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Abstract. We present a finite element technique for approximating the surface Hessian of a
discrete scalar function on triangulated surfaces embedded in R3, with or without boundary. We
then extend the method to compute approximations of the full shape operator of the underlying sur-
face using only the known discrete surface. The method is based on the Hellan-Herrmann—Johnson
element and does not require any ad hoc modifications. Convergence is established provided the
discrete surface satisfies a Lagrange interpolation property related to the exact surface. The conver-
gence rate, in L2, for the shape operator approximation is O(h™), where m > 1 is the polynomial
degree of the surface, i.e., the method converges even for piecewise linear surface triangulations. For
surfaces with boundary, some additional boundary data is needed to establish optimal convergence,
e.g., boundary information about the surface normal vector or the curvature in the co-normal direc-
tion. Numerical examples are given on nontrivial surfaces that demonstrate our error estimates and
the efficacy of the method.
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1. Introduction. Approximating curvatures from discrete surfaces has a long
history in computer graphics and computational geometry, e.g., in computer-aided
geometric modeling [45, 42, 46], feature detection/extraction [25, 6], surface fairing
and mesh smoothing [14, 36, 32, 31], and reparameterizing surfaces for texturing
and remeshing [46, 23]. Often, one needs estimates of normal vectors and curvature
information at mesh vertices, which has spawned many discrete schemes based on local
(weighted) averages, e.g., the well-known co-tangent formula for the mean curvature
vector [30, 20] and discrete Laplace-Beltrami operators [9, 16, 15], as well as schemes
to approximate the Gaussian curvature of discrete surfaces using local formulas [43].

The convergence of these schemes, for sequences of refined meshes converging
to the underlying (smooth) surface, is well-studied. Indeed, it is known that any
numerical scheme that uses the 1-ring neighborhood of a vertex to compute curvature
does not converge for general, piecewise linear meshes [20, 44]. For special meshes, one
can construct schemes that do converge (see [43, 7]). Other approaches include surface
fitting techniques [35, 18, 20, 34, 21] that construct polynomial surface “patches” over
the triangulation, which can be directly differentiated to yield accurate curvature
information. However, computing with patches is not trivial, involves complicated
procedures, and depends on the mesh quality (see [19] for unstructured simplex splines
on flat domains).

Other approaches utilize finite element techniques. For instance, using a higher
order approximation of the surface, e.g., a piecewise quadratic triangulation, yields a
convergent approximation of the curvature [24]. In fact, one can just directly compute
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the shape operator of the surface on each (curved) triangle in the mesh. See also [22]
for higher order approximation of Gaussian curvature with Regge elements. But in
many applications, only piecewise linear surface triangulations are available.

This paper presents a novel technique that utilizes the surface Hellan-Herrmann—
Johnson (HHJ) method, originally developed for the surface Kirchhoff plate equation
in [40], as a postprocessing scheme to approximate the surface Hessian of a scalar
function. Furthermore, we show that this scheme can be used to approximate the
full shape operator of the surface, which is our main goal. For closed, piecewise linear
surface triangulations, whose vertices lie on the true surface, the method yields an
approximation that is provably first-order accurate in the L? norm, i.e., O(h), where
h is the maximum diameter of mesh elements. For surfaces with boundary, some
additional information is needed at the boundary; otherwise the accuracy degrades
to O(h'/?) near the boundary. The method essentially consists of a matrix-vector
product that computes a nonconforming surface Hessian of the mesh coordinates,
followed by an L2-like projection to an HHJ element. Heuristically, the method uses
information over neighboring mesh elements (through jumps in the tangent space)
to obtain an approximation of the curvature. The method also generalizes to higher
order triangulations, with O(h™) accuracy, where m is the polynomial degree of the
triangulation, as long as a moment based, Lagrange interpolation of the surface is
used (see (4.2) and (4.14)). To the best of our knowledge, no other finite element
method can do this. Moreover, the lowest order version of the method is simple
to implement. Given an approximation of the shape operator, it is then trivial to
compute the principle curvatures and principle directions of the surface.

Section 2 gives the basic background for working on surfaces. In section 3, we de-
scribe a nonconforming formulation for approximating the surface Hessian of a scalar
function by an L? like projection and discuss the tools for dealing with curved, para-
metric surface approximations. In particular, Theorem 3.5 is a crucial extension of
[40, Thm. 4.8]. Section 4 gives the finite element scheme for the L? projection of
the surface Hessian and performs the main error analysis that includes the geometric
error of the surface approximation. Next, we describe our scheme for approximat-
ing the shape operator of the exact surface in section 5, which utilizes an important
identity in Proposition 5.1, and discuss the details of its practical computation. Sec-
tion 6 presents several numerical results illustrating the method on surfaces with and
without boundary. We close with some remarks in section 7. The supplementary ma-
terial (123872_1_supp-541500_s1¢356_sc.pdf [local/web 230KB]) provides an overview
of essential differential geometry concepts.

2. A surface FEM for the surface Hessian.

2.1. Surface definitions. Let I' be a CP connected, two-dimensional manifold
embedded in R3, where p > 2. If I" has a boundary OI' := 3, we assume X is piecewise
CP with a finite number of corners, with interior angle «; € (0,27] of the ith corner
measured with respect to the Euclidean metric in R?® (see Figure 1). In particular,
> is globally continuous and parameterized by a piecewise curve. In addition, we
assume ¥ = X, U X partitions into two mutually disjoint, one-dimensional open sets
Y. (clamped) and Xy (simply supported); either set can be empty.

We note some facts from section SM2. Let idp : I' — I" be the identity map, i.e.,
x = idp(x) for all x € T, and let v : ' — R3 be the (locally defined) unit normal
vector of I'. The tangent space projection P : R? — R3, defined on T, is given by
P=I—-v®uv (see (SM2.1)) and satisfies the identity Vridr = P (see subsection 2.2
for Vr). Given a vector v € R3, it is in the tangent space Ty (T') if P(x)v =0. We
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F1G. 1. Illustration of curved surface I' in R® with mesh. The boundary ¥.= 0T decomposes as
¥ =3%.UXs and has a finite number of corners with interior angles ;. The boundary ¥ has (outer)
conormal vector, n, and oriented unit tangent vector, t. The normal vector of T is v. Part of the
exact, curved surface triangulation T, is shown with dotted curves.

define the tangent bundle: T(T") = {(x,v) |[x €T, v(x) € Tx(I")}. So, we say v € T(T")
if v(x) € Tx(T") for every x € T'; in this case, we write v:T' — T(T").

Next, let R3*3 be the space of (extrinsic) 2-tensors in three dimensions, and define
the subset of tensors on the tangent bundle of T,

(2.1) T=T):={p:T=R¥>3 | Pp=¢p, Pp" =¢’},
and define the set of symmetric tensors on the tangent bundle of I':

(2.2) S=S(I):={p e T(I) | =¢"}.

2.2. Differential operators on surfaces. Let v:T'— R be a smooth function
defined on I'. We call Vrv = gradpv : T' — T(T') the surface gradient of v (see
(SM2.2)) and VrVipw = hesspw : I' = S(T") the surface Hessian of v (see (SM2.3)).
Moreover, we have the function space L2(T) := {v : ' = R | [, |v[*dS < oo}, with
inner product (w,v) 2y = JrwvdS and norm Hv||%2(r) = (v,v) p2(r), as well as the
Sobolev (Hilbert) spaces H'(T) := {v € L*() | |[Vrv| 12ry < oo} and H?*(T') :={v €
HY(D) | [[Vr Vol 2ry < oo}, with inner products given by

(W, 0) iy = / wv + Vrw - Vrvds,
(2.3) r
(w,v)HQ(F) = (w,v)Hl(F) + /F VrVrw: VrVrods,

and corresponding norms Hv||%11(r) = (v,9) () ||v||§12(r) = (v,v) ga()- Other types
of Sobolev spaces are defined in an analogous way.

We denote by HY(I') € HY(T') the Sobolev space with vanishing boundary condi-
tions up to degree £ — 1. We will need the subspace of H?(T),

(2.4) W) :={we H*T)|w=0, on &, n-Vrw=0, on X} if ¥ £,
and W(T') = H%(T') when ¥ = (). In addition, we have V(T') := L*(T';S(T)).

2.3. Projection of the surface Hessian. Given w € W, we define o € V such
that

(25) (0-7T)L2(F) = (VFVFM,T)LQ(F) v TEV,
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i.e., o is the L? projection of VrVrw, which means ¢ = VrVrw a.e. in I. The
presence of vanishing boundary conditions in W is not critical; one can pose (2.5) for
any w € H?(T'). However, the method we develop handles the slope condition in (2.4)
as a natural condition, so we keep (2.5) as stated. In subsection 3.4, we show how to
handle inhomogeneous boundary conditions.

3. Nonconforming formulation of the surface Hessian. Major difficulties
arise in solving (2.5) if the surface is only continuous, piecewise smooth, as well as
when the data w is only a discrete, finite element function. In order to circumvent
these difficulties, and obtain a convergent approximation of the surface Hessian of a
discrete function w posed on a discrete surface, we adopt a nonconforming approach
that is first built on a mesh-dependent version of H?(I'). This then leads to the
surface version of the HHJ element (see [40]), which is used to approximate the o
variable in (2.5). See also [10, 5, 4, 8, 3] for analysis of the classic HHJ element. The
initial idea is to triangulate I and define infinite dimensional, mesh-dependent spaces
on that triangulation.

3.1. Curved triangulations. We start with a conforming, shape regular, piece-
wise linear triangulation 7'h1 ={T"'} of a polyhedral domain I'! that interpolates I" at
the vertices; furthermore, the boundary vertices of I'! (namely %!) lie on the bound-
ary of T'. See [13, 12, 17, 15, 40] for more discussion on how this triangulation can be
generated. Let Ty, be the set of triangles with one side on ¥* and, for convenience,
assume the triangulation satisfies the following technical property (see [40]).

PRrROPERTY 1. FEach triangle in 7;3 has at most two vertices on the boundary and
s0 has at most one edge contained in L',

We assume 7, is homeomorphic to an exact triangulation 7, = {T} of I". Specif-
ically, we assume there exists a homeomorphic mapping F : I'' — T such that
Fr = F|7: is a diffeomorphism from 7' € 7;! to an exact (curved) triangle T € T,.
The map F' can be defined using a parametrization of the surface or through the
closest point projection (see [15, 17] for more details). Moreover, as h — 0, we
assume the discrete normal v, of I'' converges to the exact normal v of T, i.e.,
|vpoF~t — V| pee(ry = O(h); cf. 26, sect. 36, 37, pp. 111-117].

We generate higher order approximations I'™* of I" by simply interpolating F' over
I'' with degree m Lagrange polynomials, i.e., we have the map F™ :T'' — I'"™ given
by F™ = I}L’"”F, where I,i’m is the Lagrange interpolation operator of degree m
given in subsection 4.1, or the standard nodal interpolant can be used. Note that
F%ﬂ = idr1. We emphasize that F' is only needed for theoretical reasons, such as in
the error analysis (see (4.14)). For instance, the numerical schemes in (4.9) and (5.11)
can be applied on any given degree m surface I'".

We also have maps between approximate domains of degrees [ and m by

(3.1) &' =@ T 5 T™, where ®Y = F' o (FL) 7L, so &4 = FI.

We also require a map from the approximate domain I'"* to the exact domain I'.
Specifically, given a triangle T € T;™, we define a diffeomorphism W7 : T — T € T,
by W7 := Fpo (F7)~", so then T, = {®F(T™)}rmerm. The WF may be pieced
together to give a global map ¥™ : I'™ — I'. In addition, it is assumed that the
discrete normal of I'"™ converges with order m, i.e., [[v, 0 (¥™) ™! —v| poo(ry = O(A™)
(provided T is at least C™+1).

The notation I' and I'™ is inconvenient because the exact domain has no su-
perscript, but the polynomial approximation does. Thus, for convenience in later
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statements, we will abuse notation and make the identification I'* = T', 7, =7, ,
&> =y T = Wl ete. This is motivated by the fact that for most C* surfaces T',
the polynomial approximate domain I'™, with triangulation 7;™, would converge to
I as m — oo with A fized. Of course, we do not claim (in general) that I'™ converges
I, for fixed h, as m — oo, especially when I' is not C*°.

Thus, 7;" is a conforming, shape regular triangulation that approximates I' by
rm.= UTmeThmTim for all m > 1 (where G is the closure of the set G). Next, we
have the skeleton of the mesh, i.c., the set of (curved) mesh edges & := 07;". Let
Exy C &L denote the subset of edges that are contained in the boundary X™ = oI'™
and respect the boundary partition of ¥™. The internal edges are given by &£, :=
gn \Sg?h. We assume the meshes are quasi-uniform and shape regular [11], with mesh
size h:=maxyp hr, where hy :=diam(T') for any T € 7,. We also assume the corners
of 3 are captured by vertices of the mesh.

The main approximation properties for these maps are summarized in the next
theorem (see [40, Thm. 4.1]).

THEOREM 3.1. Suppose T is a C? surface for some fized p > 2 (see [1, Para. 4.10] ).

Then, for all1<I<m<p-—1, or 1 <I<p—1 and m =00 (see notation above), the
maps F', FY. described above satisfy

||V§—~1 (FlT - idTl)HLm(Tl) < ChQiS fOT’ S 2071727
(3.2) [V (F — Flp) || poo(rry < CRFTI% for 0<s<1+1,
L= Ch< |V Fr) ey <14+ Ch, [V F] ™t = I oo 1) < Ch,

where all constants depend on the C'*' norm of T.

Next, recall the tangent t, co-normal n, and surface normal vectors v from Fig-
ure 1 and let =, *, or - denote quantities defined on T*, or using F7., for s =m, I,
or 1, respectively; e.g., U is the surface normal of T™. Then, the following estimate
holds:

[to F —to Fy| ey + [0 FF —fvo Fip| ooy

(3.3) R, . .
+HVOFT _VOFT”L‘X’(Tl) SCh .

3.2. Skeleton spaces. The spaces in this section are infinite dimensional, but
“mesh dependent” (see [40]), and were originally motivated by [5, p. 1043] and [3,
eq. (2.11)]. In defining the spaces and norms, we only consider the exact triangulation
T, but everything generalizes to the polynomial triangulations 7, in the obvious way.
We make use of standard dG notation for writing inner products and norms over the
triangulation, e.g., (f79)7’h =Y rer (£,9) 1, Hf||’L)p(Th) = ZTeTh ||f||’£p(T), etc.

A mesh-dependent version of H=(T") is given by

(3.4) HE(D):={ve HY(T) |v|r € H*(T) for T €T}
with the following seminorm:
(3.5) vl = ||VFVFU||%2(7;,) +h7[n- VF’U]]”;(SM) +h7H[n- VFUHH%z(EC) )

where [n] is the jump in quantity n across mesh edge F, and n is the unit co-normal
on E € &,. Hence, if the edge £ is shared by two triangles 77 and 75 with outward
co-normals n; and ng, then [n-Vrv] = ny - Vroulp, + ne - Vroulp, on E. For E
a boundary edge, we set [n] = n|g. We note the following norm equivalence when
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mapping between domains '™ and I' [40, eq. (4.9)]. Let u € H?(T'™) and define
@ =wuo®"™¢c HT'). Then, for h > 0 sufficiently small, |[u||25.m ~ |/iil|2,1.1, Where
Il |2,,m is (3.5) defined on IT'"™.

Next, for any ¢ € HY(T';S), define

(36) [l = lllFay + hlIn oo, )+ blInTon] o,

and define H to be the completion: H)(T;S):= H! (F;S)”'HO"L. By the definition of
the norm, H)(I;S) = L*(T;S)® L?(E,;R), i.e., ¢ € HY(I;S) is actually ¢ = (¢, ™),
where ¢’ € L2(I';S) and ¢™ € L?(€,;R), with (in general) no connection between ¢’
and ™. Note that if o € H'(I';S) C H}(T;S), then n”¢'nle = ¢™ (see [5] and
[3]), i.e., the conormal-conormal trace of ¢’ on mesh edges agrees with ¢"".

3.3. Mixed skeleton formulation. We introduce the skeleton subspaces
(3.7) Wi(D) == HXT) N HYT), V(D) :={pc HY(;S)|¢™ =0 on %}

when ¥ # (), and Wy,(T') := HZ(T), Vu(T') := H(I';S) when ¥ = (; W), and V), are
mesh-dependent versions of W and V), respectively.

The nonconforming version of (2.5) is as follows, which is based on [40, eq. (3.10)].
For all ¢ € HP(I';S) and v € HZ(I'), define

(3.8) by (@,v):=— > (p,hessp o)y + Y (@™, [n-Vro])p,
TeT, Eeg,

where [n-Vrv]|g = n- Vv when E C X, and by, (¢,v) satisfies the continuity
estimate: b, (¢,v) < |lllo,nllv]2,n for all ¢ €V, and v € W),. Next, define

(3.9) a(r,¢):=(T,@)p VT,p€Hy(;S).
If weW C W, (T') and we set o := VrVrw, then o and w satisfy
(3.10) a(o,p)+b,(p,w)=0 VeV

Note that the jump terms in (3.8) vanish because w € W and n - Vrw = 0 on X..
Indeed, restricting ¢p = o, then we have

(3.11) ||U||2L?(F) =a(0,0)=-b,(o,w) < ||UHL2(F)||vFvo||L2(F)a

so o is the stable L?(T") projection of VrVrw.

Remark 3.2. We also have Wy, (I'™) := HZ(I'™) N HY(I'™) and V,(I'™) := {p €
HY(I'™;S) | " =0 on X} defined on the curved triangulation I'™, with associated
forms b} (e, v), a™ (T,¢) defined on I'"™ in the obvious way. These will be used
in our fully discrete version of (3.10) (see (4.7)), which will enable our method for
approximating the surface Hessian of a discrete function.

3.4. Inhomogeneous boundary conditions. We extend the above formula-
tion (3.10) to handle nonvanishing boundary conditions, which is necessary for approx-
imating the shape operator on surfaces with boundary. First, assume that w € H?(T")
and there exists a function g € H3(T') such that w =g on ¥ and dpw = Opg on ..
Next, construct a function p € H'(T;S) such that the conormal-conormal moment
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satisfies 0™ :=nTon=mn’pn on X;. Since the second term in (3.8) contains bound-
ary integral portions on Y., where n - Vrw # 0, then o and w satisfy a modified form
of (3.10):

(3.12) a(o,p) +b, (p,w)= (", n-Vrg)y V€V
Moreover, writing o = & + p, with & € V},, we have
(3.13) a(6,¢)=—a(p,p) = b, (p,w) VoV,

where we defined Eh (p,v) = by, (p,v) = (", n-Vrv)y  (ie., it has no boundary
term). Clearly, ||| 22y <llellz2(r) + IV Vrw|| L2 (ry. See subsection 4.4 for the fully
discrete method.

3.5. Mapping properties. In order to analyze the error in our approximation
scheme (4.9), we need a few results on how functions transform between discrete
surfaces I'™ and I'! for m # [, as well as how the forms b7 (,-), a™ (-,-) and b} (-,-),
al (-,-) are related.

3.5.1. The Piola transform. The tangent space on I'™ is elementwise defined
through the mesh 7;". We require a transformation rule that relates functions in
HO(T™;8™) to HY(T'";S") (with m # 1) such that conormal-conormal continuity is
preserved; this is crucial to ensure that the HHJ finite element space in (4.3) is
continuous. We first recall the surface matrix Piola transform from [40, Def. 4.6].

DEFINITION 3.3. Recall the curved element mapping discussion in subsection 3.1.
Let J = (Vi FP)P, € R¥*2 where Vi is the surface gradient on T' € T,
(Ve FP) € R¥3 ) and P, € R3*2 is the projection and restriction onto the tan-
gent space of T'. Given an extrinsic tensor P : 't — S' on the piecewise linear
surface T, we map it (elementwise) to a tensor @ : T™ — S™ for any m, using the
map X = F1(X) and

(3.14) @ (%) = Piola(@)(X) :=det (Q) ' JP,” p(x)P,J",
where Q= JTJ. The inverse Piola transform is given by
(3.15) @(X) = Piola " (p)(%) :=det (Q) P,Q ' I p(x)JQ'P,".

Remark 3.4. A tangential tensor ¢ defined on I'! is mapped to a tensor ¢ on I'™,
for m # [, through the map ®'™ (see (3.1)). In other words, ¢ is mapped to @ on I'!
using (3.15), and then ¢ is mapped to @ on I'™ using (3.14).

Adopting the hypothesis of Definition 3.3, we recall [40, Prop. 4.7], which states
(3.16) G o Ft = @™ (Vo FR)E 2

Since F™ is piecewise smooth and continuous with respect to the mesh 7;!, it follows
that (Vo1 F'772)E is single-valued at interelement edges, so @ is conormal-conormal
continuous if and only if ¢ is. This leads to the following norm equivalence (see [40,

eq. (4.15)]):

(3.17) |@llo.nm = |Pllon: Ve € HYT™;S™), ¥V 1<1,m<k,o0.

3.5.2. Mapping forms. The following result, which is an improved version of
[40, Thm. 4.8], is essential for analyzing the geometric error between the approximate
solution on an approximate domain and the exact solution on the exact domain.
Recall that I' € CP with p > 2.
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THEOREM 3.5. Let 1 <[ <p—1 and suppose that either l <m, for l<m<p-—1,
or m= oo, and recall the mapping discussion in subsection 3.1. Let & € HY(I'™;S™),
& € HY(T,SY, and & € H)(T'';S") and assume they are related through the Piola
transform (Definition 3.3) in the sense of Remark 3.4. Make the same assumption for
@, ¢, @. In addition, let © € HZ(T™), o € HX(TY), © € HX(T'), where 9|y o 81" =
and 0| o ®Y =T. Then, there holds

(3.18) a™(&,@)=d" (6,¢) + O] 200 1@l 2y,
by (@,0) = b}, (@,9) + OB @llo,na (19ll2,n,0 + 917101y
- bi (Q_O, (Fm — Fl) . PovFlﬁ)

3 (e (- ) ) (1021,
Bleg)

(3.19)

where Os is the derivative with respect to arc-length on E', I}L’l is the Lagrange in-
terpolation operator onto piecewise linears on I't, Pqy is the L*(T'Y) projection onto
piecewise constants, My maps piecewise smooth functions on Eé)h to piecewise con-
stants via Mov| g1 == v(mg) with mg the midpoint of E*, and v =v o F. is the unit
normal vector of T (see Theorem 3.1).

Proof. We start with the result of [40, Thm. 4.8], which already proves (3.18).
Furthermore, we have the following from [40, eq. (4.17)]:

b (@,0) =0}, (#,9) + O @llo,n (10ll2m0 + 18] 1 (o))
3.20 _pl (7 m _ pply . D —nn gy | 1,1
(3.20) bh(<p,(F F')-PyVr v)+ 3y <<p BtV T v>E1,
Elegy

where = [(t—t) xv]-t=(t—t)- (v x t). Note that the tangent vectors are obtained
from the local element map:

(Vi FIE (Vi FLE

(Vi F7)t (Vo FLE

where ¢ is the tangent vector of the straight element E! € 55,}1' Since t- (v x t) =0,
we derive another expression for 3:

ﬁ:<wz_i>-(uxi)

(3.21) P -

(Vi Pl
= (Ve Fp) ™ (Vi FR)E = (Vi Fi)E) - (v x B)
(3.22) = (I Pyt~ = 1) " (Vo (F7 - Fh) ) (v x B)

+ (Vo FR)E - (Vo Fit) - (v x 8)
= (Y Fp)e— (Y Fp)E) - (v x ) + O ™),
where we used two of the estimates in (3.2). Continuing, we find that
B= (Ve Fp)E— (Vi Fi)t) - Mo(w x B)
(3.23) i (vT1 (m - FIT>> [(v x &) — Mo (v x £)] + O(h'*1),

= (Vr FP)t = (Vo F)E) - Mo(v x £) + ('),
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where we used the second estimate in (3.2) and Mg (v x t) is the midpoint evaluation.
Note that [[(v x £) — Mo(v X t)||=(p1) < Ch, which follows by a simple Taylor
expansion where the constant C' depends on the curvature of I' and X.

Next, note that (V1 F)t— (Vo Fhy)E = 05(F — FY), where 8 is the derivative
with respect to arc-length on E'. Thus, we get

—-nn QFf 1,1-
> (8t VT, ’U>E1

Eleg}
(3.24) o

< X (¢ (FE - Fh)-Co) | +O00)@lonilolm .

Eleg} ),

where Cg1 :=Py(v x i)(f-VTlI}ll’lz’)) is defined on E' € Séyh, and we used equivalence
of norms. The result (3.19) then follows. |

A simple consequence of Theorem 3.5 is
(3.25) byt (,0) = by, (@,8) + O(h' )| @llo,n1 10

4. Finite element approximation. In defining the polynomial degree of the
finite element spaces, we utilize the integer » > 0. The polynomial degree of each space
cannot be chosen independently. Specifically, the (surface) Lagrange finite element
space is degree r + 1 and the (surface) HHJ space is degree r. This is necessary to
ensure various compatibility conditions [3, 40], such as (4.6).

|2,h,l-

4.1. Curved Lagrange spaces. Let m > 1 be an integer or co. The (continu-
ous) Lagrange finite element space of degree r + 1 is defined on I'"™ by the mapping
F7:

(41 wrtt =W = (v € HE(T™) |v|r o Fift € Pryy (TH VT € T3,

where we will sometimes suppress the r+ 1 superscript, i.e., we make the abbreviation
% T = Wy, For the case m = oo (the exact domain) we simply write Wj,.

Again, owing to the continuous embedding H?(T'*) < C°(T1) (see [41, Thm. 4.2]),
we can define the Lagrange interpolation operator Z} : H?(T'') — W [5], defined on
each element 7" € 7;! by

(4.2) (Ziv) (x) — v(x) =0, /El (Ziv —v)qds =0, /T1 (Ziv —v)ndS=0

for all vertices x of T, all ¢ € P,_1(E') (and all E' € T"), and all n € P,_o(T").
Note that when r = 0, the last two conditions in (4.2) are omitted. When r =1, the
second condition is enforced by constant functions ¢ on E' and the last condition is
omitted. When r > 2, all conditions in (4.2) are present.

Then, given v € HZ(I'™), we define the global interpolation operator, Z;™ :
HZ(I™) — W, elementwise through Iﬁlv|Tm o Fii' := I}(vo F7). The approxi-
mation properties of Zj* are standard. We also denote Z;"® to be the above Lagrange
interpolant on I'" onto continuous piecewise polynomials of degree s, and we make
the following abbreviation I}T’TH =7

4.2. The HHJ finite element space. We give a brief overview of the surface
HHJ space; see [40, sect. 5.2] for more details. On the piecewise linear surface trian-
gulation T'!, we start with a space of (piecewise) tangential, tensor-valued functions
with special continuity properties. Let

ML (DY) :={p e LT SY) | ¢l € HY(TY;SY) VT € T;}, with ¢ cn-cn contin.},
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where “cn-cn contin.” means the conormal-conormal continuity condition that holds
at interelement boundaries, i.e., for any pair of triangles (7)},7;!) in 7;! that share
an edge E' =TI N T}, we have nlypn,|p = nf ¢ny|p:, where n, (n;) is the outer
conormal of 9T} (9T} ); note that, in general, n, # —n;, (on E').

Remark 4.1. The surface normal ! of I'! is discontinuous at edges of triangles
in I'!, thus the space of tangential tensors S' is not well-defined at edges of I''.
Thus, we define S'(T1) := {¢ : T! = R3*3 | ¢ = 7, @v' =0} for all T* € T},
and then §' = SH(I') := {p : "' — R¥*3 | ¢|p € S*(T) VT'' € T,'}. Therefore,
L2(T;SY) = {p € AT RYS) | gl € LA(TH; 8! (T1) VT € T},

Clearly, ML (T'') c H)(TY;S"). For 1 <m < k,o00, where T =T, we also have
the space

ML (T™) == {p € L(T™:S™) | g o F™ = Piola(@), ¢ € ML, (I")},

where the Piola transform is defined elementwise, using F™; by (3.16), M7 (I'™) also
satisfies the conormal-conormal continuity property. Note that L?(I'"™;S™) is defined
similarly to L2(T'*;S') in Remark 4.1.

The conforming, HHJ finite element space on I'!, of degree r > 0, is defined by
V= {p e ML(TY) | @l € Po(T;SY) VT € T;}}. Using the Piola transform, for
1<m <k,o0, we also have

(4.3) V= {p e M (T™) | o F™:= Piola(@), g € V;'"},

where we will sometimes suppress the r superscript, i.e., we make the abbreviation
V" = V™. For the case m = oo (the exact domain) we simply write V. We note
the following norm equivalence in [40, eq. (5.5)]:

(4.4) lellonm = lellz2om) Voo € V3™

There exists an interpolation operator II7" : M7 (I'™) — V™, defined element-
wise, that satisfies many basic approximation results which can be found in [3, Supp.
Mater.], [40, sect. 5.2]. For simplicity, we describe the operator on I'! only, i.e.,
I} : ML (T — V;! [10, 5] is defined on each element T € 7,! by

(4.5) / nT [H,llgo—go]nqu:o, / [H,llcp—cp]:’r/dS:0
E1 T1

for all ¢ € P.(E') (and all E* € 9T') and all n € P,_1(T;S). We note that the
degrees-of-freedom for V;! are given by (4.5), [10, Lem. 3], [28]. On affine elements,
we have a Fortin-like property involving b} (-,-) for any degree r >0 [10, 5, 8]:

by (o — T}, 0hvn) =0 Ve HY(TSY), v, €Wy,

(4.6) b, (s (0 =T)0y) =0 Ve, €Vy, wve HF(Th),
(cpz“, g(U—I}IL’U)’I’]h)S{l}h:O Y, €V, ve HA(TY),

where the degree of W}! = W;’TH is r + 1 and the degree of V! = Vhl’T is r. The
orthogonality property in (4.6) holds for any piecewise constant functions 0y (1)
defined on T;! (Eé’h); the first two properties are noted in [10, 5, 8].
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4.3. The HHJ projection. We pose (3.10) on I'™ with continuous skeleton
spaces denoted V" =V, (I'™) and W;* = W, (I'™). Fixing the polynomial degree
r > 0, the conforming finite element spaces are V,” C V;"", W™ C W;", where we abuse
notation by now enforcing essential boundary conditions directly in the definitions of
Vim and W, The finite element approximation to (3.10) is as follows. Given any
wp, € Wi, find 64, € V) such that

(4.7) a™ (6, pp) + b5 (P, wn) =0 Yo, e V™

Note that when m =1, r = 0, Hessian information is captured by the jump terms in
by (@4, W) Since a™ (-, -) is continuous and coercive over V™, by (4.4), we get

16 1l|72my =a™ (6h,6n) = =bi* (&h, wr) < 6w llo,nmll@nll2,nm

(4.8) A A
< Cllanll L2 @m)llwnll2,n,m

for some independent constant C' > 0. Thus, &, is a stable L?(I'"™) projection. In a

sense, &, can be viewed as a discrete Hessian of wy, (see the error estimate in (4.22)).

4.4. Inhomogeneous boundary conditions. We modify (4.7) to incorporate
nonzero boundary conditions, i.e., we give a discrete version of (3.12). For any w €
H™3(T'), we define w:=w o ®™ € Hp(T"™) and set £ := (Vrw) o ™. Then, we seek
O =0+ py,, with 65, € V™, such that
(49) @ (o0 @) =—a" (P 1) = B (@n0) + (G0 7-€) Ve, €V,

c

where p;, := B'p, with p satisfying po ¥ = p, and B : H)(I'™) — V™ is the
projection on I'", i.e.,

(4.10) (b= Bopn) gy + (AT o — BIRLER") | =0V, €V,

h

which satisfies the approximation property ||p;, — pllo.n.m < Ch™RT+1m) ol a1 (ry-
Choosing @; = o, in (4.9), we have

(4.11)
||5h||2L2(rm) =—a™ (f)lméh) — by (Fﬂuﬁ)) - (ﬁTtiThﬁvﬁ' [meﬁ; - %D

é'h”Lz(F””) + ||é'h

m
z c

0,h,m || W]|2,n,m + C”‘i"hHL?(Fm) wl| 21y

<ol L2 @my

where, since id’lim = I}l”idﬁ, applying straightforward change of variables, standard
interpolation estimates, and an inverse estimate gives (see [40])

'(ﬁTém,ﬁ- Ve —&]) \ <O w2l a2y

(4.12)
<CllenllL2@mllwllzzx)-

By equivalence of norms, |[@lo,nm ~ [[wlon = |VeVrwllrary and [|on]|p2@m) ~

||6'h||0,h,ma we obtain

(413) thHO,h,m <C (”i)hHLQ(Fm) =+ ||w||H2(F))

for some constant C' > 0 that does not depend on h. Thus, the projection is stable.
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4.5. Error analysis. The stability of the surface HHJ method, as well as its
convergence, depends crucially on the following choice of surface approximation. If
LeC?, withp>2,let F: T —T™, for all T' € T;! and 1 <m <p—1, be given by

(4.14) Fp=Fp =T "F,=1 "Wk,

where I}L"m is the Lagrange interpolation operator in (4.2) onto degree m polynomials;
we simplify the notation by writing F7' = F7'. This choice is necessary to guarantee
optimal convergence of the HHJ method when m =r + 1. If one chooses the geometric
degree m to be higher than the degree of the Lagrange space r + 1 (i.e., m >r + 1),
then F7' can be chosen to be the standard nodal Lagrange interpolant of Fp and
preserve optimal convergence of the scheme in (4.9) (and (5.11)).

Remark 4.2. According to (4.2), if m =1 (piecewise linear) the condition (4.14)
means that the vertices of the discrete surface lie on the exact surface. If m = 2
(piecewise quadratic), then the corner vertices of the triangles must lie on the exact
surface, while the edge nodes are determined through the second condition in (4.2)
(i.e., the average value of F7' over each edge of the mesh must equal the average
value of F'r over each corresponding edge), and so on for higher m. Computing these
moments is straightforward since they are local problems.

For the convergence analysis, we assume w € H"73(I"), where r > 0 is the degree
of the HHJ space. Let o := VrVrw € H™T(T;S), and note that o satisfies (3.12),
where p € H™(I';S) is such that n”en = n"pn on ¥,. Next, we introduce an
intermediate discrete (finite dimensional) problem posed on the exact surface. Let p;,
be the L%(T") projection of p onto Vj, i.e., pj, € V}, satisfies a (p,,,¢)) = a (p, ;) for
all ¢, € V3. Then, we write o), = o, + p;,, where o, € V), satisfies

(4.15) a(on,pn)=—a(p,en) — by (Ppw) + (pp" m- vo)EC Yy, € Vi,

where &, can be viewed as a stable projection. Comparing (4.15) with (3.13), by
standard finite element analysis, utilizing Galerkin orthogonality and interpolation
estimates, we have that |6 — &2y < |6 — 1,6 L2(r) = O(R" 1), which implies

(4.16) lo—onllLzm) <O(h™h).

Next, let &, solve (4.9). To facilitate estimating the error between &, and the
exact surface Hessian o, we map o, to the discrete surface I'™, i.e., by letting on € i
satisfy &, o @™ = Piola(&,) (recall (3.14)), and then compare &, to &p.

So, we apply the results of Theorem 3.5 to (4.15) to find that on € V" satisfies

a™ (é.}“ (‘th) =_—ag™ (ﬁ7 Qbh) — b’;L” (LAPhy/lI}) + (‘;272“7’& : %) sm
(4.17) + O™ (8nll 2y + 1Bllz2aom ) 12nll 2o

+ OW™)|@nllonm (|@]12,,m + @] g2 rm))
— by (@, (F — F™) - PoVrawy) + (", 0s (Fp — F7) - Cpi)er

8,h

for all ¢, in V™, where C'g1 is a constant vector for each E'c Eéﬁ. We also used
that

(4.18)
(ehm - Vow)p = (217 €) [ <OB™) 1@y llonm (18]20m + ] 0m)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/08/24 to 167.96.153.185 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

A1264 SHAWN W. WALKER

for all € &, ), where E™ = FE o ¥™. Next, we make note of the assumption on F™
(4.14), use (4.6), and take advantage of equivalent norms to obtain

@ (00n) = =a" (B @) = W (Do) + (2007 E)
+O(h™)@nll2@my (lellz2@y + lwllaz@y)  Yen € Vi,

where we also note that C||3'h|\L2(Fm) <orllzzay < llpllz2ay + |VeVrw| p2ry, for
some independent constant C' > 0. Comparing (4.19) against (4.9), we get

(4.20)
a™ (é'h - ffm‘f%) =a™ (P, — Py @) + O™ @l 2@0m) (loll 20y + wll 2 (ry)
<N @nllzz@my [OR" ) pll g1y + OR™) (Il L2 (ry + 1wl g2(r))]

for all ¢, in V;". Therefore, we get |lo), — é’hHLZ(Fm) < Chmin(r+1m) - where the
constant C depends on the H"3(I") norm of I'. Thus, we obtain

(4.21) |Gh — & nllp2(rm) < CR™RTLM),

(4.19)

Combining the above results yields the following theorem. Note that I' must be at
least C* if w € H*(T') (for t > 1) because surface derivatives of w invoke corresponding
derivatives of the surface parametrization.

THEOREM 4.3. Suppose I' € CP with p>3. Assume r >0 is an integer such that
r+3<p, let we H3(I), and set o :=VrVrw € S. Furthermore, assume r is the
degree of Vi, and let & = o) + py,, with oy, € V)™ satisfying (4.9) and p,;, defined
through (4.10). If p—1>m>r+1, then

(4.22) o — 640 (E™) on<Ch,
where C' > 0 depends on the domain I and the shape regularity of the mesh.

Proof. Let o}, be the discrete solution (defined on the exact surface) computed
through (4.15), and let &, € V" satisfy o, 0 "™ = Piola(&},). It is straightforward to
derive the estimate ||o), — 0 (™) o.n <O )|l |l0,h,m (see [40, Thm. 6.4]).
Then, combining with (4.16) and (4.21) through the triangle inequality, we obtain
(4.22). d

Remark 4.4. The “exact” data w and E can be replaced by their interpolants,
I and Z)"€, without affecting the stability or accuracy of the scheme in (4.9).

In a sense, our scheme is a kind of Hessian recovery of the given discrete data
I, including boundary data Z;*€ and p;,. We note that another method of Hessian
recovery for the HHJ element, developed for flat domains, is given in [29)].

5. Approximating the shape operator. Recall that, for any C? surface T,
we have the identity map idr : T' — T given by x =idp(x) for all x € T, and Vridr = P
(tangent space projection). In addition, we have the shape operator Vv that satisfies
(SM2.4): Vrv =kld) ® dy + k%dy @ dy, where k', k? are the principle curvatures of
I, with k! > k2, and dy, dy are the principle directions (which are tangent to I').

5.1. An identity. We exploit the following result in our method.
PROPOSITION 5.1. IfT is C2, then at every point of I, there holds
(5.1) VrVridf = —*[Vrv] for k=1,2,3,

) , S T
where k is the component indez, i.e., 1d1]3(x) =zF and v = (1/1,1/2,1/3) .
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Proof. Let {U,x} be a local chart such that the open set T :=x(U) is contained
in I'. Without loss of generality, we derive the identity on Y only. Furthermore, since
VrVr, v, and Vv are independent of the parametrization, we take advantage of a
particular choice and assume x has the form x = (x!,x2,x®) with

(5.2) Xt u?)=ut, xPutu?) =t P (et u®) = hutu?),
where h € C? is a height function. With this, the metric, g5, and its inverse, P,
are given by

(0ah) (9h)

— af _ saB _
(5.3) a8 = das + (Quh)(@sh), 9°7 =5°7 — TEECET,

which then yields the following simplified form of the Christoffel symbols I’fj (of the
second kind) (see (SM1.1)):

(5.4) ry (04h)(8a0ph), 1<a,B,y<2.

1
B 1+ (0,h)2

Let e, = Do x for a = 1,2. Using (SM2.3), we have that X (VrVridf)es = (8a05x") —
Fgﬁ(ﬁuxk), S0

L+ (0,h)2) " (0kh)(0a08h) if1<k<2
(65 el (Vevpid)ea—{ (T ) (0uh)(0a0h) 1<k <2,
(14 (9uh)?)  (9a0ph) if k=3.
Next, note that the normal vector is given by

o (ZOth =02, 1)
>0 X @)

In local coordinates, [Vrv] o x = (0,v)g*?(9sx)” by (SM2.2), so then

ea[Vrrles = (9ax) - (0uv)9*" (96X) - (95x) = —(00aX) - vg* 05

—(0005X) - v = —(000sh)1> Jadgh

(5.7) _
(1+ (8uh)2)"*

which implies that

(14 (8,10)2) " (Okh) (Padsh) if1<k<2,

(5.8) el (V¥ [Vrv])es = {_ (14 (8,1)2) " (Badsh) if k=3.

Thus, for each k=1,2,3,
(5.9) el (Vk[VFV] + Vprid{i) eg=0for1<a,f<2.

Since {e;, e} spans the tangent space, and both Vrv and Vprid{i are tangential
tensors, we obtain (5.1). 0

5.2. The scheme. The first step in the method is to approximate the surface
Hessian of idr. For the convergence analysis, we assume I' is C™3 (cf. Theorem 4.3),
where 7 > 0 is the degree of the HHJ space. This implies that idp € [W7+3:°°(T")]3,
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which means o* VFVFIdk € Wrtleo(1;S), for k=1,2,3. Upon recalling (3.12), a
direct calculatlon shows that

(5.10) a (Uk,go) + by, (go,idlli) = (ap““,n . Vpid"ﬁ)Z , VeV, for k=1,2,3.

Thus, we take id’f as given data, and o is the L?(T") projection of Vprid’fi. Indeed,
(5.10) comes from replacing o in (3.12) with o and replacing w, g with id%. In
addition, we have p 6 Wr+heo(T;S), such that the conormal-conormal moment
satisfies n”o¥n =nT p*n on X,.

The fully discrete method is as follows. Let f)ﬁ be given by f)Z = B;L”ﬁk, with
/N)k satisfying p* o ™ = Piola(p"), and By HY(I'™) — V™ is the projection defined
by (4.10), which satisfies the follovvlng approximation properties: ||p ph <
Ch+1|p" ||Hr+1(1")7 and ||ph p HLoo(Zrn) < Ch7+1||pkHW7‘+l () (cf. [3, sect. SM4.3]).

Then we let a’h = a’h + ph and impose that a’h e V", for k=1,2,3, satisfies
S - ~ -~ m (s ann s EF
(5.11) a™ (%m%) =—a" (ph,soh) — by’ (‘thldr‘m) + (soh SO )Zm,

for all ¢, € V;", where idf.,,, e W and E = (VridF) o \Ilm In other words, (5.11) is
simply (4.9) Wlth o replaced with 6 O'h, Py, replaced by g th w replaced by ldFrn, and €

replaced by E Note that W = wo®™ and idf,, =idfo®™. Similar to (4.13), we have
that the discrete projection is stable: < C(||thL2(F7n + | Ve Vridg| 22 ))-
When m =1, r = 0 (piecewise linear surface) curvature information is captured by
the jump terms in bzn(gbh,idllim), which measure the jump of the tangent space at
mesh edges.

The last step in the method is to use (5.1), i.e., let S} approximate Vv through

3
(5.12) Spi=—)Y 0key e L2(I™;S™),
k=1
where & = (9!, 0%,0%) is the unit normal vector of I'™. From (3.3), and the discussion
in subsection 3.1, [[v o W™ — D||pec(pmy < Ch™. Then, by the error analysis of
subsection 4.5, and the triangle inequality, we obtain Theorem 5.2.

THEOREM 5.2. Assume r >0 is the degree of V;™ and that T is C"*3. Moreover,
let Vv be the shape operator of T, and let Sy, be given by (5.12). If m >r+1, then

(5.13) ||VFV—ShO(‘I/m)71||L2(F) SChrJrl,
where C' >0 depends on the domain I' and the shape reqularity of the mesh.

5.3. Practical computation. Usually, we choose m = r+1 when implementing
the method. For r =0, this corresponds to piecewise linear surface triangulations and
piecewise linear Lagrange space, as well as a piecewise constant HHJ space.

5.3.1. Closed surfaces. The method is simplest when posed on closed surface

<k
triangulations. In this case, ﬁ;‘; and & are unnecessary, so (5.11) reduces to the
following: find &Z eV, for k=1,2,3, such that

(5.14) a" (a,@1) = =07 (@nridin ) V@, € Vi

The matrix representations of a™ (-,-) and b7 (+,-) are straightforward to assemble
using standard finite element software, even for m > 1, although the m =1 case is
especially simple. Indeed, the HHJ element, though not as well-known as some other
elements, is implemented in several software packages, e.g., FELICITY [39], FEniCS
[2], Firedrake [33], and NGSolve [37].
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TABLE 1
Listing of the 2-norm condition number of the matriz A™ discussed in subsection 5.3.1. Num-
bers correspond to the convergence tables in the associated sections for m = 1; for m = 2,3, the
condition numbers were larger by factors of approzimately 10% and 103, respectively. The number
in parentheses is the condition number of (D™)~'A™, where D™ is a diagonal matriz obtained by
mass-lumping of A™.

k Subsection 6.1 Subsection 6.2 Subsection 6.3 Subsection 6.4

0 7.61E02 (4.89E02) 3.90E02 (1.80E02) 2.89E02 (2.15E01) 4.39E02 (3.13E01)
1 9.65E02 (6.93E02) 4.87E02 (2.41E02) 4.55E02 (3.80E01) 7.10E02 (6.23E01)
2 1.11E03 (8.93E02) 5.69E02 (3.04E02) 5.88E02 (5.42E01) 8.75E02 (1.01E02)
3 1.18E03 (1.05E03) 6.39E02 (3.62E02) 7.00E02 (6.74E01) 9.64E02 (1.31E02)
4 1.26E03 (1.15E03) 6.95E02 (4.05E02) 7.72E02 (7.57E01) 1.00E03 (1.53E02)

Let A™ and B™ be the matrix realizations of a™ (-,-) and b} (-,-), respectively.
Then the right-hand side of (5.14) is simply —B™X*, where X* is a column vector
containing the kth coordinate of the degrees-of-freedom of the Lagrange space W;™.
Let S* be the coefficient vector corresponding to &ﬁ. Then, one needs to solve the
linear system A™S* = —B™XF for S*, which is similar to computing a standard L?
projection.

However, the matrix A™ is slightly different from the usual mass matrix because
of the mesh dependent space Hy (I'™), i.e., because of the edge terms. Effectively, this
causes the condition number of A™ to have a slight growth as the mesh size decreases.
See Table 1 for a listing of the condition number of A™ in the numerical experiments.

5.3.2. Surfaces with boundary. Surfaces with boundary pose some difficulty,
because extra information about the surface is needed on the boundary ¥ = 0TI
Applying the scheme (5.11) requires ék = (Vpidlf) o ®™ on X7, which implies that
we need a good approximation of Vpidr = P =1— v ® v on X, or, equivalently, a

good approximation of v on ¥.. Thus, let o € [L>°(X™)]® with the property that
(5.15) v — &0 (T™) 7 oo (5, = O(KT/2).

Note that this precludes directly using the discrete normal & of I'™.

Next, we must account for boundary values on . Let pF € WL>(T;S) be
given by p* := —*Vrv=aF* for k=1,2,3 (see (5.1)), and evaluate (4.10), i.e., define
ﬁaZ e V", for k=1,2,3, as the unique solution of

N ~k ATra ~k1 A ann N
(5.16) (pﬁ -p a‘Ph)Tm + (nT[pZ —p'n, @), )gm =0V, e Vi,
h h

where n is the co-normal vector on X" and ﬁk is given by p* o U™ = ﬁk. Then use
f)lfb to enforce boundary conditions on 6'],2. However, for solving the discrete problem
(5.11), we only need the values of pf on X™. Ergo, we can restrict (5.16) to a
boundary integral on X7*. Furthermore, we can utilize a good approximation of the
boundary curvature in the following sense. Let &} € L°>°(X7") be an approximation of
the normal curvature, in the co-normal direction n, with the property that

(5.17) [T [Vrvn — & o (B™) 7 Lo (s, = O(h™).
Then, we define i)Z e V", for k=1,2,3, as the unique solution of

(5.18) (R"phnn"gun) == (PR ATem) Ve, eV
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where we use the discrete normal & of I'™ and we set all degrees-of-freedom of ﬁﬁ not
on X" to zero. Note that the matrix realization of the left-hand side of (5.18) is block
diagonal, where each block corresponds to an edge of XI"; hence, (5.18) is a trivial
linear system to solve.

We now summarize the method. Let pr be given by (5.18) and  satisfy (5.15).
Then, find &},‘; eV, for k=1,2,3, such that

(519) @™ (oh.¢1) = —a" (Bh.@n) = bir (@n0idfn ) + (2577 = (- 9)7)

for all @, € V™. Then, set &F = &’g + py and define S), := —i*67).

THEOREM 5.3. Adopt the hypothesis of Theorem 5.2, but let S}, be computed by
the scheme in (5.19). If m>r+1, then

(5.20) [Vrv — S0 (8™) 2y <CR™HE,
where C' > 0 depends on the domain I and the shape regularity of the mesh.

Note that, by the properties of the projection and the HHJ interpolant (see sub-
section 4.2), we have ||pf — ﬁkHLoc(Em) < Ch™ | p|lwrsr00(ry (cf. [3, sect. SM4.3]).

Remark 5.4. The partition of the boundary, ¥ = ¥. U X, depends on the geometric
information available at the boundary. Omne can have ¥ = ¥, or ¥ = ¥, or a
combination, so the method has some flexibility.

6. Numerical results. We present numerical results for several different do-
mains, both with and without boundary. The discrete domains were generated by
either interpolating charts on a sequence of uniformly refined grids or by creating an
initial piecewise linear triangulation of the implicit, closed surface (using [38]) and
interpolating the closest point map. As above, the finite element spaces V}, and W,
are of degree r and r + 1, respectively, where r > 0, and the geometric approximation
degree is denoted m, and satisfies m = r + 1. All computations were done with the
MATLAB/C++ finite element toolbox FELICITY [39], where we used the “backslash”
command in MATLAB to solve the linear systems.

From (4.14), recall that F™ := I}ll’mllfl, which is possible to implement, but
inconvenient. Instead, we first compute F™ " by standard nodal interpolation, then
we define F' := I}L’mFmH, which is easy to implement over the piecewise linear
triangulation of I'! since it only involves simple local weighted averages and does not
affect the accuracy. Indeed, this can be done by defining various forms involving dG
spaces on the mesh skeleton within the finite element software.

As for the boundary data, v and Vrv are known through the exact surface
geometry. Moreover, these functions are easily extended away from the surface by
analytic continuation. Thus, we use & := IJ'v and &} := A’ (I*[Vrv])n, where
I HE(T™) — W™ (different from Z7") is the standard, pointwise, nodal interpolant
onto W;". Note that when m =1, then I} =7,

In order to illustrate the effectiveness of the method, we compute the following
errors: [ I (v 0 ©™) — i 2o |7 [(Vrw) 0 "] — S| (o). [T (Vrw) o @™ -
ShllLoemy, [T (k0 ®™) = K¢ || L2(pmy, [ I7(k9 0 ®™) =K || L2(rm), Wwhere £ = k! +£?
(additive curvature), k9 = x! - k2 (Gauss curvature), and

(6.1) Ky =trSy, kj:=det[S,+0r@D].

Again, the geometric information is extended away from the surface by analytic con-
tinuation. These errors can be related to the ones in (5.13), (5.20) by equivalence
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(d) Initial Mesh

(c) Initial Mesh

(a) Initial Mesh

08 \ (b) Initial Mesh
0.6
04)/ | N

02| N/ 05

& Broms

F1G. 2. All initial meshes. (a), (b) These meshes are uniformly refined twice to gie the k=0
case in Tables 2 and 3. (c), (d) These meshes correspond to the k=0 case in Tables 4 and 5.

Gauss Curvature Principle Directions
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Fic. 3. Illustration of the saddle surface in subsection 6.1 corresponding to m=1 and k=1 in
Table 2. Left: color corresponds to the discrete Gauss curvature K“}JL. Right: zoom-in of the surface
where line segments indicate the principle directions of the surface, i.e., red (black) is d1 (d2), which
correspond to the minimum (mazimum) curvature direction.

of norms and a triangle inequality. The estimated order of convergence (EOC) is
computed by using the ratio of the error between two successive uniform refinements.

In order to avoid spurious results in the numerical convergence tests, the meshes
in the examples were generated from the nonuniform/nonsymmetric meshes shown in
Figure 2. The condition numbers of the “mass” matrix to invert in projecting to the
HHJ space are listed in Table 1.

6.1. Saddle surface on a square. The domain is given by (U,x), where
U = [0,1] x [0,1] is the unit square and x(u',u?) = (u',u?0.5(sin(3.5(u* — 0.5)) +
cos(4.2(u? — 0.5)))). Figure 3 shows the surface with curvature data obtained from
the discrete approximation. Table 2 shows the convergence behavior for the case of
clamped boundary data (i.e., using &), which confirms the error estimate in (5.20).

6.2. Wavy dumbbell. The domain is given by (U, x), where the boundary of
U is piecewise parametrized by
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TABLE 2

Convergence errors for the saddle surface (subsection 6.1) using clamped boundary data; EOC is

shown in parentheses. The number of triangles in the mesh is Ny = 448-4%  where k is the refinement
indezx. Cases are shown for m=1,2,3, where m is the polynomial degree of the geometry.

k L? error: v L? error: Vv L°° error: Vpv L? error: k® L? error: k9
m=1:
0 1.09E-01 (1.02) 1.04E 00 (0.84) 1.13E 00 (1.77) 5.94E-01 (0.89) 2.48E 00 (1.02)
1 5.44E-02 (1.01) 5.48E-01 (0.92) 4.45E-01 (1.35) 3.09E-01 (0.94) 1.26E 00 (0.97)
2 2.72E-02 (1.00) 2.81E-01 (0.96) 2.31E-01 (0.95) 1.57E-01 (0.97) 6.44E-01 (0.97)
3 1.36E-02 (1.00) 1.42E-01 (0.98) 1.27E-01 (0.86) 7.97E-02 (0.98) 3.26E-01 (0.98)
4 6.79E-03 (1.00) 7.15E-02 (0.99) 6.65E-02 (0.94) 4.02E-02 (0.99) 1.64E-01 (0.99)
=2:
0 3.87E-03 (2.19) 1.52E-01 (1.87) 8.89E-01 (0.94) 9.77E-02 (1.78) 4.69E-01 (1.57)
1 9.13E-04 (2.08) 3.71E-02 (2.03) 2.83E-01 (1.65) 2.49E-02 (1.97) 1.23E-01 (1.93)
2 2.25E-04 (2.02) 9.07E-03 (2.03) 8.35E-02 (1.76) 6.10E-03 (2.03) 3.08E-02 (2.00)
3 5.59E-05 (2.01) 2.25E-03 (2.01) 2.14E-02 (1.96) 1.51E-03 (2.01) 7.68E-03 (2.00)
4 1.40E-05 (2.00) 5.62E-04 (2.00) 5.41E-03 (1.99) 3.77E-04 (2.00) 1.92E-03 (2.00)
=3:
0 1.20E-04 (3.51) 1.41E-02 (2.95) 2.00E-01 (2.56) 1.08E-02 (2.72) 5.10E-02 (2.81)
1 1.15E-05 (3.38) 1.86E-03 (2.93) 2.12E-02 (3.24) 1.50E-03 (2.85) 7.47E-03 (2.77)
2 1.28E-06 (3.16) 2.37E-04 (2.97) 1.77E-03 (3.58) 1.92E-04 (2.97) 9.68E-04 (2.95)
3 1.55E-07 (3.05) 2.98E-05 (2.99) 2.20E-04 (3.01) 2.42E-05 (2.99) 1.22E-04 (2.99)
4 1.92E-08 (3.01) 3.73E-06 (3.00) 2.73E-05 (3.01) 3.03E-06 (3.00) 1.53E-05 (3.00)

Gauss Curvature

Principle Directions

Fic. 4. Illustration of the wavy dumbbell in subsection 6.2 corresponding tom=1 and k=1 in

Table 3. The format is stimilar to Figure 3. Right figure is zoomed in on the top, curved edge of the
surface.

The surface parametrization is given by x(u,v) = (u,v,e*“2 sin(2v)).
element mapping is composed from two maps (recall (4.14)).

(z(t),y(t)) =

cos(t) + 1,sin(t))

t+1,0.6 4+ 0.4 cos(nt))

(co

(=

(cos(t) — 1,sin(t))
(t—1,—(0.84+0.2cos(mt)))

if —m/2<t<m/2,
if0<t<2,
if m/2<t<3m/2,
ifo<t<2.

The curved

The first map is a

Lenoir type map [27] described in [3] that creates a curved triangulation that optimally
approximates U; the second map is the parametrization x. We then apply (4.14) to

the composed map.
Figure 4 shows the surface with curvature data obtained from the discrete ap-

proximation. Table 3 shows the convergence behavior for the case of simply supported
boundary data (i.e., using £}'), which confirms the error estimate in (5.20).
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TABLE 3

A1271

Convergence errors for the wavy dumbbell (subsection 6.2) using simply supported boundary

data (similar format as Table 2). The number of triangles in the mesh is Np = 608 - 4k where k is
the refinement indez.

k lvnllz2 1SkllL2 [IShllzee [ Hpll2 KRl 2
m=1:
0  1.65E-01 (1.00)  5.62E-01 (0.95)  4.37E-01 (1.01)  3.67E-01 (1.01)  4.05E-01 (1.01)
1 8.25E-02(1.00)  2.86E-01 (0.97)  2.13E-01 (1.04)  1.84E-01 (1.00)  2.05E-01 (0.98)
2 4.12E-02 (1.00)  1.44E-01 (0.99)  1.00E-01 (1.09)  9.22E-02 (1.00)  1.04E-01 (0.98)
3 2.06E-02 (1.00)  7.23E-02 (0.99)  4.79E-02 (1.06)  4.63E-02 (1.00)  5.22E-02 (0.99)
4 1.03E-02 (1.00)  3.62E-02 (1.00)  2.33E-02 (1.04)  2.32E-02 (1.00)  2.62E-02 (1.00)
=2
0  831E-03 (2.00) 3.79E-02 (1.99) 1.08E-01 (1.62)  2.35E-02 (2.04)  2.81E-02 (2.00)
1 2.07E-03 (2.01) 9.41E-03 (2.01) 2.78E-02 (1.95) 5.68E-03 (2.05) 6.95E-03 (2.01)
2 5.16E-04 (2.00)  2.34E-03 (2.01)  6.60E-03 (2.08)  1.39E-03 (2.03)  1.73E-03 (2.01)
3 1.29E-04 (2.00) 5.83E-04 (2.00) 1.55E-03 (2.09) 3.45E-04 (2.01) 4.30E-04 (2.01)
4 3.22E-05 (2.00)  1.46E-04 (2.00)  3.69E-04 (2.07)  8.59E-05 (2.01)  1.07E-04 (2.00)
=3:
0  3.92E-04 (3.04) 3.78E-03 (2.83)  1.30E-02 (2.42)  2.12E-03 (2.72)  2.64E-03 (2.84)
1 4.85E-05 (3.02)  4.94E-04 (2.93)  2.26E-03 (2.53)  2.95E-04 (2.85)  3.49E-04 (2.92)
2 6.04E-06 (3.01)  6.28E-05 (2.98)  3.29E-04 (2.78)  3.83E-05 (2.94)  4.46E-05 (2.97)
3 7.53E-07 (3.00)  7.88E-06 (2.99)  4.42E-05 (2.89)  4.85E-06 (2.98)  5.60E-06 (2.99)
4 9.41E-08 (3.00)  9.87E-07 (3.00)  5.72E-06 (2.95)  6.09E-07 (2.99)  7.01E-07 (3.00)
Gauss Curvature Principle Directions
0.4, 0
0.2
0|
-0.2|
-0.4 -5 I}
1\

-05

F1c. 5. Illustration of the torus in subsection 6.3 corresponding to m =1 and k=1 in Table 4.

The format is similar to Figure 3. Right figure is zoomed in on the inner hole region.

b(x,y, z)

= (2 +y* -

(6/10))2 + (3/2)2% —

6.3. Torus. The domain is a torus described by the zero level set of the function:
(1/4). The parameterization is built from

the closest point map. Figure 5 shows the surface with curvature data obtained from
the discrete approximation. Table 4 shows the convergence behavior, which confirms
the error estimate in (5.13).

level set of the function:

b(x,y,2) =

(6.3)

(aoz — 2)*(aoz + 2)* + (agy — 2)*(agy + 2)°

6.4. A genus-3 surface. The domain is a closed surface described by the zero

+ (apz — 2)%(apz + 2)2 + 3ag (z?y? + 2222 + y*2?)
+ 6agwyz — 10 (22 + y? + 2%) + 11.5,
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TABLE 4
Convergence errors for the torus (subsection 6.3) (similar format as Table 2). The number of
triangles in the mesh is Ny = 1904 - 4% | where k is the refinement indez.

k vnllz2 1Skllz2 I1Shllzee [ HpllL2 K nllL2
m=1:
0  3.16E-01 (0.00)  2.03E 00 (0.00)  6.05E-01 (0.00)  1.05E 00 (0.00)  2.55E 00 (0.00)
1 1.59E-01 (1.00) 1.07E 00 (0.92)  3.80E-01 (0.67)  5.58E-01 (0.91) 1.41E 00 (0.85)
2 7.93E-02 (1.00)  5.54E-01 (0.96)  1.81E-01 (1.07)  2.97E-01 (0.91)  7.54E-01 (0.91)
3 3.97E-02 (1.00)  2.81E-01 (0.98)  1.01E-01 (0.84)  1.56E-01 (0.94)  3.90E-01 (0.95)
4  1.98E-02 (1.00) 1.42E-01 (0.99)  5.25E-02 (0.94)  7.98E-02 (0.96) 1.99E-01 (0.97)
m=2:
0  1.76E-02 (0.00) 1.98E-01 (0.00)  3.24E-01 (0.00)  1.60E-01 (0.00)  3.70E-01 (0.00)
1 4.35E-03 (2.01)  4.94E-02 (2.00)  1.04E-01 (1.64)  4.21E-02 (1.93)  9.95E-02 (1.89)
2 1.08E-03 (2.00) 1.23E-02 (2.01)  3.29E-02 (1.66)  1.06E-02 (1.98)  2.58E-02 (1.95)
3 2.71E-04 (2.00)  3.08E-03 (2.00)  8.54E-03 (1.95)  2.67E-03 (1.99)  6.54E-03 (1.98)
m=3
0  5.06E-03 (0.00)  3.96E-02 (0.00)  5.69E-02 (0.00)  2.82E-02 (0.00)  5.79E-02 (0.00)
1 6.64E-04 (2.93)  5.12E-03 (2.95)  1.10E-02 (2.38)  3.64E-03 (2.96)  6.77E-03 (3.10)
2 8.38E-05 (2.99)  6.46E-04 (2.99)  1.63E-03 (2.75)  4.60E-04 (2.99)  8.30E-04 (3.03)
3 1.05E-05 (3.00)  8.10E-05 (2.99)  2.14E-04 (2.93)  5.78E-05 (2.99) 1.03E-04 (3.01)
Gauss Curvature Principle Directions

Fic. 6. Illustration of the genus-3 surface in subsection 6.4 corresponding to m =1 and k =1
in Table 5. The format ts similar to Figure 3. Right figure is zoomed in on the edge of the right
hole.

where ag = 3.25. The parameterization is built from the closest point map. Figure 6
shows the surface with curvature data obtained from the discrete approximation.
Table 5 shows the convergence behavior, which confirms the error estimate in (5.13).

7. Conclusion. We have presented an effective finite element technique that can
postprocess a scalar Lagrange finite element function on a discrete surface to produce
an accurate approximation of the surface Hessian of the function. The method is
straightforward and does not require any ad hoc modifications. The intuition behind
the method is that Hessian information is obtained by looking at neighboring elements,
especially for piecewise linear surfaces. This is automatically handled by the mixed
FEM through the jump terms in the b, (-,-) bilinear form.

Furthermore, the method is directly applicable to computing convergent approx-
imations of the full shape operator of the underlying surface (even piecewise linear
triangulations) by setting the scalar function to the identity map of the discrete sur-
face. The method may be applied to any given degree m surface, regardless of where it
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TABLE 5
Convergence errors for the genus-3 surface (subsection 6.4) (similar format as Table 2). The
number of triangles in the mesh is Ny = 2808 - 4% where k is the refinement indez.

k lvnllp2 ISkllL2 [Snllree |1 Hpll L2 K n L2
m=1:
0 5.77E-01 (0.00) 4.44E 00 (0.00) 2.06E 00 (0.00) 1.88E 00 (0.00) 9.14E 00 (0.00)
1 2.93E-01 (0.98) 2.39E 00 (0.89) 1.04E 00 (0.99) 1.15E 00 (0.72) 4.79E 00 (0.93)
2 1.47E-01 (0.99) 1.24E 00 (0.95) 5.95E-01 (0.80) 6.46E-01 (0.83) 2.62E 00 (0.87)
3 7.36E-02 (1.00) 6.34E-01 (0.97) 2.95E-01 (1.01) 3.44E-01 (0.91) 1.39E 00 (0.91)
4 3.68E-02 (1.00) 3.20E-01 (0.99) 1.42E-01 (1.06) 1.78E-01 (0.95) 7.12E-01 (0.97)
5 1.84E-02 (1.00) 1.61E-01 (0.99) 7.00E-02 (1.02) 9.03E-02 (0.98) 3.58E-01 (0.99)
=2
0 4.37E-02 (0.00) 1.35E 00 (0.00) 2.43E 00 (0.00) 1.13E 00 (0.00) 7.05E 00 (0.00)
1 1.14E-02 (1.94) 3.51E-01 (1.94) 7.41E-01 (1.71) 2.77E-01 (2.02) 1.73E 00 (2.03)
2 2.85E-03 (2.00) 8.74E-02 (2.01) 2.58E-01 (1.52) 6.70E-02 (2.05) 4.19E-01 (2.04)
3 7.14E-04 (2.00) 2.17E-02 (2.01) 7.10E-02 (1.86) 1.63E-02 (2.04) 1.02E-01 (2.03)
4 1.78E-04 (2.00) 5.42E-03 (2.00) 2.05E-02 (1.79) 4.02E-03 (2.02) 2.53E-02 (2.02)
=3:
0 3.36E-02 (0.00) 6.03E-01 (0.00) 1.16E 00 (0.00) 3.84E-01 (0.00) 2.14E 00 (0.00)
1 4.23E-03 (2.99) 6.44E-02 (3.23) 1.74E-01 (2.75) 3.76E-02 (3.35) 2.22E-01 (3.27)
2 5.36E-04 (2.98) 7.54E-03 (3.09) 2.07E-02 (3.07) 4.48E-03 (3.07) 2.19E-02 (3.35)
3 6.73E-05 (2.99) 9.24E-04 (3.03) 2.66E-03 (2.96) 5.53E-04 (3.02) 2.37E-03 (3.21)

comes from. However, convergence is only established for a sequence of shape regular
meshes (with mesh size going to zero) that interpolate the exact surface in the sense
of (4.14). It is not clear whether this interpolation condition can be removed.

We emphasize that the error estimate derived here involves the surface Hessian
(4.22) or shape operator (5.13), (5.20). Thus, we are limited to perturbations of the
surface (or the interpolant) that are O(h™%2) in L* in order to guarantee the same
convergence rate. This is because, formally speaking, computing the surface Hessian
or shape operator requires two derivatives of the surface position, which implies that
the perturbation of the error estimate is O(h™).

An important aspect of our scheme is that it solves a global problem when com-
puting the projection onto an HHJ element, which is contrary to the methods in
[30, 20, 43] that compute the mean and Gauss curvature of discrete surfaces (at a
vertex) using the 1-ring neighborhood of that vertex. Our scheme is convergent for
general meshes, whereas these purely local schemes are not. This also implies that one
should use an iterative method when solving the HHJ projection, including precon-
ditioning to account for the small growth in the condition number of the HHJ mass
matrix (see Table 1). Finding effective preconditioners is a point of future work.
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