y log wh,c(y)|2

]1/2
. (45)

To this end, we have the final objective function for training the generative model as

H(μ̂N ,μY ) + βEμ̂N

[
|∇y log wh,c(y)|2

]1/2
, (46)

where μY (d y) = pY d y.

5. Implementation

We sample Y to obtain {y(i)}M
i=1. For each y(i) , we solve a PDE to obtain uh,c(y(i)), and compute an error estimate 

εh,c(y(i)) of g(uh,c(y(i))). Let gh,c(y) = g(uh,c(y)). We organize the data as {(y(i), εh,c(y(i)), gh,c(y(i)))}M
i=1. Let

ε−
max = max

i

∣∣∣εh,c(y(i))I{gh,c(y(i))<0}
∣∣∣ . (47)

We will keep the data {(y(i), εh,c(y(i)), gh,c(y(i)))}N
i=1, where gh,c(y(i)) ≥ −ε−

max. We then use the half-normal distribution

fτ (τ ;σ) =
√

2

σ
√

π
exp

(
− τ 2

2σ 2

)
, z ≥ 0

to fit the data τ (i) = gh,c(y(i)) satisfying −ε−
max ≤ gh,c(y(i)) < 0. For the sample y(i) , we associate a weight

wi =
{

c1 fτ (τ (i)), if τ (i) < 0,

c2, if τ (i) ≥ 0,
(48)

where c1 and c2 are two positive constants. Let N+ be the number of y(i) satisfying gh,c(y(i)) ≥ 0. We determine c1, c2 and 
σ using the following relations:⎧⎪⎨

⎪⎩
N+c2 = α̂,

c1
∑N−N+

i=1 fτ (τ (i)) = 1 − α̂,

c1

√
2√ = c2,

(49)
σ π
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where 0 < α̂ < 1. We assign uniform weights to the data {gh,c(y(i)) ≥ 0}, whose probability from the weighted empirical 
distribution is α̂. The parameter α̂ has a similar meaning as α in equation (8), which will be prescribed such that the 
set {gh,c(y(i)) ≥ 0} has a substantial probability. For example, α̂ = 0.85 is used in our numerical experiments. The data 
{gh,c(y(i)) < 0} has a probability 1 − α̂, where the weight decays exponentially as the value |gh,c(y)| increases. The third 
equation can be regarded as a continuity condition, meaning that weight should be continuous when crossing the interface 
gh,c(y) = 0. It is seen that c2 can be easily obtained from the first equation. From the third equation, we have c1 = c2σ

√
π√

2
, 

which simplifies the second equation as

N−N+∑
i=1

c2 exp

(
− (τ (i))2

2σ 2

)
= 1 − θ.

Note that the left-hand side is an increasing function with respect to σ ∈ (0, +∞), meaning there exists a unique σ ∈
(0, +∞) satisfying the above equation. Considering σ = c3 maxi |gh,c(y(i))| with c3 > 0, we have

N−N+∑
i=1

c2 exp

(
− (τ (i))2

2σ 2

)
> θ

(
N

N+
− 1

)
exp

(
− 1

2c2
3

)
.

Letting

θ(
N

N+
− 1)exp

(
− 1

2c2
3

)
= (1 − θ),

i.e.,

c3 =
(

−0.5

(
log

1 − θ

Nc2 − θ

)−1
)1/2

,

we have the root located in [0, c3 maxi |gh,c(y(i))|], which can be computed numerically by a root-finding algorithm.
Another implement issue is related to the stochastic optimization. For unweighted data, a commonly used strategy in 

stochastic optimization is to split the uniformly shuffled training samples into mini-batches. For the weighted data, a uni-
form shuffle is obviously not optimal. We then generate mini-batches in a way that is more consistent with the distribution 
of the weights. We partition the interval [−ε−

max, 0] = ∪K
k=1ek uniformly into K disjoint sub-intervals ek . Let eK+1 = [0, ∞). 

We then group all the training samples as

Sk = {y(i)|gh,c(y(i)) ∈ ek}, k = 1, . . . , K + 1. (50)

We will shuffle the training samples in Sk uniformly before we split each Sk to a certain number of batches. We pick one 
batch in each Sk to assemble the training mini-batch for each iteration step of the stochastic optimization. This way, the 
data in the mini-batch are distributed similarly to the weighted empirical distribution.

Once the generative model pY (y) is trained, we use it to construct an importance sampling estimator for the fine model

� =
∫

I{g(uh, f )≥0}ρ(y)d y = EpY

[
I{g(uh, f )≥0}

ρ(y)

pY (y)

]

= Ep Z

[
I{g(uh, f )≥0}

ρ( f −1(z))

pY ( f −1(z))

]
, (51)

where p Z is the prior distribution, e.g., the Gaussian N (0, I) with I being a n-dimensional identity matrix.
We summarize our algorithm as follows:

Algorithm 1 An importance sampling estimator based on generative model.

- Sample the reduced-order model to compute the solution uh,c(y(i)) and the error estimate of g(uh,c(y(i))), where we keep the data {y(i)}N
i=1 with 

g(uh,c(y(i))) ≥ ε−
max (see equation (47)).

- Compute the weights associated with each sample using equation (49).
- Generate training dataset D = ∪K+1

i=1 Sk (see equation (50)).
- Train the generative model pY (y) by minimizing the objective function (46) with a stochastic gradient method such as ADAM.
- Use the importance sampling estimator (51) to sample the fine model.

6. Numerical experiments

In this section, we do some experiments to study the numerical strategies we have proposed. The ADAM optimiza-
tion solver with a fixed learning rate is used for all examples [10]. The numerical algorithm has been implemented with 
Tensorflow.
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6.1. Rotate Gaussian random variables

We start with a simple case. Assume that we have data for the random variable Y = (Y1, Y2) with Yi being i.i.d. normal 
random variables. The entropy of μY is H(μY ) = ln(2πe). We know that Ŷ = AY are still Gaussian random variables, where 
A ∈R2×2. Furthermore,

Cov(Ŷ ) = ACov(Y )AT = A AT .

If A is a unitary matrix, Ŷ1 and Ŷ2 are i.i.d. normal random variables. We use the flow-based generative model to describe 
the mapping, i.e., rotation, from Ŷ to Y .

Let us see if the multi-layer mapping f (x) defined in (14) is able to provide a rotation of (Y1, Y2) using two affine 
coupling layers. According to equations (17) and (18), f[1] yields

y[1]
1 = y1, y[1]

2 = ay2 + by1,

where we choose s(y1) = a and t(y1) = by1 with a, b being constant. Similarly, we have the output of f[2] as

ŷ1 = cy1 + d(ay2 + by1) = (c + bd)y1 + ady2, ŷ2 = ay2 + by1,

where two more constants c and d are introduced. We then obtain the following condition such that A is unitary:(
c + bd ad

a b

)T (
c + bd ad

a b

)
=

(
1 0
0 1

)

The above equation admits many possible solutions, e.g., a = b = √
2/2, c = −√

2 and d = 1. Any possible solution is a good 
enough for our purpose. In equation (30), μdata is given by N samples of Y . Then the cross entropy H(μdata, μY ) should 
converge to the entropy H(μY ), i.e., ln(2πe) ≈ 2.8379, as N → ∞. If the flow-based generative model pY d y = μ̃Y provides 
a good approximation of μY , the minimum of the cross entropy H(μdata, μ̃Y ) should yield a minimizer that converges to 
μY and a minimum value that converges to H(μY ). Such a convergence behavior is shown in Fig. 3, meaning that a rotation 
of Gaussian variables is well captured. The initial cross entropy is large because we choose a large standard deviation on 
purpose when we initialize the weights of each neuron. It is seen that the ADAM method stabilizes quickly.

Fig. 3. The convergence behavior for the rotation of Gaussian variables, where the horizontal line indicates the entropy H(μY ) = ln(2πe). Four general 
coupling layers are used, i.e., L = 2. In equation (18), we let s(·) = 1 and only model t(·) as a neural network NN(·). The sample size is N = 104.

6.2. Two-dimensional conditional PDFs

We now consider the approximation of the following conditional PDF

pY |B(y) = I B(y)ρ(y)

E[I B ] ,

where we choose ρ(y) as the joint PDF given by two i.i.d. normal random variables Y1 and Y2. The condition B = {y|g(y) ≥
0} will introduce correlations between Y1 and Y2. Let ŷ = �R y, where � = diag(a, 1) is a scaling matrix with a being a 
constant, and R is a unitary matrix for rotation, i.e.,

R =
[

cos θ − sin θ

sin θ cos θ

]
.

We define the set B = {y| ŷT ŷ ≥ C2}. The distribution of pY |B(y) is demonstrated in Fig. 4 for a = 2, θ = π/4 and C = 3.0
by N = 5000 samples. These are the data we will use to train the generative model.
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Fig. 4. The set B = {y| ŷT ŷ ≥ C2} with a = 2, θ = π/4 and C = 3.0. We assume that Y1 and Y2 are two i.i.d. normal random variables.

Fig. 5. Data sampled from the flow-based generative models with a Gaussian prior distribution. The sample size is N = 104. (a): L = 2; (b): L = 4; (c): L = 8; 
(d): L = 16.

We let the prior distribution be the two-dimensional normal distribution N (0, I) with I being a two-dimensional identity 
matrix. The transportation from the normal distribution to the desired conditional distribution is highly nonlinear due to 
the fact that the region of the highest density in the prior distribution has been removed. In Fig. 5, we plot the data 
sampled from the generative models trained with different depths. The neural network NN(·) in equation (21) has two 
dense hidden layers, where the first hidden layer has 512 neurons and the second hidden layer has 256 neurons. It is seen 
that the approximated distribution improves as the depth L increases. When L = 8, the approximated distribution already 
agrees very well with the original distribution showed in Fig. 4. In Fig. 6, we demonstrate the mapping from Z to Y , 
where Z is sampled from the Gaussian prior. For clarity, we split the data z to three groups, indicated by blue, red and 
green. The one-to-one correspondence between z and y yields the corresponding splitting of the data y . It appears that the 
nonlinear mapping f (·) overall maps the high-density region in the prior distribution to the high-density region in the data 
distribution. Note that the blue region has been separated into two parts, meaning that the deep net is able to handle such 
a “discontinuity” using a continuous mapping.
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Fig. 6. The mapping from Z to Y given by the generative model with L = 16, where Z is subject to the prior normal distribution N (0, I). The sample size 
is N = 104. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

6.3. One-dimensional elliptic problems with log-normal coefficients

We now consider a one-dimensional elliptic problem [16]

− d

dx

(
ea(x;ω) du

dx

)
= 1, x ∈ [0,1], (52)

where a(x; ω) is a zero-mean Gaussian random field subject to a normalized covariance kernel K (x1, x2). For this one-
dimensional problem, we can write down the exact solution

u(x;ω) = −
x∫

0

se−a(s;ω)ds + γ

x∫
0

e−a(s;ω)ds, (53)

where γ is a random variable

γ =
⎛
⎝ 1∫

0

e−a(s;ω)ds

⎞
⎠

−1 1∫
0

se−a(s;ω)ds.

The random coefficient a(x; ω) can be approximated by the Karhunen-Loéve expansion:

a(x;ω) ≈ aM(x; ξ) = σ

M∑
i=1

√
λiθi(x)ξi, (54)

where σ indicates the standard deviation, ξi ∼N (0, 1) are i.i.d. normal random variables, and (λi, θi(x)) are the eigen-pairs 
of the covariance kernel K (x1, x2). σ will be fixed to 1 from now on. Replacing a(x) with aM(x) in u, we obtain uM(x) ≈ u(x), 
which will be our exact solution. Define the set B = {uM |‖uM‖H1 ≥ C} with C being a positive number. We will estimate 
E[I B ] by sampling.

Consider a one-dimensional exponential covariance kernel on x ∈ [0, 1]

K (x1, x2) = e− |x1−x2 |
lc .

Its eigenvalues satisfy

v2 = 2ε − ε2λi

λi
, (v2 − ε2) tan(v) − 2εv = 0, (55)

where ε = 1/lc . Its eigenfunctions have the following form [8]

θi(x) = v cos(vx) + ε sin(vx)√
1
2 (ε2 + v2) + (w2 − ε2)

sin(2v)
4v + ε

2 (1 − cos(2v))

. (56)

Let �h,c be an interpolation operator defined on the coarse mesh. We let

aM,h,c(x; y) =
M∑√

λi�h,cθi(x)ξi,
i=1
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which yields the approximate solution uM,h,c . For the reduced-order model, all the integrals will be approximated by the 
rectangle rule which has a first-order accuracy. The fine model will be based on spectral/hp element method. More specifi-
cally, we consider the interpolation and integration using 64 equidistant elements with 8 Gauss-Lobatto-Legendre points in 
each element. For simplicity, the error of the reduced-order model will be computed directly using the fine model as the 
reference solution.

6.3.1. Distribution of data missed by the reduced-order model
We first look at the necessity of considering the weighted empirical distribution. In Table 1, we summarize the infor-

mation about 104 samples from both the reduced-order and the fine models, where the mesh for the reduced-order model 
uh,c consists of 10 equidistant linear finite elements. The probability Pr(B) is chosen around 0.1. It is seen that to reduce the 
bias from the reduced-order model, we need to keep another 2,546 samples that do not satisfy ‖uM,h,c‖H1 ≥ C . However, 
among these samples, only 107 are effective, which is around 107

2546 ≈ 4%. If we do density estimation using 1,263 + 2,546 =
3,809 samples, 2,546 − 107 = 2,539 samples do not contribute at all to our desired random event, which are 2,539

3,809 ≈ 67%
of the total samples. Such a situation can be worse if we use a posterior error estimate because the effective index of the 
estimator may be several times larger than 1, i.e., the estimated error may be several times larger than the real error. To 
alleviate this issue, we need to put more weights into the 1,263 samples that satisfy ‖uM,h,c‖H1 ≥ C and less weights to the 
redundant 2,546 samples that are induced by the discretization error of the reduced-order model. We note that the 107 use-
ful samples will also be weighed by doing so. A compromise is to assign the weights to the data {C − ε−

max ≤ ‖uM,h,c‖ < C}
in a consistent way with the distribution of the data {‖uM,h,c‖ < C and ‖uM,h, f ‖ ≥ C}. In Fig. 7, we plot the normalized 
histograms of some conditioned distribution of g(uM,h,c) = ‖uM,h,c‖ − C . In the left plot of Fig. 7, we show the distribution 
of g(uM,h,c) given by the data where the reduced-order model fails to capture B , i.e., g(uM,h,c) < 0 while g(uM,h, f ) ≥ 0. It is 
seen that as the value of g(uM,h,c) decreases, the probability that the reduced-order model fails also decreases. In the right 
plot of Fig. 7, we show the distribution of g(uM,h,c) given by the data that satisfy −ε−

max ≤ g(uM,h,c) < 0. It is seen that the 
density increases as the value of g(uM,h,c) decreases, which is the opposite of the histogram in the left plot. This is because 
we have kept redundant data to compensate the discretization error of the reduced-order model. First, the probability that 
C − ε−

max ≤ ‖uM,h, f ‖H1 < C is much larger than the probability that ‖uM,h,c‖H1 < C and ‖uM,h, f ‖H1 ≥ C . Second, ε−
max is 

not the optimal choice, which may be much larger than necessary. At this moment, we do not have a better understanding 
about the choice of the lower bound for −ε−

max ≤ g(uM,h,c) < 0.

Table 1
Samples from the coarse model, where C = 0.8, lc = 1, and 
M = 50.

# of samples 104

‖uM,h,c‖H1 ≥ C 1,263
‖uM,h, f ‖H1 ≥ C 1,300
C − ε−

max ≤ ‖uM,h,c‖H1 < C 2,546
‖uM,h,c‖H1 < C and ‖uM,h, f ‖H1 ≥ C 107

Fig. 7. The conditioned distribution of g(uN,h,c). Left: The data missed by the coarse model, i.e., g(uN,h,c) < 0 while g(uN,h, f ) ≥ 0. Right: The data that 
satisfy C − ε−

max ≤ ‖uN,h,c‖H1 < C .

6.3.2. Importance sampling via the trained generative model
We now look at the performance of the generative model for the importance sampling estimator. Let σI B and σw be the 

standard deviation of I B and

w(Y ) = I B(Y )ρ(Y )
,

pY (Y )
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Fig. 8. M = 2. Left: The evolution behavior of stochastic optimization, where the penalty term is not included in the objective function. Right: The standard 
deviation of w(Y ).

where pY indicates the trained generative model. Let NMC and NIS be the sample size for the Monte Carlo estimator and 
the importance sampling estimator to achieve the same degree of confidence interval for the mean subject to a certain 
error. We know that

NIS

NMC
≈

(
σw

σI B

)2

.

So we only need to focus on the variance reduction of σw in terms of σI B .
Following is the setup of our numerical experiments. We compute σI B using the fine physical model by the Monte 

Carlo method with 105 samples. The depth L of the generative model is set to 16. Each affine coupling layer has two fully 
coupled hidden layers, where the first one has 512 neurons and the second one has 256 neurons. Since we focus on the 
robustness and effectiveness of the generative model, we simple use a large number of neurons to encourage overfitting 
for the unregularized generative model. In each coupling layer f[i] , we consider a fixed partition of the vector. Considering 
that the eigenvalue decays, we split ξ = (ξ1, ξ2, . . . , ξ2m) into ξ1 = (ξ1, ξ3, . . . , ξ2m−1) and ξ2 = (ξ2, ξ4, . . . , ξ2m), where all 
components with odd indices are separated from those with even indices. We then train the generative model using the 
data given by the reduced-order model and compute σw by sampling the generative model 105 times. For all cases, the 
generative model will be trained by the ADAM method with a learning rate 2e-4, where the data have been split to 23 
mini-batches. We sample the reduced-order model 105 times, and keep a portion of the data as the training set. Since we 
choose that Pr(B) ≈ 0.1, about 104 samples satisfy g(uh,c) ≥ 0, although the real number may vary a little. We set α̂ = 0.85
when computing the weights of the data (see equation (49)).

We start with a relatively large correlation length lc = 1, such that the eigenvalue decays fast. The coarse mesh consists 
of 10 equidistant linear finite elements. We first look at a two-dimensional case, i.e., M = 2, where E[I B ] ≈ 0.109 and σI B ≈
0.312. The training set from the reduced-order model includes 10,683 samples satisfying g(uM,h,c) ≥ 0, and 3,051 samples 
satisfying g(uM,h,c) < 0, among which only 242 samples are really missed by the reduced-order model, i.e., g(uM,h,c) < 0
while g(uM,h, f ) ≥ 0. In Fig. 8, we plot the results for M = 2. On the left, we plot the evolution behavior of the stochastic 
optimization, where no penalty term is included in the objective function, i.e., β = 0; On the right, we plot the standard 
deviation of σw versus the epoch, where σw is computed in terms of the generative model trained up to a certain epoch. It 
is seen that the stochastic optimization stabilizes quickly while σw varies a little around 0.025. For this case,

NIS

NMC
≈

(
0.025

0.312

)2

≈ 0.64%.

In other words, for the same level of accuracy, the number of samples needed by the importance sampling estimator is 
about 0.64% of that for a direct Monte Carlo estimator. The speed up can be significant even after taking into account the 
cost from sampling the reduced-order model and training the generative model, since the complexity of the generative 
model does not increase with the complexity of the physical model. The comparison between the data distribution and the 
estimated distribution is given in Fig. 9.

We then consider a four-dimensional case, i.e., M = 4, where E[I B ] ≈ 0.121 and σI B ≈ 0.326. The training set from the 
reduced-order model includes 12,032 samples satisfying g(uM,h,c) ≥ 0, and 7,519 samples satisfying g(uM,h,c) < 0, among 
which only 593 samples are really missed by the reduced-order model, i.e., g(uM,h,c) < 0 while g(uM,h, f ) ≥ 0. The sim-
ulation results are given in Fig. 10. There are several interesting observations: First, if no penalty term is included in the 
objective function, the evolution of stochastic optimization has two types of behavior. The function value plummets at the 
beginning and then decays very slowly. This is because the size of the data set is relatively small in terms of the dimen-
sion M such that the overfitting occurs. Note that for this case, the standard deviation of σw increases with respect to the 
epoch, meaning that the efficiency of the importance sampling estimator decreases if the training of the generative model 
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Fig. 9. Left: The data from the reduced-order models, where the red color indicates g(uh,c) ≥ 0 while the magenta color indicates g(uh,c) < 0. Middle: The 
estimated distribution given by the generative model with L = 16; Right: The priori distribution given by two iid normal random variables.

Fig. 10. M = 4. Left: The evolution behavior of stochastic optimization, where the penalty term varies in terms of β . Only the cross entropy has been 
plotted. Right: The standard deviation of w(Y ).

Fig. 11. M = 4. Left: The evolution behavior of stochastic optimization, where the penalty term is not included in the objective function. Right: The standard 
deviation of w(Y ).

is stopped at a larger epoch. Second, when more and more penalty is included, the slow decay in the optimization iteration 
disappears, implying that the regularization works. Furthermore, σw stops increasing after the regularization is introduced. 
It appears that σw increases with respect to β , meaning too much regularization will deteriorate the efficiency of impor-
tance sampling estimator. Third, note that when the epoch is 100, the generative models subject to β = 0 and 100 give a 
comparable σw . This implies that early stopping may be used. However, it seems that the penalty term yields much more 
robustness. For β = 100, σ ≈ 0.042, which yields that

NIS

NMC
≈

(
0.042

0.326

)2

≈ 1.66%.

The other way to alleviate the overfitting is to enlarge the training set. In Fig. 11, we plot the results subject to a larger 
training set, which has 120,137 samples satisfying g(uM,h,c) ≥ 0 and 81,839 samples satisfying g(uM,h,c)<0. For this case, 
a smaller σw is achieved without using any penalty term in the objective function.
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Fig. 12. M = 8. Left: The evolution behavior of stochastic optimization, where the penalty term varies in terms of β . Only the cross entropy has been 
plotted. Right: The standard deviation of w(Y ).

Fig. 13. M = 16. Left: The evolution behavior of stochastic optimization, where the penalty term varies in terms of β . Only the cross entropy has been 
plotted. Right: The standard deviation of w(Y ).

We now look at an eight-dimensional case, i.e., M = 8, where E[I B ] ≈ 0.130 and σI B ≈ 0.336. The training set from the 
reduced-order model includes 12,504 samples satisfying g(uM,h,c) ≥ 0, and 22,049 samples satisfying g(uM,h,c) < 0, among 
which only 828 samples are really missed by the reduced-order model, i.e., g(uM,h,c) < 0 while g(uM,h, f ) ≥ 0. The results 
are given in Fig. 12. Compared to the previous case, similar results have been observed. Since the dimension is doubled but 
the size of training set remains the same, it is seen that the performance of the generative model deteriorates quickly as 
the epoch increases if no penalty term is used. Actually, after epoch 300 σw is larger than 0.33 when β = 0, meaning that 
the importance sampling estimator is less efficient than the Monte Carlo estimator. Again, the penalty term can stabilize 
σw , which is about 0.063 for β = 1000. For this case,

NIS

NMC
≈

(
0.063

0.336

)2

≈ 3.52%.

We double the dimension to consider M = 16, where E[I B ] ≈ 0.134 and σw ≈ 0.340. The training data set includes 
12,975 samples that g(uM,h,c) ≥ 0 and 34,847 samples that g(uM,h,c) < 0, among which only 913 samples are really missed 
by the reduced-order model. The results are plotted in Fig. 13. For β = 4000, we obtain σw ≈ 0.078, which yields that

NIS

NMC
≈

(
0.078

0.340

)2

≈ 5.26%.

We finally consider a case that M = 32, where E[I B ] ≈ 0.134 and σw ≈ 0.341. The training data set includes 13,267 
samples that g(uM,h,c) ≥ 0 and 30,402 samples that g(uM,h,c) < 0, among which only 1,067 samples are really missed by 
the reduced-order model. Although the dimension is high and the data set is relatively small, we obtain σw ≈ 0.089 with 
β = 8000 (see Fig. 14), which yields that

NIS

NMC
≈

(
0.089

0.341

)2

≈ 6.81%.

To this end, we have studied the performance of the generative-model-based importance sampling estimator for different 
random dimension M , where the configuration of the generative model is fixed, the ADAM method is subject to a fixed 
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Fig. 14. M = 32. Left: The evolution behavior of stochastic optimization, where the penalty term varies in terms of β . Only the cross entropy has been 
plotted. Right: The standard deviation of w(Y ).

Fig. 15. M = 16. Left: The evolution behavior of stochastic optimization, where the penalty term varies in terms of β . Only the cross entropy has been 
plotted. Right: The standard deviation of w(Y ).

learning rate, and the size of training set remains comparable for all M . Very encouraging results have been obtained in 
terms of the ratio NIS/NMC for M varying from 2 to 32. The penalty term in the objective function appears important for 
the robustness of the algorithm. Note that all cases we have studied so far are subject to a relative large correlation length 
lc = 1, e.g., λ16

λ1
= 1.22e-3. The fast decay of the eigenvalues may reduce the difficulty of density estimation in terms of 

the dimensionality. To clarify this concern, we study a relatively small correlation length lc = 0.1 and let M = 16, where 
λ16
λ1

= 4.53%. Due to the slower decay of eigenvalues, the high-order modes in the Karhunen-Loéve expansion will play a 
much more important role for the value of ‖u‖H1(D) . We then refine the coarse mesh from 10 equidistant linear finite 
elements to 30 to let the coarse model capture more information about the eigenfunctions for small eigenvalues. We have 
E[I B ] ≈ 0.093 and σw ≈ 0.290. The training data set includes 9,010 samples that g(uM,h,c) ≥ 0 and 40,568 samples that 
g(uM,h,c) < 0, among which only 609 samples are really missed by the reduced-order model. The results have been plotted 
in Fig. 15. Compared to the previous cases with a large correlation length, the relaxation time of stochastic optimization 
increases in the sense that the optimal generative model will be achieved at a larger epoch. Other than that, the results are 
qualitatively similar to previous observations. In particular, the penalty term is critical for robustness. For β = 7000, we are 
able to obtain

NIS

NMC
≈

(
0.071

0.290

)2

≈ 6.00%.

We now let M = 32, where λ32
λ1

= 1.11%, E[I B ] ≈ 0.115 and σw ≈ 0.319. The data from the reduced-order model include 
11,260 samples that g(uM,h,c) ≥ 0 and 88,342 samples that g(uM,h,c) < 0, among which only 905 samples are really missed 
by the reduced-order model. It is seen that the redundant data is about eight times as many as the data that g(uM,h,c) ≥ 0. 
This is because the high-order eigenfunctions θi are highly oscillating, and become more important in the evaluation of 
‖u‖H1(D) when eigenvalues decay slowly. The coarse mesh cannot capture the high oscillation well, and introduce a large 
error when the random variables associated with the high-order eigenfunctions take a large value. We here simply truncate 
the data set with respect to the value of |gh,c(y(i))|. We only keep half of the data that g(uM,h,c) < 0, which have a smaller 
|gh,c(y(i))|. Since the dependence on the high-order eigenfunctions is stronger, we increase the depth L from 16 to 24 for 
the generative model. Other than that, all other set-up remains the same. The results are plotted in Fig. 16. When the epoch 
is 1000, we obtain
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Fig. 16. M = 32. Left: The evolution behavior of stochastic optimization, where the penalty term varies in terms of β . Only the cross entropy has been 
plotted. Right: The standard deviation of w(Y ).

NIS

NMC
≈

(
0.102

0.319

)2

≈ 10.22%,

with β = 16000.
In summary, we are able to obtain a speedup of O(10) for a random dimension up to 32 for the elliptic problem studied, 

where the speed up is measured by the ratio NMC/NIS . It is observed that the speedup will decrease with respect to the 
dimension. However, we should note that for all the cases we use a comparable amount of effective samples, in other 
words, the number of samples satisfying g(uM,h,c) ≥ 0 is always around 104. In contrast to other density techniques such 
as mixture of Gaussians, the generative model seems less sensitive to dimensionality in the sense that it is able to achieve 
a good performance for a relatively large dimension using a relatively small training dataset.

7. Summary and discussions

In this work we have proposed a methodology to couple the reduced-order model and the generative model to con-
struct an importance sampling estimator. Our numerical experiments show that this idea is actually feasible although the 
approximation of high-dimensional PDF is difficult due to the curse of dimensionality. From the application point of view, 
the generative models have been trained to approximate the data distribution given by high-resolution images, where the 
criterion for effectiveness is quite ad hoc although the dimensionality is really high. We adapt the generative model to 
deal with a physical problem and measure its effectiveness rigorously through the variance reduction it is able to achieve. 
It appears that the generative model does have the ability to encode the information in the high-dimensional data from 
a physical model. However, we note that the properties of the problem should be incorporated into the training process 
to enhance the robustness. For our problem, the regularization induced by the penalty term is much more robust than a 
general regularization technique in machine learning such as early stopping. We have demonstrated that the generative-
model-based important sampling estimator can achieve a significant variance reduction for at least random dimensions of 
O(10) with respect to a UQ problem. To test the robustness, we have fixed the configuration of the generative model and 
the parameters of the optimization algorithm. For the problems studied, at least about 90% reduction in variance is achieved 
for the dimension M up to 32 with about 104 samples. At this moment, it is unclear how many random dimensions the 
generative model can effectively deal with for UQ problems in terms of the variance reduction of importance sampling. 
However, the scalability of deep nets makes it very promising to apply our methodology to a larger random dimension by 
using a larger depth L.

There are many possibilities to improve the current work. For example, in all our numerical experiments, a fixed partition 
of the random vector is used. A more effective partition strategy can be employed especially when the number of effective 
random dimensions is much smaller than the total number of random dimensions. Other generative models can also be 
employed. The invertible mapping has been recently introduced into a general adversarial network such that GAN is able 
to perform exact likelihood evaluation [6]. In [17], a new flow-based generative model is proposed by incorporating the 
optimal transport theory. How these flow-based models help importance sampling in our problem setting is an interesting 
question. Another possibility is to take into account the dimension reduction in the probability space such that we can 
mainly focus on the effective random dimensions. The research on these issues will be reported elsewhere.
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