SUPPLEMENTARY MATERIALS: APPROXIMATING THE SHAPE OPERATOR WITH THE SURFACE HELLAN-HERRMANN-JOHNSON ELEMENT*

SHAWN W. WALKER[†]

SM1. Intrinsic Differential Geometry. We review various concepts from differential geometry; see [SM5, SM3, SM2, SM1, SM4], as well as [SM7, Appendix].

Consider a *d*-dimensional Riemannian manifold $(\Gamma, g_{\mathfrak{ab}})$, where $g_{\mathfrak{ab}}$ is the given metric tensor (discussed below) defined over a (reference) domain $U \subset \mathbb{R}^d$. A point in *U* is denoted by $(u^1, u^2, ..., u^d)$; in the special case of d = 2 that we are mainly concerned with, we may use $(u, v) \in U$. We refer to variables defined on *U* as *intrinsic* quantities. We keep track of upper and lower indices, where a lower index (subscript) is for *covariant* terms, and an upper index (superscript) is for *contravariant* terms.

The given metric $g_{\mathfrak{a}\mathfrak{b}}$ is a symmetric, covariant tensor with component functions $g_{\alpha\beta}: U \to \mathbb{R}$, for $1 \leq \alpha, \beta \leq d$, which we assume are at least C^1 , and is uniformly positive definite. We write $g := \det g_{\mathfrak{a}\mathfrak{b}}$ and the inverse metric tensor $g^{\mathfrak{a}\mathfrak{b}}$ is contravariant with components denoted $g^{\alpha\beta}$, where $g_{\alpha\gamma}g^{\gamma\beta} = \delta^{\beta}_{\alpha}$. Note that $v^{\mathfrak{a}}$ may be converted to $v_{\mathfrak{b}}$ via $v_{\beta} = g_{\beta\alpha}v^{\alpha}$; similarly, $w_{\mathfrak{b}}$ may be converted to $w^{\mathfrak{a}}$ by $w^{\alpha} = g^{\alpha\beta}w_{\beta}$. When convenient, we write $g_{\mathfrak{a}\mathfrak{b}} \equiv g = [g_{\alpha\beta}]^2_{\alpha,\beta=1}$ and $g^{\mathfrak{a}\mathfrak{b}} \equiv g^{-1} = [g^{\alpha\beta}]^2_{\alpha,\beta=1}$ in standard matrix notation for the metric and inverse metric, respectively.

The Christoffel symbols Γ_{ij}^k (of the second kind) are defined by

(SM1.1)
$$\Gamma^{\gamma}_{\alpha\beta} := \frac{1}{2} g^{\mu\gamma} \left(\partial_{\alpha} g_{\beta\mu} + \partial_{\beta} g_{\mu\alpha} - \partial_{\mu} g_{\alpha\beta} \right), \quad 1 \le \alpha, \beta, \gamma \le 2,$$

where $\Gamma^{\gamma}_{\alpha\beta} = \Gamma^{\gamma}_{\beta\alpha}$, [SM3, SM2]. With this, we recall the definition of covariant (contravariant) derivatives, denoted ∇_{α} (∇^{α}), where f is a scalar, $v_{\mathfrak{b}}$ is a covariant vector, and $v^{\mathfrak{c}}$ is a contravariant vector:

(SM1.2)
$$\begin{aligned} \nabla_{\alpha}f &= \partial_{\alpha}f, \quad \nabla_{\alpha}\nabla_{\beta}f = \partial_{\alpha}\partial_{\beta}f - (\partial_{\gamma}f)\Gamma^{\gamma}_{\alpha\beta}, \\ \nabla_{\alpha}v_{\beta} &= \partial_{\alpha}v_{\beta} - v_{\gamma}\Gamma^{\gamma}_{\beta\alpha}, \quad \nabla_{\alpha}v^{\gamma} = \partial_{\alpha}v^{\gamma} + v^{\beta}\Gamma^{\gamma}_{\beta\alpha}. \end{aligned}$$

SM2. Extrinsic Differential Geometry. Suppose that the manifold Γ is embedded in \mathbb{R}^n , with $n \geq d$, and that it is represented by a family of charts $\{(U_i, \chi_i)\}$, where a single chart consists of a pair (U, χ) , with $U \subset \mathbb{R}^d$ (reference domain) and $\chi : U \to \mathbb{R}^n$, [SM3]. For simplicity of exposition, assume there is only one chart (U, χ) , where $\Gamma = \chi(U)$. We refer to variables in \mathbb{R}^n as *extrinsic* quantities.

For example, $\boldsymbol{\chi} = (\chi^1, ..., \chi^n)^T \in \mathbb{R}^n$, and $\chi^i : U \to \mathbb{R}$ for each $i \in \{1, 2, ..., n\}$. A point $\mathbf{x} \in \mathbb{R}^n$ has its *j*-th coordinate denoted by x^j . Moreover, ∂_k is the partial derivative with respect to coordinate x^k . Repeated indices are summed over. We typically bold-face extrinsic vectors and tensors, e.g. let \boldsymbol{w} be a 2-tensor in \mathbb{R}^n with components w_{ij} for $i, j \in \{1, 2, ..., n\}$. The canonical (orthonormal) basis in \mathbb{R}^n , is denoted by $\{\mathbf{a}_k\}_{k=1}^n$, where $\mathbf{a}_1 = (1, 0, ..., 0)^T$ (column vector), etc. With the Kronecker delta δ_j^i , we have the dual basis $\{\mathbf{a}^k\}$ of $\{\mathbf{a}_k\}$ by the formula $\mathbf{a}_i \cdot \mathbf{a}^j = \delta_j^i$.

^{*}Supplementary material for SISC MS#M153196.

https://doi.org/10.1137/22M1531968

 $^{^\}dagger Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803 USA (walker@math.lsu.edu).$

We now specialize to the case of a surface in \mathbb{R}^3 , i.e. d = 2, n = 3. The tangent space $T_{\mathbf{x}}(\Gamma)$, at a point $\mathbf{x} \in \Gamma$, is a subspace of \mathbb{R}^3 spanned by $\{\mathbf{e}_1, \mathbf{e}_2\}$ (the covariant basis) where

$$\mathbf{e}_{\alpha} = \partial_{\alpha} \boldsymbol{\chi}(u^1, u^2), \quad 1 \le \alpha \le 2, \quad \text{where } (u^1, u^2) = \boldsymbol{\chi}^{-1}(\mathbf{x}).$$

In this case, the metric tensor $g_{\mathfrak{a}\mathfrak{b}}$ is given by $g_{\alpha\beta} = \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}$, for $1 \leq \alpha, \beta \leq 2$. The contravariant tangent basis is given by $\{\mathbf{e}^1, \mathbf{e}^2\}$, where $\mathbf{e}^{\beta} = \mathbf{e}_{\alpha}g^{\alpha\beta} = (\partial_{\alpha}\boldsymbol{\chi})g^{\alpha\beta}$, [SM1]. Sometimes, we express $g_{\mathfrak{a}\mathfrak{b}} \equiv \boldsymbol{g} = \boldsymbol{J}^T \boldsymbol{J}$, where $\boldsymbol{J} = [\mathbf{e}_1, \mathbf{e}_2]$ is an 3×2 matrix.

An alternative view of the tangent space is the following. Let $\boldsymbol{\nu} : \Gamma \to \mathbb{R}^3$ be the surface unit normal vector of Γ , which satisfies $\boldsymbol{\nu} = \mathbf{e}_1 \times \mathbf{e}_2$. The tangent space projection $\boldsymbol{P} : \mathbb{R}^3 \to \mathbb{R}^3$, defined on Γ , is given by

(SM2.1)
$$\boldsymbol{P} = \boldsymbol{I} - \boldsymbol{\nu} \otimes \boldsymbol{\nu} = \mathbf{e}_1 \otimes \mathbf{e}_1 + \mathbf{e}_2 \otimes \mathbf{e}_2,$$

and note that (in local coordinates) $Jg^{-1}J^T = P \circ \chi$, [SM6]. Thus, given a vector $\mathbf{v} \in \mathbb{R}^3$, it is in the tangent space $T_{\mathbf{x}}(\Gamma)$ if there exists a (contravariant) vector $v^{\mathfrak{a}}$ such that $\mathbf{v}(\mathbf{x}) = v^{\alpha} \mathbf{e}_{\alpha} \circ \chi^{-1}(\mathbf{x})$.

We define the tangent bundle:

$$T(\Gamma) = \{ (\mathbf{x}, \mathbf{v}) \mid \mathbf{x} \in \Gamma, \mathbf{v}(\mathbf{x}) \in T_{\mathbf{x}}(\Gamma) \},\$$

thus, we say $\mathbf{v} \in T(\Gamma)$ if $\mathbf{v}(\mathbf{x}) \in T_{\mathbf{x}}(\Gamma)$ for every $\mathbf{x} \in \Gamma$; in this case, we write $\mathbf{v} : \Gamma \to T(\Gamma)$. We introduce extrinsic differential operators via their intrinsic counterpart, starting with the surface gradient $\nabla_{\Gamma} f : \Gamma \to T(\Gamma)$ defined in local coordinates by

(SM2.2)
$$(\nabla_{\Gamma} f) \circ \boldsymbol{\chi} = (\nabla_{\alpha} f) g^{\alpha\beta} \mathbf{e}_{\beta}^{T} = \partial_{\alpha} (f \circ \boldsymbol{\chi}) g^{\alpha\beta} (\partial_{\beta} \boldsymbol{\chi})^{T} \equiv \nabla (f \circ \boldsymbol{\chi}) \boldsymbol{g}^{-1} \boldsymbol{J}^{T},$$

for any differentiable function $f: \Gamma \to \mathbb{R}$. Furthermore, let $\mathrm{id}_{\Gamma}: \Gamma \to \Gamma$ be the identity map, i.e. $\mathrm{id}_{\Gamma} = \chi \circ \chi^{-1}$, or $\mathbf{x} = \mathrm{id}_{\Gamma}(\mathbf{x})$ for all $\mathbf{x} \in \Gamma$. Then, defining

$$\nabla_{\Gamma} \mathrm{id}_{\Gamma} := [\nabla_{\Gamma} \mathrm{id}_{\Gamma}^1; \nabla_{\Gamma} \mathrm{id}_{\Gamma}^2; \nabla_{\Gamma} \mathrm{id}_{\Gamma}^3] \in \mathbb{R}^{3 \times 3},$$

where $\mathrm{id}_{\Gamma} = (\mathrm{id}_{\Gamma}^1, \mathrm{id}_{\Gamma}^2, \mathrm{id}_{\Gamma}^3)$ (i.e. id_{Γ}^k is the *k*th component of id_{Γ}), it holds that $\nabla_{\Gamma}\mathrm{id}_{\Gamma} = \boldsymbol{P}$.

The (extrinsic) surface gradient, and surface divergence, of a tangential vector field $\mathbf{v} \in T(\Gamma)$ is

$$\begin{split} \nabla_{\Gamma} \mathbf{v} \circ \boldsymbol{\chi} &:= \mathbf{e}_{\gamma} g^{\gamma \alpha} (\nabla_{\beta} v_{\alpha}) g^{\beta \mu} \mathbf{e}_{\mu}^{T} = \mathbf{e}_{\gamma} g^{\gamma \alpha} (\partial_{\beta} v_{\alpha} - v_{\omega} \Gamma_{\alpha\beta}^{\omega}) g^{\beta \mu} \mathbf{e}_{\mu}^{T} \\ (\nabla_{\Gamma} \cdot \mathbf{v}) \circ \boldsymbol{\chi} &:= \operatorname{tr} (\nabla_{\Gamma} \mathbf{v} \circ \boldsymbol{\chi}) = g^{\gamma \alpha} (\nabla_{\beta} v_{\alpha}) g^{\beta \mu} \mathbf{e}_{\mu} \cdot \mathbf{e}_{\gamma} \\ &= \nabla_{\beta} (g^{\gamma \alpha} v_{\alpha}) g^{\beta \mu} g_{\mu\gamma} = \delta_{\gamma}^{\beta} (\nabla_{\beta} v^{\gamma}) = \nabla_{\gamma} v^{\gamma}. \end{split}$$

The (extrinsic) surface Hessian of f is given by

(SM2.3)
$$(\nabla_{\Gamma}\nabla_{\Gamma}f) \circ \boldsymbol{\chi} := \mathbf{e}_{\mu}g^{\mu\alpha}[\nabla_{\alpha}\nabla_{\beta}f]g^{\beta\rho}\mathbf{e}_{\rho}^{T}$$
$$= \mathbf{e}_{\mu}g^{\mu\alpha}[\partial_{\alpha}\partial_{\beta}(f\circ\boldsymbol{\chi}) - \partial_{\gamma}(f\circ\boldsymbol{\chi})\Gamma_{\alpha\beta}^{\gamma}]g^{\beta\rho}\mathbf{e}_{\rho}^{T}.$$

Lastly, setting $\nabla_{\Gamma} \boldsymbol{\nu} := [\nabla_{\Gamma} \nu_1; \nabla_{\Gamma} \nu_2; \nabla_{\Gamma} \nu_3]$, it can be shown that [SM6]:

(SM2.4)
$$\nabla_{\Gamma} \boldsymbol{\nu} = \kappa_1 \boldsymbol{d}_1 \otimes \boldsymbol{d}_1 + \kappa_2 \boldsymbol{d}_2 \otimes \boldsymbol{d}_2,$$

where κ_1 , κ_2 are the principle curvatures of Γ and d_1 , d_2 are the principle directions (which are tangent to Γ). Thus, $\nabla_{\Gamma} \boldsymbol{\nu}$ is the (extrinsic) shape operator. **SM3.** Parametrization Via Curved Element Map. Recall $\mathbf{F}_T^l: T^1 \to T^l$ from subsection 3.1. It is useful to consider this map as a parametrization of T^l in the following sense. Apply a rigid rotation of coordinates \mathbf{x} to \mathbf{x}' so that $T^s \to T^{s'}$ (for any s) and $T^{1'} \subset \mathbb{R}^2$. In the rotated coordinates, we view $\mathbf{F}_T^{l'}$ as a function of two variables, so that $(T^{1'}, \mathbf{F}_T^{l'})$ is a local chart for $T^{l'}$. Next, let $\mathbf{J}' = [\partial_1 \mathbf{F}_T^{l'}, \partial_2 \mathbf{F}_T^{l'}]$ be the 3×2 Jacobian matrix with induced metric $\mathbf{g}' = (\mathbf{J}')^T \mathbf{J}'$. In addition, define the 3×2 matrix $\bar{\mathbf{P}}_{\star}' = [\mathbf{a}_1, \mathbf{a}_2]$, where $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ are the canonical basis vectors of \mathbb{R}^3 , $(\bar{\mathbf{P}}_{\star}')^T \bar{\mathbf{P}}_{\star}' = \mathbf{I}_2$, and $\bar{\mathbf{P}}_{\star}'(\bar{\mathbf{P}}_{\star}')^T = \bar{\mathbf{P}}' := \mathbf{I}_3 - \bar{\nu}' \otimes \bar{\nu}'$, where $\bar{\nu}' \equiv \mathbf{a}_3$ is the unit normal of $T^{1'}$.

All results derived in the rotated coordinates can be mapped back to the original coordinates. For example, let $\bar{\boldsymbol{P}}_{\star} = [\mathbf{b}_1, \mathbf{b}_2]$, where \mathbf{b}_1 , \mathbf{b}_2 are any two orthogonal unit vectors in \mathbb{R}^3 pointing in the plane of T^1 , and note that $\bar{\boldsymbol{P}}_{\star}^T \bar{\boldsymbol{P}}_{\star} = \boldsymbol{I}_2$, and $\bar{\boldsymbol{P}}_{\star} \bar{\boldsymbol{P}}_{\star}^T = \bar{\boldsymbol{P}} := \boldsymbol{I}_3 - \bar{\boldsymbol{\nu}} \otimes \bar{\boldsymbol{\nu}}$ (see (SM2.1)), where $\bar{\boldsymbol{\nu}} = \mathbf{b}_1 \times \mathbf{b}_2$ is the unit normal of T^1 . Then, $\boldsymbol{J} = (\nabla_{T^1} \boldsymbol{F}_T^l) \bar{\boldsymbol{P}}_{\star}, \boldsymbol{g} = \boldsymbol{J}^T \boldsymbol{J}$, and by (3.2),

$$\boldsymbol{J} - \bar{\boldsymbol{P}}_{\star}| = O(h), \quad \boldsymbol{g} = \bar{\boldsymbol{P}}_{\star}^{T} \bar{\boldsymbol{P}}^{T} \bar{\boldsymbol{P}} \bar{\boldsymbol{P}}_{\star} + O(h) = \boldsymbol{I}_{2} + O(h),$$

so \boldsymbol{g} is invertible for h sufficiently small. Note that, in terms of \boldsymbol{F}_T^l , the surface gradient (SM2.2) of $f: T^l \to \mathbb{R}$ can be written as $(\nabla_{T^l} f) \circ \boldsymbol{F}_T^l = (\nabla_{T^1} \bar{f}) \bar{\boldsymbol{P}}_{\star} \boldsymbol{g}^{-1} \boldsymbol{J}^T$, where $\bar{f} := f \circ \boldsymbol{F}_T^l$.

REFERENCES

- [SM1] P. G. CIARLET, Linear and Nonlinear Functional Analysis with Applications, SIAM, 1st ed., 2013.
- [SM2] M. P. DO CARMO, Differential Geometry of Curves and Surfaces, Prentice Hall, Upper Saddle River, New Jersey, 1976.
- [SM3] M. P. DO CARMO, Riemannian Geometry, Mathematics: Theory and Applications, Birkhäuser, Boston, 2nd (english) ed., 1992.
- [SM4] E. HEBEY, Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, 1996, https://doi.org/10.1007/BFb0092907.
- [SM5] E. KREYSZIG, Differential Geometry, Dover, 1991.
- [SM6] S. W. WALKER, The Shapes of Things: A Practical Guide to Differential Geometry and the Shape Derivative, vol. 28 of Advances in Design and Control, SIAM, 1st ed., 2015.
- [SM7] S. W. WALKER, The Kirchhoff plate equation on surfaces: The surface Hellan-Herrmann-Johnson method, IMA Journal of Numerical Analysis, 42 (2021), pp. 3094–3134, https://doi. org/10.1093/imanum/drab062, https://arxiv.org/abs/https://academic.oup.com/imajna/ article-pdf/42/4/3094/46323774/drab062.pdf.