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SM1. Intrinsic Differential Geometry. We review various concepts from dif-
ferential geometry; see [SM5, SM3, SM2, SM1, SM4], as well as [SM7, Appendix].

Consider a d-dimensional Riemannian manifold (Γ, gab), where gab is the given
metric tensor (discussed below) defined over a (reference) domain U ⊂ Rd. A point
in U is denoted by (u1, u2, ..., ud); in the special case of d = 2 that we are mainly
concerned with, we may use (u, v) ∈ U . We refer to variables defined on U as intrinsic
quantities. We keep track of upper and lower indices, where a lower index (subscript)
is for covariant terms, and an upper index (superscript) is for contravariant terms.

The given metric gab is a symmetric, covariant tensor with component functions
gαβ : U → R, for 1 ≤ α, β ≤ d, which we assume are at least C1, and is uniformly pos-
itive definite. We write g := det gab and the inverse metric tensor gab is contravariant
with components denoted gαβ , where gαγg

γβ = δβα. Note that va may be converted
to vb via vβ = gβαv

α; similarly, wb may be converted to wa by wα = gαβwβ . When
convenient, we write gab ≡ g = [gαβ ]2α,β=1 and gab ≡ g−1 = [gαβ ]2α,β=1 in standard
matrix notation for the metric and inverse metric, respectively.

The Christoffel symbols Γkij (of the second kind) are defined by

(SM1.1) Γγαβ :=
1

2
gµγ (∂αgβµ + ∂βgµα − ∂µgαβ) , 1 ≤ α, β, γ ≤ 2,

where Γγαβ = Γγβα, [SM3, SM2]. With this, we recall the definition of covariant
(contravariant) derivatives, denoted ∇α (∇α), where f is a scalar, vb is a covariant
vector, and vc is a contravariant vector:

∇αf = ∂αf, ∇α∇βf = ∂α∂βf − (∂γf)Γγαβ ,

∇αvβ = ∂αvβ − vγΓγβα, ∇αvγ = ∂αv
γ + vβΓγβα.

(SM1.2)

SM2. Extrinsic Differential Geometry. Suppose that the manifold Γ is em-
bedded in Rn, with n ≥ d, and that it is represented by a family of charts {(Ui,χi)},
where a single chart consists of a pair (U,χ), with U ⊂ Rd (reference domain) and
χ : U → Rn, [SM3]. For simplicity of exposition, assume there is only one chart
(U,χ), where Γ = χ(U). We refer to variables in Rn as extrinsic quantities.

For example, χ = (χ1, ..., χn)T ∈ Rn, and χi : U → R for each i ∈ {1, 2, ..., n}.
A point x ∈ Rn has its j-th coordinate denoted by xj . Moreover, ∂k is the partial
derivative with respect to coordinate xk. Repeated indices are summed over. We
typically bold-face extrinsic vectors and tensors, e.g. let w be a 2-tensor in Rn with
components wij for i, j ∈ {1, 2, ..., n}. The canonical (orthonormal) basis in Rn,
is denoted by {ak}nk=1, where a1 = (1, 0, ..., 0)T (column vector), etc. With the

Kronecker delta δji , we have the dual basis {ak} of {ak} by the formula ai · aj = δji .
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We now specialize to the case of a surface in R3, i.e. d = 2, n = 3. The tangent
space Tx(Γ), at a point x ∈ Γ, is a subspace of R3 spanned by {e1, e2} (the covariant
basis) where

eα = ∂αχ(u1, u2), 1 ≤ α ≤ 2, where (u1, u2) = χ−1(x).

In this case, the metric tensor gab is given by gαβ = eα · eβ , for 1 ≤ α, β ≤ 2. The
contravariant tangent basis is given by {e1, e2}, where eβ = eαg

αβ = (∂αχ)gαβ ,
[SM1]. Sometimes, we express gab ≡ g = JTJ , where J = [e1, e2] is an 3× 2 matrix.

An alternative view of the tangent space is the following. Let ν : Γ → R3 be
the surface unit normal vector of Γ, which satisfies ν = e1 × e2. The tangent space
projection P : R3 → R3, defined on Γ, is given by

(SM2.1) P = I − ν ⊗ ν = e1 ⊗ e1 + e2 ⊗ e2,

and note that (in local coordinates) Jg−1JT = P ◦ χ, [SM6]. Thus, given a vector
v ∈ R3, it is in the tangent space Tx(Γ) if there exists a (contravariant) vector va

such that v(x) = vαeα ◦ χ−1(x).
We define the tangent bundle:

T(Γ) = {(x,v) | x ∈ Γ,v(x) ∈ Tx(Γ)},

thus, we say v ∈ T(Γ) if v(x) ∈ Tx(Γ) for every x ∈ Γ; in this case, we write v : Γ→
T(Γ). We introduce extrinsic differential operators via their intrinsic counterpart,
starting with the surface gradient ∇Γf : Γ→ T(Γ) defined in local coordinates by

(SM2.2) (∇Γf) ◦ χ = (∇αf)gαβeTβ = ∂α(f ◦ χ)gαβ(∂βχ)T ≡ ∇(f ◦ χ)g−1JT ,

for any differentiable function f : Γ→ R. Furthermore, let idΓ : Γ→ Γ be the identity
map, i.e. idΓ = χ ◦ χ−1, or x = idΓ(x) for all x ∈ Γ. Then, defining

∇ΓidΓ := [∇Γid1
Γ;∇Γid2

Γ;∇Γid3
Γ] ∈ R3×3,

where idΓ =
(
id1

Γ, id
2
Γ, id

3
Γ

)
(i.e. idkΓ is the kth component of idΓ), it holds that

∇ΓidΓ = P .
The (extrinsic) surface gradient, and surface divergence, of a tangential vector

field v ∈ T(Γ) is

∇Γv ◦ χ := eγg
γα(∇βvα)gβµeTµ = eγg

γα(∂βvα − vωΓωαβ)gβµeTµ ,

(∇Γ · v) ◦ χ := tr(∇Γv ◦ χ) = gγα(∇βvα)gβµeµ · eγ
= ∇β(gγαvα)gβµgµγ = δβγ (∇βvγ) = ∇γvγ .

The (extrinsic) surface Hessian of f is given by

(∇Γ∇Γf) ◦ χ := eµg
µα[∇α∇βf ]gβρeTρ

= eµg
µα[∂α∂β(f ◦ χ)− ∂γ(f ◦ χ)Γγαβ ]gβρeTρ .

(SM2.3)

Lastly, setting ∇Γν := [∇Γν1;∇Γν2;∇Γν3], it can be shown that [SM6]:

(SM2.4) ∇Γν = κ1d1 ⊗ d1 + κ2d2 ⊗ d2,

where κ1, κ2 are the principle curvatures of Γ and d1, d2 are the principle directions
(which are tangent to Γ). Thus, ∇Γν is the (extrinsic) shape operator.
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SM3. Parametrization Via Curved Element Map. Recall F lT : T 1 → T l

from subsection 3.1. It is useful to consider this map as a parametrization of T l in
the following sense. Apply a rigid rotation of coordinates x to x′ so that T s → T s′

(for any s) and T 1′ ⊂ R2. In the rotated coordinates, we view F lT
′

as a function of

two variables, so that (T 1′,F lT
′
) is a local chart for T l

′
. Next, let J ′ = [∂1F

l
T

′
, ∂2F

l
T

′
]

be the 3 × 2 Jacobian matrix with induced metric g′ = (J ′)TJ ′. In addition, define

the 3 × 2 matrix P̄?
′

= [a1,a2], where {a1,a2,a3} are the canonical basis vectors of

R3, (P̄?
′
)T P̄?

′
= I2, and P̄?

′
(P̄?
′
)T = P̄ ′ := I3 − ν̄′ ⊗ ν̄′, where ν̄′ ≡ a3 is the unit

normal of T 1′.
All results derived in the rotated coordinates can be mapped back to the original

coordinates. For example, let P̄? = [b1,b2], where b1, b2 are any two orthogonal

unit vectors in R3 pointing in the plane of T 1, and note that P̄?
T
P̄? = I2, and

P̄?P̄?
T

= P̄ := I3 − ν̄ ⊗ ν̄ (see (SM2.1)), where ν̄ = b1 × b2 is the unit normal of
T 1. Then, J = (∇T 1F lT )P̄?, g = JTJ , and by (3.2),

|J − P̄?| = O(h), g = P̄?
T
P̄ T P̄ P̄? +O(h) = I2 +O(h),

so g is invertible for h sufficiently small. Note that, in terms of F lT , the surface
gradient (SM2.2) of f : T l → R can be written as (∇T lf) ◦ F lT = (∇T 1 f̄)P̄?g

−1JT ,
where f̄ := f ◦ F lT .
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