SUPPLEMENTARY MATERIALS: APPROXIMATING THE
SHAPE OPERATOR WITH THE SURFACE
HELLAN-HERRMANN-JOHNSON ELEMENT*

SHAWN W. WALKER'

SM1. Intrinsic Differential Geometry. We review various concepts from dif-
ferential geometry; see [SM5, SM3, SM2, SM1, SM4], as well as [SM7, Appendix].

Consider a d-dimensional Riemannian manifold (T, g4p), where gqp is the given
metric tensor (discussed below) defined over a (reference) domain U C R?. A point
in U is denoted by (u',u?,...,u?); in the special case of d = 2 that we are mainly
concerned with, we may use (u,v) € U. We refer to variables defined on U as intrinsic
quantities. We keep track of upper and lower indices, where a lower index (subscript)
is for covariant terms, and an upper index (superscript) is for contravariant terms.

The given metric gqp is a symmetric, covariant tensor with component functions
gap : U = R, for 1 < a, 8 < d, which we assume are at least C!, and is uniformly pos-
itive definite. We write g := det gqp and the inverse metric tensor ¢%° is contravariant
with components denoted ¢*”, where gaA,QWB = §8. Note that v® may be converted
to vp via vg = ggav®; similarly, w, may be converted to w® by w® = g*’wgz. When
convenient, we write gap = g = [gapls, s—; and ¢ =g = [go‘ﬁ]iﬁ:1 in standard
matrix notation for the metric and inverse metric, respectively.

The Christoffel symbols Ffj (of the second kind) are defined by
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where '), = T'3,, [SM3, SM2]. With this, we recall the definition of covariant
(contravariant) derivatives, denoted V, (V?), where f is a scalar, vy is a covariant

vector, and v° is a contravariant vector:

vaf = 8ozf7 vavﬁf = 8ozaﬁf - (87f)rzlﬁ7

(SM1.2)
Vavg = dqvg — vvFga, VT = 0,0 + U'BFZQ.

SM2. Extrinsic Differential Geometry. Suppose that the manifold I' is em-
bedded in R™, with n > d, and that it is represented by a family of charts {(U;, xi)},
where a single chart consists of a pair (U, x), with U C R? (reference domain) and
x : U — R™, [SM3]. For simplicity of exposition, assume there is only one chart
(U, x), where T' = x(U). We refer to variables in R™ as extrinsic quantities.

For example, x = (x},...,x")T € R", and x* : U — R for each i € {1,2,...,n}.
A point x € R” has its j-th coordinate denoted by x/. Moreover, Jj, is the partial
derivative with respect to coordinate z*. Repeated indices are summed over. We
typically bold-face extrinsic vectors and tensors, e.g. let w be a 2-tensor in R™ with
components w;; for 4,5 € {1,2,...,n}. The canonical (orthonormal) basis in R",
is denoted by {ax}?_,, where a; = (1,0,...,0)7 (column vector), etc. With the
Kronecker delta 67, we have the dual basis {a*} of {a)} by the formula a; - a/ = §7.
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We now specialize to the case of a surface in R?, i.e. d =2, n = 3. The tangent
space Ty (I'), at a point x € I, is a subspace of R? spanned by {e;, e>} (the covariant
basis) where

eq = Oux(ut,u?), 1<a<2, where (ul,u2) = X_l(x).

In this case, the metric tensor gqp is given by gop = €, - €3, for 1 < o, 8 < 2. The
contravariant tangent basis is given by {e!,e?}, where €’ = e, g’ = (J.x)9*",
[SM1]. Sometimes, we express gop = g = J* J, where J = [e1, €3] is an 3 x 2 matrix.

An alternative view of the tangent space is the following. Let v : I' — R? be
the surface unit normal vector of I', which satisfies v = e; x e5. The tangent space
projection P : R? — R3, defined on T, is given by

(SM2.1) P=I-vr=e,Re +e ey,

and note that (in local coordinates) Jg=*JT = P o x, [SM6]. Thus, given a vector
v € R3, it is in the tangent space Ty (T) if there exists a (contravariant) vector v®
such that v(x) = v%e, o x ().

We define the tangent bundle:

() ={(x,v) [ x € I, v(x) € Ti(I)},

thus, we say v € T(T') if v(x) € Tx(T") for every x € T'; in this case, we write v : T' —
T(T'). We introduce extrinsic differential operators via their intrinsic counterpart,
starting with the surface gradient Vpf : I' — T(I') defined in local coordinates by

(SM22)  (Vrf)ox = (Vaf)g*’el = 0a(f o x)g*’ (0sx)" =V (fox)g ' J7,

for any differentiable function f : I' — R. Furthermore, let idp : I' — I" be the identity
map, i.e. idr = x o x 7!, or x = idp(x) for all x € I'. Then, defining

Vridr = [Vridy; Viids; Viidy] € R3*3,
where idr = (idp,idf,id}) (i.e. idf is the kth component of idr), it holds that
Vridp = P.

The (extrinsic) surface gradient, and surface divergence, of a tangential vector
field v € T(T') is

Vrvo x i=eyg"*(Vava)g™'el = e g7 (9pva — vuTiug)g™ ey,
(Vr-v)ox :=tr(Vrvox) = ¢g"*(Vgva)g™'e, - e,
= V@(nga)gﬁ”gw = 65(Vﬂ1ﬂ) =V,
The (extrinsic) surface Hessian of f is given by
(VrVrf)ox = e.g"*[VaVsflg™el
=€,9""[0a05(f o x) — 0y(f o X)Flﬂ]gﬁpef-

Lastly, setting Vrv := [Vrug; Vrve; Vs, it can be shown that [SM6]:

(SM2.3)

(SM2.4) Vv = ki1d; ® di + kads ® da,

where k1, ko are the principle curvatures of I and dy, do are the principle directions
(which are tangent to I'). Thus, Vv is the (extrinsic) shape operator.
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SM3. Parametrization Via Curved Element Map. Recall F:lp T = T
from subsection 3.1. It is useful to consider this map as a parametrization of T' in
the following sense. Apply a rigid rotation of coordinates x to x’ so that 7% — T’
(for any s) and 7' c R2. In the rotated coordinates, we view F}/ as a function of
two variables, so that (T F:lp/) is a local chart for T, Next, let J' = [61F:f«/, 82F:lpl]
be the 3 x 2 Jacobian matrix with induced metric g’ = (J’)TJ’. In addition, define
the 3 x 2 matrix P,” = [a1, a0, where {a;,as,a3} are the canonical basis vectors of
R3, (P)TP, = I, and P,'(P,)\T = P’ .= I, — ¥/ ® ', where &/ = aj is the unit
normal of T

All results derived in the rotated coordinates can be mapped back to the original
coordinates. For example, let P, = [by,by], where by, by are any two orthogonal

unit vectors in R?® pointing in the plane of T!, and note that 15*T15* = I,, and
PP =P =I-v ® U (see (SM2.1)), where o = by x by is the unit normal of
T!. Then, J = (V1 FL)P,, g = JTJ, and by (3.2),

\J—P,|=0(h), g=P. PTPP,+0(h) =1I,+0(h),

so g is invertible for h sufficiently small. Note that, in terms of Fql«,_thfz surface
gradient (SM2.2) of f : T" — R can be written as (Vg f) o Fl. = (V1 f)Pg=tJ7T,
where f := f o FL.
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