SUPPLEMENTARY MATERIALS: APPROXIMATING THE SHAPE OPERATOR WITH THE SURFACE HELLAN-HERRMANN-JOHNSON ELEMENT*

SHAWN W. WALKER ${ }^{\dagger}$

SM1. Intrinsic Differential Geometry. We review various concepts from differential geometry; see [SM5, SM3, SM2, SM1, SM4], as well as [SM7, Appendix].

Consider a d-dimensional Riemannian manifold $\left(\Gamma, g_{\mathfrak{a} \mathfrak{b}}\right)$, where $g_{\mathfrak{a} \mathfrak{b}}$ is the given metric tensor (discussed below) defined over a (reference) domain $U \subset \mathbb{R}^{d}$. A point in U is denoted by $\left(u^{1}, u^{2}, \ldots, u^{d}\right)$; in the special case of $d=2$ that we are mainly concerned with, we may use $(u, v) \in U$. We refer to variables defined on U as intrinsic quantities. We keep track of upper and lower indices, where a lower index (subscript) is for covariant terms, and an upper index (superscript) is for contravariant terms.

The given metric $g_{\mathfrak{a} \mathfrak{b}}$ is a symmetric, covariant tensor with component functions $g_{\alpha \beta}: U \rightarrow \mathbb{R}$, for $1 \leq \alpha, \beta \leq d$, which we assume are at least C^{1}, and is uniformly positive definite. We write $g:=\operatorname{det} g_{\mathfrak{a} \mathfrak{b}}$ and the inverse metric tensor $g^{\mathfrak{a} \mathfrak{b}}$ is contravariant with components denoted $g^{\alpha \beta}$, where $g_{\alpha \gamma} g^{\gamma \beta}=\delta_{\alpha}^{\beta}$. Note that $v^{\text {a }}$ may be converted to $v_{\mathfrak{b}}$ via $v_{\beta}=g_{\beta \alpha} v^{\alpha}$; similarly, $w_{\mathfrak{b}}$ may be converted to $w^{\mathfrak{a}}$ by $w^{\alpha}=g^{\alpha \beta} w_{\beta}$. When convenient, we write $g_{\mathfrak{a} \mathfrak{b}} \equiv \boldsymbol{g}=\left[g_{\alpha \beta}\right]_{\alpha, \beta=1}^{2}$ and $g^{\mathfrak{a} \mathfrak{b}} \equiv \boldsymbol{g}^{-1}=\left[g^{\alpha \beta}\right]_{\alpha, \beta=1}^{2}$ in standard matrix notation for the metric and inverse metric, respectively.

The Christoffel symbols $\Gamma_{i j}^{k}$ (of the second kind) are defined by

$$
\begin{equation*}
\Gamma_{\alpha \beta}^{\gamma}:=\frac{1}{2} g^{\mu \gamma}\left(\partial_{\alpha} g_{\beta \mu}+\partial_{\beta} g_{\mu \alpha}-\partial_{\mu} g_{\alpha \beta}\right), \quad 1 \leq \alpha, \beta, \gamma \leq 2 \tag{SM1.1}
\end{equation*}
$$

where $\Gamma_{\alpha \beta}^{\gamma}=\Gamma_{\beta \alpha}^{\gamma}$, [SM3, SM2]. With this, we recall the definition of covariant (contravariant) derivatives, denoted $\nabla_{\alpha}\left(\nabla^{\alpha}\right)$, where f is a scalar, $v_{\mathfrak{b}}$ is a covariant vector, and $v^{\mathfrak{c}}$ is a contravariant vector:

$$
\begin{align*}
\nabla_{\alpha} f & =\partial_{\alpha} f, \quad \nabla_{\alpha} \nabla_{\beta} f=\partial_{\alpha} \partial_{\beta} f-\left(\partial_{\gamma} f\right) \Gamma_{\alpha \beta}^{\gamma} \\
\nabla_{\alpha} v_{\beta} & =\partial_{\alpha} v_{\beta}-v_{\gamma} \Gamma_{\beta \alpha}^{\gamma}, \quad \nabla_{\alpha} v^{\gamma}=\partial_{\alpha} v^{\gamma}+v^{\beta} \Gamma_{\beta \alpha}^{\gamma} \tag{SM1.2}
\end{align*}
$$

SM2. Extrinsic Differential Geometry. Suppose that the manifold Γ is embedded in \mathbb{R}^{n}, with $n \geq d$, and that it is represented by a family of charts $\left\{\left(U_{i}, \boldsymbol{\chi}_{i}\right)\right\}$, where a single chart consists of a pair $(U, \boldsymbol{\chi})$, with $U \subset \mathbb{R}^{d}$ (reference domain) and $\chi: U \rightarrow \mathbb{R}^{n}$, [SM3]. For simplicity of exposition, assume there is only one chart (U, χ), where $\Gamma=\chi(U)$. We refer to variables in \mathbb{R}^{n} as extrinsic quantities.

For example, $\boldsymbol{\chi}=\left(\chi^{1}, \ldots, \chi^{n}\right)^{T} \in \mathbb{R}^{n}$, and $\chi^{i}: U \rightarrow \mathbb{R}$ for each $i \in\{1,2, \ldots, n\}$. A point $\mathbf{x} \in \mathbb{R}^{n}$ has its j-th coordinate denoted by x^{j}. Moreover, ∂_{k} is the partial derivative with respect to coordinate x^{k}. Repeated indices are summed over. We typically bold-face extrinsic vectors and tensors, e.g. let \boldsymbol{w} be a 2 -tensor in \mathbb{R}^{n} with components $w_{i j}$ for $i, j \in\{1,2, \ldots, n\}$. The canonical (orthonormal) basis in \mathbb{R}^{n}, is denoted by $\left\{\mathbf{a}_{k}\right\}_{k=1}^{n}$, where $\mathbf{a}_{1}=(1,0, \ldots, 0)^{T}$ (column vector), etc. With the Kronecker delta δ_{i}^{j}, we have the dual basis $\left\{\mathbf{a}^{k}\right\}$ of $\left\{\mathbf{a}_{k}\right\}$ by the formula $\mathbf{a}_{i} \cdot \mathbf{a}^{j}=\delta_{i}^{j}$.

[^0]We now specialize to the case of a surface in \mathbb{R}^{3}, i.e. $d=2, n=3$. The tangent space $T_{\mathbf{x}}(\Gamma)$, at a point $\mathbf{x} \in \Gamma$, is a subspace of \mathbb{R}^{3} spanned by $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ (the covariant basis) where

$$
\mathbf{e}_{\alpha}=\partial_{\alpha} \boldsymbol{\chi}\left(u^{1}, u^{2}\right), \quad 1 \leq \alpha \leq 2, \quad \text { where }\left(u^{1}, u^{2}\right)=\chi^{-1}(\mathbf{x})
$$

In this case, the metric tensor $g_{\mathfrak{a} \mathfrak{b}}$ is given by $g_{\alpha \beta}=\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}$, for $1 \leq \alpha, \beta \leq 2$. The contravariant tangent basis is given by $\left\{\mathbf{e}^{1}, \mathbf{e}^{2}\right\}$, where $\mathbf{e}^{\beta}=\mathbf{e}_{\alpha} g^{\alpha \beta}=\left(\bar{\partial}_{\alpha} \boldsymbol{\chi}\right) g^{\alpha \beta}$, [SM1]. Sometimes, we express $g_{\mathfrak{a} \mathfrak{b}} \equiv \boldsymbol{g}=\boldsymbol{J}^{T} \boldsymbol{J}$, where $\boldsymbol{J}=\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]$ is an 3×2 matrix.

An alternative view of the tangent space is the following. Let $\boldsymbol{\nu}: \Gamma \rightarrow \mathbb{R}^{3}$ be the surface unit normal vector of Γ, which satisfies $\boldsymbol{\nu}=\mathbf{e}_{1} \times \mathbf{e}_{2}$. The tangent space projection $\boldsymbol{P}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined on Γ, is given by

$$
\begin{equation*}
\boldsymbol{P}=\boldsymbol{I}-\boldsymbol{\nu} \otimes \boldsymbol{\nu}=\mathbf{e}_{1} \otimes \mathbf{e}_{1}+\mathbf{e}_{2} \otimes \mathbf{e}_{2} \tag{SM2.1}
\end{equation*}
$$

and note that (in local coordinates) $\boldsymbol{J g}^{-1} \boldsymbol{J}^{T}=\boldsymbol{P} \circ \boldsymbol{\chi},[\mathrm{SM} 6]$. Thus, given a vector $\mathbf{v} \in \mathbb{R}^{3}$, it is in the tangent space $T_{\mathbf{x}}(\Gamma)$ if there exists a (contravariant) vector $v^{\mathfrak{a}}$ such that $\mathbf{v}(\mathbf{x})=v^{\alpha} \mathbf{e}_{\alpha} \circ \chi^{-1}(\mathbf{x})$.

We define the tangent bundle:

$$
T(\Gamma)=\left\{(\mathbf{x}, \mathbf{v}) \mid \mathbf{x} \in \Gamma, \mathbf{v}(\mathbf{x}) \in T_{\mathbf{x}}(\Gamma)\right\}
$$

thus, we say $\mathbf{v} \in T(\Gamma)$ if $\mathbf{v}(\mathbf{x}) \in T_{\mathbf{x}}(\Gamma)$ for every $\mathbf{x} \in \Gamma$; in this case, we write $\mathbf{v}: \Gamma \rightarrow$ $T(\Gamma)$. We introduce extrinsic differential operators via their intrinsic counterpart, starting with the surface gradient $\nabla_{\Gamma} f: \Gamma \rightarrow T(\Gamma)$ defined in local coordinates by

$$
\begin{equation*}
\left(\nabla_{\Gamma} f\right) \circ \boldsymbol{\chi}=\left(\nabla_{\alpha} f\right) g^{\alpha \beta} \mathbf{e}_{\beta}^{T}=\partial_{\alpha}(f \circ \boldsymbol{\chi}) g^{\alpha \beta}\left(\partial_{\beta} \boldsymbol{\chi}\right)^{T} \equiv \nabla(f \circ \boldsymbol{\chi}) \boldsymbol{g}^{-1} \boldsymbol{J}^{T} \tag{SM2.2}
\end{equation*}
$$

for any differentiable function $f: \Gamma \rightarrow \mathbb{R}$. Furthermore, let $\mathrm{id}_{\Gamma}: \Gamma \rightarrow \Gamma$ be the identity map, i.e. $\mathrm{id}_{\Gamma}=\chi \circ \chi^{-1}$, or $\mathbf{x}=\mathrm{id}_{\Gamma}(\mathbf{x})$ for all $\mathbf{x} \in \Gamma$. Then, defining

$$
\nabla_{\Gamma} \mathrm{id}_{\Gamma}:=\left[\nabla_{\Gamma} \mathrm{id}_{\Gamma}^{1} ; \nabla_{\Gamma} \mathrm{id}_{\Gamma}^{2} ; \nabla_{\Gamma} \mathrm{id}_{\Gamma}^{3}\right] \in \mathbb{R}^{3 \times 3}
$$

where $\operatorname{id}_{\Gamma}=\left(\operatorname{id}_{\Gamma}^{1}, \mathrm{id}_{\Gamma}^{2}, \mathrm{id}_{\Gamma}^{3}\right)$ (i.e. id_{Γ}^{k} is the k th component of $\left.\mathrm{id}_{\Gamma}\right)$, it holds that $\nabla_{\Gamma} \mathrm{id}_{\Gamma}=\boldsymbol{P}$.

The (extrinsic) surface gradient, and surface divergence, of a tangential vector field $\mathbf{v} \in T(\Gamma)$ is

$$
\begin{aligned}
\nabla_{\Gamma} \mathbf{v} \circ \chi & :=\mathbf{e}_{\gamma} g^{\gamma \alpha}\left(\nabla_{\beta} v_{\alpha}\right) g^{\beta \mu} \mathbf{e}_{\mu}^{T}=\mathbf{e}_{\gamma} g^{\gamma \alpha}\left(\partial_{\beta} v_{\alpha}-v_{\omega} \Gamma_{\alpha \beta}^{\omega}\right) g^{\beta \mu} \mathbf{e}_{\mu}^{T} \\
\left(\nabla_{\Gamma} \cdot \mathbf{v}\right) \circ \chi & :=\operatorname{tr}\left(\nabla_{\Gamma} \mathbf{v} \circ \chi\right)=g^{\gamma \alpha}\left(\nabla_{\beta} v_{\alpha}\right) g^{\beta \mu} \mathbf{e}_{\mu} \cdot \mathbf{e}_{\gamma} \\
& =\nabla_{\beta}\left(g^{\gamma \alpha} v_{\alpha}\right) g^{\beta \mu} g_{\mu \gamma}=\delta_{\gamma}^{\beta}\left(\nabla_{\beta} v^{\gamma}\right)=\nabla_{\gamma} v^{\gamma} .
\end{aligned}
$$

The (extrinsic) surface Hessian of f is given by

$$
\begin{align*}
\left(\nabla_{\Gamma} \nabla_{\Gamma} f\right) \circ \chi & :=\mathbf{e}_{\mu} g^{\mu \alpha}\left[\nabla_{\alpha} \nabla_{\beta} f\right] g^{\beta \rho} \mathbf{e}_{\rho}^{T} \\
& =\mathbf{e}_{\mu} g^{\mu \alpha}\left[\partial_{\alpha} \partial_{\beta}(f \circ \chi)-\partial_{\gamma}(f \circ \chi) \Gamma_{\alpha \beta}^{\gamma}\right] g^{\beta \rho} \mathbf{e}_{\rho}^{T} . \tag{SM2.3}
\end{align*}
$$

Lastly, setting $\nabla_{\Gamma} \boldsymbol{\nu}:=\left[\nabla_{\Gamma} \nu_{1} ; \nabla_{\Gamma} \nu_{2} ; \nabla_{\Gamma} \nu_{3}\right]$, it can be shown that [SM6]:

$$
\begin{equation*}
\nabla_{\Gamma} \boldsymbol{\nu}=\kappa_{1} \boldsymbol{d}_{1} \otimes \boldsymbol{d}_{1}+\kappa_{2} \boldsymbol{d}_{2} \otimes \boldsymbol{d}_{2} \tag{SM2.4}
\end{equation*}
$$

where κ_{1}, κ_{2} are the principle curvatures of Γ and $\boldsymbol{d}_{1}, \boldsymbol{d}_{2}$ are the principle directions (which are tangent to Γ). Thus, $\nabla_{\Gamma} \boldsymbol{\nu}$ is the (extrinsic) shape operator.

SM3. Parametrization Via Curved Element Map. Recall $\boldsymbol{F}_{T}^{l}: T^{1} \rightarrow T^{l}$ from subsection 3.1. It is useful to consider this map as a parametrization of T^{l} in the following sense. Apply a rigid rotation of coordinates \mathbf{x} to \mathbf{x}^{\prime} so that $T^{s} \rightarrow T^{s \prime}$ (for any s) and $T^{1^{\prime}} \subset \mathbb{R}^{2}$. In the rotated coordinates, we view $\boldsymbol{F}_{T}^{l^{\prime}}$ as a function of two variables, so that $\left(T^{1^{\prime}}, \boldsymbol{F}_{T}^{l}{ }^{\prime}\right)$ is a local chart for $T^{l^{\prime}}$. Next, let $\boldsymbol{J}^{\prime}=\left[\partial_{1} \boldsymbol{F}_{T}^{l^{\prime}}, \partial_{2} \boldsymbol{F}_{T}^{l}{ }^{\prime}\right]$ be the 3×2 Jacobian matrix with induced metric $\boldsymbol{g}^{\prime}=\left(\boldsymbol{J}^{\prime}\right)^{T} \boldsymbol{J}^{\prime}$. In addition, define the 3×2 matrix $\overline{\boldsymbol{P}}_{\star}{ }^{\prime}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}\right]$, where $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ are the canonical basis vectors of $\mathbb{R}^{3},\left(\overline{\boldsymbol{P}}_{\star}^{\prime}\right)^{T} \overline{\boldsymbol{P}}_{\star}^{\prime}=\boldsymbol{I}_{2}$, and $\overline{\boldsymbol{P}}_{\star}^{\prime}\left(\overline{\boldsymbol{P}}_{\star}^{\prime}\right)^{T}=\overline{\boldsymbol{P}}^{\prime}:=\boldsymbol{I}_{3}-\overline{\boldsymbol{\nu}}^{\prime} \otimes \overline{\boldsymbol{\nu}}^{\prime}$, where $\overline{\boldsymbol{\nu}}^{\prime} \equiv \mathbf{a}_{3}$ is the unit normal of $T^{1^{\prime}}$.

All results derived in the rotated coordinates can be mapped back to the original coordinates. For example, let $\overline{\boldsymbol{P}}_{\star}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}\right]$, where $\mathbf{b}_{1}, \mathbf{b}_{2}$ are any two orthogonal unit vectors in \mathbb{R}^{3} pointing in the plane of T^{1}, and note that $\overline{\boldsymbol{P}}_{\star}^{T} \overline{\boldsymbol{P}}_{\star}=\boldsymbol{I}_{2}$, and $\overline{\boldsymbol{P}}_{\star} \overline{\boldsymbol{P}}_{\star}^{T}=\overline{\boldsymbol{P}}:=\boldsymbol{I}_{3}-\overline{\boldsymbol{\nu}} \otimes \overline{\boldsymbol{\nu}}\left(\right.$ see (SM2.1)), where $\overline{\boldsymbol{\nu}}=\mathbf{b}_{1} \times \mathbf{b}_{2}$ is the unit normal of T^{1}. Then, $\boldsymbol{J}=\left(\nabla_{T^{1}} \boldsymbol{F}_{T}^{l}\right) \overline{\boldsymbol{P}}_{\star}, \boldsymbol{g}=\boldsymbol{J}^{T} \boldsymbol{J}$, and by (3.2),

$$
\left|\boldsymbol{J}-\overline{\boldsymbol{P}}_{\star}\right|=O(h), \quad \boldsymbol{g}=\overline{\boldsymbol{P}}_{\star}^{T} \overline{\boldsymbol{P}}^{T} \overline{\boldsymbol{P}} \overline{\boldsymbol{P}}_{\star}+O(h)=\boldsymbol{I}_{2}+O(h),
$$

so \boldsymbol{g} is invertible for h sufficiently small. Note that, in terms of \boldsymbol{F}_{T}^{l}, the surface gradient (SM2.2) of $f: T^{l} \rightarrow \mathbb{R}$ can be written as $\left(\nabla_{T^{l}} f\right) \circ \boldsymbol{F}_{T}^{l}=\left(\nabla_{T^{1}} \bar{f}\right) \overline{\boldsymbol{P}}_{\star} \boldsymbol{g}^{-1} \boldsymbol{J}^{T}$, where $\bar{f}:=f \circ \boldsymbol{F}_{T}^{l}$.

REFERENCES

[SM1] P. G. CiARlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, 1st ed., 2013.
[SM2] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Upper Saddle River, New Jersey, 1976.
[SM3] M. P. Do Carmo, Riemannian Geometry, Mathematics: Theory and Applications, Birkhäuser, Boston, 2nd (english) ed., 1992.
[SM4] E. Hebey, Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, 1996, https://doi.org/10.1007/BFb0092907.
[SM5] E. Kreyszig, Differential Geometry, Dover, 1991.
[SM6] S. W. Walker, The Shapes of Things: A Practical Guide to Differential Geometry and the Shape Derivative, vol. 28 of Advances in Design and Control, SIAM, 1st ed., 2015.
[SM7] S. W. Walker, The Kirchhoff plate equation on surfaces: The surface Hellan-HerrmannJohnson method, IMA Journal of Numerical Analysis, 42 (2021), pp. 3094-3134, https://doi. org/10.1093/imanum/drab062, https://arxiv.org/abs/https://academic.oup.com/imajna/ article-pdf/42/4/3094/46323774/drab062.pdf.

[^0]: *Supplementary material for SISC MS\#M153196.
 https://doi.org/10.1137/22M1531968
 ${ }^{\dagger}$ Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803 USA (walker@ math.lsu.edu).

