
Estimating Committor Functions via Deep Adaptive Sampling on
Rare Transition Paths

Yueyang Wanga, Kejun TangBb, Xili Wanga, Xiaoliang Wanc, Weiqing Rend, Chao Yanga

aSchool of Mathematical Sciences, Peking University
bFaculty of Computility Microelectronics, Shenzhen University of Advanced Technology

cDepartment of Mathematics and Center for Computation and Technology, Louisiana State University
dDepartment of Mathematics, National University of Singapore

Abstract

The committor functions are central to investigating rare but important events in molecu-
lar simulations. It is known that computing the committor function suffers from the curse
of dimensionality. Recently, using neural networks to estimate the committor function has
gained attention due to its potential for high-dimensional problems. Training neural networks
to approximate the committor function needs to sample transition data from straightforward
simulations of rare events, which is very inefficient. The scarcity of transition data makes it
challenging to approximate the committor function. To address this problem, we propose an
efficient framework to generate data points in the transition state region that helps train neu-
ral networks to approximate the committor function. We design a Deep Adaptive Sampling
method for TRansition paths (DASTR), where deep generative models are employed to gen-
erate samples to capture the information of transitions effectively. In particular, we treat a
non-negative function in the integrand of the loss functional as an unnormalized probability
density function and approximate it with the deep generative model. The new samples from
the deep generative model are located in the transition state region and fewer samples are lo-
cated in the other region. This distribution provides effective samples for approximating the
committor function and significantly improves the accuracy. We demonstrate the effectiveness
of the proposed method through both simulations and realistic examples.

Keywords: committor function, deep adaptive sampling, rare event, transition path

1. Introduction

Understanding transition events between metastates in a stochastic system plays a central
role in chemical reactions and statistical physics [1, 2, 3, 4]. The physical process can be
formulated as the following stochastic differential equation (SDE)

dXt = −∇V (Xt)dt+
√
2β−1dWt, (1)

Email addresses: wangyueyang@stu.pku.edu.cn (Yueyang Wang), tangkejun@suat-sz.edu.cn (Kejun
TangB), xiliwang@stu.pku.edu.cn (Xili Wang), xlwan@lsu.edu (Xiaoliang Wan), matrw@nus.edu.sg
(Weiqing Ren), chao_yang@pku.edu.cn (Chao Yang)

ar
X

iv
:2

50
1.

15
52

2v
1

 [
st

at
.M

L
]

 2
6

Ja
n

20
25

where Xt ∈ Ω ⊂ Rd is the state of the system at time t, V : Ω 7→ R denotes a potential
function, β is the inverse temperature, and Wt is the standared d-dimensional Wiener process.
For two disjoint subsets of this stochastic system, we are interested in the transition rate, which
can be characterized by the commttor function. For two distinct metastable regions A,B ⊂ Ω,
and A ∩ B = ∅, denoting by τω the first hitting time of a subset ω ⊂ Ω for a trajectory, the
committor function q : Ω 7→ [0, 1] is defined as q(x) = P (τB < τA|X0 = x), where P denotes
the probability. The committor function is a probability that a trajectory of SDE starting from
x ∈ Ω first reaches B rather than A. By definition, it is easy to verify that q(x) = 0 for x ∈ A
and q(x) = 1 for x ∈ B. This committor function provides the information of process of a
transition, and it is governed by the following partial differential equation (PDE) [5, 6]

−β−1∆q(x) +∇V (x) · ∇q(x) = 0, x ∈ Ω\(A ∪B),

q(x) = 0, x ∈ A,

q(x) = 1, x ∈ B,

∇q(x) · n = 0, x ∈ ∂Ω\(A ∪B),

(2)

where n is the outward unit normal vector of the boundary ∂Ω\(A ∪B). Once the committor
function q(x) is found, we can use it to extract the statistical information of reaction trajectories
[2, 4].

1.1. Connections with Prior Work and Contributions
Obtaining the committor function q needs to solve the above high-dimensional PDE, which

is computationally infeasible for traditional grid-based numerical methods. In [7], a low-rank
tensor train approach is proposed to compute the committor function, which relies on the low-
rank tensor train approximation of the Boltzmann-Gibbs distribution. This approach cannot be
directly applied to realistic problems if no explicit low-rank tensor train formats for the potential
are given. Some efforts have been made to employ deep neural networks to approximate the
committor function [8, 6, 9]. The key idea is that committor functions are represented by
deep neural networks that can be trained by minimizing a variational loss functional. The
training data points for discretizing the variational loss are usually sampled from the equilibrium
distribution of the SDE (i.e. the Gibbs measure) [8, 9, 10], which needs to simulate the stochastic
differential equations. This sampling method is inefficient due to the scarcity of transition data,
especially for realistic systems at low temperatures. Modified sampling methods are proposed
in [6, 11, 12, 13, 14] to alleviate this issue, where a new probability measure for sampling is
constructed by modifying the potential function so that more samples can be obtained in the
transition state region.

When the transition is rare, samples from the transition state region are difficult to obtain
from the SDE [11, 13]. If insufficient data points are located on the transition paths, the trained
neural network for approximating the committor function will have a large generalization error.
To address this problem, we propose a new framework called Deep Adaptive Sampling on rare
TRansition paths (DASTR) to train the deep neural network. More specifically, we generate
samples in the transition state region using an iterative construction. To do this, we define a
proper sampling distribution using both the current approximate committor function and the
potential function, in contrast to merely modifying the potential function as in [6, 11, 12, 13, 14].
The key idea is to reveal the transition information by taking into account the properties of the
committor function. The new distribution is approximated by a deep generative model based

2

on which new samples are generated and added to the training set. Once the training set is
updated, the neural network model for approximating the committer function is further trained
for refinement. This procedure is repeated to form a deep adaptive sampling approach on rare
transition paths.

It is challenging to deal with high-dimensional realistic problems using deep generative mod-
els because we need to ensure two things: one is that more samples are located in the transition
state region, and the other is that all samples must obey the molecular configurations. Directly
approximating and sampling a high-dimensional distribution may result in a relatively large
number of samples with unreasonable molecular configurations, which limits the application of
DASTR. To deal with this issue, we combine the proposed DASTR method with dimension
reduction techniques to automatically select the collective variables (CVs), where an autoen-
coder is trained to help avoid hand-craft selections of collective variables. Such a dimension
reduction step helps avoid generating physically unreasonable configurations, thereby not only
reducing computational complexity but also enhancing sampling efficiency. To summarize, the
main contributions of this work are as follows:

• We propose a general framework, called deep adaptive sampling on rare transition paths
(DASTR), for estimating high-dimensional committor functions.

• For high-dimensional realistic problems, the proposed DASTR method can be applied to
the latent collective variables obtained by an autoencoder without hand-picking. One can
reduce computational complexity and enhance sampling efficiency by adaptive sampling
in the latent space. We demonstrate the effectiveness of the proposed method with the
alanine dipeptide problem.

1.2. Related Work
Adaptive Sampling of Neural Network Solver. The basic idea of adaptive sampling involves
utilizing a non-negative error indicator, such as the residual square, to refine collocation points in
the training set. Sampling approaches [15] (e.g., Markov Chain Monte Carlo) or deep generative
models [16, 17, 18] are often invoked to sample from the distribution induced by the error
indicator. Typically, an additional deep generative model (e.g., normalizing flow models) or a
classical model (e.g., Gaussian mixture models [19, 20]) for sampling is required. This work uses
the variational formulation and defines a novel indicator for adaptive sampling by incorporating
the traits of committor functions.

Autoencoder for Protein Systems. As a dimension reduction technique, autoencoders have
shown the potential for the protein structure prediction and generation [21]. Autoencoders
compress the input data into a lower-dimensional latent space and then reconstruct the input
data through a decoder, enabling the learning of underlying features in the data. This ap-
proach not only helps reduce the computational resources needed for protein simulations but
also significantly lowers the dimensionality and complexity of the problem. The prediction and
generation of new protein structures can also be assisted by analyzing the variables in the latent
space [22, 23]. In our framework, the deep generative model can be used in the latent space to
adaptively generate latent variables, which helps us explore the transition paths more efficiently
and avoid selecting collective variables by hand-picking.

3

1.3. Organization
The rest of the paper is organized as follows. Details of neural network methods for com-

puting committor functions are introduced in section 2. Our DASTR approach is presented in
section 3. In section 4, we demonstrate the effectiveness of our DASTR approach with numerical
experiments. Finally, we make a conclusion in section 5.

2. Neural Network Solver for Committor Functions

The neural network approximation of partial differential equations involves minimizing a
proper loss functional, e.g., the residual loss [24, 25, 26] or the variational loss [27, 28, 29].
For the committor function, we consider the variational loss [6] instead of the residual loss.
The variational loss involves up to first-order derivatives of the committer function, while the
residual loss needs to compute the second-order derivatives. In other words, computing the
residual loss is more expensive, especially for high dimensional problems (large d in (2)). Let
qθ(x) be a neural network parameterized with θ, where the input of the neural network is the
state variable x. One can solve the following variational problem to approximate the committor
function

min
θ

∫
Ω\(A∪B)

|∇qθ(x)|2e−βV (x)dx,

s.t. qθ(x) = 0,x ∈ A; qθ(x) = 1,x ∈ B.

(3)

The details of the derivation of (3) can be found in Appendix A. We then obtain the following
unconstrained optimization problem by adding a penalty term

min
θ

∫
Ω\(A∪B)

|∇qθ(x)|2e−βV (x)dx+ λ

(∫
A

qθ(x)
2pA(x)dx+

∫
B

(1− qθ(x))
2pB(x)dx

)
, (4)

where λ > 0 is a penalty parameter, pA and pB are two probability density functions on A and
B respectively.

To optimize the above variational problem, one needs to generate some random collocation
points from a proper probability distribution to estimate the integral in (3). One choice is to
sample collocation points from the Gibbs measure e−βV (x)/Z, where Z =

∫
Ω\(A∪B)

e−βV (x)dx is
the normalization constant, and this can be done by simulating the SDE defined in (1). How-
ever, generating collocation points by the SDE is inefficient for approximating the committor
function, especially for molecular systems with low temperatures (or high energy barriers). This
is because the committor function focuses on the transition area while the samples generated
by the Langevin dynamics (equation (1)) cluster around the metastable regions A and B. This
implies that the samples from the SDE may not include sufficient effective samples for training
qθ. Hence, we need a strategy to seek more effective samples to approximate the committor
function, which will be presented in the next section.

Now suppose that we have a set of collocation points S = {xi}Ni=1, where each xi ∈ Ω\(A∪B)
is drawn from a certain probability distribution p, and two sets of collocation points SA =
{xA,i}NA

i=1 and SB = {xB,i}NB
i=1, where each xA,i and each xB,i are drawn from pA and pB

respectively. The optimization problem (4) can be discretized as follows

min
θ

1

N

N∑
i=1

|∇qθ(xi)|2
e−βV (xi)

p(xi)
+ λ

(
1

NA

NA∑
i=1

qθ(xA,i)
2 +

1

NB

NB∑
i=1

(qθ(xB,i)− 1)2

)
. (5)

4

The key point here is to choose an effective set S to train qθ. In the next section, we will
show how to adaptively generate effective collocation points (a high-quality dataset) on rare
transition paths, based on which we can improve the accuracy of the approximate solution of
(2). Considering that the main difficulties come from the transition state region, we will focus
on how to choose S and assume that the integral on the boundary is well approximated by two
prescribed sets SA and SB. For simplicity, we will ignore the penalty term when discussing our
method.

3. Deep Adaptive Sampling on Rare Transition Paths

3.1. Main Idea
Our goal is to adaptively generate more effective data points distributed in the region of the

transition state. This will be achieved by designing a deep adaptive sampling method on the
transition paths.

Suppose that at the k-th step, we have obtained the current approximate solution qθk with
Sk. We want to use the information of qθk and the potential function V to detect where the
transition area is, based on which we expect to generate new data points in the transition state
region that can help improve the discretization given by Sk. We then refine Sk to get Sk+1 for
the next training step. The more effective data points in the transition area we have, the more
accurate solution qθ we can obtain. To achieve this, we define a proper probability distribution
for sample generation based on the following observations: First, |∇xq|2 has a peak in the
transition state region, implying that more data points should be introduced around the peak.
Second, we may lower the energy barrier to facilitate transitions between the metastable states,
which can be done by adding a biased potential Vbias to the original potential V [6, 13].

3.2. Sample Generation
Let pV,q be a probability density function (PDF) that is dependent on V and qθ. Here, we

give two choices for constructing pV,q. One choice is to set

pV,q(x) =
|∇qθ(x)|2e−βV (x)

C1

, (6)

where C1 is the normalization constant. That is, we treat the nonnegative integrand in (3)
as an unnormalized probability density function. If there exists a high energy barrier, we can
use a biased potential Vbias to lower the energy barrier, which yields the following sampling
distribution

pV,q(x) =
|∇xqθ(x)|2e−β(V (x)+Vbias(x))

C2

, (7)

where C2 is the corresponding normalization constant. The biased potential can be chosen to
be an umbrella potential [30] or a potential derived from the metadynamics [31, 32].

Now the question is how we can generate samples from the above sampling distribution.
Here, we use KRnet, which is a type of flow-based generative models [33, 34], for PDF ap-
proximation and sample generation. We note that other deep generative models with exact
likelihood computation [35, 36] can also be used here. Let pKRnet(x; Θf) be a PDF model in-
duced by KRnet with parameters Θf [16, 37, 38, 39]. The PDF model pKRnet is induced by a

5

bijection fKRnet with parameters Θf :

pKRnet(x; Θf) = pZ(fKRnet(x)) |det∇xfKRnet| ,

where pZ is a prior PDF (e.g., the standard Gaussian distribution). We can approximate pV,q
through solving the optimization problem

Θ∗
f = argmin

Θf

DKL(pV,q(x)∥pKRnet(x; Θf)),

where DKL(·∥·) indicates the Kullback-Leibler (KL) divergence between two distributions. Min-
imizing the KL divergence is equivalent to minimizing the cross entropy between pV,q and pKRnet
[40, 41]:

H(pV,q, pKRnet) = −
∫
Ω\(A∪B)

pV,q(x) log pKRnet(x; Θf)dx.

The normalization constants in (6) and (7) do not affect the optimization with respect to Θf .
Since the samples from pV,q are not available, one can approximate the cross entropy using the
importance sampling technique:

H(pV,q, pKRnet) ≈ − 1

N

N∑
i=1

pV,q(xi)

pIS(xi)
log pKRnet(xi; Θf), (8)

where pIS(xi) is a known PDF model and {xi}Ni=1 are the samples from pIS(xi). For example,
the PDF model pIS(xi) can be chosen to be a PDF model induced by a known KRnet with
parameters Θ′

f , i.e.,
xi = f−1

KRnet(zi), (9)

with zi being sampled from the standard Gaussian distribution. We then minimize the dis-
cretized cross entropy (8) to obtain an approximation of Θ∗

f .

3.3. DASTR Algorithm
Our adaptive sampling strategy is stated as follows. Let S0 = {x0,i}N0

i=1 be a set of collocation
points that are sampled from a given distribution p0(x) in Ω\(A∪B). Using S0, we minimize the
empirical loss defined in (5) to obtain qθ1 . With qθ1 , we minimize the cross entropy in (8) to get
p1 = pKRnet(x; Θ

∗,(1)
f). A new set Sg

1 = {x1,i}n1
i=1 with n1 ≤ N0 is generated by f−1

KRnet(zi; Θ
∗,(1)
f)

(see (9)) to refine the training set. To be more precise, we replace n1 points in S0 with Sg
1 to

get a new set S1. Then we continue to update the approximate solution qθ1 using S1 as the
training set.

In general, at the k-stage, suppose that we have nj samples Sg
j = {xj,i}

nj

i=1 from pj for
j = 1, . . . , k, where pj is the PDF model at the j-th stage and it can be trained by letting
pj−1 = pKRnet(xi; Θ

′
f) in (8). The training set Sk at the k-th stage consists of xj,i. We use Sk to

obtain qθk+1
as

θk+1 = argmin
θ

k∑
j=0

1

nj

nj∑
i=1

αj|∇qθ(xj,i)|2
e−βV (xj,i)

pj(xj,i)
, (10)

where qθ is initialized as qθk , αj = nj/
∑k

j=0 nj is a weight to balance the different dis-
tributions pj, and n0 is the number of points kept in S0 at the k-th stage. Starting with

6

Figure 1: The schematic of DASTR for computing the committor function. Training a deep neural
network qθ to approximate the high-dimensional committor function must use a high-quality dataset (i.e. data
points from the transition area). Typically, the data points from Langevin dynamics are not in the transition
state region since the transition between two metastable states is rare and difficult to sample. The proposed
DASTR method can adaptively generate effective data points on the transition area according to the information
of the current approximate solution. The key point is to define a sampling distribution pV,q dependent on the
current approximate solution and the potential. Effective data points in the transition area are generated by
sampling from pV,q, which is achieved through training a deep generative model.

pk = pKRnet(x; Θ
∗,(k)
f), the density model pKRnet(x; Θf) is updated by (8) to get pk+1. A new set

Sg
k+1 = {xk+1,i}nk+1

i=1 of collocation points is generated by (9). We then use Sg
k+1 to refine the

training set to get Sk+1. We repeat the above procedure to obtain Algorithm 1 for the deep
adaptive sampling on transition paths. We call this method DASTR for short. The main idea
of our algorithm is also illustrated in Figure 1.

3.4. DASTR in the Latent Space
For complex systems, such as protein molecules, directly applying DASTR will result in the

generation of physically unreasonable molecular configurations during the adaptive sampling
procedure. The reason behind this is the strong correlation among the atomic coordinates
required by physically reasonable protein structures. As a result, directly using the atomic

7

Algorithm 1 DASTR
Input: Initial qθ0 , maximum stage number Nadaptive, maximum epoch number Ne, N

′
e, batch

size m,m′, initial training set S0 = {x0,i}N0
i=1.

1: for k = 0 : Nadaptive − 1 do
2: for i = 1 : Ne do
3: for l steps do
4: Sample m samples from Sk.
5: Update qθ(x) by descending the stochastic gradient of the discrete variational

loss (see (10)).
6: end for
7: end for
8: for i = 1 : N ′

e do
9: for l steps do

10: Sample m′ samples from the standard Gaussian distribution.
11: Generate samples using (9).
12: Update pKRnet(x; Θf) by descending the stochastic gradient of H(pV,q, pKRnet) (see

(8)).
13: end for
14: end for
15: Refine the training set: use pk+1 to get Sk+1.
16: end for
Output: qθ

coordinates as input to the KRnet may fail to capture the interatomic relationships effectively.
This observation is demonstrated in Figure 2. The molecular configurations in the left plot,
which are almost physically unreasonable, are sampled from a trained KRnet in the original
high-dimensional space, while the molecular configurations in the right plot, which are physically
consistent, are sampled using latent collective variables as discussed later in section 3.4.2.

To resolve this issue, we resort to sampling in the latent space, where we consider two
strategies: one is based on the collective variables (CVs) method [42] (see section 3.4.1), and the
other is based on autoencoders (see section 3.4.2). CVs refer to variables that can capture critical
information about molecular structures. For example, the dihedral angles of the backbone atoms
or distance between atoms can be selected as the CVs in protein systems. CVs can help reduce
the computational complexity and enhance the sampling correctness. Moreover, we propose to
use an autoencoder to automatically select latent CVs, which in general do not have explicit
physical meanings, and generate physically reasonable molecular configurations using these
latent CVs.

The basic idea of the collective variables method is to replace the original coordinates with
some collective variables s(x) = [s1(x), . . . , sm(x)]

⊤ with m≪ d, where d is the dimensionality
of x. Then we can restrict our attention to the collective variables during the adaptive sampling
procedure:

pV,q(s(x)) = pV,q(x), (11)

where the pV,q(x) corresponds to the term defined in equations (6) and (7). Since the collective
variables can capture the essential structural features of molecules, one can take adaptively

8

(a) Molecules generated using coordinates of
heavy atoms as the input to KRnet.

(b) Molecules generated using latent CVs as
the input to KRnet.

Figure 2: Molecular configurations generated by two different settings in DASTR: (a) the inputs of KRnet are
the coordinates of heavy atoms (b) the inputs of KRnet are the latent CVs. The hydrogen atoms are completed
by the software package PyMOL [43]. This figure demonstrates that using the latent collective variables to
conduct DASTR is more effective.

sampling step on the collective variables s(x) as illustrated in Algorithm 1. To generate samples
in the latent space, we need to train KRnet using the CVs as input to learn the probability
distribution in the latent space. Similar to the discussions in section 3.2, training KRnet can
be performed by minimizing the cross entropy loss defined in the latent space. This way, the
deep generative model is used to generate samples of the collective variables instead of the
coordinates x. After generating the collective variables, one can do some post-processing steps
to obtain new samples of x. This will reduce the probability of generating nonphysical samples.

If there is no prior information for selecting the proper collective variables, we use an au-
toencoder to learn some latent variables from the data and use them as the collective variables.
The overall procedure along this line is summarized in Algorithm 2.

3.4.1. Hand-picking CVs with Umbrella Sampling
We first consider that the explicit collective variables are available. In this scenario, the

dihedral angles of the backbone atoms are selected as CVs [6]. As discussed above, we need
to ensure that the samples obey the molecular configurations during the adaptive sampling
procedure.

It is straightforward to train a KRnet to model the distribution in terms of collective vari-
ables s. The KRnet that maps the collective variables s to a standard Gaussian is obtained by
minimizing the following cross entropy

H(pV,q, pKRnet) ≈ − 1

N

N∑
i=1

pV,q(s(xi))

pIS(s(xi))
log pKRnet(s(xi); Θf), (12)

where pIS(s(xi)) = e−βVmodified(xi) and each xi is a sample drawn from the previous step. The
generation of new samples for x is achieved in two steps: we first generate samples for the
collective variables s using the trained KRnet, and then sample x that satisfies s(x) ≈ s using
umbrella sampling [30] (see Appendix B.4 for more details).

9

Algorithm 2 DASTR in the latent space
Input: Initial qθ0 , maximum stage number Nadaptive, maximum epoch number Ne, N

′
e, batch

size m,m′, initial training set S0 = {x0,i}N0
i=1.

1: if Using autoencoder then
2: Train the autoencoder using S0.
3: end if
4: for k = 0 : Nadaptive − 1 do
5: for i = 1 : Ne do
6: for l steps do
7: Sample m samples from Sk.
8: Update qθ(x) by descending the stochastic gradient of the discrete variational

loss (see (10)).
9: end for

10: end for
11: for i = 1 : N ′

e do
12: for l steps do
13: Sample m′ samples from the standard Gaussian distribution.
14: if Using autoencoder then
15: Update pKRnet(s(x); Θf) by descending the stochastic gradient of

H(pV,q, pKRnet) using (14).
16: else
17: Update pKRnet(s(x); Θf) by descending the stochastic gradient of

H(pV,q, pKRnet) using (12))
18: end if
19: end for
20: end for
21: Generate new samples of the latent collective variables by the trained KRnet.
22: Use the pretrained decoder to get new samples of x.
23: Refine the training set to get Sk+1.
24: end for
Output: qθ

The potential function Vmodified is used to simulate the SDE to generate new samples

Vmodified(x) = V (x) + VUS(x),

where V is the original potential in (1) and VUS(x) is the the umbrella potential with the
following form

VUS(x) =
1

2

m∑
i=1

kus(si(x)− si(x0))
2. (13)

Here, si(x0) is the target CVs generated by the trained KRnet, si(x) represents the CVs with
respect to x, m is the number of CVs, and kus is the force constant. We perform a rapid
iterative process of umbrella sampling to transfer the CVs to the target region, and finally
sample near the target CVs in the modified potential. This ensures the physical validity of the

10

molecular configurations during the adaptive sampling procedure. However, selecting proper
collective variables requires additional domain-specific knowledge, which is not a trivial task.
Additionally, this strategy for implementing adaptive sampling in the latent space still requires
simulating the SDE, which limits its sampling efficiency.

3.4.2. Latent CVs with Autoencoder
In this part, we provide an alternative way of using an autoencoder to automatically select

the latent variables as the collective variables. The autoencoder can be trained before the first
stage in Algorithm 2 using the data from metadynamics. After training, the autoencoder is
fixed during the adaptive sampling procedure.

The configurations of molecular systems are primarily determined by the positions of the
heavy atoms and the positions of the hydrogen atoms can be inferred from the positions of the
heavy atoms. Based on this observation, we selected the coordinates of all the heavy atoms of
molecules from S0 as the dataset for training the autoencoder. The autoencoder consists of two
parts: an encoder = s(x) and a decoder = S(s(x)). Both the encoder and decoder are modeled
by neural networks. Training the autoencoder aims to minimize the mean squared error

1

N

N∑
i=1

(S(s(xi))− xi)
2.

Once the autoencoder is trained, the latent CVs can be obtained by the encoder. To this end,
we utilize KRnet to learn the distribution of the latent CVs by minimizing the following cross
entropy with respect to the latent CVs

H(pV,q, pKRnet) ≈ − 1

N

N∑
i=1

pV,q(s(xi))

pKRnet(s(xi); Θ′
f)

log pKRnet(s(xi); Θf), (14)

where the parameters Θ′
f can be chosen from the previous step.

Once we have the trained KRnet in hand, we can generate samples s in the latent space.
These samples are subsequently decoded using the pretrained decoder to reconstruct the posi-
tions of all the heavy atoms. The hydrogen atoms are automatically completed using the soft-
ware package PyMOL [43]. Finally, we calculate the potential energy of the generated molecular
configurations to exclude those samples with excessively high potential energies, thus avoiding
the generation of physically unreasonable configurations. The generated molecular configura-
tions are illustrated in Figure 2b. The proportion of reasonable configurations generated by
this method exceeds 97% (details can be found in section 4.3.2). The computation process is
illustrated in Figure 3.

Remark. The key point here is that the autoencoder helps us automatically obtain the latent
collective variables that reflect the molecular configuration, which serve as the input of KRnet,
without the need of hand-picking physical CVs. In section 4.3.1, we use KRnet to learn the
distribution corresponding to the physical CVs and employ umbrella sampling to generate sam-
ples of molecules based on these physical CVs. However, this process consumes significant time
and computational resources because umbrella sampling is still based on the SDE simulation.
In contrast, the autoencoder explores latent CVs, allowing us to break free from the reliance
on physical CVs and the associated SDE-based sampling methods. Moreover, the decoder can

11

quickly reconstruct the molecular structure, significantly improving the computational efficiency.
We compare the sampling time of the two methods in section 4.3.2.

Figure 3: The schematic of adaptive sampling in the latent space. We first train an autoencoder to obtain
the latent variables as the collective variables (CVs), and then use KRnet to approximate the distribution of the
CVs. After training KRnet, we use a random sample z0 from the standard Gaussian distribution to generate a
new sample of latent CVs. We can feed this new sample of latent CVs into the decoder to obtain a new sample
of molecules after the post-processing step. Such a new sample of molecules is located in the transition state
region. The autoencoder not only provides an effective way to automatically choose the collective variables, but
also enhances the sampling efficiency of molecules in the transition state region.

4. Numerical Study

We conduct three numerical experiments to demonstrate the effectiveness of the proposed
method. The first one is a 10-dimensional rugged Mueller potential problem, the second one is
a 20-dimensional standard Brownian motion problem, and the last one is the alanine dipeptide
problem with the dimension d = 66. The performance of DASTR with the collective variables
method and the autoencoder method is investigated using the alanine dipeptide problem. The
detailed settings of numerical experiments are provided in Appendix B.

4.1. Rugged Mueller Potential
We consider the extended rugged Mueller potential embedded in the 10-dimensional space,

which is a well-known test problem in computational chemical physics [6, 9]. The extended
rugged Mueller potential is given by V (x) = Vrm(x1, x2) + 1/(2σ2)

∑10
i=3 x

2
i , where x ∈ R10 and

Vrm(x1, x2) is the rugged Mueller potential defined in [−1.5, 1]× [−0.5, 2]

Vrm(x1, x2) =
4∑

i=1

Die
ai(x1−ξi)

2+bi(x1−ξi)(x2−ηi)+ci(x2−ηi)
2

+ γsin(2kπx1)sin(2kπx2).

12

We set σ = 0.05 as in [6], and the other parameters are set to be the same as in [5]. The inverse
temperature is set to β = 1/10. In this test problem, the two metastable sets A and B are
two cylinders with centers [x1, x2] = [−0.558, 1.441] and [x1, x2] = [0.623, 0.028] respectively
with radius 0.1. In this setting, the solution of this 10-dimensional problem is the same as
that of the two-dimensional rugged Mueller potential, i.e., q(x) = qrm(x) [6, 9]. So, we can
use the finite element method implemented in FEniCS [44, 45] to obtain a reference solution
to evaluate the performance. For comparison, we also implement the artificial temperature
method [6] as the baseline model. Here we define the L2 relative error ∥qθ − qref∥2 / ∥qref∥2,
where qθ and q denote two vectors whose elements are the function values of qθ and qref at
some grids respectively. The settings of neural networks and training details can be found in
Appendix B.1.

1.5 1.0 0.5 0.0 0.5 1.0
x1

0.5

0.0

0.5

1.0

1.5

2.0

x2

A

B

Sample Points
Test Points

(a) Samples from SDE.

1.5 1.0 0.5 0.0 0.5 1.0
x1

0.5

0.0

0.5

1.0

1.5

2.0

x2

A

B

Sample Points
Test Points

(b) Samples from SDE us-
ing the artificial temperature
method, β = 1/20.

-1.5 -1.0 -0.5 0.0 0.5 1.0
x1

-0.5

0.0

0.5

1.0

1.5

2.0

x2

A

B

Sample Points
Test Points

(c) DASTR, samples at the 1-
th stage.

(d) DASTR, samples at the 5-
th stage.

-1.5 -1.0 -0.5 0.0 0.5 1.0
x1

-0.5

0.0

0.5

1.0

1.5

2.0

x2

A

B

Sample Points
Test Points

(e) DASTR, samples at the
15-th stage.

(f) DASTR, samples at the 29-
th stage.

Figure 4: DASTR, samples for the 10-dimensional rugged Mueller potential problem. The red line denotes the
test points from the 1/2-isosurface (q ≈ 1/2) projected onto the x1-x2 plane.

Figure 4 shows the samples from different sampling strategies, where these samples are
projected onto the x1-x2 plane. Specifically, Figure 4a shows the samples generated by SDE
defined in (1). It can be seen that the samples from SDE are located around the two metastable
states A and B, which are ineffective for approximating the committor function. Figure 4b
shows the samples from SDE with the artificial temperature method. While more samples
show up in the transition state region compared with Figure 4a, there still does not exist
sufficient information in the dataset to capture the committor function well. Our method is
able to provide effective samples in the transition area. As shown in Figures 4c-4f, the evolution
of the training set with respect to adaptivity iterations k = 1, 5, 15, 29 is presented, where we
randomly select 5000 samples in the training set for visualization. Obviously, such samples are
distributed in the transition state region (Ω\(A ∪ B)), which is desired for approximating the

13

committor function.

0 300 600 900 1200 1500
Epochs

10 2

10 1

100

L2
 R

el
at

iv
e

E
rr

or

Artificial Temperature
DASTR

(a) Error behavior

-1.5 -1.0 -0.5 0.0 0.5 1.0
x1

-0.5

0.0

0.5

1.0

1.5

2.0

x2

A

B

0.00

0.16

0.32

0.48

0.64

0.80

0.96

(b) Reference

-1.5 -1.0 -0.5 0.0 0.5 1.0
x1

-0.5

0.0

0.5

1.0

1.5

2.0

x2

A

B

0.00

0.16

0.32

0.48

0.64

0.80

0.96

(c) DASTR

-1.5 -1.0 -0.5 0.0 0.5 1.0
x1

-0.5

0.0

0.5

1.0

1.5

2.0

x2

A

B

0.00

0.16

0.32

0.48

0.64

0.80

0.96

(d) The artificial tem-
perature method

Figure 5: Solutions, 10-dimensional rugged Mueller potential test problem.

Figure 5a shows the error behavior of different methods. In Figure 5b-5d, we compare
the reference solution qref obtained by the finite element method, the DASTR solution given
by 4 × 105 samples and the approximate solution given by 4 × 105 samples with the artificial
temperature method. Figure 6 shows the relative errors with respect to different sample sizes.
From Figure 6, it is seen that the DASTR method is much more accurate than the method
of sampling from dynamics. Due to the difficulty of sampling in the transition state region
using SDE with the artificial temperature method, the solution obtained through the artificial
temperature method fails to accurately capture the information of the committor function in
the transition state region. To further investigate the performance of the proposed method, in
Table 1, we show the L2 relative errors of neural networks with varying numbers of neurons
subject to different sample sizes. Here, we sample 12099 points near the 1/2-isosurface (q(x) ≈
0.5) to compute the relative error. Our DASTR method is one order of magnitude more
accurate than the baseline method in all settings.

1 2 3 4
|S|

10 2

10 1

100

L2
R

el
at

iv
e

E
rr

or

×105

Artificial Temperature
DASTR

Figure 6: The error w.r.t. sample size |S|.

4.2. Standard Brownian Motion
In this test problem, we consider the committor function under the standard Brownian

motion [46, 47]. For a stochastic process (Xt)t≥0 ∈ Rd, which is a standard Brownian motion
starting at x ∈ Rd, that is, Xt = x +Wt, corresponding to ∇V (Xt) = 0 and β = 1/2 in (1).
The two metastable sets A and B are defined as A = {x ∈ Rd : ∥x∥2 < a}, B = {x ∈ Rd :
∥x∥2 > b} with b > a > 0. With these settings, for d ≥ 3, there exists an analytical solution

14

Table 1: 10-dimensional rugged Mueller potential test problem: errors for different settings of neural networks
and sampling strategies. We take 4 independent runs to compute the error statistics (mean ± standard devia-
tion).

Number of Neurons in Hidden Layer

Sampling Method |S| 20 50 100

SDE with the
artificial temperature method

1× 105 0.5446 ± 0.0724 0.4693 ± 0.0627 0.4023 ± 0.0819

2× 105 0.3183 ± 0.0592 0.2677 ± 0.0708 0.3063 ± 0.0477

3× 105 0.2717 ± 0.0487 0.2780 ± 0.0584 0.3955 ± 0.0311

4× 105 0.3822 ± 0.0555 0.3019 ± 0.0649 0.3822 ± 0.1213

DASTR (this work)

1× 105 0.0620 ± 0.0070 0.0602 ± 0.0113 0.0615 ± 0.0071

2× 105 0.0498 ± 0.0102 0.0443 ± 0.0049 0.0310 ± 0.0024

3× 105 0.0386 ± 0.0089 0.0412 ± 0.0091 0.0172 ± 0.0028

4× 105 0.0371 ± 0.0056 0.0343 ± 0.0065 0.0206 ± 0.0052

q(x) = (a2 − ∥x∥2−d
2 a2)/(a2 − b2−da2). In this test problem, we set d = 20 and a = 1, b = 2.

The settings of neural networks and training details can be found in Appendix B.2. Since
the solution to this test problem cannot be projected onto the low-dimensional space, we here
compare different sampling methods by computing the L2 relative error at a validation set with
5000 data points along a curve {(κ, . . . , κ)⊤ : κ ∈ [a/

√
d, b/

√
d]} [47].

0.25 0.30 0.35 0.40 0.45
0.00

0.25

0.50

0.75

1.00

Fu
nc

tio
n

Va
lu

es

Uniform
SDE
DASTR
Exact Solution

(a) Solutions, |S| = 2× 104.

0 250 500 750 1000 1250 1500
Epochs

10−2

10−1

100

L
2
 R

el
at

iv
e

E
rr

or

Uniform
SDE
DASTR

(b) The error evolution, |S| =
2× 104.

0.5 1 1.5 2
|S|

10−2

10−1

100

L
2
 R

el
at

iv
e

E
rr

or

×104

Uniform
SDE
DASTR

(c) The error w.r.t. sample
size.

Figure 7: Solutions evaluated along a curve and the behavior of relative errors, 20-dimensional standard Brow-
nian motion test problem. The relative error is computed at the points along the curve {(κ, . . . , κ)⊤ : κ ∈
[a/

√
d, b/

√
d]}.

Figure 7 shows the results of the 20-dimensional standard Brownian motion test problem.
Specifically, Figure 7a shows the solutions obtained by different sampling methods, where it
can be seen that the DASTR solution is more accurate than those of other sampling strategies.
Figure 7b shows the behavior of relative errors during training, where DASTR performs better
than the uniform sampling strategy and SDE. Figure 7c shows the relative errors for the uniform
sampling method, SDE, and DASTR, where different numbers of samples are tested. From
Figure 7c, it is clear that, as the number of samples increases, the relative error of DASTR
decreases more quickly than those of SDE and the uniform sampling strategy.

To see why DASTR works well, let us visualize the L2-norm of samples from different
sampling strategies. Figure 8 shows the histogram of the norm of samples for different sampling
strategies. From Figure 8a and Figure 8b, we can see that most of the samples fall into the
interval where the norm of samples is near 2. This means that it is difficult to generate samples

15

1.0 1.2 1.4 1.6 1.8 2.0
Norm Value

0

5000

10000

15000

20000

Distribution of Norm

(a) Uniform samples.

1.0 1.2 1.4 1.6 1.8 2.0
Norm Value

0

10000

20000

30000

40000

Distribution of Norm

(b) Samples from SDE.

1.0 1.2 1.4 1.6 1.8 2.0
Norm Value

0

1000

2000

3000

4000

5000

6000
Distribution of Norm

(c) DASTR, k = 2.

1.0 1.2 1.4 1.6 1.8 2.0
Norm Value

0

2000

4000

6000

8000

Distribution of Norm

(d) DASTR, k = 5.

1.0 1.2 1.4 1.6 1.8 2.0
Norm Value

0

2000

4000

6000

8000

Distribution of Norm

(e) DASTR, k = 15.

1.0 1.2 1.4 1.6 1.8 2.0
Norm Value

0

2000

4000

6000

8000

10000

Distribution of Norm

(f) DASTR, k = 30.

Figure 8: Histogram of the norm of samples, 20-dimensional test problem.

Table 2: 20-dimensional standard Brownian motion test problem: errors for different settings of neural networks
and sampling strategies. We take 4 independent runs to compute the statistics of the error (mean ± standard
deviation).

Number of Neurons in Hidden Layer

Sampling Method |S| 20 50 100

Uniform

5× 103 0.1767 ± 0.0240 0.1906 ± 0.0214 0.4555 ± 0.0557

1× 104 0.1861 ± 0.0319 0.1760 ± 0.0492 0.1310 ± 0.0197

1.5× 104 0.2125 ± 0.0220 0.2003 ± 0.0295 0.1454 ± 0.0609

2× 104 0.1963 ± 0.0866 0.1611 ± 0.0227 0.1402 ± 0.0515

SDE

5× 103 0.2127 ± 0.0802 0.2641 ± 0.0416 0.3696 ± 0.0633

1× 104 0.2846 ± 0.0523 0.2606 ± 0.0343 0.1586 ± 0.0179

1.5× 104 0.2861 ± 0.0177 0.1865 ± 0.0220 0.1706 ± 0.0434

2× 104 0.2321 ± 0.0278 0.1864 ± 0.0254 0.1342 ± 0.0434

DASTR (this work)

5× 103 0.0996 ± 0.0374 0.1073 ± 0.0128 0.0266 ± 0.1396

1× 104 0.0835 ± 0.0215 0.0415 ± 0.0167 0.0410 ± 0.0106

1.5× 104 0.0824 ± 0.0412 0.0197 ± 0.0045 0.0141 ± 0.0053

2× 104 0.0227 ± 0.0051 0.0209 ± 0.0096 0.0114 ± 0.0021

in the transition state region using the uniform sampling strategy or SDE. Indeed, in high-
dimensional spaces, most of the volume of an object concentrates around its surface [48, 49].
Hence, using uniform samples or samples generated by SDE is inefficient for estimating the
committor function. Figures 8c, 8d, 8e, and 8f show the histogram of the norm of samples from
DASTR. These histograms imply that the samples from DASTR capture the information of
transitions, which improves the accuracy of estimating the committor function. In Table 2, we
again present the L2 relative errors of neural networks with varying numbers of neurons subject
to different sample sizes. Our DASTR method is one order of magnitude more accurate than

16

the baseline methods in most settings.

4.3. Alanine Dipeptide
In this test problem, the isomerization process of the alanine dipeptide in vacuum at T =

300K is studied. This test problem is a benchmark in various literatures [6, 13]. There are
two parts of this test problem. In section 4.3.1, we assume that the collective variables are
known. Then, the proposed DASTR approach is applied to the collective variables, which will
improve the robustness of DASTR in approximating the committor function. In section 4.3.2,
the collective variables are not explicitly given, which is a more realistic setting. We use an
autoencoder to find some latent variables to serve as the collective variables.

The molecule we consider here consists of 22 atoms, each of which has three coordinates.
This means that the dimension of the state variable is d = 66 in (2). There are two important
dihedrals related to their configurations: ϕ (C-N-CA-C) and ψ (N-CA-C-N). The two metastable
conformers of the molecule are C7eq and Cax located around (ϕ, ψ) = (−85◦, 75◦) and (72◦,−75◦)
respectively. More specifically, the two metastable sets A and B are defined as [6]:

A =
{
x : ∥(ϕ(x), ψ(x))− C7eq∥2 < 10◦

}
,

B = {x : ∥(ϕ(x), ψ(x))− Cax∥2 < 10◦} .

In Figure 9, the molecule structures of two metastable states and two transition states are
displayed.

C 7eq

．

修

t t

Figure 9: The two metastable states and two transition states of the alanine dipeptide. C7eq : (ϕ, ψ) ≈
(−85◦, 75◦) and Cax : (ϕ, ψ) ≈ (72◦,−75◦) are two metastable states, (a) : (ϕ, ψ) ≈ (0◦,−65◦) and (b) : (ϕ, ψ) ≈
(130◦,−125◦) are two transition states.

The goal is to compute the committor function under the CHARMM force filed [50, 51,
52]. Due to the high energy barrier between the two metastable states A and B, it is almost
impossible for the molecule to cross this barrier from A to B. Consequently, sampling in the
transition state region with SDE is extremely challenging.

4.3.1. DASTR with Explicit Collective Variables
In this part, we study the performance of DASTR with explicit collective variables. The

collective variables is set to the two dihedrals ϕ (C-N-CA-C) and ψ (N-CA-C-N). For this
realistic problem, we need to ensure that the samples from deep generative models obey the

17

molecular configuration, which makes this problem much more challenging to solve. To handle
this difficulty, we combine our DASTR method with the umbrella sampling method [30] and the
collective variables method. Simply speaking, we use the proposed DASTR method to generate
the target collective variables in the umbrella potential. The details of the overall procedure
can be found in Appendix B.3 and Appendix B.4.

For this problem, it is intractable to obtain the reference solution with grid-based numerical
methods. To assess the performance of our method, we again consider those samples from the
1/2-isosurface. More specifically, we first use umbrella sampling (see Appendix B.4) to sample
1× 107 points. After that, we use the trained model to compute qθ at these sample points and
filter to keep points on the set Γ := {x : |qθ(x)− 0.5|} ≤ 5× 10−5. We conduct 200 simulations
of SDE for each point in Γ to obtain the corresponding trajectory. By counting the number
of times of these points first reaching B before A, we can estimate q for such points by the
definition of committor functions. If the trained model qθ is indeed a good approximation of the
committor function, then the probability distribution (in fact, we use the relative frequency to
represent the true probability) of reaching B before A should be close to a normal distribution
with mean 0.5 [7].

150 100 50 0 50 100 150
φ

150

100

50

0

50

100

150

ψ

A

B

DASTR

(a) DASTR, k = 2.

150 100 50 0 50 100 150
φ

150

100

50

0

50

100

150

ψ

A

B

DASTR

(b) DASTR, k = 5.

150 100 50 0 50 100 150
φ

150

100

50

0

50

100

150

ψ

A

B

DASTR

(c) DASTR, k = 8.

150 100 50 0 50 100 150
φ

150

100

50

0

50

100

150

ψ

A

B

Sample points by Umbrella Sampling

(d) Umbrella sampling, k = 2.

150 100 50 0 50 100 150
φ

150

100

50

0

50

100

150

ψ

A

B

Sample points by Umbrella Sampling

(e) Umbrella sampling, k = 5.

150 100 50 0 50 100 150
φ

150

100

50

0

50

100

150

ψ

A

B

Sample points by Umbrella Sampling

(f) Umbrella sampling, k = 8.

Figure 10: Samples during training for the alanine dipeptide test problem. We use DASTR to generate target
CVs in the transition state region; the umbrella sampling method is employed to generate samples around the
target CVs to refine the training set. The figures are shown that the samples (scatter plot) distributed on the
energy landscape with respect to ϕ and ψ.

The results are shown in Figure 10 and Figure 11. In Figure 10a-10c, we show the candidate
samples generated by DASTR. It is clear that these samples are located in the transition state
region. To ensure that the samples obey the molecular configuration, we use the umbrella
sampling method to refine them as shown in Figure 10d-10f. From Figure 11a-11c, it is seen
that the probability distribution is not consistent with a normal distribution with mean 0.5,
which means that the trained model using data from metadynamics fails to approximate the

18

committor function near q ≈ 0.5. Also, the number of points in Γ is much smaller than that of
DASTR. This is due to the lack of sufficient samples in the transition state region, leading to
the large generalization error in this area. In contrast, from Figure 11d-11f, it is seen that the
approximate committor function values cluster around 1/2, which indicates that our DASTR
method performs significantly better and provides a good approximation on the 1/2-isosurface.

0.0 0.2 0.4 0.6 0.8 1.0
PB

0

2

4

6

8

10

12

P(PB)

(a) Metadynamics-5000 terms,
150 neurons. The histogram in-
cludes 61 samples.

0.0 0.2 0.4 0.6 0.8 1.0
PB

0

2

4

6

8

P(PB)

(b) Metadynamics-7500 terms,
150 neurons. The histogram in-
cludes 50 samples.

0.0 0.2 0.4 0.6 0.8 1.0
PB

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P(PB)

(c) Metadynamics-10000 terms,
150 neurons. The histogram in-
cludes 92 samples.

(d) DASTR, 100 neurons. The
histogram includes 843 samples.

(e) DASTR, 120 neurons. The
histogram includes 811 samples.

(f) DASTR, 150 neurons. The
histogram includes 869 samples.

Figure 11: The alanine dipeptide test problem: the histograms of the committor function values on the 1/2-th
isosurface of qθ with different numbers of neurons. qθ is a five-layer fully connected neural network. The training
details can be found in Appendix B.3.

4.3.2. DASTR with Latent Collective Variables
In the previous experiment, the collective variables ϕ and ψ are given. We use KRnet to

learn the features of ϕ and ψ in the transition state region. Such learned features are used
for umbrella sampling to refine the training set. However, this still cannot avoid the need of
SDE simulations after training deep generative models. In this part, we use autoencoders to
learn the latent collective variables (CVs) that can aid sample generation and avoid repeated
simulations of umbrella sampling.

As discussed in section 3, the input of the autoencoder is the coordinates of the 10 heavy
atoms of the alanine dipeptide. We perform self-supervised training to train the autoencoder
to learn the latent CVs. The KRnet is used to learn the distribution of the latent CVs in the
transition state region, which is similar to the approach adopted in section 4.3.1 except for the
choice of the latent CVs. The settings of neural networks and training details can be found in
Appendix B.3.

19

In this experiment, we test three different latent dimensions dlatent = 2, 3, 5. In Figure 12,
we use UMAP [53] to project the data points onto a two-dimensional plane for visualization,
where the points include the two metastable states A and B, samples from metadynamics, and
the latent variables from DASTR at the final stage.

-10 0 10 20
Dimension 1

-10

0

10

20

30

D
im

en
si

on
 2

Metadynamics
DASTR
A
B

(a) dlatent = 2.

-15 -10 -5 0 5 10 15 20
Dimension 1

-10

-5

0

5

10

15

20

25

D
im

en
si

on
 2

Metadynamics
DASTR
A
B

(b) dlatent = 3.

-15 -10 -5 0 5 10 15 20
Dimension 1

-5

0

5

10

15

20

D
im

en
si

on
 2

Metadynamics
DASTR
A
B

(c) dlatent = 5.

Figure 12: Visualization of the latent collective variables, the two metastable states A and B, and samples from
DASTR at the final stage in the latent space. The data points are projected onto a two-dimensional plane by
UMAP [53] for visualization.

During the adaptive sampling procedure, we need to filter out those samples with excessively
high potential energies. This will help avoid generating unreasonable molecular configurations.
To this end, we set an energy threshold at 150 kJ/mol in this experiment. This means that
any molecules with potential energies exceeding this threshold are discarded when generating
new molecules during the adaptive sampling procedure. As a reference, we employ the um-
brella sampling method in section 4.3.1 to sample 1× 105 points in the transition state region,
yielding a maximum energy of approximately 115.5 kJ/mol. We generate 1 × 105 samples in
the latent space and use the decoder to reconstruct the coordinates of the heavy atoms. The
configuration can be completed after adding the hydrogen atoms by PyMOL [43]. For different
latent dimensions dlatent = 2, 3, 5, the proportions of the samples with energies of less than 150
kJ/mol are approximately 97.52%, 97.20%, and 97.49% respectively. For comparison, we also
train KRnet using the coordinates of the heavy atoms as the input, and then added hydrogen
atoms using PyMOL. In this setting, about 2.3% of the samples have energies of less than 3000
kJ/mol—most of the samples do not have physically reasonable configurations! Figure 13 shows
the comparison of proportions of valid molecular configurations between the vanilla DASTR and
the DASTR in the latent space. It is clear that the sampling efficiency is improved significantly
when applying DASTR in the latent space.

The decoding step requires almost no time when using the autoencoder to generate new
molecules. The main time cost for this step is from the hydrogen atom completion in PyMOL,
which is also negligible. In Table 3, we compare the time cost of conducting DASTR in the
latent space and DASTR with umbrella sampling for different numbers of samples. One can
observe that the time required to generate the molecules using the latent CVs is less than 4%
of that of the strategy in section 4.3.1. With the autoencoder, one can apply the proposed
DASTR method to the latent space. This technique eliminates the need for simulating SDE
to obtain samples in the transition state region and significantly reduces the computational
cost, as demonstrated in Table 3. The results are shown in Figure 14 and Figure 15. As
shown in Figure 14, it is clear that these samples are located in the transition state region for
different latent dimensions studied. From Figure11 and Figure15, it is evident that the latter

20

(a) The proportion of valid molecular configurations
when using the coordinates of the heavy atoms as
the input to KRnet.

(b) The proportion of valid molecular configurations
when using the latent CVs as the input to KRnet
(dlatent = 3).

Figure 13: The proportions of valid molecular configurations for two different settings in DASTR are shown.
This figure demonstrates the advantage of performing DASTR in the latent space.

has a smaller variance and thus has a better approximation of the committor function on the
1/2-isosurface.

Table 3: Time comparison of DASTR with the explicit collective variables and umbrella sampling and DASTR
with the learned latent variables for different numbers of samples (the unit is seconds).

Number of Samples

Sampling Method 1× 104 2× 104 5× 104 1× 105 2× 105

DASTR with umbrella sampling 234.01 s 476.19 s 1213.17 s 2406.86 s 4771.42 s

DASTR with learned latent variables 10.26 s 18.10 s 46.33 s 92.94 s 175.98 s

5. Conclusion

We have developed a novel deep adaptive sampling approach on rare transition paths
(DASTR) for estimating the high-dimensional committor function. With DASTR, the scarcity
of effective data points can be addressed, and the performance of neural network approximation
for the high-dimensional committor function is improved significantly.

For high-dimensional realistic molecular systems, to address the issue that deep generative
models alone may fail to generate physically reasonable molecular configurations, we apply
DASTR to the latent space, where two options for selecting the latent variables are provided.
The first option is to combine physically explicit collective variables with umbrella sampling,
and the second is to train an autoencoder to find the latent collective variables. Compared
to the samples from the directly approximated high-dimensional distribution, the two latent-
space-based approaches take into account the physics either through domain-specific knowledge
or data. Numerical experiments show that the second choice does not require domain-specific
knowledge, except for data used to select the collective variables, potentially providing a generic

21

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(a) dlatent = 2, k = 2.

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(b) dlatent = 2, k = 5.

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(c) dlatent = 2, k = 8.

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(d) dlatent = 3, k = 2.

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(e) dlatent = 3, k = 5.

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(f) dlatent = 3, k = 8.

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(g) dlatent = 5, k = 2.

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(h) dlatent = 5, k = 5.

-150 -100 -50 0 50 100 150
φ

-150

-100

-50

0

50

100

150

ψ

A

B

DASTR

(i) dlatent = 5, k = 8.

Figure 14: Samples during training for different latent dimensions, the alanine dipeptide test problem. The
figures are shown that the samples (scatter plot) distributed on the energy landscape with respect to ϕ and ψ.

0.0 0.2 0.4 0.6 0.8 1.0
PB

0

20

40

60

80

100

P(PB)

(a) dlatent = 2. The histogram
includes 606 samples.

0.0 0.2 0.4 0.6 0.8 1.0
PB

0

20

40

60

80

100

120

P(PB)

(b) dlatent = 3. The histogram
includes 657 samples.

0.0 0.2 0.4 0.6 0.8 1.0
PB

0

20

40

60

80

100

P(PB)

(c) dlatent = 5. The histogram in-
cludes 605 samples.

Figure 15: Conducting DASTR in the latent space for the alanine dipeptide test problem: the histograms of
the committor function values on the 1/2-th isosurface of qθ for different latent dimensions.

strategy to deal with larger, more realistic molecular systems. Many questions remain open,

22

especially regarding the correlation between representation learning and physically consistent
sample generation. These questions will be left for future study.

Acknowledgements

K. Tang is partially supported by the Natural Science Foundation of Hunan Province
(2024JJ6003). X. Wan has been supported by NSF grant DMS-1913163. C. Yang has been
supported by NSFC grant 12131002.

References

[1] N. Okuyama-Yoshida, M. Nagaoka, T. Yamabe, Transition-state optimization on free en-
ergy surface: Toward solution chemical reaction ergodography, International Journal of
Quantum Chemistry 70 (1) (1998) 95–103.

[2] W. E, E. Vanden-Eijnden, Towards a theory of transition paths, Journal of Statistical
Physics 123 (3) (2006) 503–523.

[3] A. Berteotti, A. Cavalli, D. Branduardi, F. L. Gervasio, M. Recanatini, M. Parrinello, Pro-
tein conformational transitions: the closure mechanism of a kinase explored by atomistic
simulations, Journal of the American Chemical Society 131 (1) (2009) 244–250.

[4] W. E, E. Vanden-Eijnden, Transition-path theory and path-finding algorithms for the
study of rare events., Annual Review of Physical Chemistry 61 (2010) 391–420.

[5] R. Lai, J. Lu, Point cloud discretization of Fokker–Planck operators for committor func-
tions, Multiscale Modeling & Simulation 16 (2) (2018) 710–726.

[6] Q. Li, B. Lin, W. Ren, Computing committor functions for the study of rare events using
deep learning, The Journal of Chemical Physics 151 (5) (2019) 054112.

[7] Y. Chen, J. Hoskins, Y. Khoo, M. Lindsey, Committor functions via tensor networks,
Journal of Computational Physics 472 (2023) 111646.

[8] Y. Khoo, J. Lu, L. Ying, Solving for high-dimensional committor functions using artificial
neural networks, Research in the Mathematical Sciences 6 (1) (2019) 1–13.

[9] H. Li, Y. Khoo, Y. Ren, L. Ying, A semigroup method for high dimensional committor
functions based on neural network, in: Mathematical and Scientific Machine Learning,
PMLR, 2022, pp. 598–618.

[10] H. Li, Y. Khoo, Y. Ren, L. Ying, Solving for high dimensional committor functions using
neural network with online approximation to derivatives, arXiv preprint arXiv:2012.06727
(2020).

[11] G. M. Rotskoff, A. R. Mitchell, E. Vanden-Eijnden, Active importance sampling for vari-
ational objectives dominated by rare events: Consequences for optimization and general-
ization, in: Mathematical and Scientific Machine Learning, PMLR, 2022, pp. 757–780.

23

[12] M. R. Hasyim, C. H. Batton, K. K. Mandadapu, Supervised learning and the finite-
temperature string method for computing committor functions and reaction rates, The
Journal of Chemical Physics 157 (18) (2022).

[13] P. Kang, E. Trizio, M. Parrinello, Computing the committor with the committor to study
the transition state ensemble, Nature Computational Science (2024) 1–10.

[14] B. Lin, W. Ren, Deep learning method for computing committor functions with adaptive
sampling, arXiv preprint arXiv:2404.06206 (2024).

[15] W. Gao, C. Wang, Active learning based sampling for high-dimensional nonlinear partial
differential equations, Journal of Computational Physics 475 (2023) 111848.

[16] K. Tang, X. Wan, C. Yang, DAS-PINNs: A deep adaptive sampling method for solv-
ing high-dimensional partial differential equations, Journal of Computational Physics 476
(2023) 111868.

[17] X. Wang, K. Tang, J. Zhai, X. Wan, C. Yang, Deep Adaptive Sampling for Surrogate
Modeling Without Labeled Data, Journal of Scientific Computing 101 (3) (2024) 77. doi:
10.1007/s10915-024-02711-1.

[18] K. Tang, J. Zhai, X. Wan, C. Yang, Adversarial adaptive sampling: Unify PINN and op-
timal transport for the approximation of PDEs, in: The Twelfth International Conference
on Learning Representations, 2024.

[19] Z. Gao, L. Yan, T. Zhou, Failure-informed adaptive sampling for pinns, SIAM Journal on
Scientific Computing 45 (4) (2023) A1971–A1994.

[20] Y. Jiao, D. Li, X. Lu, J. Z. Yang, C. Yuan, A Gaussian mixture distribution-based adap-
tive sampling method for physics-informed neural networks, Engineering Applications of
Artificial Intelligence 135 (2024) 108770.

[21] G. Czibula, A.-I. Albu, M. I. Bocicor, C. Chira, Autoppi: An ensemble of deep autoen-
coders for protein–protein interaction prediction, Entropy 23 (6) (2021) 643.

[22] F. F. Alam, T. Rahman, A. Shehu, Learning reduced latent representations of protein
structure data, in: Proceedings of the 10th ACM International Conference on Bioinfor-
matics, Computational Biology and Health Informatics, 2019, pp. 592–597.

[23] A. Hawkins-Hooker, F. Depardieu, S. Baur, G. Couairon, A. Chen, D. Bikard, Generating
functional protein variants with variational autoencoders, PLoS Computational Biology
17 (2) (2021) e1008736.

[24] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differ-
ential equations, Journal of Computational Physics 375 (2018) 1339–1364.

[25] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics 378 (2019) 686–707.

24

https://doi.org/10.1007/s10915-024-02711-1
https://doi.org/10.1007/s10915-024-02711-1

[26] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-
informed machine learning, Nature Reviews Physics 3 (6) (2021) 422–440.

[27] W. E, B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for solving
variational problems, Communications in Mathematics and Statistics 6 (1) (2018) 1–12.

[28] Y. Liao, P. Ming, Deep Nitsche Method: Deep Ritz Method with Essential Boundary
Conditions, Communications in Computational Physics 29 (5) (2021) 1365–1384.

[29] Y. Lu, J. Lu, M. Wang, A priori generalization analysis of the deep Ritz method for solving
high dimensional elliptic partial differential equations, in: Conference on Learning Theory,
PMLR, 2021, pp. 3196–3241.

[30] J. Kästner, Umbrella sampling, Wiley Interdisciplinary Reviews: Computational Molecular
Science 1 (6) (2011) 932–942.

[31] G. Bussi, A. Laio, Using metadynamics to explore complex free-energy landscapes, Nature
Reviews Physics 2 (4) (2020) 200–212.

[32] A. Barducci, G. Bussi, M. Parrinello, Well-tempered metadynamics: a smoothly converging
and tunable free-energy method, Physical Review Letters 100 (2) (2008) 020603.

[33] L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real NVP, arXiv preprint
arXiv:1605.08803 (2016).

[34] D. P. Kingma, P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions, in:
Advances in Neural Information Processing Systems, 2018, pp. 10215–10224.

[35] T. Q. Chen, Y. Rubanova, J. Bettencourt, D. K. Duvenaud, Neural ordinary differential
equations, in: Advances in Neural Information Processing Systems, 2018, pp. 6571–6583.

[36] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, B. Poole, Score-based
generative modeling through stochastic differential equations, in: International Conference
on Learning Representations, 2021.

[37] K. Tang, X. Wan, Q. Liao, Deep density estimation via invertible block-triangular mapping,
Theoretical & Applied Mechanics Letters 10 (2020) 143–148.

[38] X. Wan, S. Wei, VAE-KRnet and its applications to variational Bayes, Communications
in Computational Physics 31 (4) (2022) 1049–1082.

[39] K. Tang, X. Wan, Q. Liao, Adaptive deep density approximation for Fokker-Planck equa-
tions, Journal of Computational Physics 457 (2022) 111080.

[40] P.-T. De Boer, D. P. Kroese, S. Mannor, R. Y. Rubinstein, A tutorial on the cross-entropy
method, Annals of Operations Research 134 (1) (2005) 19–67.

[41] R. Y. Rubinstein, D. P. Kroese, The cross-entropy method: a unified approach to combi-
natorial optimization, Monte-Carlo simulation and machine learning, Springer Science &
Business Media, 2013.

25

[42] G. Fiorin, M. L. Klein, J. Hénin, Using collective variables to drive molecular dynamics
simulations, Molecular Physics 111 (22-23) (2013) 3345–3362.

[43] L. Schrödinger, The PyMOL Molecular Graphics System, Version 1.8., (No Title) (2015).

[44] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M. E. Rognes, G. N. Wells, The FEniCS Project Version 1.5, Archive of Numerical Software
3 (100) (2015).

[45] A. Logg, K.-A. Mardal, G. Wells, Automated solution of differential equations by the finite
element method: The FEniCS book, Vol. 84, Springer Science & Business Media, 2012.

[46] C. Hartmann, O. Kebiri, L. Neureither, L. Richter, Variational approach to rare event
simulation using least-squares regression, Chaos 29 (6) (2019).

[47] N. Nüsken, L. Richter, Interpolating between BSDEs and PINNs: Deep learning for elliptic
and parabolic boundary value problems, Journal of Machine Learning 2 (1) (2023) 31–64.

[48] R. Vershynin, High-dimensional probability: An introduction with applications in data
science, Vol. 47, Cambridge University Press, 2018.

[49] J. Wright, Y. Ma, High-dimensional data analysis with low-dimensional models: Principles,
Computation, and Applications, Cambridge University Press, 2022.

[50] S. Jo, T. Kim, V. G. Iyer, W. Im, Charmm-gui: a web-based graphical user interface for
charmm, Journal of Computational Chemistry 29 (11) (2008) 1859–1865.

[51] B. R. Brooks, C. L. Brooks III, A. D. Mackerell Jr, L. Nilsson, R. J. Petrella, B. Roux,
Y. Won, G. Archontis, C. Bartels, S. Boresch, et al., Charmm: the biomolecular simulation
program, Journal of Computational Chemistry 30 (10) (2009) 1545–1614.

[52] J. Lee, X. Cheng, S. Jo, A. D. MacKerell, J. B. Klauda, W. Im, Charmm-gui input
generator for namd, gromacs, amber, openmm, and charmm/openmm simulations using
the charmm36 additive force field, Biophysical Journal 110 (3) (2016) 641a.

[53] L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold approximation and projection
for dimension reduction, arXiv preprint arXiv:1802.03426 (2018).

[54] L. Zeng, X. Wan, T. Zhou, Bounded KRnet and its applications to density estimation and
approximation, arXiv:2305.09063 (2023).

[55] P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp,
L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, et al., Openmm 7: Rapid
development of high performance algorithms for molecular dynamics, PLoS Computational
Biology 13 (7) (2017) e1005659.

26

Appendix A. Derivation of Variational Formulation

Let u = q+γη be the result of a perturbation γη of q, where γ is small and η is a differentiable
function. Since q is the minimizer of (3), for any η, we have

0 =
1

2

∂

∂γ
|γ=0

∫
Ω\(A∪B)

|∇u(x)|2e−βV (x)dx

=

∫
Ω\(A∪B)

∇q(x) · ∇η(x)e−βV (x)dx

=

∫
Ω\(A∪B)

∇ ·
(
∇q(x)η(x)e−βV (x)

)
dx−

∫
Ω\(A∪B)

η(x)∇ ·
(
∇q(x)e−βV (x)

)
dx

= −
∫
Ω\(A∪B)

η(x)∇ ·
(
∇q(x)e−βV (x)

)
dx

= −
∫
Ω\(A∪B)

η(x)e−βV (x) (∆q(x)− β∇V (x) · ∇q(x)) dx,

(A.1)

where the fourth equality follows from the integration by parts and the Neumann condition in
(2). Because (A.1) holds for any η, we have ∆q(x)− β∇V (x) ·∇q(x) = 0, which is the desired
PDE form of the committor function.

Appendix B. Implementation Details

Appendix B.1. Rugged Mueller Potential
We choose a four-layer fully connected neural network qθ with 100 neurons to approximate

the solution. The activation function is chosen to be the hyperbolic tangent function for the
hidden layers and the sigmoid function for the output layer. For KRnet, we take five blocks
and eight affine coupling layers in each block. A two-layer fully connected neural network with
120 neurons is employed in each affine coupling layer. The activation function of KRnet is the
rectified linear unit (ReLU) function. To generate points in Ω\(A∪B), we use the KRnet to learn
the sampling distribution pV,q(x) = |∇qθ(x)|2e−βV (x) in the box [−1.5, 1]× [−0.5, 2]× [−1, 1]d−2,
and then remove points within the region A and B. This can be done by adding a logistic
transformation layer [16] or a new coupling layer proposed in [54]. We set λ = 10 in (4).
The learning rate for the ADAM optimizer is set to 0.0001, with a decay rate 0.8 applied
every 200 epochs for training qθ and no decay for training KRnet, and the batch size is set
to m = m′ = 5000. The numbers of adaptivity iterations is set to Nadaptive = 30 when
Ne = N ′

e = 50 in Algorithm 1. In this test problem, we replace all the data points in the
current training set with new samples.

It is difficult to sample in the transition state region when simulating the SDE. We implement
the artificial temperature method as the baseline. More specifically, we increase the temperature
by setting β′ = 1/20 to obtain the modified SDE. This modified Langevin equation is solved
by the Euler-Maruyama scheme with the time step ∆t = 10−5. With this setting, the data
points are sampled from the trajectory of the modified Langevin equation. In this example, we
compare the results obtained from DASTR with those from the artificial temperature method.

27

Appendix B.2. Standard Brownian Motion
We choose a four-layer fully connected neural network qθ with 100 neurons to approximate

the solution, and the activation function of qθ is set to the square of the hyperbolic tangent
function. For KRnet, we take five blocks and eight affine coupling layers in each block. A two-
layer fully connected neural network with 120 neurons is employed in each affine coupling layer.
The activation function of KRnet is the rectified linear unit (ReLU) function. The learning
rate for the ADAM optimizer is set to 0.001, with a decay rate 0.8 applied every 200 epochs
for training qθ and no decay for training KRnet. We set the number of adaptivity iterations
to Nadaptive = 30, with Ne = N ′

e = 50 training epochs per stage. The batch size for training qθ
is set to m = 1000 and for training the PDF model is set to m′ = 5000. In the first stage, we
generate N0 uniform samples from Ω\(A∪B) and N0/2 points each from ∂A and ∂B. For the
remaining stages, we select N0/2 points from the uniform samples and N0/2 points from the
deep generative model. We set λ = 1000 in (4).

We use the deep generative model to approximate pV,q(x) = |∇qθ(x)|2e−βV (x), where the
probability density function induced by the deep generative model is defined in the box [−2, 2]d.
To ensure points in Ω\(A∪B), we just remove points within the region A and B generated by
the deep generative model. For comparison, we also use the SDE to generate data points to
train qθ, where the Euler-Maruyama scheme with the time step ∆t = 10−6 is applied to get the
trajectory.

Appendix B.3. Alanine Dipeptide
DASTR with Explicit Collective Variables. In this test problem, we choose the dihedrals ϕ (with
respect to C-N-CA-C), ψ (with respect to N-CA-C-N) as the collective variables (CVs). For
this realistic example, it is not suitable to use the uniform samples as the initial training set,
since uniform samples are not effective for solving this high-dimensional (d = 66) problem and
also do not obey the molecular configuration. We use metadynamics to generate samples as
the initial training set.

Metadynamics is an enhanced sampling technique to explore free energy landscapes of com-
plex systems. The idea of metadynamics is to add a history-dependent biased potential to
the system to discourage it from revisiting previously sampled states [31, 32]. This is done by
periodically depositing Gaussian potentials along the trajectory of the CVs. Mathematically,
the Gaussian potential can be expressed as:

VG,t(x) =
t′<t∑

t′=0,τ,2τ,...

w exp

(
−

m∑
i=1

(si(x)− si(xt′))
2

2σ2
i

)
, (B.1)

where w is the height of the Gaussian potential, σ is the width of the Gaussian potential, m is
number of CVs, and si(xt) denotes the collective variables at time t. After adding the above
Gaussian potential, we generate samples using the modified potential:

Vmodified(x) = V (x) + VG,t(x),

where V (x) is the original potential. That is, the biased potential in (7) is the Gaussian
potential function VG,t. During the simulation, the Gaussian potential lowers the energy barrier,
allowing the system to explore more configurations of molecules. So, we can generate effective
data points as the initial training set by metadynamics for this alanine dipeptide problem.

28

We simulate the Langevin dynamics with the time step ∆t = 0.1 fs and a damping coefficient
1 ps−1. One term of the Gaussian potential is added every 1000 steps, with parameters w =
1.0 kJ/mol, σ = 0.1 rad. We finally get a total of 5000 terms in (B.1). Then we conduct the
Metadynamics with 7500 and 10000 terms for comparison. Figure B.16 shows that the more
terms we add, the more thoroughly the free energy surface is explored, and the more samples
we obtain in the transition state region. Samples are selected outside the regions A and B,
and system configurations are saved to conduct the importance sampling step in (10). The
simulation is conducted in OpenMM [55], a molecular dynamics simulation toolkit with high-
performance implementation. Figure B.16 shows the samples from the original dynamics and
metadynamics. From this figure, it is clear that using metadynamics to generate initial data
points is better since more samples are located in the transition state region.

150 100 50 0 50 100 150
φ

150

100

50

0

50

100

150

ψ

A

B

Sample Points

(a) Samples under the original poten-
tial.

150 100 50 0 50 100 150

150

100

50

0

50

100

150

A

B

Sample Points by Metadynamics

(b) Samples by metadynamics with
5000 Guassian terms.

150 100 50 0 50 100 150

150

100

50

0

50

100

150

A

B

Sample Points by Metadynamics

(c) Samples by metadynamics with
7500 Guassian terms.

150 100 50 0 50 100 150

150

100

50

0

50

100

150

A

B

Sample Points by Metadynamics

(d) Samples by metadynamics with
10000 Guassian terms.

Figure B.16: Samples from the original dynamics and metadynamics.

We choose a five-layer fully connected neural network qθ (with 100, 120, 150 neurons) to ap-
proximate the solution, and the activation function for the hidden layers is set to the hyperbolic
tangent function. The activation function for the output layer is the sigmoid function. Here, we
only use the deep generative model to model the sampling distribution in terms of the collective
variables ϕ and ψ. The trained KRnet is used to generate s(x0) = [ϕ, ψ]⊤ in (13) (see Appendix
B.4). For KRnet, we take one block and six affine coupling layers in each block. A two-layer
fully connected neural network with 64 neurons is employed in each affine coupling layer. The

29

activation function of KRnet is the rectified linear unit (ReLU) function. The learning rate for
the ADAM optimizer is set to 0.0001, with a decay factor of 0.5 applied every 200 epochs for
training qθ and no decay for training KRnet. We set the batch size m = 5000,m′ = 10000 and
Ne = 300, N ′

e = 1000. The numbers of adaptivity iterations is set to Nadaptive = 10. We sample
1.5 × 104 points in A and B respectively to enforce the boundary condition in the training
process for all stages. We set λ = 10 in (4).

We employ KRnet to learn the sampling distribution in (7). In the first stage, we train the
neural network qθ using 2 × 105 points sampled by metadynamics. Then we use these points
to train the PDF model induced by KRnet with support [−180◦, 180◦]2, with the bias potential
Vbias in (7) being the Gaussian potential VG,t defined in (B.1). In the rest of the stages, we
train the neural network qθ with 5 × 104 points sampled by umbrella sampling with the bias
potential VUS (see Appendix B.4). We train the KRnet using the same sample points as those
of training qθ.

During the training procedure, we increase kus in (13) from 200 kJ/mol to 400 kJ/mol. We
sample 100 points for each target CVs in the umbrella sampling procedure. For comparison, we
use the solution obtained by training a neural network qθ with 150 neurons with 2× 105 points
sampled via metadynamics for 3000 epochs.

DASTR with Latent Collective Variables. In this experiment, both the encoder and decoder
are implemented using fully connected neural networks. The encoder architecture is set as
[30, 100, 50, 50, 30, dlatent], while the decoder is set as [dlatent, 30, 50, 50, 100, 30], with the Swish
activation function. For training the autoencoder, we use 2× 105 samples generated by meta-
dynamics (with 10000 terms in (B.1)) as the training set. The batch size is set to 1000. The
model is trained with 5000 epochs.

The committor function is approximated by a five-layer fully connected neural network qθ
with 150 neurons, where the activation function for the hidden layers is set to the hyperbolic
tangent function, and the activation function for the output layer is the sigmoid function. In
this experiment, we use the deep generative model to model the probability distribution in terms
of the latent CVs obtained from the autoencoder. The learning rate for the ADAM optimizer is
set to 0.0001, with a decay factor of 0.5 applied every 200 epochs for training qθ and no decay
for training KRnet. The batch size is set to m = 5000,m′ = 10000 and Ne = 200, N ′

e = 500. In
the first stage, we use 2×105 points sampled from metadynamics (10000 terms in (B.1)) as the
initial dataset to train qθ. In the rest stages, we use 1×105 points sampled from metadynamics
and 1 × 105 points from KRnet and the pretrained autoencoder. Other settings are the same
as those in section 4.3.1.

Appendix B.4. Umbrella Sampling
The umbrella sampling method is also an enhanced sampling technique. It introduces

external biased potentials to pull the system out of local minima, thereby enabling a more
uniform exploration of the entire free energy surface. This method is particularly effective
in calculating free energy differences and studying reaction pathways in complex molecular
processes. The umbrella sampling method employs a series of biased simulations, dividing
the reaction space of collective variables into multiple overlapping windows, where each biased
potential is applied in its corresponding window [30]. The umbrella potential is usually defined

30

as:

VUS(x) =
1

2

m∑
i=1

kus(si(x)− si(x0))
2, (B.2)

where si(x) represents the CVs with respect to x, m is the number of CVs, and kus is the
force constant. In this work, we focus on sampling in the final window, helping us effectively
sample the desired regions of CVs. Therefore, we perform a rapid iterative process of umbrella
sampling to transfer the CVs to the target region, and finally sample near the target CVs in
the modified potential:

Vmodified(x) = V (x) + VUS(x),

where V is the original potential, and si(x0) in (B.2) is the target CVs generated by the trained
deep generative model.

31

	Introduction
	Connections with Prior Work and Contributions
	Related Work
	Organization

	Neural Network Solver for Committor Functions
	Deep Adaptive Sampling on Rare Transition Paths
	Main Idea
	Sample Generation
	DASTR Algorithm
	DASTR in the Latent Space
	Hand-picking CVs with Umbrella Sampling
	Latent CVs with Autoencoder

	Numerical Study
	Rugged Mueller Potential
	Standard Brownian Motion
	Alanine Dipeptide
	DASTR with Explicit Collective Variables
	DASTR with Latent Collective Variables

	Conclusion
	Derivation of Variational Formulation
	Implementation Details
	Rugged Mueller Potential
	Standard Brownian Motion
	Alanine Dipeptide
	Umbrella Sampling

