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Abstract
Surrogate modeling is of great practical significance for parametric differential equation
systems. In contrast to classical numerical methods, using physics-informed deep learning-
based methods to construct simulators for such systems is a promising direction due to its
potential to handle high dimensionality, which requires minimizing a loss over a training set
of random samples. However, the random samples introduce statistical errors, which may
become the dominant errors for the approximation of low-regularity and high-dimensional
problems. In this work, we present a deep adaptive sampling method for surrogate modeling
of low-regularity parametric differential equations and illustrate the necessity of adaptive
sampling for constructing surrogate models. In the parametric setting, the residual loss func-
tion can be regarded as an unnormalized probability density function (PDF) of the spatial
and parametric variables. In contrast to the non-parametric setting, factorized joint density
models can be employed to alleviate the difficulties induced by the parametric space. The
PDF is approximated by a deep generative model, fromwhich new samples are generated and
added to the training set. Since the new samples match the residual-induced distribution, the
refined training set can further reduce the statistical error in the current approximate solution
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through variance reduction. We demonstrate the effectiveness of the proposed method with a
series of numerical experiments, including the physics-informed operator learning problem,
the parametric optimal control problemwith geometrical parametrization, and the parametric
lid-driven 2D cavity flow problem with a continuous range of Reynolds numbers from 100
to 3200.

Keywords Surrogate modeling · Deep learning · Deep generative models · Deep adaptive
sampling · Uncertainty quantification

Mathematics Subject Classification 65N22 · 65N75 · 65D40

1 Introduction

Solving differential equations with different parametric settings is widely found in uncer-
tainty quantification [76–78], inverse design [26, 31], Bayesian inverse problems [11, 19, 39,
43, 58, 75], digital twins [6, 34, 65], parametric optimal control [79], and shape optimization
[70], etc. The computational cost of solving such parametric differential equations with con-
ventional numerical methods is expensive because repeated simulations (i.e.,many-query) of
differential equations are required. To handle such many-query problems, one may construct
a surrogatemodel that can efficiently predict the parametric solutionwithout sacrificingmuch
accuracy, which is sufficient for many engineering applications. For instance, reduced order
models (ROM) [5, 9, 18, 52] are widely used in practice, where the approximate solution is
expressed as a linear combination of some bases that are computed by low-rank approxima-
tion of snapshot matrices. ROM becomes inefficient if the parametric solution does not lie
in a low-dimensional linear subspace [4, 7, 10].

Deep learning-based methods for surrogate modeling have been proposed to give an alter-
native approach. One straightforward data-driven approach is to utilize deep neural networks
to learn a mapping from a parameterized function space to the solution space [41, 45, 82],
where simulation-based input–output pair data are used to train the deep neural networks.
Constructing surrogate models without labeled data is necessary to handle the cases where
simulation or experimental data are scarce or not available. To this end, numerical strategies
have been developed for the neural network approximation of deterministic partial differen-
tial equations (PDEs) [17, 28, 29, 36, 47, 53, 57], based on which parametric PDEs can also
be addressed. For example, physics-informed deep learning is used to construct surrogate
models for efficient uncertainty quantification [21, 60, 83]. Depending on the formulation of
parametric (partial or ordinary) differential equations, two types of neural network models
can be considered: one is a plain neural network whose inputs include both the spatial and
parametric variables, and the other one is defined by an operator learning problem, e.g., Deep-
ONet [45, 68]. Regardless of the structure of the surrogate model, the underlying training
procedure is similar, which minimizes a loss functional discretized by the random colloca-
tion points in the physical domain and the parametric space. For low-regularity deterministic
problems, the collocation points significantly affect the generalization error of neural net-
works [62, 63]. This issue becomes worse for surrogate modeling because the parametric
space may also introduce low regularity other than the additional dimensions. For example,
in the Navier–Stokes equations, large Reynolds numbers cause some small-scale structures.
To capture these features, the distribution of the collocation points in the training set must
be consistent with the characteristics of the velocity field, and such a correspondence needs
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to be maintained for all Reynolds numbers considered as the inputs of a surrogate model.
Hence, we must pay particular attention to the random collocation points in the training set
to obtain a sufficiently accurate surrogate model.

In this work, we develop a deep adaptive sampling approach for surrogate modeling
(DAS2) without labeled data, which incorporates the adaptive sampling strategy into the
physics-informed surrogatemodels.We generalizeDAS [63] tomore complicated parametric
settings and use a series of numerical experiments to demonstrate the importance of adaptive
sampling in constructing surrogate models. Without losing generality, neural networks with
augmented parameter inputs are used to approximate the parametric solutions. We intend to
find a certain set of collocation points that results in a relatively flat residual profile. Since
a flat residual profile has a small variance, the statistical error in the discretization of the
loss functional can be significantly reduced for a fixed number of samples, which eventually
improves the accuracy of the approximate solution. The desired training set is achieved
through iterations. Assume that the surrogate model is trained with respect to a certain
training set. The total residual of the parametric equations is viewed as an unnormalized
probability density function (PDF). More samples will be introduced to the training set in the
region of high density such that the residual over there can be reduced. To achieve this, a deep
generative model is trained to approximate the residual-induced PDF, and new samples are
drawn from this trained deep generative model. Once the training set is updated, the surrogate
modelwill be further trained, afterwhich the aforementioned procedure is repeated. The same
algorithm can be applied to other types of surrogate models such as DeepONet. The main
contributions of this work are summarized as follows.

1.1 Main Contributions

– We propose a deep adaptive sampling approach for surrogate modeling of parametric
differential equations without labeled data.

– We demonstrate the efficiency of the proposed method with a series of numerical experi-
ments, including the physics-informed operator learning problem, the parametric optimal
control problem with geometrical parametrization, and the lid-driven 2D cavity flow
problem with a continuous range of Reynolds numbers from 100 to 3200.

1.2 RelatedWork

The adaptive sampling-based neural network methods for solving deterministic differential
equations are under active development. Nevertheless, adaptive sampling of parametric dif-
ferential equations is still to be studied. We summarize the most related lines of this work:
adaptive sampling methods for deterministic problems and neural network methods for para-
metric differential equations.

1.2.1 Adaptive Sampling Methods

Solving (partial) differential equationswith deep learningmethods usually needs a large set of
collocation points, particularlywhen the solution has subtle structures such as high frequency,
high-density concentration, multiscale structure, or discontinuity [20, 54, 69, 81]. Adaptive
collocation points may significantly reduce the computational cost, where the essence is to
define a proper error indicator and generate training collocation points accordingly.
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The residual-based adaptive refinement (RAR) method [46, 74] is proposed to enhance
the performance of physics-informed machine learning. In RAR, one needs to construct a
set of uniform samples as a candidate set, within which the samples associated with large
residuals are selected and added to the current training set. However, such a strategy is
not effective for high-dimensional problems since most of the volume of the computational
domain concentrates around its surface [73]. To obtain true samples from the residual-induced
distribution, classical sampling methods such as MCMC can be employed [22, 71, 80],
which, however, are also affected by the curse of dimensionality. To handle high-dimensional
problems, we need to introduce other techniques. In [63], the deep adaptive sampling (DAS)
method is proposed, where a normalizing flow model is used to approximate the residual-
induced distribution, based on which new collocation points are generated to further improve
the accuracy of the current approximate solution. DAS uses the current residual as an explicit
guidance for the selection of new collocation points, which is similar to the procedure of
classical adaptive methods such as the adaptive finite element method. Another track is to
implicitly search for a distribution that generates collocation points that result in a smooth
residual profile. In [64], an adversarial adaptive sampling framework (AAS) is proposed to
seek an optimal model for the solution and an optimal distribution for the training set at the
same time through a min-max formulation, which can be regarded as a generalization of the
strategies that aim to find a better weight for each fixed sample [2, 27]. To reduce the training
cost from the deep generative model, one can replace the deep generative model in DAS or
AAS with other density models, such as Gaussian mixture models [32]. In [12, 23, 24], the
authors reformulate the adaptive sampling procedure as a failure event subject to a threshold
that helps determine where new collocation points are needed. Other related works include
[8, 30, 51, 59].

1.2.2 Neural Network Methods for Parametric Differential Equations

The study of parametric PDEs with neural network methods started from the very beginning
of PINNs in [53], where neural network provides a general model for both forward and
inverse problems. We focus on parametric forward problems in this work, which can also be
regarded as an operator learning problem. In [45], DeepONet is proposed, which formulates
an operator that maps infinite-dimensional data, e.g., boundary and initial conditions, to the
solution functions of parametric differential equations. Another typical operator model is
the Fourier Neural Operaotr (FNO) [40, 41]. Physics-informed operator learning has been
developed in [42, 68] to reduce the dependence of DeepONet and FNO on data in the training
process.

2 Problem Setting and Statistical Errors in Physics-Informed Surrogate
Modeling

LetΩs be a spatial domain (inRn) which is bounded, connected and with a smooth boundary
∂Ωs , and x ∈ Ωs is a spatial variable. Let ξ be a vector that collects a finite number of
parameters. The dimension of ξ is denoted by d , i.e., we write ξ = [ξ1, . . . , ξd ]T. We restrict
our attention to the situation that ξ has a bounded and connected support. Without loss of
generality, we next assume the support of ξ to beΩp where Ωp := [C1,C2]d and C1,C2 are
two constants. The physics of problems considered here are governed bydifferential equations
over the spatial domain Ωs and boundary conditions on the boundary ∂Ωs . Consider the
following parametric differential equations: find u : Ωs × Ωp �→ R such that
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L (x, ξ ; u (x, ξ)) = s(x, ξ) ∀ (x, ξ) ∈ Ωs × Ωp, (1)

B (x, ξ ; u (x, ξ)) = g(x, ξ) ∀ (x, ξ) ∈ ∂Ωs × Ωp, (2)

where L is a differential operator and B is a boundary operator, both of which can involve
parameters. s is the source function and g specifies the boundary conditions. To simplify
the notation, we denote Ω = Ωs × Ωp and ∂Ω = ∂Ωs × Ωp . The goal of this study is to
construct a surrogate model, which is the parametric solution to the parametric differential
equation. Once this surrogate is constructed, the solution u(x, ξ) can be efficiently predicted
for any ξ without solving the (partial or ordinary) differential equation repeatedly.

The framework of physics-informed surrogate modeling for parametric differential equa-
tions is as follows. Let uθ (x, ξ) be a neural network parameterized with θ , where the input of
the neural network is the tuple (x, ξ). One can use uθ (x, ξ) to approximate u(x, ξ) through
minimizing the following loss functional

J (uθ ) = Jr (uθ ) + γ Jb(uθ ) with

Jr (uθ ) =
∫

Ω

|r(x, ξ ; θ)|2dxdξ and Jb(uθ ) =
∫

∂Ω

|b(x, ξ ; θ)|2dxdξ ,
(3)

where r(x, ξ ; θ) = Luθ (x, ξ) − s(x, ξ), and b(x, ξ ; θ) = Buθ (x, ξ) − g(x, ξ) are the
residuals that measure how well uθ satisfies the parametric differential equations and the
boundary conditions, respectively, and γ > 0 is a penalty parameter. Before optimizing this
loss functional with respect to θ , we need to discretize numerically the integrals defined
in (3), which is often achieved with uniformly distributed collocation points. Let SΩ =
{x(i)

Ω , ξ (i)}Nr
i=1 and S∂Ω = {x(i)

∂Ω, ξ (i)}Nb
i=1 be two sets of uniformly distributed collocation

points in Ω and ∂Ω respectively. We minimize the following empirical loss in practice

JN (uθ ) = Jr ,N + γ Jb,N = 1

Nr

Nr∑
i=1

r2(x(i)
Ω , ξ (i); θ) + γ

1

Nb

Nb∑
i=1

b2(x(i)
∂Ω, ξ (i); θ), (4)

where Jr ,N and Jb,N can be regarded as the Monte Carlo (MC) approximations of Jr (uθ )

and Jb(uθ ) subject to statistical errors of O(N−1/2
r ) and O(N−1/2

b ) respectively. Let uθ∗
N
be

the minimizer of the empirical loss JN (uθ )

uθ∗
N

= argmin
θ

JN (uθ ) (5)

and uθ∗ be the minimizer of the original loss functional J (uθ )

uθ∗ = argmin
θ

J (uθ ). (6)

We can decompose the error of uθ∗
N
into two parts as follows

E

(∥∥∥uθ∗
N

− u
∥∥∥

Ω

)
≤ E

(∥∥∥uθ∗
N

− uθ∗
∥∥∥

Ω

)
+ ‖uθ∗ − u‖Ω ,

where E denotes the expectation with respect to the random samples and the norm ‖·‖Ω

corresponds to a proper function space for u. Without taking into account the optimization
error, one can see that the total error of neural network approximation for parametric differ-
ential equations mainly consists of two parts: the approximation error and the statistical error.
The approximation error is dependent on the model capability of neural networks, while the
statistical error originates from the random collocation points in the training set.

It has been noticed that uniformly distributed collocation points are not effective for
trainingneural networkmodels if the solution has low regularity [62, 63, 74] since the effective
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sample size of the Monte Carlo approximation of J (uθ ) is significantly reduced by the large
variance induced by the low regularity. For high-dimensional problems, random samples
becomemore localized due to the curse of dimensionality [73],which shares some similarities
with the low-dimensional problems of low regularity. Therefore, adaptive sampling is needed.
In this work, we propose a deep adaptive sampling approach for surrogate modeling of
parametric differential equations without labeled data, which generalizes the DAS method
[63] to more complicated parametric settings. For simplicity and clarity, we only consider
Jr (uθ ) and remove the boundary term Jb(uθ ). This is because one can employ some penalty-
free techniques [3, 56] to remove Jb(uθ ) from the loss.

3 Deep Adaptive Sampling for Surrogate Modeling

The statistical error comes from JN (uθ ) as the discretization of J (uθ ). One straightforward
way to reduce the error of JN (uθ ) is to increase the number of uniformly distributed colloca-
tion points in the training set. However, if the solution is of low regularity, the large variance
of the residual will significantly reduce the number of effective samples such that the final
approximate solution may gain barely any improvement. To alleviate this issue, the selection
of collocation points must be consistent with the problem properties, in other words, adaptive
sampling needs to be considered.

A deep adaptive sampling (DAS) method has been developed in [63] for deterministic
PDEs. We in this work intend to generalize DAS to deal with more complicated parametric
differential equations and call this generalizationDAS2 for short, i.e., deep adaptive sampling
for surrogates. The main difficulties come from the additional dimensions from ξ . First, sam-
ples are needed from both the spatial domain and the parametric space for the discretization of
the loss functional. Second, low regularity may come from the spatial domain, the parametric
space, or both. Without assuming any prior knowledge of the residual profile, we need to
efficiently generate random samples that are consistent with an arbitrary high-dimensional
distribution. To handle such a situation, we employ a deep generative model, called KRnet, to
approximate the residual-induced distribution and then generate random collocation points
accordingly. The PDF defined by KRnet is

pKRnet(x, ξ ; θ f ) = pZ( fKRnet(x, ξ ; θ f ))
∣∣det∇x,ξ fKRnet

∣∣ , (7)

where fKRnet denotes an invertible mapping defined by KRnet parameterized with θ f , and
the prior distribution pZ for the random vector z is usually chosen as the standard normal
distribution. The overall structure of KRnet is specified as follows

z = fKRnet(x, ξ) = LN ◦ f outer[K−1] ◦ · · · ◦ f outer[1] (x, ξ),

where f outer[i] is defined as

f outer[k] = LS ◦ f inner[k,L] ◦ · · · ◦ f inner[k,1] ◦ LR .

Here, f inner[k,i] is a combination of L affine coupling layers [16, 38] and one scale and bias
layer, and LN , LS and LR represent the nonlinear layer, the squeezing layer and the rotation
layer respectively, where details can be found in the literature [61–63, 67].
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3.1 Sample from a Joint PDF

When the low regularity is related to both x and ξ , the adaptive sampling for both x and ξ

is needed. We need to generate samples from a joint PDF r̂(x, ξ) induced by the residual
r(x, ξ ; θ) for a certain θ . Following [63], r̂(x, ξ) is defined as

r̂(x, ξ) ∝ r2(x, ξ ; θ)h(x, ξ),

where h(x, ξ) is a cutoff function as defined in [63]. The cutoff function h(x, ξ) is defined
on a compact support B ⊃ Ω , where h(x, ξ) = 1 if (x, ξ) ∈ Ω and then decays linearly
to 0 towards ∂B. B is chosen to be slightly larger than Ω [63]. We then employ the PDF
model induced by KRnet to approximate r̂(x, ξ) on B. Mathematically, we need to solve the
following optimization problem

θ∗
f = argmin

θ f

DKL(r̂(x, ξ)||pKRnet(x, ξ ; θ f )), (8)

where DKL(·||·) denotes the Kullback-Leibler (KL) divergence between two distributions.
Let θ∗

f be the optimal parameter. Since B is slightly larger than Ω , we may generate random
samples as

(x, ξ) = f −1
KRnet(z; θ∗

f ),

and only keep those that belong to Ω . The KL divergence in (8) is

DKL(r̂(x, ξ)||pKRnet(x, ξ ; θ f ))

=
∫
B
r̂(x, ξ) log r̂(x, ξ)dxdξ −

∫
B
r̂(x, ξ) log pKRnet(x, ξ)dxdξ .

The first term is independent on θ f , which does not affect the optimization step for pKRnet
defined in equation (7). So, the PDF approximation step is equivalent to minimizing the cross
entropy between r̂ and pKRnet [13, 55]:

H(r̂ , pKRnet) = −
∫
B
r̂ log pKRnetdxdξ .

To compute this cross entropy numerically, we need to use the importance sampling technique
since the samples from r̂ are not available. Here, we use a PDFmodel with known parameters
θ̂ f for importance sampling:

H(r̂ , pKRnet) ≈ − 1

m

m∑
i=1

r̂(x(i), ξ (i)) log pKRnet(x(i), ξ (i); θ f )

pKRnet(x(i), ξ (i); θ̂ f )
, (9)

where m is the number of collocation points for estimating the cross entropy and the choice
of θ̂ f is specified in Algorithm 1.

3.1.1 Factorize a Joint PDF

In the above formulation, we use one KRnet to model the joint distribution of x and ξ without
differentiating the dependence of the problem on x and ξ . To make the density model more
consistent with the problem, we may consider factorizing the joint PDF with conditional
distribution. Two types of conditional PDF models can be considered:

px|ξ (x|ξ ; θ f ) = pZ|ξ ( fKRnet(x; ξ , θ f )) |det∇x fKRnet| ,
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and

pξ |x(ξ |x; θ f ) = pZ|x( fKRnet(ξ ; x, θ f ))
∣∣det∇ξ fKRnet

∣∣ ,
both of which are modeled by a conditional KRnet. Note that the generalization of KRnet
for conditional distribution is simple, where we simply include the conditional information
in the inputs of the affine coupling layers and set pZ|x or pZ|ξ a prior conditional distribution
[72]. Then the joint PDF can be written as

px,ξ (x, ξ ; θ f ) = p(ξ ; θ f1)p(x|ξ ; θ f2) (10)

or

px,ξ (x, ξ ; θ f ) = p(x; θ f1)p(ξ |x; θ f2), (11)

where p(ξ ; θ f1) in (10) and p(x; θ f1) in (11) can be modeled by another KRnet. Factoriz-
ing the joint PDF, although one more KRnet is needed, improves the modeling capability,
especially for random events of small probability. According to the problem properties, we
may choose a proper factorization. For example, if it is known that low regularity occurs in
the parametric space, we may opt for equation (10). On the other hand, the prior knowledge
can also be used to simplify the sampling strategy. For example, if for each ξ the residual
profile is smooth in terms of x, rather than the joint distribution, we can draw samples from
a marginal one as described in the next section.

3.2 Sample from aMarginal PDF

We let

r̃2(ξ ; θ) =
∫

Ωs

r2(x, ξ ; θ)dx.

We assume that the low regularity originates only from the parametric space and for any ξ

and θ , r̃2(ξ ; θ) can be well approximated by a fixed set of uniform samples {x(i)}mx
i=1 in the

spatial domain, i.e.,

r̃2(ξ ; θ) ≈ 1

mx

mx∑
i=1

r2(x(i), ξ ; θ). (12)

In this way, the empirical loss in equation (4) could be rewritten as

JN (uθ ) = 1

Nr̃

Nr̃∑
i=1

r̃2(ξ (i); θ) + γ
1

Nb

Nb∑
i=1

b2(x(i)
∂Ω, ξ (i); θ). (13)

Similar to sampling a joint PDF, we can approximate the residual-induced distribution r̂(ξ) ∝
r̃2(ξ ; θ)h(ξ) by the following optimization problem

θ∗
f = argmin

θ f

DKL(r̂(ξ)‖pKRnet(ξ ; θ f )),

where h(ξ) is defined the same way as in the previous section on a compact support Bp that
is slightly larger than Ωp . Again, minimizing the KL divergence is equivalent to minimizing
the cross entropy between r̂ and pKRnet:

H(r̂ , pKRnet) = −
∫
Bp

r̂(ξ) log pKRnet(ξ ; θ f )dξ .
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and we approximate the cross entropy using the importance sampling technique:

H(r̂ , pKRnet) ≈ − 1

m

m∑
i=1

r̂(ξ (i))

pKRnet(ξ
(i); θ̂ f )

log pKRnet(ξ
(i); θ f ), (14)

where θ̂ f is specified in Algorithm 2.

3.3 Algorithm

Given an initial set of collocation points SΩ,0, the empirical loss defined in (4) is mini-
mized to yield u

θ
∗,(1)
N

. For θ
∗,(1)
N , one can seek pKRnet(x, ξ ; θ

∗,(1)
f ) by minimizing the cross

entropy (see (9)). In this step, uniform samples are used to compute the cross entropy.
After the PDF approximation step is finished, a new set of collocation points SgΩ,1 is

generated by pKRnet(x, ξ ; θ
∗,(1)
f ). The training set is refined as SΩ,1 = SΩ,0 ∪ SgΩ,1. We

then continue to update uθ using θ
∗,(1)
N as the initial parameters and SΩ,1 as the training

set, resulting in a refined model. In general, at the k-th stage, we minimize the empiri-
cal loss on SΩ,k−1 to get the approximate solution u

θ
∗,(k)
N

. For PDF approximation, we let

pKRnet(x, ξ ; θ̂ f ) = pKRnet(x, ξ ; θ
∗,(k−1)
f ) for importance sampling in equation (9). Once the

PDF model is trained, the training set is refined as SΩ,k+1 = SΩ,k ∪ SgΩ,k+1. We repeat the
procedure to obtain an adaptive algorithm for the refinement of the training set by sampling
a joint PDF.

Algorithm 1 DAS2 based on the joint PDF

Input: Initial pKRnet(x, ξ ; θ
(0)
f ) , u

θ
(0)
N

(x, ξ), maximum epoch number Ne , batch size m, initial training set

SΩ,0 = {x(i)
0 , ξ

(i)
0 }nri=1.

1: for k = 0 : Nadaptive − 1 do
2: // Train surrogate models
3: for i = 1 : Ne do
4: for j steps do
5: Sample m samples from SΩ,k .
6: Update uθ (x, ξ) by descending the stochastic gradient of JN (uθ ) (see equation (4)).
7: end for
8: end for
9: // Update KRnet
10: for i = 1 : Ne do
11: for j steps do

12: Sample m samples from pKRnet(x, ξ ; θ
∗,(k−1)
f ).

13: Update pKRnet(x, ξ ; θ f ) by descending the stochastic gradient of H(r̂ , pKRnet) (see equation (9)).
14: end for
15: end for
16: // Refine training set

17: Generate Sg
Ω,k+1 ⊂ Ω with size nr through pKRnet(x, ξ ; θ

∗,(k+1)
f ).

18: SΩ,k+1 = SΩ,k ∪ Sg
Ω,k+1.

19: end for
Output: uθ∗

N
(x, ξ)
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Algorithm 2 DAS2 based on the marginal PDF

Input: Initial pKRnet(ξ ; θ
(0)
f ) , u

θ
(0)
N

(x, ξ), maximum epoch number Ne , batch size m, initial training set

SΩp ,0 = {ξ (i)
0 }nri=1, mx samples from Ωs .

1: for k = 0 : Nadaptive − 1 do
2: // Train surrogate models
3: for i = 1 : Ne do
4: for j steps do
5: Sample m samples from SΩp ,k .
6: Update uθ (x, ξ) by descending the stochastic gradient of JN (uθ ) (see equation (13)).
7: end for
8: end for
9: // Update KRnet
10: for i = 1 : Ne do
11: for j steps do

12: Sample m samples from pKRnet(ξ ; θ
∗,(k−1)
f ).

13: Update pKRnet(ξ ; θ f ) by descending the stochastic gradient of H(r̂ , pKRnet) (see equation (14)).
14: end for
15: end for
16: // Refine training set

17: Generate Sg
Ωp ,k+1 ⊂ Ωp with size nr through pKRnet(ξ ; θ

∗,(k+1)
f ).

18: SΩp ,k+1 = SΩp ,k ∪ Sg
Ωp ,k+1.

19: end for
Output: uθ∗

N
(x, ξ)

For simplicity and clarity, we focus on the adaptivity of SΩ and the treatment of the
boundary points can be found in [63] (section 4.3). The deep adaptive sampling algorithm
for surrogate modeling is summarized in Algorithm 1, where Nadaptive is a given number
of maximum adaptivity iterations, m is the batch size for stochastic gradient, and Ne is the
number of epochs for training uθ (x, ξ) and pKRnet(x, ξ ; θ f ). The algorithms consist of three
steps in one loop: training surrogate models, updating KRnet and refining the training set.
The same procedure can be applied to the marginal PDF, which results in Algorithm 2.

4 Analysis

Inspired by the literature [14, 15], we include some preliminary analysis of DAS2. We first
establish the relationship between the loss functional and its discretization at the optimal
model parameters for a certain training set. For the ideal case, we show that the expectation
of the discretized loss functional does not increase at the optimal model parameters given by
two adjacent adaptivity iterations. Before presenting the analysis, the following assumptions
are introduced.

Assumption 1 ( [14]) Let θ ∈ Θ = [−a, a]D be the trainable parameters of uθ where a > 0
is a constant. Assume that two operators M1 : θ �→ Jr ,N and M2 : θ �→ Jr are Lipschitz
continuous in the �∞ sense with Lipschitz constant L for θ ∈ Θ .

Assumption 2 ([14]) Let c > 0 be a constant that is independent of Θ . Assume that Jr ,N ∈
[0, c] for all θ ∈ Θ .
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Assumption 3 ( [63]) Assume that pKRnet(x, ξ ; θ
∗,(k)
f ) is the optimal candidate for the change

of measure for problem (5) at the k-th stage

pKRnet(x, ξ ; θ
∗,(k)
f ) = ckr

2(x, ξ ; θ
∗,(k)
N ),

where θ
∗,(k)
N is the minimizer in (5) and θ

∗,(k)
f is the minimizer in (8) given θ

∗,(k)
N , and

ck = 1/
∫

Ω

r2(x, ξ ; θ
∗,(k)
N )dxdξ

is the normalization constant.

If the collocation points are independently and identically distributed according to a given
probability distribution, then Jr (uθ∗

N
) can be bounded by the discretized loss with high

probability, which is stated as follows.

Theorem 1 Suppose that Assumption 1 and Assumption 2 are satisfied and the boundary loss
is zero. Let θ∗

N be a minimizer of Jr ,N where the collocation points are independently drawn
from a given probability distribution. Given ε ∈ (0, 1), the following inequality holds

Jr (uθ∗
N
) ≤ ε2 + Jr ,N (uθ∗

N
)

with probability at least 1 − (4aL/ε2)Dexp(−Nrε
4/2c2).

Proof See Appendix A. ��
The expectation of the discretized loss at two adjacent adaptivity stages satisfies the

following property.

Theorem 2 Under the same conditions of Theorem 1, suppose that Assumption 3 is satisfied.
Assume that

Jr ,N (u
θ

∗,(k)
N

) = 1

Nr

Nr∑
i=

r2(x(i), ξ (i); θ
∗,(k)
N )

pKRnet(x(i), ξ (i); θ
∗,(k−1)
f )

,

where each (x(i), ξ (i)) is drawn from pKRnet(x(i), ξ (i); θ
∗,(k−1)
f ), then the following inequality

holds

E(Jr ,N (u
θ

∗,(k+1)
N

)) ≤ E(Jr ,N (u
θ

∗,(k)
N

)).

Proof See Appendix B. ��
Theorem 1 provides the relationship between the loss and the discretized loss, which is

similar to the results in [14, 15]. The analysis in Theorem 1 is not restricted to the linear
differential equations, while the results in [63] only involve non-parametric linear differential
equations. From the above analysis, if the number of parameters in uθ and the number of
samples are properly chosen, then the loss is bounded by the discretized loss with high
probability. In Theorem 2, for simplicity, we consider replacing all collocation points with
new samples from the trained deep generative model [63]. Although the analysis of the
loss behavior during the adaptive procedure is restricted to such a strategy, it can provide a
perspective to understand the mechanism of DAS2. We note that quantifying the decay of
the error is not straightforward since it depends on the optimization procedure of deep neural
networks. However, obtaining the convergence rate of such an optimization problem is still
an open question.
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5 Numerical Study

In this section, we conduct four numerical experiments, including the physics-informed
operator learning problem, the parametric optimal control problem with geometrical
parametrization, and the parametric lid-driven 2D cavity flow problem with a continuous
range of Reynolds numbers from 100 to 3200, to demonstrate the effectiveness of the pro-
posed method. All these test problems involve low regularity. Two types of neural network
structures are considered for the surrogate model uθ (x, ξ): one is the feedforward neural
network with inputs x and ξ , and the other one is the structure given by DeepONet [45]
where the problem is treated as an physics-informed operator learning problem. The choice
of the sampling strategy depends on the problem property instead of the model structure.
For comparison, we also test the performance of some baseline sampling strategies, such as
the residual-based adaptive refinement (RAR) method [46, 74], the quasi-random sampling
(QRS) method implemented in the SciPy module [66], and an adaptive collocation point
movement approach based on interacting particle methods in a recent literature [30]. The
code of this study will be released on https://github.com/MJfadeaway/DAS-2.

5.1 A One-Dimensional Parametric Ordinary Differential Equation

Westartwith the following one-dimensional parametric ordinary differential equation (ODE)

du

dx
= ξu, u(0, ξ) = u0, x ∈ [0, 1],

where ξ ∈ Ωp = [−3, 3], i.e., C1 = −3 and C2 = 3 (see section 2), and the initial condition
is set to u0 = 1. The exact solution is

u(x, ξ) = u0e
ξ x . (15)

This is a widely used test problem for polynomial chaosmethods in uncertainty quantification
[78].

We use a six-layer fully connected neural network to construct a surrogate model uθ (x, ξ)

as the approximation solution of the parametricODE,where each hidden layer has 32neurons.
For KRnet, we set K = 2 and take L = 6 affine coupling layers. For each affine coupling
layer, a two-layer fully connected neural network is used, where each hidden layer has 24
neurons. The maximum epoch number for training both uθ (x, ξ) and pKRnet(x, ξ ; θ f ) is set
to Ne = 3000. In this test problem, the ADAM optimizer [37] is employed for all training
processes. The learning rate for the ADAM optimizer is set to 0.0001, and the batch size is
set to m = 1000. For DAS2, we use the joint PDF for sampling. The collocation points in
the initial training set are uniform samples, nr = 1000 is set during the adaptive sampling
procedure, and the number of adaptivity iterations is set to Nadaptive = 6. For the uniform
sampling strategy, the maximum epoch number is set to be the same as the total number of
epochs of DAS2, and the number of samples is set to |SΩ | = 6000 (the same as the 6-th
adaptivity iteration of DAS2). To assess the effectiveness of our DAS2 method, we generate
a uniform meshgrid with size 256× 256 in the spatial-parametric space [0, 1] × [−3, 3] and
compute the mean square error on these grid points.

In Fig. 1, we plot the approximation error given by different sampling strategies with
respect to epoch in the left plot and the error evolution of DAS2 at different adaptivity
iteration steps in the right plot. In terms of the number of epochs, the error of DAS2 decays
more quickly than the uniform sampling method. The approximation error of DAS2 drops as
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Fig. 1 The errors for the parametric ODE test problem

Fig. 2 The results of the parametric ODE test problem. Left: The evolution of Sg
Ω,k in DAS

2; Right: The exact
solution and the approximate solutions with different sampling strategies for ξ = 2.725

the adaptivity iteration step k increases. It can be found from equation (15) that u(x, ξ) grows
exponentially with respect to x and ξ . When ξ is near 3, the solution increases dramatically.
To capture this information, more samples are located in the area that ξ is near 3. Figure2(a)
shows the evolution of SgΩ of DAS2 with respect to adaptivity iterations k = 1, 2, 4, 5
(|SgΩ,k | = 1000), where SgΩ,1 indicates that large point-wise residuals are located in the

upper left corner of the x-ξ plane. After the set of collocation points is augmented by SgΩ,1,

the residual profile changes as shown in SgΩ,2. Such a pattern is repeated until S
g
Ω,k is near a

set of uniform samples. Figure2(b) shows the exact solution, the solution obtained by DAS2

and the solution obtained by the uniform sampligng strategy for ξ = 2.725. It is seen that
DAS2 yields a more accurate approximation.
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5.2 Physics-Informed Operator Learning for a Dynamical Systemwith
High-Dimensional Parameters

Next we consider the following dynamical system
⎧⎨
⎩

du(x, ξ)

dx
= e−D‖ξ−0.5‖2 f (x, ξ), x ∈ [0, 1],

u(0, ξ) = 0,
(16)

where D is a fixed parameter, and ξ ∈ Ωp = [−M, M]d , i.e., C1 = −M and C2 =
M . The goal is to learn the solution operator from f to the solution u without any paired
input–output data when f is sampled from a given function space. This example without
exp(−D‖ξ − 0.5‖2) is used to test the performance of DeepONet [45, 68]. Here, we add a
term exp(−D‖ξ − 0.5‖2) to the right-hand side to make this problem more challenging. We
assume that f is drawn from the space spanned by orthogonal (e.g. Chebyshev) polynomials
as studied in [45]. Let Ti beChebyshev polynomials of the first kind.We define the orthogonal
polynomials of degree d as:

Vpoly =
{
d−1∑
i=0

ξi Ti (x) : |ξi | ≤ M

}
.

This function space is parameterized with ξ = [ξ0, ξ1, ..., ξd−1]T. Given a realization of ξ ,
we can generate a continuous function f as the following form

f (x, ξ) =
d−1∑
i=0

ξi Ti (x).

In this example, the parametric solution u(x, ξ) is approximated by

uθ (x, ξ) ≈
l∑

i=1

q(i)
θ1

(x)t (i)θ2
(ξ) + b0, (17)

where q(i)
θ1

and t (i)θ2
are i-th outputs of two neural networks q (parameterized with θ1) and t

(parameterized with θ2) respectively, both of which have l outputs, and b0 ∈ R is a bias to
be trained. Denoting the whole parameters in (17) by θ = {θ1, θ2, b0} for short.

The experimental setup is as follows. We set M = 1, d = 8, D = 10. qθ1(x) and tθ2(ξ)

are both five-layer fully connected neural networks and each hidden layer has 50 neurons. For
DAS2, we use a marginal PDF for adaptive sampling because the singularity is mainly in the
parametric space. To compute the marginal PDF and the loss functional, we use mx = 100
uniform grid points in [0, 1] to discretize the integral in equation (12) and (13), in other
words, adaptive sampling is not considered in the physical space since the low regularity
is from the parametric space. We set K = 4 and the configuration for the affine coupling
layer is the same as the previous example. The number of epochs for training both uθ (x, ξ)

and pKRnet(ξ ; θ f ) is set to Ne = 3000. The learning rate for the ADAM optimizer is set
to 0.0001, and the batch size is set to m = 5000. The numbers of adaptivity iterations
is set to Nadaptive = 5. For the uniform sampling strategy, we generate f (x, ξ) with each
ξi ∼ Uni(−M, M)whereUni(−M, M) is the uniform distribution on [−M, M]. To measure
the quality of approximation, we generate a validation set, which contains 10000 uniformly
distributed points in [−M, M]d and 10000 points in the d-dimensional ball centered at 0.5
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Fig. 3 Approximation errors for the physics-informed operator learning problem

Fig. 4 The error evolution of
DAS2 at different adaptivity
iteration steps for the
physics-informed operator
learning problem.
|SΩp | = 1 × 105

Table 1 The physics-informed operator learning problem: inference time and error for different |SΩp | and
sampling strategies

Sampling strategy |SΩp |
2.5 × 104 5 × 104 7.5 × 104 1 × 105

Uniform (0.006s) 4.0 × 10−4 2.5 × 10−4 1.7 × 10−4 1.0 × 10−4

RAR (0.006s) 3.0 × 10−4 1.7 × 10−4 1.4 × 10−4 1.2 × 10−4

DAS2 (0.03s) 1.0 × 10−4 1.3 × 10−5 6.4 × 10−6 2.9 × 10−6

The computing time of RK45 is about 105s

with radius 0.5. To compute the reference solution, we employ the classical Runge-Kutta45
(RK45) method to solve the ODE for each function f with a certain ξ .

In Fig. 3, we plot the mean square error of different sampling strategies with respect
to the sample size |SΩp | in the left plot and with respect to the number of epochs in the
right plot. For DAS2, the numbers of collocation points in SgΩp,k

(k = 1, 2, 3, 4) are set to

nr = 5×103, 1×104, 1.5×104, 2×104 for |SΩp | = 2.5×104, 5×104, 7.5×104, 1×105

respectively. For the uniform sampling strategy, the model is trained with 1.5 × 104 epochs
to match the total number of epochs of DAS2. For the heuristic method RAR, the numbers of
collocation points inSgΩp,k

(k = 1, 2, 3, 4) are set tonr = 2.5×103, 5×103, 7.5×103, 1×104
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Fig. 5 The evolution of Sg
Ωp ,k in DAS

2 for the physics-informed operator learning problem, |SΩp | = 1×105

for |SΩp | = 2.5×104, 5×104, 7.5×104, 1×105 respectively. From the left plot of Fig. 3, it
can be seen that DAS2 improves the accuracy significantly compared to the uniform sampling
strategy and RAR. The right plot of Fig. 3 shows that as the number of epochs increases,
especially from the start of the third adaptivity iteration, the error of DAS2 decreases much
faster than those of uniform sampling and RAR. Figure 4 shows the errors of DAS2 at each
adaptivity iteration step k. It is seen that the error drops dramatically after we refine the
solution using SgΩp,1

and SgΩp,2
. Table 1 shows the inference time and the errors for the

uniform sampling strategy, RAR and DAS2. As a surrogate model, the inference time of
DAS2 is much less than that of RK45, which is desired. It can be seen that the inference time
of DAS2 is more than that of RAR. However, the errors of the uniform sampling strategy and
RAR are much larger than that of DAS2 since the uniform sampling strategy and RAR are
not able to accurately discretize the loss functional for this low-regularity high-dimensional
problem [74]. From Table 1, it is clear that DAS2 is one order of magnitude more accurate
than RAR and the uniform sampling strategy.

Figure 5 shows 3000 samples from DAS2 for the four adaptivity iterations, where the
components ξ3 and ξ6 are used for visualization.We have also checked the other components,
and no significantly different results were found. SgΩp,1

shows that the error profile has a peak

around ξ̂ = 0.5 which matches the fact that there is a decay term with respect to ξ in
equation (16). After the training set is augmented with SgΩp,1

, the error profile becomes more

flat as shown by the distribution of SgΩp,2
. This is expected since more training samples are
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added to the neighborhood of 0.5 where the error should be reduced. Figure6 shows u(x, ξ)

corresponding to different ξ obtained by DAS2, RAR and the uniform sampling method. The
realizations of ξ we choose for visualization are randomly drawn from the d-dimensional
ball centered at 0.5 with radius 0.5, since u(x, ξ) is close to zero when ξ is far away from
0.5 due to the decay term in problem (16). As shown in Fig. 6, for different ξ the solutions
u(x, ξ) obtained by DAS2 are much more accurate than those given by RAR and uniform
sampling.

5.3 Surrogate Modeling for an Optimal Control Problemwith Geometrical
Parametrization

In this test case, we are going to build a surrogate model for the following parametric optimal
control problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
y(x,ξ),u(x,ξ)

J (y (x, ξ) , u (x, ξ)) = 1

2
‖y(x, ξ) − yd(x, ξ)‖22,Ω + α

2
‖u(x, ξ)‖22,Ω ,

subject to

{
−Δy(x, ξ) = u(x, ξ) in Ω,

y(x, ξ) = 1 on ∂Ω,

and ua ≤ u(x, ξ) ≤ ub a.e. in Ω,

(18)

where ξ = (ξ1, ξ2) represents the geometrical and desired state parameters. The parametric
computational domain (also depending on ξ ) isΩ = ([0, 2]×[0, 1])\B((1.5, 0.5), ξ1)which
is illustrated in Fig. 7 and the desired state is given by

yd(x, ξ) =
{
1 in Ω1 = [0, 1] × [0, 1],
ξ2 in Ω2 = ([1, 2] × [0, 1])\B((1.5, 0.5), ξ1),

where B((1.5, 0.5), ξ1) is a ball of radius ξ1 with center (1.5, 0.5). We set α = 0.001, ua =
0, ub = 10, and the domain for the parameter to be ξ ∈ Ωp = [0.05, 0.45] × [0.5, 2.5].This
test problem is related to the application of local hyperthermia treatment of cancer, which
is inspired by the literature [35, 49]. The background of this test problem is that we expect
to accomplish a specific temperature field in the tumor area and another temperature field in
the non-lesion area by heat source control. The circle represents a certain body organ where
the tumor area is. We intend to seek an effective surrogate model of the optimal heat source
control for different expected temperature fields and organ shapes (i.e. different ξ ).

As studied in [79], one can use the necessary conditions for the minimizer of (18) to find
the optimal solution to the parametric optimal control problem. That is, we solve the KKT
system of (18) to find its minimizer, which is a parametric PDE system as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Δy(x, ξ) = u(x, ξ) in Ω,

y(x, ξ) = 1 on ∂Ω,

−Δp(x, ξ) = y(x, ξ) − yd(x, ξ) in Ω,

p(x, ξ) = 0 on ∂Ω,

u(x, ξ) = − 1

α
P[ua ,ub] (p (x, ξ)) in Ω,

(19)

where p(x, ξ) is the adjoint variable and
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Fig. 6 Solutions of the physics-informed operator learning problem: the first two rows above show f (x, ξ)

with different realizations of ξ , the two rows below show the corresponding solutions u(x, ξ)

Fig. 7 The parametric
computational domain Ω

P[ua ,ub] (p (x, ξ)) =

⎧⎪⎨
⎪⎩

ub, if ub < p(x, ξ),

p(x, ξ), if ua ≤ p(x, ξ) ≤ ub,

ua, if p(x, ξ) < ua .

Define a length factor function as [79]

l(x, ξ) = x1(2 − x1)x2(1 − x2)(ξ
2
1 − (x1 − 1.5)2 − (x2 − 0.5)2).
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Fig. 8 Approximation errors for the parametric optimal control problem

We choose three six-layer fully connected neural networks uθu (x, ξ), yθ y (x, ξ) and
pθ p (x, ξ), where each hidden layer has 25 neurons. We let

u(x, ξ) ≈ uθu (x, ξ), y(x, ξ) ≈ l(x, ξ)yθ y (x, ξ) + 1, p(x, ξ) ≈ l(x, ξ)pθ p (x, ξ)

The Dirichlet boundary conditions of y(x, ξ) and p(x, ξ) are naturally satisfied. We then
substitute the defined approximators into equation (19) tominimize the residual.More details
about the discretization of problem (18) can be found in [79].We here focus on the importance
of adaptive sampling for surrogate modeling.

In this example, we use the joint PDF for sampling and the spatial-parametric space is
defined as:

Ω := {(x, ξ)|0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1, 0.05 ≤ ξ1 ≤ 0.45, 0.5 ≤ ξ2 ≤ 2.5,

(x1 − 1.5)2 + (x2 − 0.5)2 ≥ ξ21 }.
Toobtain an accurate approximation, the optimizer for training uθu , yθ y and pθ p is set to be the
BFGS method [33], followed by the setting in [79]. The number of epochs for solving PDEs
is set to Ne = 2000. For KRnet, we set K = 2 and the configuration for the affine coupling
layers remains the same as the previous experiment. KRnet is trained by theADAMoptimizer
with a learning rate 0.0001, where the number of epochs is set to Ne = 2000. For DAS2, the
number of adaptivity iterations is set to Nadaptive = 5. To demonstrate the effectiveness of
the proposed method, we adopt dolfin-adjoint [48] to solve the optimal control problem with
some fixed parameters. The dolfin-adjoint solutions, which are regarded as the ground truth,
are evaluated on a 200 × 100 grid for the physical domain and for ξ located on an 11 × 11
grid for the parametric domain.

In Fig. 8, we plot the relative l2 errors given by different sampling strategies with respect
to the sample size in the left plot and with respect to the number of epochs in the right plot.
For each sample size, we take three runs with different initialization and compute the mean
relative error of the three runs as the final error. For DAS2, the size of the initial training
set |SΩ,0| = nr is set to 1 × 103, 2 × 103, 3 × 103, 4 × 103 for |SΩ | = 0.5 × 104, 1 ×
104, 1.5× 104, 2× 104 respectively. For the uniform sampling strategy and the qusi-random
sampling (QRS) strategy, the number of epochs is set to be the same as the total number of
epochs of DAS2, and the number of points in SΩ is also set to be the same as DAS2. For the
heuristic method RAR, the numbers of collocation points in SgΩ,k (k = 1, 2, 3, 4) are set to

nr = 5× 102, 1× 103, 1.5× 103, 2× 103 for |SΩ | = 5× 103, 1× 104, 1.5× 104, 2× 104
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Fig. 9 The errors for the
parametric optimal control
problem of DAS2 at different
adaptivity iteration steps.
|SΩ | = 2 × 104

Fig. 10 The evolution of Sg
Ω,k in RAR and DAS2 for the parametric optimal control problem (no points inside

the frustum), |SΩ | = 2 × 104

respectively. It is clear that for this test problemDAS2 has a better performance than the other
three (uniform, RAR and QRS) sampling strategies. From the left plot of Fig. 8, it is clear
that, as the number of samples increases, the relative error of DAS2 decreases faster than
those of the uniform sampling strategy, QRS and RAR. Figure8(b) shows the error evolution
of different sampling strategies and it is seen that DAS2 eventually yields a smaller error than
the other three samplingmethods for the same sample size. Figure9 shows the error evolution
of DAS2 at each adaptivity iteration step k. It is seen that, as k increases, the relative error
decreases quickly, implying that DAS2 is effective.

Figure 10 shows the evolution of the training set (|SΩ | = 2 × 104) of DAS2 with respect
to adaptivity iterations k = 1, 2, 4 (we use 2000 points in SgΩ,k for visualization), where the
initial training set SΩ,0 consists of uniform samples on Ω . Note that ξ1 denotes the radius of
the circle and ξ2 is the desired state in Ω2. We use different colors to identify ξ2 in Fig. 10.
It can be seen that DAS2 can effectively capture the information of singularity since the data
points generated by DAS2 are concentrated on the area where large residuals are located
(see SgΩ,1 and S

g
Ω,2 in DAS

2), while RAR is not able to capture the variation in residual well
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Fig. 11 The results of parametric optimal control problem: the solutions and absolute point wise errors of the
uniform sampling method, qusi-random sampling (QRS), RAR and DAS2 for different realizations. In each
subplot, the first line corresponds to ξ = (0.10, 2.5), the second line corresponds to ξ = (0.20, 2.0), the third
line corresponds to ξ = (0.30, 1.5), and the fourth line corresponds to ξ = (0.40, 0.5)

enough. Finally, nearly uniform samples are generated to augment the training set in DAS2

because one can obtain a flat residual profile after four adaptivity iterations. Figure11(a)
shows the optimal control solution u(x, ξ) obtained using different sampling methods. We
choose several different parameters ξ for visualization. For validation, the absolute errors
between different sampling strategies and the dolfin-adjoint solver are plotted in Fig.11(b). It
can be seen that the DAS2 has a better performance than the other three sampling strategies.
Table 2 shows the inference time and the relative error for the uniform sampling strategy,
QRS,RARandDAS2. It is seen thatDAS2 performsmuch better than the other three sampling
strategies especially when the sample size is relatively large.
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Table 2 The parametric optimal control problem: comparison of different sampling strategies for neural
network surrogate models.

Sampling strategy |SΩ |
0.5 × 104 1 × 104 1.5 × 104 2 × 104

Uniform (0.1s) 0.92 0.67 0.49 0.29

QRS (0.1s) 0.66 0.63 0.36 0.20

RAR (0.1s) 0.95 0.77 0.37 0.15

DAS2 (0.1s) 0.89 0.37 0.20 0.06

The relative error of DAS2 decays faster than other sampling strategies. Once the training of surrogate models
is finished, the optimal solution for any parameter can be computed efficiently, which is much faster than the
dolfin-adjoint solver (the dolfin-adjoint solver needs 18804s while the neural network surrogate model based
on DAS2 only needs 0.1 s)

5.4 Surrogate Modeling for Parametric Lid-Driven Cavity Flow Problems with a
Varying Re

Finally,we consider the lid-driven cavity flowproblemgoverned by the following steady-state
incompressible Navier–Stokes equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u(x, ξ) · ∇u(x, ξ) + ∇ p(x, ξ) = 1

Re(ξ)
Δu(x, ξ) in Ω,

∇ · u(x, ξ) = 0 in Ω,

u(x, ξ) = g(x, ξ) on ∂Ω,

(20)

where u(x, ξ) = [u(x, ξ), v(x, ξ)]T and p(x, ξ) are the flow velocity field and the scalar
pressure respectively. Here, we consider a parametric problem in terms of the Reynolds
number,wherewe assume that Re(ξ) = ξ ∈ Ωp . The physical domain isΩs = [0, 1]×[0, 1].
The velocity profile u = [1, 0]T is imposed on the top boundary (y = 1 where x = [x, y]T),
and u = [0, 0]T is imposed on all other boundaries, i.e., for [x, ξ ] ∈ ∂Ω

g(x, ξ) =
{

[1, 0]T, y = 1;
[0, 0]T, otherwise.

The lid-driven cavity problem is a benchmark in computational fluiddynamics.However, even
for a fixed relatively low Reynolds number, the existing neural-network-based methods are
not able to achieve a comparable accuracy with the baseline obtained by classical numerical
methods [25]. In this study, we use the proposed DAS2 method to obtain accurate all-at-once
solutions of the parametric lid-driven cavity flow problem with Reynolds numbers from an
interval. Two intervals are considered: one is [100, 1000] and the other one is [400, 3200].

We first evaluate the performance of DAS2 with the non-parametric lid-driven cavity flow
problem, where we consider Re = 100, 400. In such a scenario, DAS2 reduces to DAS.
After that, we use DAS2 to solve the parametric lid-driven cavity flow problem to obtain
all-at-once solutions, where we consider Re ∈ [100, 1000] and [400, 3200]. To measure the
quality of DAS2, we compare DAS2 with the classical numerical methods presented in the
literature [25], the FEniCS solver [1, 44], and the WAM-AW method proposed in a recent
literature [30]. Unlike DAS, WAM-AW is an adaptive collocation point movement approach
based on interacting particle methods for solving low-regularity PDEs, and we also use this
method as a baseline of neural-network-based methods.

123



Journal of Scientific Computing           (2024) 101:77 Page 23 of 33    77 

Fig. 12 The velocity components at the location of mid-span lines for the deterministic lid-driven cavity flow
problems, Re = 100, 400

Since there are three quantities (u, v and p) to be determined in equation (20), we construct
a neural network uθ with three outputs to represent u, v and p. For the deterministic problem
(fixed Reynolds numbers), we choose a five-layer fully connected neural network uθ (x),
where each hidden layer has 20 neurons. For KRnet, we set K = 2 and the configuration
for the affine coupling layers remains the same as the previous experiments. The number of
epochs for training both uθ (x) and pKRnet(x; θ f ) is set to Ne = 3000. The optimizer for
training uθ (x) is BFGS, the optimizer for training pKRnet(x; θ f ) is ADAMwith learning rate
0.0001 and the batch size is set to m = 100 (for Re = 100) or m = 500 (for Re = 400). For
Re = 100, the number of adaptivity iterations is set to Nadaptive = 5 with nr = 200, resulting
in |SΩ | = 1000. For the boundary term, 400 boundary points are uniformly sampled on ∂Ωs

with 100 points for each edge. To address the incompatibility of boundary conditions, we
multiply the boundary residual on the top boundary by a weight function 1−2|x −0.5| [50].
For the WAM-AWmethod proposed in the literature [30], we exactly keep the setup of their
work and run their open source code, where the number of collocation points is also set to
|SΩ | = 1000 and 100 data points for each edge of boundary (these settings are the same
as in [30]). For Re = 400, the number of adaptivity iterations is set to Nadaptive = 10 with
nr = 500, resulting in |SΩ | = 5000. We uniformly sample 256 points for each edge on the
boundary. For the WAM-AWmethod, we also set |SΩ | = 5000 and 256 boundary points are
sampled on each edge of the boundary. For all cases, we discretize in space using the Q3-Q2

finite element method implemented in FEniCS with a uniform 129 × 129 grid to obtain a
reference solution.

Figure 12 shows the velocity at the location of the mid-span line, which is usually used to
assess the accuracy of solutions. Specifically, for x = 0.5, we plot the velocity component
u with respect to y and for y = 0.5 we plot the velocity component v with respect to x .
In Fig. 12, we compare the results of DAS, FEniCS, WAM-AW with the benchmark results
given in Ghia et. al [25]. It is seen that the results given by DAS are consistent with those
given by Ghia and FEniCS, while the results of WAM-AW do not agree with the reference
results, especially for Re = 400. To further illustrate the effectiveness of DAS, we plot
the evolution of random samples during training in Fig. 13, where the left plot shows SgΩ,2

and SgΩ,4 for Re = 100 and the right plot shows SgΩ,2 and SgΩ,9 for Re = 400. It can be
seen that DAS yields samples that are consistent with both the problem properties and the
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Fig. 13 The random samples in Sg
Ω,k for the deterministic lid-driven cavity flow problems. Left: SgΩ,2 (blue)

and SgΩ,4 (red) for Re = 100; Right: SgΩ,2 (blue) and SgΩ,9 (red) for Re = 400

Fig. 14 The visualization of |u| =
√
u2 + v2 for the deterministic lid-driven cavity flow problems

approximation, where the initial training set consists of random samples generated by Latin
hypercube sampling. For example, at k = 2, most of the samples in SgΩ,2 are located in
the upper corners, where the velocity field changes abruptly and large residuals occur. As k
increases, the residual profile becomes more uniform after the localized information is well
captured, which implies that random samples can be added more uniformly. Figure 14 shows
the image of |u| = √

u2 + v2, where Re = 100 and Re = 400 are considered. Compared
with the reference solution given by FEniCS, DAS provides an accurate prediction of the
flow velocity for Re = 100 while WAM-AW has a little loss of accuracy. For Re = 400,
the results given by DAS are still accurate while the results given by WAM-AW are not
physically correct.
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Fig. 15 The velocity components at the location of mid-span lines for surrogate modeling of parametric
lid-driven cavity flow problems (Re ∈ [100, 1000]). The results for Re = 100, 400, 1000 are chosen for
visualization

Fig. 16 The random samples in Sg
Ω,k (2000 samples are displayed) for surrogate modeling of parametric

lid-driven cavity flow problems, Re ∈ [100, 1000]

Next, we look at the surrogatemodeling of parametric lid-driven cavity flowproblems. The
architecture of neural networks and the setting of adaptive sampling for surrogate modeling
need to be modified since solving such parametric problems is more difficult than determin-
istic ones. We use one five-layer fully connected neural network uθ (x, ξ) with three outputs
to approximate the parametric solutions u(x, y, ξ), v(x, y, ξ), p(x, y, ξ) respectively, where
each hidden layer has 32 neurons. For adaptive sampling, we use the joint PDFmodel induced
by KRnet in DAS2. For KRnet, we set K = 3 and take L = 6 affine coupling layers. For
each affine coupling layer, a two-layer fully connected neural network is employed where
each hidden layer has 32 neurons. The number of epochs for training the surrogate model
and KRnet is set to Ne = 5000. The optimizer for training the surrogate model uθ is BFGS,
and the optimizer for training KRnet is ADAM with a learning rate 0.0001. The number of
adaptivity iterations is set to Nadaptive = 10 with nr = 1× 104, resulting in the total number
of collocation points |SΩ | = 1 × 105. For the boundary term, 16384 boundary points are
sampled on each edge of the boundary. The batch size is set to m = 5000.

Figure 15 shows the velocity profile given by the trained surrogate model uθ (x, ξ) at the
location of the mid-span line for some selected Reynolds numbers ξ = 100, 400, 1000. From
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Fig. 17 The visualization of |u| =
√
u2 + v2 for surrogate modeling of parametric lid-driven cavity flow

problems, Re ∈ [100, 1000]. The l2 relative errors are 1.5%, 1.1%, 3.1%, 4.8% for Re = 100, 400, 700, 1000
respectively

Fig. 15, it is clear that the results of DAS2 are consistent with Ghia’s data [25], implying that
our DAS2 approach is able to provide an accurate surrogate model for fast inference. Fig-
ure16 shows the evolution of the training set (|SΩ | = 105) of DAS2 with respect to adaptivity
iterations k = 2, 9, where the initial training set SΩ,0 consists of random samples generated
by Latin hypercube sampling. SgΩ,2 indicates that the residual concentrates on the two upper
corners for any Re ∈ [100, 1000]. As the adaptivity iteration k increases, the residual profile
becomesmore flat as shown by the distribution of SgΩ,9, which is expected sincemore colloca-
tion points are added to the two upper corners to reduce the errors over there. Figure17 shows
the image of |u| = √

u2 + v2, where Re = 100, 400, 700, 1000 are used for visualization.
Here, we again use the Q3-Q2 finite element method implemented in FEniCS with a uniform
129×129 grid to obtain the reference solutions for Re = 100, 400, 700, 1000. It is seen that
DAS2 provides an accurate prediction of the flowvelocity even for Re = 1000. The l2 relative
errors, which are evaluated on the 129 × 129 uniform grid, are 1.5%, 1.1%, 3.1%, 4.8% for
Re = 100, 400, 700, 1000 respectively. It is worth noting that the inference time of DAS2

is 0.02 s, while the computation time of FEniCS is 309.94 s to obtain the four solutions for
Re = 100, 400, 700, 1000.

To further investigate the performance of DAS2, we consider a more challenging case
with Re ∈ [400, 3200]. When the Reynolds number is sufficiently large, the training process
becomes quite sensitive to the initialization of neural networks. To alleviate this issue, we use
the surrogate model trained for Re ∈ [100, 1000] as the initialization to train the surrogate
model for Re ∈ [400, 3200]. The number of adaptivity iterations is set to Nadaptive = 5 with
nr = 5 × 104, resulting in a total number |SΩ | = 2.5 × 105 of collocation points. Other
settings are set to be the same as the case for Re ∈ [100, 1000]. As demonstrated in Fig. 18
and Fig. 19, the surrogate model for Re ∈ [400, 3200] agrees very well with Ghia’s data
[25], where the l2 relative errors are 1.6%, 2.6%, and 6.5% for Re = 400, 1000, and 3200,
respectively.

6 Conclusions

In this paper, we have developed a deep adaptive sampling approach for surrogate modeling
(DAS2) of parametric differential equations, generalizing the previous work DAS to compli-
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Fig. 18 The velocity components at the location of mid-span lines for surrogate modeling of parametric
lid-driven cavity flow problems (Re ∈ [400, 3200]). The results for Re = 400, 1000, 3200 are chosen for
visualization

Fig. 19 The visualization of |u| =
√
u2 + v2 for surrogatemodeling of parametric lid-driven cavity flow prob-

lems, Re ∈ [400, 3200]. The l2 relative errors are 1.6%, 2.6%, 6.5% for Re = 400, 1000, 3200 respectively

cated parametric settings. It has been shown that DAS2 not only provides a fast inference for
parametric differential equations without labeled data but also yields an accurate prediction
for low-regularity problems thanks to the adaptive sampling procedure. Similar to DAS, the
framework of DAS2 also utilizes a deep generative model to generate collocation points that
are consistent with the residual-induced distribution. Unlike DAS, DAS2 handles the low
regularity from both spatial and parametric spaces. The joint PDF (marginal PDF) model
for both spatial and parametric variables (only the parametric variable), which is induced by
the residual, provides effective samples to reduce the statistical errors from the discretiza-
tion of the loss functional. Based on this, the accuracy of all-at-once solutions of parametric
differential equations can be improved significantly.

We pay particular attention to the following observations: First, due to the physics-
informedmodel with adaptive sampling, we have not used any simulation data for the training
process. Second, the procedure of adaptive sampling is independent of the structure of the
surrogate model unless the model is defined on a certain set of collocation points, and the
adaptive sampling strategy can be flexibly chosen based on the nature of the parametric
problem. Third, deep generative modeling plays an important role in DAS2. Deep genera-
tive modeling outperforms classical density models or sampling strategies in the sense that
it effectively merges density approximation and sample generation for an arbitrary high-
dimensional distribution. DAS2 will find many applications because it provides a general
way to improve the training set and any improvement in the model structure can be further
refined by adaptive sampling.
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Appendix

A Proof of Theorem 1

Proof SinceΘ is compact, there exists a δ-net N̄ = {θ1, . . . , θ Nδ }with the followingproperty:
for all θ ∈ Θ , there exists 1 ≤ i ≤ Nδ such that ‖θ − θ i‖∞ ≤ δ [73]. For a given ε ∈ (0, 1),
we set δ = ε2/(4L). Moreover, the number of parameters of N̄ is at most (4aL/ε2)D . By
Assumption 1, for θ , ν ∈ Θ with ‖θ − ν‖∞ ≤ δ, we have

sup
θ ,ν

|Jr (uν) − Jr (uθ )| + sup
θ ,ν

|Jr ,N (uν) − Jr ,N (uθ )| ≤ 2L ‖θ − ν‖∞ ≤ ε2

2
. (21)

For each 1 ≤ i ≤ Nδ , noting that Jr (uθ∗
N
) = Jr (uθ∗

N
) − Jr (uθ i ) + Jr (uθ i ) − Jr ,N (uθ i ) +

Jr ,N (uθ i ) − Jr ,N (uθ∗
N
) + Jr ,N (uθ∗

N
), it follows that

Jr (uθ∗
N
) ≤ |Jr (uθ∗

N
) − Jr (uθ i )| + |Jr (uθ i )

−Jr ,N (uθ i )| + |Jr ,N (uθ i ) − Jr ,N (uθ∗
N
)| + Jr ,N (uθ∗

N
). (22)

Next, the infinite set Θ of trainable parameters is discretized by the δ-net, then we use
the estimate of loss for the δ-net and combine it with the union bound to give the final
estimate. Let P : Θ �→ N̄ be a projection (in the �∞ sense) onto N̄, i.e., P(θ) = θ̄ where
θ̄ = argminυ∈N̄ ‖θ − υ‖∞. Consider the following events for 1 ≤ i ≤ Nδ:

E1 = {Jr (uθ∗
N
) ≤ ε2 + Jr ,N (uθ∗

N
)},

E2,i = {Jr (uθ i ) ≤ ε2

2
+ Jr ,N (uθ i )},

E3,i = {P(θ∗
N ) = θ i },

E4 = {∃ i ∈ {1, . . . , Nδ} : Jr (uθ i ) ≤ ε2

2
+ Jr ,N (uθ i ) and P(θ∗

N ) = θ i }

By (21) and (22), we known that if event E4 occurs, then event E1 occurs. Indeed, we have
P(θ∗

N ) = θ i if E4 occurs, which implies that
∥∥θ∗

N − θ i
∥∥∞ ≤ δ due to the property of the

δ-net. By (22) and using inequality (21) derived from the property of Lipschitz continuity,
we can obtain Jr (uθ∗

N
) ≤ ε2 + Jr ,N (uθ∗

N
), which means that E1 occurs. Hence, we have

E4 ⊆ E1, implying that

P(E4) ≤ P(E1). (23)

According to the definition of δ-net, we have

∑
i

P(E3,i) = 1. (24)

By Assumption 2 and the Hoeffding inequality, we obtain

P(E2,i) ≥ 1 − exp(
−Nrε

4

2c2
). (25)
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Noting that E4 = ∪Nδ

i=1(E2,i ∩ E3,i), and combining (23), (24) and (25), we have

P(E1) ≥ P(E4) =
Nδ∑
i

P(E2,i ∩ E3,i) =
Nδ∑
i=1

(
P(E2,i) + P(E3,i) − P(E2,i ∪ E3,i)

)

≥ 1 +
Nδ∑
i=1

(
P(E2,i) − 1

)

≥ 1 − Nδexp(
−Nrε

4

2c2
)

≥ 1 − (4aL/ε2)Dexp(
−Nrε

4

2c2
),

which gives that

Jr (uθ∗
N
) ≤ ε2 + Jr ,N (uθ∗

N
)

with probability at least 1 − (4aL/ε2)Dexp(−Nrε
4/2c2). ��

B Proof of Theorem 2

Proof Noting that

θ
∗,(k+1)
N = argmin

θ

1

Nr

Nr∑
i=1

r2(x(i), ξ (i); θ)

pKRnet(x(i), ξ (i); θ
∗,(k)
f )

.

Since θ
∗,(k+1)
N is the optimal solution at the (k+1)-th stage and θ

∗,(k)
N is used for initialization,

we can obtain

Jr ,N (u
θ

∗,(k+1)
N

) = 1

Nr

Nr∑
i=1

r2(x(i), ξ (i); θ
∗,(k+1)
N )

pKRnet(x(i), ξ (i); θ
∗,(k)
f )

≤ 1

Nr

Nr∑
i=1

r2(x(i), ξ (i); θ
∗,(k)
N )

pKRnet(x(i), ξ (i); θ
∗,(k)
f )

.

(26)

Plugging pKRnet(x, ξ ; θ
∗,(k)
f ) = ckr2(x, ξ ; θ

∗,(k)
N ) into (26), we have

Jr ,N (u
θ

∗,(k+1)
N

) ≤ 1

ck
.

Noting that Jr ,N (u
θ

∗,(k+1)
N

) is a random variable and taking its expectation, it follows that

E(Jr ,N (u
θ

∗,(k+1)
N

)) ≤ 1

ck
=

∫
Ω

r2(x, ξ ; θ
∗,(k)
N )dxdξ = E(Jr ,N (u

θ
∗,(k)
N

)),

which completes the proof. ��
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