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Abstract: We present an approach to shape optimization problems that uses an unfitted finite element
method (FEM). The domain geometry is represented, and optimized, using a (discrete) level set function
and we consider objective functionals that are defined over bulk domains. For a discrete objective functional,
defined in the unfitted FEM framework, we show that the exact discrete shape derivative essentially
matches the shape derivative at the continuous level. In other words, our approach has the benefits of both
optimize-then-discretize and discretize-then-optimize approaches.
Specifically, we establish the shape Fréchet differentiability of discrete (unfitted) bulk shape functionals
using both the perturbation of the identity approach and direct perturbation of the level set representation.
The later approach is especially convenient for optimizing with respect to level set functions. Moreover, our
Fréchet differentiability results hold for any polynomial degree used for the discrete level set representation
of the domain. We illustrate our results with some numerical accuracy tests, a simple model (geometric)
problem with known exact solution, as well as shape optimization of structural designs.

Keywords: shape derivative, PDE constraint, unfitted finite element method, optimize-then-discretize,
discretize-then-optimize.

1 Introduction
Considerable work has been done on shape optimization with the following references giving a good overview
[25, 26, 45, 47, 50, 53]. The main idea is to optimize (e.g. minimize) an objective functional over an
admissible set of shapes or domains. Typically, the objective functional depends on the solution of a partial
differential equation (PDE) over the domain to be optimized [29, 52], which gives a PDE-constrained,
shape optimization problem. A classic example is finding the shape of a rigid body in a fluid flow that
has minimum drag (i.e. that minimizes the viscous dissipation in the fluid velocity field around the body)
[21, 38, 43, 44]. Other applications can be found in image processing [16, 28], microswimmers and fluids
[34, 54, 55], and optimal (elastic) structures [10, 13].

For practical applications, one usually uses gradient-based optimization to find optimal shapes; thus, one
has to calculate shape derivatives to obtain effective descent directions [25]. For the continuous problem, one
can derive exact shape derivative formulas provided the domain and PDE-data are sufficiently smooth [14].
But these formulas depend on solutions of PDEs, which are almost never analytically tractable. Moreover,
the domain geometry must be represented in a way that can be easily varied for optimization purposes.
Hence, for real applications, numerical discretization of the PDE and geometry is necessary to make shape
optimization problems tractable. A variety of numerical methods may be used for shape optimization,
though finite element methods (FEM) are popular [30] because of their ability to handle complex geometry.

However, using FEMs with conforming meshes for the domain geometry introduces an issue for gradient-
based optimization methods. The discrete objective functional now depends on the mesh vertex positions in
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a non-obvious way [5] and can be complicated to differentiate [18, 27] or requires automatic differentiation
[32]. Essentially, the difficulty comes from the fact that perturbing the mesh (geometry) also perturbs
the finite element space used for computing the PDE solution. The approach just described is called the
Discretize-then-Optimize approach.

The alternative approach is called Optimize-then-Discretize. In this case, one derives the exact shape
derivative formulas at the continuous level, then simply replaces all quantities with their discrete approxi-
mation [2]. So, computing the derivative is more straightforward than the other approach. Unfortunately,
it suffers from inconsistent gradients, i.e. the discrete approximation of the shape derivative is not the
exact derivative of the discrete objective functional. Hence, a gradient-based optimization method that uses
these derivatives may get stuck and not reach a true optimum. In addition, one has to deform the mesh
as the domain changes which introduces some challenges, such as avoiding mesh degeneracies and general
remeshing of the domain [2]. Despite this, some success is enjoyed by this approach [1, 39], but the issues
remain. See [6, 20] for a detailed discussion on the Optimize-then-Discretize versus Discretize-then-Optimize
approaches.

Therefore, we propose an unfitted approach for shape optimization that avoids the above dichotomy. Our
method uses discrete level set functions to represent the domain and an unfitted FEM for solving the PDEs.
We show that, for bulk shape functionals, the exact, discrete shape derivative in terms of perturbing the
domain’s discrete level set function can be easily computed and, essentially, matches the continuous formula.
Effectively, we take the discretize-then-optimize approach, but show that the optimize-then-discretize
approach yields the same formula. Ergo, we gain the benefits of both approaches.

In [17], they consider shape optimization with extended FEM and level sets and apply finite differences
(with respect to the level set) to the finite element stiffness matrix and load vector. However, this is a purely
discretize-then-optimize approach and the computed shape derivative is not easy to interpret. In [15], they
consider shape optimization with multi-meshes and they describe a method of mappings approach that
yields a (seemingly) simple discrete shape derivative formula that is discretely consistent. However, they
demonstrate that applying their formula to a Poisson problem results in a complicated formula involving
many jump terms and special extension terms that are not easy to implement within their FEM framework.
They then opt for a Hadamard formulation of the shape derivative, which is the optimize-then-discretize
approach and gives gradients that are not consistent. In [10], they apply cutFEM techniques and level sets
to shape optimization of elastic structures, but their formulation is of the optimize-then-discretize type.
Recently in [18], they computed the exact shape and topological derivative of discrete shape functionals,
but their analysis was limited to piecewise linear level set functions. Our analysis allows for discrete level
set functions using a continuous, Lagrange finite element space with arbitrary polynomial degree and yields
formulas that are easier to interpret than in [18].

This paper is organized as follows. Section 2 presents a model problem, shape optimization with linear
elasticity as the PDE constraint, to illustrate our shape derivative technique. Next, in Section 3, the
discretization of the linear elasticity PDE is introduced along with an unfitted finite element framework and
existence and uniqueness is established. Section 4 discusses the shape derivative and establishes the shape
Fréchet differentiability of discrete bulk shape functionals. Moreover, the shape derivative is connected to
the level set formulation and allows for direct perturbation of the level set function. In Section 5, the full
shape optimization algorithm is described within a level set framework that allows for directly updating the
level set function. Next, we give numerical results in Section 6 to demonstrate the method followed by some
concluding remarks in Section 7.

2 Model Problem
We setup a classic example problem to illustrate our unfitted approach to shape optimization.
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2.1 Linear Elasticity

Let Ω ⊂ R𝑑, for 𝑑 = 2 or 3 with Lipschitz boundary 𝜕Ω ≡
(︁̂︀ΓD ∪ ΓD

)︁
∪

(︁̂︀ΓN ∪ ΓN

)︁
, where the partition

is disjoint (see Section 3.1 for more details). We denote the outward normal of Ω by 𝜈. We consider the
following linear elasticity equations with displacement field 𝑢(𝑥):

−∇ · 𝜎 = 𝑓 , 𝜎 = 2𝜇𝜖(∇𝑢) + 𝜆tr(𝜖(∇𝑢))I, in Ω, 𝑢 = 0, on ̂︀ΓD ∪ ΓD, 𝜎𝜈 = 𝑔N on ̂︀ΓN ∪ ΓN, (1)

where 𝜖(∇𝑢) := 1
2 (∇𝑢+∇𝑢𝑇 ), 𝜇 and 𝜆 are Lamé parameters and 𝜎 is the stress tensor. Additionally, 𝑓 and

𝑔N are body and surface force densities, respectively. The term ∇·𝜎 denotes taking the row-wise divergence
on 𝜎. An example of a 2-D elastic domain Ω is given in Figure 1. The typical physical example we consider
is a cantilever, with zero Dirichlet boundary conditions indicating that the cantilever is anchored alonĝ︀ΓD ∪ ΓD.

The weak formulation of (1) is as follows. First, define the linear and bilinear forms:

𝜒 (Ω; 𝑣) := (𝑓 ,𝑣)Ω + (𝑔N,𝑣)ΓN
, ∀𝑣 ∈ 𝐻1(Ω),

𝑎 (Ω; 𝑢,𝑣) := 2𝜇 (𝜖(∇𝑢), 𝜖(∇𝑣))Ω + 𝜆 (∇ · 𝑢,∇ · 𝑣)Ω , ∀𝑢,𝑣 ∈ 𝐻1(Ω). (2)

Then, we seek the unique solution 𝑢 ∈ 𝑉D(Ω) := {𝑣 ∈ 𝐻1(Ω) : 𝑣|̂︀ΓD∪ΓD
= 0} such that

𝑎 (Ω; 𝑢,𝑣) := 𝜒 (Ω; 𝑣) ∀𝑣 ∈ 𝑉D(Ω). (3)

We will sometimes denote the solution to (3) by 𝑢(Ω) to emphasize the dependence of the solution on the
domain Ω.

2.2 Minimization Problem

For any 𝑣 ∈ 𝑉D, let 𝐽 (Ω; 𝑣) be a shape (cost) functional. Furthermore, let 𝒜 be a set of admissible
domains that accounts for some boundary constraints, regularity properties, etc., and consider the following
minimization problem

𝐽(Ωmin,𝑢(Ωmin)) = min
Ω∈𝒜, 𝑢∈𝑉D(Ω)

𝐽 (Ω; 𝑢) , subject to 𝑢 uniquely solving (3) on Ω. (4)

If 𝒜 has some compactness properties, such as enforcing a bounded Lipschitz constant on the domains,
see [2], then existence of a minimizer can be shown. Note that, ultimately, we are after the derivative of
the reduced functional 𝒥 (Ω) := 𝐽 (Ω; 𝑢(Ω)), where 𝑢(Ω) solves (3). Indeed, we seek to compute the shape
derivative of 𝒥 (Ω), so that we can perform gradient based optimization (see Section 5.2). As an example
shape functional, we are interested in the so-called compliance functional:

𝐽 (Ω; 𝑣) = 𝜒 (Ω; 𝑣) + 𝑎0|Ω|, (5)

which is a sum of the work of the external forces acting on Ω and a penalty term on the volume of the
domain (note: 𝑎0 > 0). Nevertheless, our level set shape derivative formulas can be applied to other bulk
shape functionals.

3 Unfitted Discretization
Our shape derivative technique takes full advantage of the framework of unfitted FEM, which uses level
sets to represent the domain, as well as a Nitsche method and interface stabilization to yield a well-posed
problem [8, 9, 12, 23, 36]. This section describes our discretization of the forward problem (see also [24]).
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Fig. 1: Diagram of the elasticity domain (cantilever) and design domain. The outer design domain boundary 𝜕 ̂︀D is indi-
cated by the long and short dashed line, where the short dashed lines correspond to Ω̄ ∩ ̂︀Γ; the solid boundaries indicate Γ.
The cantilever is anchored on the left and is hanging out freely to the right.

3.1 Domain Representation with Level Sets

Let 𝜑 : ̂︀D→ R be a 𝐶1 level set function, with 𝑐−1 ≥ |∇𝜑| ≥ 𝑐 > 0 on ̂︀D, where ̂︀D ⊂ R𝑑 is a fixed, open,
“hold-all,” polygonal domain (e.g. a box) that we call the design domain. We represent the exact domain by
Ω = {𝑥 ∈ ̂︀D : 𝜑(𝑥) < 0} (see Figure 1), where the boundary of Ω partitions as

𝜕Ω = ̂︀Γ ∪ Γ, where ̂︀Γ := 𝜕 ̂︀D ∩ Ω, and Γ := {𝑥 ∈ ̂︀D : 𝜑(𝑥) = 0}, (6)

with further partitions of the Dirichlet and Neumann boundaries denoted ̂︀Γ = ̂︀ΓD ∪ ̂︀ΓN, Γ = ΓD ∪ ΓN.
Essentially, Γ is the free part of the domain that is being optimized. Note that 𝜑 ̸= 0 on ̂︀Γ, except on ̂︀Γ ∩ Γ.
Thus, we have

𝜕Ω ≡
(︁̂︀ΓD ∪ ΓD

)︁
∪

(︁̂︀ΓN ∪ ΓN

)︁
≡

(︁̂︀ΓD ∪ ̂︀ΓN

)︁
⏟  ⏞  

=̂︀Γ
∪ (ΓD ∪ ΓN)⏟  ⏞  

=Γ

, (7)

and similarly for the discrete boundaries (see below). The “hatted” boundaries will be inactive, while
“unhatted” are active.

The discrete domain is represented by a discrete version of 𝜑, denoted 𝜑ℎ. To this end, let ̂︀𝒯ℎ = {𝑇} be
a conforming shape regular mesh of ̂︀D, where all 𝑇 ∈ ̂︀𝒯ℎ are treated as open sets, and define the space

ℬℎ = {𝜑ℎ ∈𝑊 1,∞(̂︀D) | 𝜑ℎ|𝑇 ∈𝑊 2,∞(𝑇 ), ∀𝑇 ∈ ̂︀𝒯ℎ}, (8)

with norm given by
‖𝜑ℎ‖ℬℎ

:= ‖𝜑ℎ‖𝑊 1,∞(̂︀D) + max
𝑇 ∈̂︀𝒯ℎ

‖∇2𝜑ℎ‖𝐿∞(𝑇 ). (9)

Then, we let 𝜑ℎ ∈ ℬℎ and define the discrete domain Ωℎ = {𝑥 ∈ ̂︀D : 𝜑ℎ(𝑥) < 0} with

𝜕Ωℎ = ̂︀Γℎ ∪ Γℎ, ̂︀Γℎ := 𝜕 ̂︀D ∩ Ωℎ, and Γℎ := {𝑥 ∈ ̂︀D : 𝜑ℎ(𝑥) = 0}. (10)

Again, we assume 𝑐−1 ≥ |∇𝜑ℎ| ≥ 𝑐 > 0 a.e. to guarantee Ωℎ is well-defined and 𝜕Ωℎ has dimension 𝑑− 1.
We also have an analogous partitioning of the discrete boundaries as in (7), i.e.

𝜕Ωℎ ≡
(︁̂︀Γℎ,D ∪ Γℎ,D

)︁
∪

(︁̂︀Γℎ,N ∪ Γℎ,N

)︁
≡

(︁̂︀Γℎ,D ∪ ̂︀Γℎ,N

)︁
∪

(︀
Γℎ,D ∪ Γℎ,N

)︀
= ̂︀Γℎ ∪ Γℎ. (11)

In practice, we take 𝜑ℎ ∈ 𝐵ℎ ⊂ ℬℎ to be a finite element function where 𝐵ℎ is a fixed, background
(Lagrange) finite element space on ̂︀D:

𝐵ℎ = {𝑣ℎ ∈ 𝐶0(̂︀D) : 𝑣ℎ|𝑇 ∈ 𝒫𝑘(𝑇 ), ∀𝑇 ∈ ̂︀𝒯ℎ}, for some 𝑘 ≥ 1. (12)
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Using level sets to represent geometries has a long history [40, 49], with some recent work on level set
functions defined on unstructured meshes [4].

3.2 Subdomains and Meshes

For any given domain Ω (an open set with Lipschitz boundary), we approximate it by Ωℎ which will be
determined from an approximated level set function (as noted in (10)). Note that Ω will be changing due
to shape optimization iterations. Let 𝛿 > 0 be a layer thickness parameter (to be determined later) for
extending domains, i.e. define the open set

Ω𝛿 = 𝐸𝛿(Ω) := {𝑥 ∈ ̂︀D : dist (𝑥,Ω) < 𝛿}, (13)

and Ωℎ,𝛿 = 𝐸𝛿(Ωℎ). Note that Ω0 ≡ Ω and Ωℎ,0 = Ωℎ. With this, we define the active mesh and
corresponding domain (see Figure 2):

𝒯𝛿 ≡ 𝒯ℎ,𝛿(Ωℎ) = {𝑇 ∈ ̂︀𝒯ℎ : Ωℎ,𝛿 ∩ 𝑇 ̸= ∅}, D𝛿 ≡ Dℎ,𝛿(Ωℎ) = {𝑥 ∈ 𝑇 : 𝑇 ∈ 𝒯ℎ,𝛿(Ωℎ)}, (14)

where the discrete extended domains D𝛿 are crude versions (caricatures) of Ωℎ,𝛿.

(a) The active mesh 𝒯𝛿 with Ωℎ,𝛿 in red and 𝜕Ωℎ in thick black. (b) The shell region Σ±
𝛿 is shown in red.

(c) The selection of elements, 𝒯Σ± , around the shell region Σ±
𝛿 . (d) The facet selection ℱΣ± is shown as a collection of edges.

Fig. 2: Illustrations of subdomains, meshes, and facets.

Next, define the tubular (or shell region) that contains Γℎ (the active part):

Σ±
𝛿 ≡ Σ±

ℎ,𝛿(Γℎ) = {𝑥 ∈ ̂︀D : dist (𝑥,Γℎ) ≤ 𝛿}, Σ+
𝛿 ≡ Σ+

ℎ,𝛿(Γℎ) = {𝑥 ∈ ̂︀D ∖ Ωℎ : dist (𝑥,Γℎ) ≤ 𝛿}, (15)

i.e. the shell regions always contain the zero level set. The corresponding meshes are (see Figure 2)

𝒯Σ± ≡ 𝒯Σ±
𝛿

(Γℎ) = {𝑇 ∈ ̂︀𝒯ℎ : 𝑇 ∩ Σ±
𝛿 ̸= ∅}, 𝒯Σ+ ≡ 𝒯Σ+

𝛿
(Γℎ) = {𝑇 ∈ ̂︀𝒯ℎ : 𝑇 ∩ Σ+

𝛿 ̸= ∅}. (16)

For simplicity, we assume that ΓD and ΓN lie on disconnected parts of Γ so that we have a clear
decomposition:

Σ±
ℎ,𝛿(Γℎ) = Σ±

ℎ,𝛿,D(Γℎ,D) ∪ Σ±
ℎ,𝛿,N(Γℎ,N), Σ+

ℎ,𝛿(Γℎ) = Σ+
ℎ,𝛿,D(Γℎ,D) ∪ Σ+

ℎ,𝛿,N(Γℎ,N),

𝒯Σ±
𝛿

(Γℎ) = 𝒯Σ±
𝛿,D
∪ 𝒯Σ±

𝛿,N
, 𝒯Σ+

𝛿
(Γℎ) = 𝒯Σ+

𝛿,D
∪ 𝒯Σ+

𝛿,N
. (17)
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We also have the set of shell facets (see Figure 2):

ℱΣ± ≡ ℱΣ±
𝛿

= {𝐹 ∈ 𝜕𝒯ℎ,𝛿 : 𝐹 = 𝑇1 ∩ 𝑇2, for some 𝑇1 ∈ 𝒯ℎ,𝛿, 𝑇2 ∈ 𝒯Σ± , such that 𝑇1 ̸= 𝑇2}, (18)

with the following decomposition: ℱΣ±
𝛿

= ℱΣ±
𝛿,D
∪ ℱΣ±

𝛿,N
. Note that the facets on the boundary of Dℎ,𝛿 are

not included in (18).

3.3 The Finite Element Scheme

The background finite element space is based on 𝐵ℎ with Dirichlet boundary conditions on ̂︀Γℎ,D built-in:

𝐵ℎ = 𝐵ℎ ∩ {𝑣 ∈ 𝐻1(̂︀D) : 𝑣|̂︀Γℎ,D
= 0}. (19)

With this, we have the restricted finite element space on Dℎ,𝛿:

𝑉ℎ ≡ 𝑉ℎ(Ωℎ) = {𝑣ℎ ∈ 𝐶0(Dℎ,𝛿) : 𝑣ℎ = 𝑣ℎ|Dℎ,𝛿
, for some 𝑣ℎ ∈ 𝐵ℎ}, (20)

i.e. 𝑉ℎ = 𝐵ℎ|Dℎ,𝛿
.

The unfitted approach [24] for (3) requires special facet stabilization terms to ensure that the method
is stable and that the condition number of the corresponding (finite dimensional) linear system does not
depend on the domain geometry. Given a facet 𝐹 = 𝑇1 ∩ 𝑇2, with 𝑇1 ̸= 𝑇2, let 𝜔𝐹 = 𝑇1 ∪ 𝑇2 be the local
facet “patch.” For any 𝑢,𝑣 ∈ 𝐵ℎ, define the local stabilization form, known as the “direct” version of the
ghost penalty method as in [36]: 𝑠ℎ,𝐹 (𝑢,𝑣) := (𝑢1 − 𝑢2,𝑣1 − 𝑣2)𝜔𝐹

, where 𝑢𝑖 = ℰ𝒫 (𝑢|𝑇𝑖
) (𝑖 = 1, 2), and

similarly for 𝑣𝑖, where ℰ𝒫 : 𝒫𝑘(𝑇 ) → 𝒫𝑘(R𝑑) is the obvious extension of a polynomial on an element 𝑇
to all of R𝑑 using its analytic formula. For the analysis, we also define 𝑠ℎ,𝐹 (𝑢,𝑣) for arbitrary functions
𝑢,𝑣 ∈ 𝐿2(̂︀D). Set 𝑢𝑖 = ℰ𝒫 (Π𝑇𝑖

𝑢|𝑇𝑖
) (𝑖 = 1, 2), where Π𝑇𝑖

is the 𝐿2(𝑇𝑖) projection onto 𝒫𝑘(𝑇𝑖).
The global stabilization form, for a set of facets ℱ , is given by

𝑠ℎ (ℱ ; 𝑢,𝑣) := 1
ℎ2

∑︁
𝐹 ∈ℱ

𝑠ℎ,𝐹 (𝑢,𝑣) , (21)

where 𝑠ℎ (ℱ ; 𝑢,𝑣) ≤ (𝑠ℎ (ℱ ; 𝑢,𝑢))1/2 (𝑠ℎ (ℱ ; 𝑣,𝑣))1/2 follows because 𝑠ℎ (ℱ ; ·, ·) can be viewed as an inner
product. Then, we introduce the following stabilized bilinear form:

𝑎ℎ (Ωℎ; 𝑢,𝑣) := 𝑎 (Ωℎ; 𝑢,𝑣) + 𝛾s𝑠ℎ(ℱΣ±
𝛿,𝐷

; 𝑢,𝑣) + 𝛾sℎ
2𝑠ℎ(ℱΣ±

𝛿,𝑁
; 𝑢,𝑣), (22)

where 𝛾s > 0.
Next, we introduce the Nitsche stabilization technique for handling boundary conditions in our unfitted

method. For all 𝑢,𝑣 ∈ 𝐵ℎ, define the following forms:

𝐴ℎ (Ωℎ; 𝑢,𝑣) := 𝑎ℎ (Ωℎ; 𝑢,𝑣)− (𝜎(𝑢)𝜈ℎ,𝑣)Γℎ,𝐷
− (𝑢,𝜎(𝑣)𝜈ℎ)Γℎ,𝐷

+ 𝛾Dℎ
−1𝑏 (Ωℎ; 𝑢,𝑣) + 𝛾Nℎ(𝜎(𝑢)𝜈ℎ,𝜎(𝑣)𝜈ℎ)Γℎ,𝑁

𝑏 (Ωℎ; 𝑢,𝑣) := 2𝜇(𝑢,𝑣)Γℎ,𝐷
+ 𝜆(𝑢 · 𝜈ℎ,𝑣 · 𝜈ℎ)Γℎ,𝐷

𝜒ℎ (Ωℎ; 𝑣) := 𝜒 (Ωℎ; 𝑣) + 𝛾Nℎ(𝑔N,𝜎(𝑣)𝜈ℎ)Γℎ,𝑁
, (23)

where 𝛾D > 0, 𝛾N ≥ 0 are fixed coefficients. These forms are similarly defined on the exact domain Ω.
Our unfitted numerical scheme is as follows. Find 𝑢ℎ ∈ 𝑉ℎ(Ωℎ) such that

𝐴ℎ (Ωℎ; 𝑢ℎ,𝑣ℎ) = 𝜒ℎ (Ωℎ; 𝑣ℎ) , ∀𝑣ℎ ∈ 𝑉ℎ(Ωℎ), (24)

where the Dirichlet condition on Γℎ,D is only penalized here. This scheme is a slight variation of the unfitted
finite element method in [24] (see also [11]).
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3.4 Error Analysis of the Forward Problem

We give a brief overview of the error analysis for the approximation of (3) with (24). To this end, we define
some convenient norms:

‖𝑣‖2𝑎ℎ
:= 𝑎ℎ (Ωℎ; 𝑣,𝑣) , ‖𝑣‖2𝑏 := 𝑏 (Ωℎ; 𝑣,𝑣) ,

|||𝑣|||2ℎ := ‖𝑣‖2𝑎ℎ
+ ℎ‖𝜎(𝑣)‖2𝐿2(Γℎ,D) + 𝛾Nℎ‖𝜎(𝑣)𝜈ℎ‖2𝐿2(Γℎ,N) + ℎ−1‖𝑣‖2𝑏 , (25)

for all 𝑣 ∈ 𝐻2(̂︀D) ∪𝐵ℎ.
We first note the following coercivity result which can be found in [11, 24] and references therein.

Proposition 1. The bilinear form 𝐴ℎ is continuous and, for sufficiently large 𝛾D, coercive. Specifically, we
have

𝐴ℎ (Ωℎ; 𝑢,𝑣) ≲ |||𝑢|||ℎ |||𝑣|||ℎ , ∀𝑢,𝑣 ∈ 𝑉ℎ(Ωℎ), |||𝑣|||2ℎ ≲ 𝐴ℎ (Ωℎ; 𝑣,𝑣) , ∀𝑣 ∈ 𝑉ℎ(Ωℎ).

Therefore, by Prop. 1, and since 𝜒ℎ is a bounded linear functional, there exists a unique solution 𝑢ℎ ∈ 𝑉ℎ(Ωℎ)
of (24) by the Lax-Milgram Theorem. Furthermore, we note that the conditioning of the stiffness matrix
corresponding to 𝐴ℎ is well behaved with respect to how the domain Ωℎ “cuts” the background mesh ̂︀𝒯ℎ

[24].

3.4.1 Pseudo-Galerkin Orthogonality

We recall that our bilinear form 𝐴ℎ (Ωℎ; 𝑢,𝑣) can be defined for functions 𝑢,𝑣 ∈ 𝐻1(Ωℎ). Moreover, we
can extend the exact solution 𝑢 on Ω to an open neighborhood D𝛿 that contains both Ω and Ωℎ using the
following bounded extension operator (see [7, Thm. 1.4.5]).

Theorem 1. Suppose that Ω has a Lipschitz boundary and let 𝑣 ∈ 𝑊 𝑘,𝑝(Ω). Then, there is an extension
mapping 𝐸 : 𝑊 𝑘,𝑝(Ω)→𝑊 𝑘,𝑝(R𝑑) such that for all integers 𝑘 ≥ 0 and all 1 ≤ 𝑝 ≤ ∞, that satisfies

𝐸(𝑣)|Ω = 𝑣 and ‖𝐸(𝑣)‖𝑊 𝑘,𝑝(R𝑑) ≤ 𝐶‖𝑣‖𝑊 𝑘,𝑝(Ω),

where 𝐶 is independent of 𝑣.

Now let 𝑢 ∈ 𝐻1(Ω), with 𝑢 = 0 on ΓD ∪ ̂︀ΓD, solve (1) and assume 𝑢 ≡ 𝐸(𝑢) is extended to 𝐻1(̂︀D) using
Theorem 1. Then, 𝑢 satisfies the following:

(𝑓 ,𝑣)Ωℎ
= −(∇ · 𝜎(𝑢),𝑣)Ωℎ

= −(𝜎(𝑢)𝜈ℎ,𝑣)𝜕Ωℎ
+ (𝜎(𝑢),∇𝑣)Ωℎ

= −(𝜎(𝑢)𝜈ℎ,𝑣)Γℎ,D − (𝑔N,𝑣)Γℎ,N + 2𝜇(𝜖(∇𝑢), 𝜖(∇𝑣))Ωℎ
+ 𝜆(∇ · 𝑢,∇ · 𝑣)Ωℎ

, (26)

where 𝑣 ∈ 𝐵ℎ and 𝑣 = 0 on ̂︀Γℎ,D ≡ Γℎ,D.
The following proposition is used in the error analysis and in the analysis of shape derivatives on “cut”

subdomains in Section 4.3.1.

Proposition 2. Let 𝑅(𝑎, 𝑡) := 𝑎 + 𝑡𝑌 (𝑎), for all 𝑡 in a bounded, open interval 𝐼, and a.e. 𝑎 ∈ R𝑑, where
𝑌 ∈ [𝑊 1,∞(R𝑑)]𝑑. Assume that ‖𝑌 ‖𝑊 1,∞ is sufficiently small so that for all 𝑡 ∈ 𝐼, ∇𝑎𝑅(𝑎, 𝑡) is a matrix
with positive determinant and |∇𝑎𝑅(𝑎, 𝑡)| = 𝑂(1), i.e. 𝑅(·, 𝑡) : R𝑑 → R𝑑 is a differentiable homeomorphism
for all 𝑡 ∈ 𝐼. Let 𝑔 ∈ 𝐿1(R𝑑) and define 𝑞 : R𝑑 × 𝐼 → R by 𝑞(𝑎, 𝑡) = 𝑔 ∘𝑅(𝑎, 𝑡). Then, 𝑞 ∈ 𝐿1(R𝑑 × 𝐼) and
‖𝑞‖𝐿1(R𝑑×𝐼) ≤ 𝐶|𝐼| · ‖𝑔‖𝐿1(R𝑑) for some bounded constant 𝐶.

Proof. A standard application of measure theory.

Corollary 1. Let 𝑅(𝑎, 𝑡) have the same function defined in Prop. 2. Now let 𝑔 ∈ 𝐻1(R𝑑) and let Γ ⊂ R𝑑

be the Lipschitz boundary of a bounded set Ω, and define 𝑞 : Γ × 𝐼 → R by 𝑞(𝑎, 𝑡) = 𝑔 ∘𝑅(𝑎, 𝑡). Then,
𝑞 ∈ 𝐿2(Γ× 𝐼) and ‖𝑞‖𝐿2(Γ×𝐼) ≤ 𝐶|𝐼|1/2‖𝑔‖𝐻1(R𝑑) for some bounded constant 𝐶.
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Assumption 1. We assume that the exact domain Ω is of class 𝐶𝑞+1 and that we can obtain Ωℎ with a
geometry approximation of order 𝑞 using the discrete level set function 𝜑ℎ having polynomial degree 𝑞. We
also define our finite element space 𝑉ℎ to contain piecewise polynomials of up to order 𝑞 and assume that
𝑔N ∈ 𝐻𝑞(̂︀D), 𝑓 ∈ 𝐻𝑞−1(̂︀D).

Assumption 1 implies that we have solution regularity 𝑢 ∈ 𝐻𝑞+1(Ω). And by the extension operator in
Theorem 1, we consider 𝑢 to be extended onto ̂︀D with 𝑢 ∈ 𝐻𝑞+1(̂︀D).

The error analysis uses the approach in [19] and [36] where we have an approximation of the discrete
domain Ωℎ, with the discrete level set function 𝜑ℎ, satisfying dist(Ω,Ωℎ) ≲ ℎ𝑞+1, where 𝑞 ≥ 1 is the order
of the geometry approximation (i.e. 𝑞 is the polynomial degree of 𝜑ℎ). Additionally, we assume that there
exists a mapping Φ with the following properties:

Φ(Ω) = Ωℎ, Φ(Ω𝛿) = Ωℎ,𝛿, ‖Φ− id‖𝐿∞(Ω𝛿) ≲ ℎ𝑞+1,

‖∇Φ− 𝐼‖𝐿∞(Ω𝛿) ≲ ℎ𝑞, ‖det(∇Φ)− 1‖𝐿∞(Ω𝛿) ≲ ℎ𝑞, ‖𝜈 − 𝜈ℎ‖𝐿∞(Γℎ) ≲ ℎ𝑞, (27)

where Φ is a continuous well-defined map that is invertible for sufficiently small ℎ, and 𝜈 = ∇𝜑/|∇𝜑| on Γ,
𝜈ℎ = ∇𝜑ℎ/|∇𝜑ℎ| on Γℎ. Additionally, for surface elements, we note the following similar estimate from [19]

𝑑𝑆(Φ(𝑎)) = 𝜇ℎ𝑑𝑆(𝑎), ‖𝜇ℎ − 1‖𝐿∞(Γℎ) ≲ ℎ𝑞, ‖𝜈 − 𝜈ℎ‖𝐿∞(Γℎ) ≲ ℎ𝑞. (28)

The following basic result is needed to deal with the boundary stabilization terms coming from Nitsche’s
method (see Prop. 4).

Proposition 3. Assume Ω, Ωℎ satisfy the approximation properties (27), (28). Let Θ ⊂ 𝜕Ω and Θℎ be its
discrete approximation. Suppose 𝑓 ∈ 𝐻1(̂︀D) with 𝑓 = 0 on Θ, and 𝑔ℎ is a piecewise polynomial function
over ̂︀𝒯ℎ. Then,

(𝑓, 𝑔ℎ)Θℎ
≲ ℎ(𝑞+1)/2‖𝑓‖

𝐻1(̂︀D) · ‖𝑔ℎ‖𝐿2(Θℎ), (29)

(𝑓, 𝑔ℎ)Θℎ
≲ ℎ𝑞+1‖∇𝑓‖

𝐻1(̂︀D) · ‖𝑔ℎ‖𝐿2(Θℎ), if 𝑓 ∈ 𝐻2(̂︀D). (30)

Proof. We start with

(𝑓, 𝑔ℎ)Θℎ
=

∫︁
Θℎ

𝑓(𝑥)𝑔ℎ(𝑥)𝑑𝑆 =
∫︁
Θ

(𝑓 ∘Φ)(𝑔ℎ ∘Φ)𝜇ℎ𝑑𝑆 =
∫︁
Θ

(𝑓 ∘Φ− 𝑓)(𝑔ℎ ∘Φ)𝜇ℎ𝑑𝑆

≲

∫︁
Θ

⃒⃒⃒
(𝑓 ∘Φ− 𝑓)(𝑔ℎ ∘Φ)

⃒⃒⃒
𝑑𝑆 ≲ ‖𝑓 ∘Φ− 𝑓‖𝐿2(Θ) · ‖𝑔ℎ ∘Φ‖𝐿2(Θ), (31)

and note that ‖𝑔ℎ ∘Φ‖𝐿2(Θ) ∼= ‖𝑔ℎ‖𝐿2(Θℎ). Next, we focus on the 𝑓 term and use a refined trace estimate:

‖𝑓 ∘Φ− 𝑓‖2𝐿2(Θ) ≤ ‖𝑓 ∘Φ− 𝑓‖2𝐿2(𝜕Ω) ≲ ‖𝑓 ∘Φ− 𝑓‖𝐿2(Ω)‖𝑓 ∘Φ− 𝑓‖𝐻1(Ω),

followed by

‖𝑓 ∘Φ− 𝑓‖𝐿2(Ω) ≲

⃦⃦⃦⃦
⃦⃦

1∫︁
0

∇𝑓(id + 𝑡(Φ− id)) · (Φ− id)𝑑𝑡

⃦⃦⃦⃦
⃦⃦

𝐿2(Ω)

≲ ℎ𝑞+1

⃦⃦⃦⃦
⃦⃦

1∫︁
0

|∇𝑓(id + 𝑡(Φ− id))|𝑑𝑡

⃦⃦⃦⃦
⃦⃦

𝐿2(Ω)

≲ ℎ𝑞+1 ‖∇𝑓‖
𝐿2(̂︀D) ,

where we used Prop. 2 to view ∇𝑓(id + 𝑡(Φ − id)) as a function in 𝐿2(̂︀D × [0, 1]) and apply the norm
bound. Combining everything, we get (29).
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Now, assume additional regularity of 𝑓 , namely 𝑓 ∈ 𝐻2(Ω), and reconsider the 𝑓 term in (31):

‖𝑓 ∘Φ− 𝑓‖2𝐿2(Θ) =

⃦⃦⃦⃦
⃦⃦

1∫︁
0

∇𝑓(id + 𝑡(Φ− id)) · (Φ− id)𝑑𝑡

⃦⃦⃦⃦
⃦⃦

2

𝐿2(Θ)

≲ ℎ2(𝑞+1)

⃦⃦⃦⃦
⃦⃦

1∫︁
0

|∇𝑓(id + 𝑡(Φ− id))|𝑑𝑡

⃦⃦⃦⃦
⃦⃦

2

𝐿2(Θ)

≲ ℎ2(𝑞+1)
∫︁
Θ

1∫︁
0

|∇𝑓(id + 𝑡(Φ− id))|2𝑑𝑡𝑑𝑆 ∼= ℎ2(𝑞+1) ‖∇𝑓 ∘𝑅‖2𝐿2(Θ×[0,1]) ,

where 𝑅(𝑎, 𝑡) = id(𝑎) + 𝑡(Φ(𝑎)− id(𝑎)). Then, we apply the trace inequality in Cor. 1 to obtain

‖𝑓 ∘Φ− 𝑓‖𝐿2(Θ) ≲ ℎ𝑞+1 ‖∇𝑓‖
𝐻1(̂︀D) ,

and combine with (31) to get (30).

Proposition 4. Let 𝑞 ≥ 1 be the order of approximation of Ωℎ and assume Ω is 𝐶𝑞+1. Moreover, if 𝑞 = 1,
assume the (extended) exact solution 𝑢 is in 𝐻2(̂︀D) and 𝑔N ∈ 𝐻1(̂︀D); else, 𝑢 ∈ 𝐻3(̂︀D) and 𝑔N ∈ 𝐻2(̂︀D).
Then, for all 𝑣ℎ ∈ 𝑉ℎ(Ωℎ), we have

𝛾Dℎ
−1𝑏 (Ωℎ; 𝑢,𝑣ℎ) ≲ ℎ𝑞‖𝑢‖

𝐻2(̂︀D)‖𝑣ℎ‖𝐻1(Ωℎ),

− (𝑢,𝜎(𝑣ℎ)𝜈ℎ)Γℎ,D
≲ ℎ𝑞+1/2‖𝑢‖

𝐻2(̂︀D) |||𝑣ℎ|||ℎ ,

𝛾Nℎ (𝜎(𝑢)𝜈ℎ − 𝑔N,𝜎(𝑣ℎ)𝜈ℎ)Γℎ,N
≲ ℎ𝑞+1/2

[︁
‖𝑢‖

𝐻min{𝑞,2}+1(̂︀D) + ‖𝑔N‖𝐻min{𝑞,2}(̂︀D)

]︁
|||𝑣ℎ|||ℎ . (32)

Proof. The first two estimates in (32) are straightforward. The last estimate uses Prop. 3.

3.4.2 A Priori Estimate

Since (26) is satisfied for all 𝑣 ∈ 𝐻1(̂︀D), it follows that

𝐴ℎ (Ωℎ; 𝑢,𝑣ℎ) = 𝜒ℎ (Ωℎ; 𝑣ℎ)− (𝑢,𝜎(𝑣ℎ)𝜈ℎ)Γℎ,D
+ 𝛾Dℎ

−1𝑏 (Ωℎ; 𝑢,𝑣ℎ) + 𝛾Nℎ (𝜎(𝑢)𝜈ℎ,𝜎(𝑣ℎ)𝜈ℎ)Γℎ,N

−𝛾Nℎ (𝑔N,𝜎(𝑣ℎ)𝜈ℎ)Γℎ,N
+ 𝛾s𝑠ℎ

(︁
ℱΣ±

𝛿,D
; 𝑢,𝑣ℎ

)︁
+ 𝛾sℎ

2𝑠ℎ

(︁
ℱΣ±

𝛿,N
; 𝑢,𝑣ℎ

)︁
∀𝑣ℎ ∈ 𝑉ℎ(Ωℎ).

(33)

Then, subtracting (24) we get the following pseudo Galerkin orthogonality property ∀𝑣ℎ ∈ 𝑉ℎ(Ωℎ):

𝐴ℎ (Ωℎ; 𝑢− 𝑢ℎ,𝑣ℎ) = − (𝑢,𝜎(𝑣ℎ)𝜈ℎ)Γℎ,D
+ 𝛾Dℎ

−1𝑏 (Ωℎ; 𝑢,𝑣ℎ) + 𝛾Nℎ (𝜎(𝑢)𝜈ℎ,𝜎(𝑣ℎ)𝜈ℎ)Γℎ,N

− 𝛾Nℎ (𝑔N,𝜎(𝑣ℎ)𝜈ℎ)Γℎ,N
+ 𝛾s𝑠ℎ

(︁
ℱΣ±

𝛿,D
; 𝑢,𝑣ℎ

)︁
+ 𝛾sℎ

2𝑠ℎ

(︁
ℱΣ±

𝛿,N
; 𝑢,𝑣ℎ

)︁
≲ 𝛾s𝑠ℎ

(︁
ℱΣ±

𝛿,D
; 𝑢,𝑣ℎ

)︁
+ 𝛾sℎ

2𝑠ℎ

(︁
ℱΣ±

𝛿,N
; 𝑢,𝑣ℎ

)︁
+ ℎ𝑞

[︁
‖𝑢‖

𝐻min{𝑞,2}+1(̂︀D) + ‖𝑔N‖𝐻min{𝑞,2}(̂︀D)

]︁
|||𝑣ℎ|||ℎ , (34)

where we have used (32) in the last line. From this, one can derive the following error estimate using
well-known techniques.

Theorem 2. Let 𝑢 ∈ 𝐻𝑘+1(̂︀D) be the extended solution of (1) on Ω to ̂︀D, and let 𝑢ℎ ∈ 𝑉ℎ(Ωℎ) be the finite
element approximation defined in (24) with 𝑞 = 𝑘. Then, the following a priori estimates hold

‖𝑢− 𝑢ℎ‖𝐿2(Ω) + ℎ |||𝑢− 𝑢ℎ|||ℎ ≲ ℎ𝑘+1
[︁
‖𝑢‖𝐻𝑘+1(Ω) + ‖𝑔N‖𝐻min{𝑘,2}(̂︀D)

]︁
, (35)

where standard a priori estimates give ‖𝑢‖𝐻𝑘+1(Ω) ≲ ||𝑓 ||𝐻𝑘−1(Ω) + ‖𝑔N‖𝐻𝑘(Ω).
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4 Unfitted Shape Derivatives
We start with a review of basic shape differentiability results [14, 26] based on vector displacements of the
domain. Next, we extend these shape derivatives to allow for perturbation of the domain by perturbing its
level set description. Then, we develop these results further to allow for shape functionals over domains
that intersect a fixed Lipschitz subset (i.e. an element of a finite element mesh).

4.1 Fréchet Differentiability of Shape Functionals

We review the Fréchet Differentiability of Shape Functionals following [2, 26]. A classic approach to shape
differentiation uses a perturbation of the identity. Let 𝑈 ∈ [𝑊 1,∞(R𝑑)]𝑑 be a vector field and define the
deformation mapping as follows

Φ𝑈 (𝑎) := id(𝑎) + 𝑈(𝑎), for all 𝑎 ∈ R𝑑. (36)

This mapping induces a deformed domain Ω𝑈 := Φ𝑈 (Ω). For ‖𝑈‖𝑊 1,∞ sufficiently small, if Ω is Lipschitz,
then Ω𝑈 will also be Lipschitz and homeomorphic to Ω [14]. We have the following definition [2, Defn. 4.1].

Definition 1. A shape functional 𝐽(Ω) is said to be shape differentiable at Ω if the mapping 𝑈 ↦→ 𝐽(Ω𝑈 )
from [𝑊 1,∞(R𝑑)]𝑑 into R, where Ω𝑈 = Φ𝑈 (Ω) using (36), is Fréchet differentiable at 𝑈 = 0. The Fréchet
derivative of 𝐽 at Ω is an operator in ℒ([𝑊 1,∞(R𝑑)]𝑑,R), denoted 𝐽 ′(Ω)(·), and the following limit holds

lim
‖𝑈‖𝑊 1,∞ →0

|𝐽(Ω𝑈 )− 𝐽(Ω)− 𝐽 ′(Ω)(𝑈)|
‖𝑈‖𝑊 1,∞

= 0. (37)

We note a classic expansion of the determinant.

Lemma 1. For any 𝑛× 𝑛 matrix 𝐵, such that |𝐵| < 1, we have

det(𝐼 +𝐵) = 1 + tr (𝐵) + 1
2

[︁
(tr (𝐵))2 − tr

(︀
𝐵2)︀]︁

+𝑂(|𝐵|3), (38)

The next two lemmas are applications of results in [14, 26]. We include the proof of Lemma 3 since we build
on it later when computing shape derivatives on “cut” elements.

Lemma 2. Given 𝑓 ∈ 𝐿1(R𝑑) and 𝑈 ∈ [𝑊 1,∞(R𝑑)]𝑑 we have that

lim
‖𝑈‖𝑊 1,∞ →0

∫︀
Ω [𝑓(Φ𝑈 (𝑎))− 𝑓(𝑎)]𝐺(∇𝑎𝑈(𝑎))𝑑𝑎

‖𝑈‖𝑊 1,∞
= 0, (39)

where 𝐺 : R𝑑×𝑑 → R is continuous and |𝐺(𝑀)| ≤ 𝐶|𝑀 | for all 𝑀 ∈ R𝑑×𝑑, for some bounded constant
𝐶 > 0.

Lemma 3. Given 𝑓 ∈𝑊 1,1(R𝑑) and 𝑈 ∈ [𝑊 1,∞(R𝑑)]𝑑 we have that

lim
‖𝑈‖𝑊 1,∞ →0

∫︀
Ω 𝑓(Φ𝑈 (𝑎))− 𝑓(𝑎)𝑑𝑎−

∫︀
Ω∇𝑓(𝑎) ·𝑈(𝑎)𝑑𝑎

‖𝑈‖𝑊 1,∞
= 0. (40)

Proof. By the fundamental theorem of calculus, we have

𝐼0(𝑈) :=
∫︁
Ω

𝑓(Φ𝑈 (𝑎))− 𝑓(𝑎)𝑑𝑎−
∫︁
Ω

∇𝑓(𝑎) ·𝑈(𝑎)𝑑𝑎 =
∫︁
Ω

1∫︁
0

[∇𝑓(Φ𝑠𝑈 (𝑎))−∇𝑓(𝑎)] ·𝑈(𝑎)𝑑𝑠𝑑𝑎, (41)

and note that by Prop. 2, ∇𝑓 ∘Φ𝑠𝑈 (𝑎) can be viewed as function in 𝐿1(R𝑑 × [0, 1]), provided ‖𝑈‖𝑊 1,∞ is
sufficiently small. Indeed, the entire integrand in the last integral of (41) is in 𝐿1(R𝑑 × [0, 1]).
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Therefore, we can apply Fubini’s theorem:

|𝐼0(𝑈)|
‖𝑈‖𝑊 1,∞

= 1
‖𝑈‖𝑊 1,∞

⃒⃒⃒⃒
⃒⃒

1∫︁
0

∫︁
Ω

[∇𝑓(Φ𝑠𝑈 (𝑎))−∇𝑓(𝑎)] ·𝑈(𝑎)𝑑𝑎𝑑𝑠

⃒⃒⃒⃒
⃒⃒ ≤

1∫︁
0

∫︁
Ω

|∇𝑓(Φ𝑠𝑈 (𝑎))−∇𝑓(𝑎)| 𝑑𝑎𝑑𝑠

≤
1∫︁

0

∫︁
Ω

|∇(𝑓 − 𝑓𝑘)(Φ𝑠𝑈 (𝑎))| 𝑑𝑎𝑑𝑠+
1∫︁

0

∫︁
Ω

|∇(𝑓 − 𝑓𝑘)(𝑎)| 𝑑𝑎𝑑𝑠+
1∫︁

0

∫︁
Ω

|∇𝑓𝑘(Φ𝑠𝑈 (𝑎))−∇𝑓𝑘(𝑎)| 𝑑𝑎𝑑𝑠,

(42)

where we introduced the sequence {𝑓𝑘} in 𝐶∞(R𝑑) such that 𝑓𝑘 → 𝑓 in 𝐿1 as 𝑘 →∞. We apply a change
of variables to the first term:

1∫︁
0

∫︁
Ω

|∇(𝑓 − 𝑓𝑘)(Φ𝑠𝑈 (𝑎))| 𝑑𝑎𝑑𝑠 =
1∫︁

0

∫︁
Φ−1

𝑠𝑈
(Ω)

|∇(𝑓 − 𝑓𝑘)(𝑥)|det(∇Φ−1
𝑠𝑈 (𝑥))𝑑𝑥𝑑𝑠 ≤ 𝛾0‖𝑓 − 𝑓𝑘‖𝑊 1,1(R𝑑),

(43)

where 𝛾0 is a bounded constant when ‖𝑈‖𝑊 1,∞(R𝑑) is sufficiently small. The last term in (42) is estimated
with the mean value theorem to give

1∫︁
0

∫︁
Ω

|∇𝑓𝑘(Φ𝑠𝑈 (𝑎))−∇𝑓𝑘(𝑎)| 𝑑𝑎𝑑𝑠 ≤ 𝐶𝑘‖𝑈‖𝐿∞(R𝑑), (44)

where 𝐶𝑘 depends on ‖∇∇𝑓𝑘‖𝐿∞ . Thus,

lim
‖𝑈‖𝑊 1,∞ →0

|𝐼0(𝑈)|
‖𝑈‖𝑊 1,∞

≤ (𝛾0 + 1)‖𝑓 − 𝑓𝑘‖𝑊 1,1(R𝑑), (45)

which holds for every 𝑘 ≥ 1. Taking 𝑘 →∞ proves (40).

The following result is an application of the results in [2, 14, 26].

Theorem 3. For the shape functional 𝐽(Ω) :=
∫︀

Ω 𝑓(𝑥)𝑑𝑥 with 𝑓 ∈ 𝑊 1,1(R𝑑) we have that 𝐽(Ω) is shape
differentiable at Ω (in the sense of Definition 1) with Fréchet derivative 𝐽 ′(Ω)(𝑈) =

∫︀
𝜕Ω 𝑓(𝑎)𝑈(𝑎) · 𝜈(𝑎)𝑑𝑎

for all 𝑈 ∈ [𝑊 1,∞(R𝑑)]𝑑.

4.2 Connecting the Domain Perturbation with the Level Set Perturbation

Our goal is to obtain a shape differentiation formula in terms of perturbations of the level set representation
𝜑 of Ω (see Section 3.1), since this is more convenient for the optimization algorithm. See also [33, 41].

4.2.1 The Speed Method

We review the velocity (speed) method for domain perturbations. Let 𝑉 (𝑥, 𝑡) be a 𝑑-dimensional, vector
field that is Lipschitz in 𝑥, for each 𝑡, and continuously differentiable in 𝑡 for each 𝑥. For any given 𝑎 ∈ R𝑑,
consider the following ODE:

𝑥̇ = 𝑉 (𝑥, 𝑡), ∀ 𝑡 > 0, 𝑥(0) = 𝑎 ∈ R𝑑, (46)

with unique solution (see [22]) 𝑥(𝑡) being the trajectory of a (material) point 𝑎 moving with velocity
𝑉 (𝑥(𝑡), 𝑡). Indeed, 𝑉 induces a deformation mapping through (46) in the following way. Let 𝑥(𝑡; 𝑎) be the
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unique solution of (46) (for a given 𝑎). Then,

Φ𝑡(𝑎) := 𝑥(𝑡; 𝑎), for all 𝑎 ∈ R𝑑, (47)

is the corresponding deformation mapping. Moreover, a Taylor expansion in 𝑡 yields

Φ𝑡(𝑎) = 𝑎 + 𝑡𝑉 (𝑎, 0) + 𝑊 (𝑎, 𝑡), for all 𝑎 ∈ R𝑑, (48)

where |𝑊 (𝑎, 𝑡)| = 𝑂(𝑡2). With this, one can establish the Gâteaux shape differentiablity of our shape
functional 𝐽(Ω) =

∫︀
Ω 𝑓(𝑥) 𝑑𝑥, for 𝑓 ∈ 𝑊 1,1(R𝑑), with respect to 𝑉 (𝑥(0), 0) using classic techniques. In

other words, setting Ω𝑡 = Φ𝑡(Ω), we have

𝑑𝐺𝐽(Ω)(𝑉 ) := lim
𝑡→0+

𝐽(Ω𝑡)− 𝐽(Ω)
𝑡

=
∫︁

𝜕Ω

𝑓(𝑎)𝑉 (𝑎, 0) · 𝜈(𝑎)𝑑𝑎, (49)

which, of course, agrees with the result in Theorem 3 if 𝑈(𝑎) ≡ 𝑉 (𝑎, 0). The same result holds if the
remainder term in (48) is dropped.

4.2.2 Level Set Gâteaux Derivative

Now, we consider Ω to be defined by a level set function, 𝜑, i.e. Ω(𝜑) := {𝑥 ∈ R𝑑 | 𝜑(𝑥) < 0} (sub-zero level
set), where 𝜑 satisfies Definition 2 for some positive constants 𝑐0 and 𝛿0.

Definition 2. Let 𝜑 ∈ 𝐶0,1(R𝑑;R) and assume that Γ(𝜑) := {𝑥 ∈ R𝑑 | 𝜑(𝑥) = 0} is non-empty. We say
that 𝜑 is non-generate, with constants 𝑐0 > 0 and 𝛿0 > 0, if |∇𝜑(𝑥)| ≥ 𝑐0 for a.e. 𝑥 ∈ R𝑑 such that
dist(𝑥,Γ(𝜑)) < 𝛿0.

In addition, we take 𝜑 to be 𝐶2(R𝑑). By [14, Ch. 2, Thm. 4.2], Ω(𝜑) is a 𝐶2, open set, and 𝜕Ω(𝜑) ≡ Γ(𝜑),
so Ω(𝜑) is well-defined.

For the shape functional, 𝐽(Ω), we seek to compute the Gâteaux shape derivative with respect to 𝜑, i.e.

𝑑𝐺𝐽(Ω(𝜑))(𝜂) := lim
𝑡→0+

𝐽(Ω(𝜑+ 𝑡𝜂))− 𝐽(Ω(𝜑))
𝑡

, (50)

for any 𝜂 ∈ 𝐶2(R𝑑). Define a perturbed level set function

𝜑(𝑥, 𝑡) = 𝜑(𝑥) + 𝑡𝜂(𝑥), ⇒ 𝜕𝑡𝜑 = 𝜂, (51)

where 𝑡 is the perturbation parameter; one can think of 𝜑 as a time-dependent level set function. Set
Ω𝑡 := Ω(𝜑(·, 𝑡)) = {𝑥 ∈ R𝑑 | 𝜑(𝑥, 𝑡) < 0} and Γ𝑡 := 𝜕Ω𝑡 = {𝑥 ∈ R𝑑 | 𝜑(𝑥, 𝑡) = 0}. Note that
|∇𝜑(𝑥, 𝑡)| ≥ 𝑐0/2 > 0 for all 𝑥 in a neighborhood of Γ𝑡 if 𝑡 is sufficiently small. This ensures that Γ𝑡 is
(locally) a 𝐶2 surface by the implicit function theorem. Next, define a velocity field

𝑉 (𝑥, 𝑡) = − ∇𝜑(𝑥, 𝑡)
|∇𝜑(𝑥, 𝑡)|2

𝜂(𝑥), (52)

which satisfies the same conditions for 𝑉 in (46), and let 𝑥(𝑡) be the corresponding solution of (46). If
𝑎 ∈ Γ0, we have that 𝜑(𝑥(𝑡), 𝑡) = 0 for all 𝑡 because

𝑑

𝑑𝑡
𝜑(𝑥(𝑡), 𝑡) ≡ 𝐷𝑉 𝜑(𝑥, 𝑡)

⃒⃒⃒
𝑥=𝑥(𝑡)

= 𝜕𝑡𝜑(𝑥, 𝑡)
⃒⃒⃒
𝑥=𝑥(𝑡)

+
(︂
∇𝜑(𝑥, 𝑡)

⃒⃒⃒
𝑥=𝑥(𝑡)

)︂
· 𝑥̇(𝑡)

= 𝜂(𝑥(𝑡)) +∇𝜑(𝑥(𝑡), 𝑡) · 𝑉 (𝑥(𝑡), 𝑡) = 0, (53)

and the fact that 𝜑(𝑥(0), 0) = 0. Thus, 𝑉 evolves the zero level set of 𝜑. Moreover, if Φ𝑡(𝑎) is the induced
map from 𝑉 , then the sub-zero level set Ω𝑡 satisfies Ω𝑡 = Φ𝑡(Ω0).
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With this, one can compute (50) by using (49), i.e.

𝑑𝐺𝐽(Ω(𝜑))(𝜂) = lim
𝑡→0+

𝐽(Ω(𝜑+ 𝑡𝜂))− 𝐽(Ω(𝜑))
𝑡

= lim
𝑡→0+

𝐽(Ω𝑡)− 𝐽(Ω0)
𝑡

=
∫︁

𝜕Ω

𝑓(𝑎)𝑉 (𝑎, 0) · 𝜈(𝑎)𝑑𝑎

=
∫︁

𝜕Ω

𝑓(𝑎)
(︂
− ∇𝜑(𝑎, 0)
|∇𝜑(𝑎, 0)|2

𝜂(𝑎)
)︂
· 𝜈(𝑎)𝑑𝑎 =

∫︁
𝜕Ω

𝑓(𝑎)
(︂
− 𝜂(𝑎)
|∇𝜑(𝑎)|

)︂
𝑑𝑎, (54)

where we used the fact that 𝜈 = ∇𝜑/|∇𝜑| on 𝜕Ω. All of the above extends to having 𝜑, 𝜂 in 𝑊 2,∞(R𝑑); in
this case, Ω(𝜑) is a 𝐶1,1 domain [14, Ch. 5, Thm 4.3].

4.2.3 Level Set Fréchet Derivative

Our goal now is to extend this to computing the Fréchet shape derivative of 𝐽(Ω(𝜑)) with respect to 𝜑,
which is defined as follows.

Definition 3. Let Ω = Ω(𝜑) be the sub-zero level set of 𝜑 ∈ 𝒳 , such that |∇𝜑| ≥ 𝑐0 > 0, for some positive
constant 𝑐0. A shape functional 𝐽(𝜑) ≡ 𝐽(Ω(𝜑)) is said to be level set shape Fréchet differentiable at 𝜑 if
the mapping 𝜂 ↦→ 𝐽(Ω(𝜑+ 𝜂)) from 𝒳 into R is Fréchet differentiable at 𝜂 = 0. The Fréchet derivative of
𝐽(Ω(·)), at 𝜑, is an operator in ℒ(𝒳 ,R), denoted 𝐽 ′(Ω(𝜑))(·), and the following limit holds

lim
‖𝜂‖𝒳 →0

|𝐽(Ω(𝜑+ 𝜂))− 𝐽(Ω(𝜑))− 𝐽 ′(Ω(𝜑))(𝜂)|
‖𝜂‖𝒳

= 0. (55)

In this section, we use Definition 3 with 𝒳 = 𝑊 2,∞(R𝑑). Moreover, we shall prove that 𝐽(Ω) =
∫︀

Ω 𝑓(𝑥) 𝑑𝑥

is level set shape Fréchet differentiable by using Theorem 3. To do this, we have to reconcile two different,
but similar, notions of domain perturbation. The first is the perturbed domain Ω(𝜑+ 𝜂) and the second is
through a perturbation of the identity approach given by

Φ𝜂(𝑎) = 𝑎 + 𝑉𝜂(𝑎), for all 𝑎 ∈ R𝑑, 𝑉𝜂(𝑎) := − ∇𝜑(𝑎)
|∇𝜑(𝑎)|2 𝜂(𝑎). (56)

Note the similarity with (48) and (52). Let Φ𝑡 satisfy (46) with 𝑉 given by (52), and note that ∇𝑎Φ𝑡(𝑎)
uniquely satisfies the matrix valued ODE [14, Ch. 8]:

𝑑

𝑑𝑡
𝑀(𝑎, 𝑡) = [∇𝑥𝑉 (Φ𝑡(𝑎), 𝑡)]𝑀(𝑎, 𝑡), ∀ 𝑡 > 0, 𝑀(𝑎, 0) = 𝐼, ∀𝑎 ∈ R𝑑, (57)

which follows by the theory in [22]. Furthermore, we have an explicit formula for ∇𝑎Φ𝑡(𝑎):

∇𝑎Φ𝑡(𝑎) = exp

⎧⎨⎩
𝑡∫︁

0

∇𝑥𝑉 (𝑥(𝑠; 𝑎), 𝑠) 𝑑𝑠

⎫⎬⎭ =: 𝐴(𝑡), (58)

where exp {·} is the matrix exponential.

Theorem 4. Let {𝜑𝑘}𝑘≥1 be a sequence of smooth functions such that ‖𝜑𝑘 − 𝜑‖𝑊 2,∞ → 0 as 𝑘 → ∞.
Assume |∇𝜑| ≥ 𝑐0 > 0 and |∇𝜂| ≤ 𝑐0/2, so that |∇(𝜑+ 𝜂)| ≥ 𝑐0/2. In addition, assume ‖𝜂‖𝑊 2,∞ ≤ 𝑐1 for
some fixed constant 𝑐1. Set ̃︀Φ = Φ𝑡|𝑡=1. Then,

‖Φ𝜂 − ̃︀Φ‖𝐿∞(R𝑑) ≤ 𝑂 (‖𝜂‖𝐿∞‖∇𝜂‖𝐿∞) ,

‖∇Φ𝜂 −∇̃︀Φ‖𝐿∞(R𝑑) ≤ 𝑂
(︀
‖𝜂‖2𝑊 2,∞

)︀
+ 𝑞1‖𝜑𝑘‖𝑊 3,∞‖𝜂‖2𝐿∞ + 𝑞2‖𝜑𝑘 − 𝜑‖𝑊 2,∞‖𝜂‖𝐿∞ , (59)

for all 𝑘 ≥ 1, for some bounded constants 𝑞1, 𝑞2.
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Proof. For now, take 𝑎 ∈ R𝑑 fixed and note that the solution of (46) satisfies:

|𝑥(𝑡)− 𝑎| =

⃒⃒⃒⃒
⃒⃒

𝑡∫︁
0

𝑉 (𝑥(𝑠), 𝑠) 𝑑𝑠

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶 (‖𝜑‖𝑊 1,∞ + ‖𝜂‖𝑊 1,∞) ‖𝜂‖𝐿∞ , 0 ≤ 𝑡 ≤ 1, (60)

for some constant 𝐶 depending on 𝑐0. We first estimate ‖Φ𝜂 − ̃︀Φ‖𝐿∞(R𝑑) and we start with

𝑉𝜂(𝑎)− 𝑉 (𝑥(𝑠), 𝑠) = ∇𝜑(𝑎)
|∇𝜑(𝑎)|2 𝜂(𝑎)− ∇[𝜑(𝑥(𝑠)) + 𝑠𝜂(𝑥(𝑠))]

|∇[𝜑(𝑥(𝑠)) + 𝑠𝜂(𝑥(𝑠))]|2 𝜂(𝑥(𝑠))

= 𝑇1 + 𝑇2 + 𝑇3, (61)

where

𝑇1 = 1
|∇𝜑(𝑎)|2 (𝜂(𝑎)∇𝜑(𝑎)− 𝜂(𝑥(𝑠))∇𝜑(𝑥(𝑠))) ,

𝑇2 = − 𝑠

|∇𝜑(𝑎)|2 𝜂(𝑥(𝑠))∇𝜂(𝑥(𝑠)),

𝑇3 = 𝜂(𝑥(𝑠))∇[𝜑(𝑥(𝑠)) + 𝑠𝜂(𝑥(𝑠))]
(︂
|∇[𝜑(𝑥(𝑠)) + 𝑠𝜂(𝑥(𝑠))]|2 − |∇𝜑(𝑎)|2

|∇𝜑(𝑎)|2|∇[𝜑(𝑥(𝑠)) + 𝑠𝜂(𝑥(𝑠))]|2

)︂
. (62)

Next, we note the following basic estimates:

|∇𝜑(𝑥(𝑠))−∇𝜑(𝑎)| = |∇2𝜑(𝑥(𝜉)) · (𝑥(𝑠)− 𝑎)| ≤ 𝐶‖∇2𝜑‖𝐿∞‖𝜂‖𝐿∞ ,

|𝜂(𝑥(𝑠))− 𝜂(𝑎)| ≤ 𝐶‖∇𝜂‖𝐿∞‖𝜂‖𝐿∞ , (63)

for some bounded constant 𝐶. Using these estimates, it is easy to show that

|𝑇1|, |𝑇2|, |𝑇3| ≤ 𝐶‖𝜂‖𝐿∞‖∇𝜂‖𝐿∞ , (64)

for some bounded constant 𝐶, which gives a bound for (61). Since 𝑥(1) ≡ Φ̃(𝑎) = 𝑎 +
∫︀ 1

0 𝑉 (𝑥(𝑠), 𝑠)𝑑𝑠, and
𝑎 was arbitrary, we get

‖Φ𝜂 − Φ̃‖𝐿∞(R𝑑) =

⃦⃦⃦⃦
⃦⃦

1∫︁
0

𝑉𝜂(𝑎)− 𝑉 (𝑥(𝑠), 𝑠) 𝑑𝑠

⃦⃦⃦⃦
⃦⃦ ≤ 𝐶‖𝜂‖𝐿∞‖∇𝜂‖𝐿∞ . (65)

Next, we estimate

∇𝑉 (𝑥(𝑠), 𝑠)𝐴(𝑠)−∇𝑉 (𝑎, 0) = 𝑇4 + 𝑇5

𝑇4 := [∇𝑉 (𝑥(𝑠), 𝑠)−∇𝑉𝜂(𝑎)]𝐴(𝑠),
𝑇5 := ∇𝑉𝜂(𝑎) [𝐴(𝑠)− 𝐼] . (66)

Estimating 𝑇4 is similar to estimating (62). We first note that |∇𝜂(𝑥(𝑠))−∇𝜂(𝑎)| ≤ 𝐶‖∇2𝜂‖𝐿∞‖𝜂‖𝐿∞ ,
for some bounded constant 𝐶. Furthermore,

|∇2𝜑(𝑥(𝑠))−∇2𝜑(𝑎)| ≤ |∇2(𝜑− 𝜑𝑘)(𝑥(𝑠))−∇2(𝜑− 𝜑𝑘)(𝑎)|+ |∇2𝜑𝑘(𝑥(𝑠))−∇2𝜑𝑘(𝑎)|
≤ 2‖𝜑− 𝜑𝑘‖𝑊 2,∞ + |∇3𝜑𝑘(𝑥(𝜉)) · (𝑥(𝑠)− 𝑎)|
≤ 2‖𝜑− 𝜑𝑘‖𝑊 2,∞ + 𝐶‖∇3𝜑𝑘‖𝐿∞‖𝜂‖𝐿∞ , (67)

for every 𝑘 ≥ 1. Next, by the properties of the matrix exponential, we have

|𝐴(𝑠)− 𝐼| ≤
𝑠∫︁

0

|∇𝑥𝑉 (𝑥(𝜇; 𝑎), 𝜇)| 𝑑𝜇|𝐴|(𝑠), |𝐴|(𝑠) = exp

⎧⎨⎩
𝑠∫︁

0

|∇𝑥𝑉 (𝑥(𝜇; 𝑎), 𝜇)| 𝑑𝜇

⎫⎬⎭ . (68)

Note that |𝐴(𝑠)| is uniformly bounded for all 0 ≤ 𝑠 ≤ 1, and |∇𝑥𝑉 (𝑥(𝜇; 𝑎), 𝜇)| ≤ 𝐶‖𝜂‖𝑊 1,∞ . Combining
these estimates, and the usual arguments, we have

|∇𝑉 (𝑥(𝑠), 𝑠)𝐴(𝑠)−∇𝑉 (𝑎, 0)| ≤ 𝐶
(︀
‖𝜂‖2𝑊 2,∞ + ‖𝜑− 𝜑𝑘‖𝑊 2,∞‖𝜂‖𝐿∞ + ‖∇3𝜑𝑘‖𝐿∞‖𝜂‖2𝐿∞

)︀
, (69)

for all 0 ≤ 𝑠 ≤ 1. From this, we obtain the bound on ‖∇Φ𝜂 −∇̃︀Φ‖𝐿∞ given in (59).
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Corollary 2. Assume the hypothesis of Thm. 4. Then,

‖det(∇Φ𝜂)− det(∇̃︀Φ)‖𝐿∞(R𝑑) ≤ 𝑂
(︀
‖𝜂‖2𝑊 2,∞

)︀
+ 𝑞1‖𝜑𝑘‖𝑊 3,∞‖𝜂‖2𝐿∞ + 𝑞2‖𝜑𝑘 − 𝜑‖𝑊 2,∞‖𝜂‖𝐿∞ , (70)

for all 𝑘 ≥ 1, for some bounded constants 𝑞1, 𝑞2.

Theorem 5. Assume 𝜑 ∈𝑊 2,∞(R𝑑) and that it satisfies Definition 2 for some positive constants 𝑐0, 𝛿0. Let
Ω(𝜑+ 𝜂) be the sub-zero level set of 𝜑+ 𝜂. For the shape functional 𝐽(Ω) :=

∫︀
Ω 𝑓(𝑥)𝑑𝑥 with 𝑓 ∈𝑊 1,1(R𝑑)

we have that 𝐽(Ω) is level set shape differentiable at Ω (in the sense of Definition 3 with 𝒳 = 𝑊 2,∞(R𝑑))
with Fréchet derivative 𝐽 ′(Ω)(𝜂) =

∫︀
𝜕Ω 𝑓(𝑎)

(︀
−𝜂|∇𝜑(𝑎)|−1)︀

𝑑𝑎 for all 𝜂 ∈𝑊 2,∞(R𝑑).

Proof. First note that Ω(𝜑+ 𝜂) = Ω1 = Φ1(Ω0) ≡ ̃︀Φ(Ω) and Ω(𝜑) = Ω0 ≡ Ω. In addition,

𝐽 ′(Ω(𝜑))(𝜂) =
∫︁

𝜕Ω(𝜑)

𝑓(𝑎)
(︂
− 𝜂(𝑎)
|∇𝜑(𝑎)|

)︂
𝑑𝑎 =

∫︁
𝜕Ω

𝑓(𝑎)𝑉𝜂(𝑎) · 𝜈 𝑑𝑎 = 𝐽 ′(Ω)(𝑉𝜂),

where 𝑉𝜂 is given by (56). Now, note that

𝐽(Ω(𝜑+ 𝜂)) =
∫︁

̃︀Φ(Ω)

𝑓(𝑥)𝑑𝑥−
∫︁

Φ𝜂(Ω)

𝑓(𝑥)𝑑𝑥 +
∫︁

Φ𝜂(Ω)

𝑓(𝑥)𝑑𝑥

⏟  ⏞  
=𝐽(Ω𝑉𝜂 )

=
∫︁
Ω

𝑓(̃︀Φ(𝑎)) det(∇𝑎
̃︀Φ(𝑎))𝑑𝑎−

∫︁
Ω

𝑓(Φ𝜂(𝑎)) det(∇𝑎Φ𝜂(𝑎))𝑑𝑎

⏟  ⏞  
=𝑇6

+𝐽(Ω𝑉𝜂
). (71)

By the fundamental theorem of calculus, we have

𝑓(̃︀Φ(𝑎))− 𝑓(Φ𝜂(𝑎)) =
1∫︁

0

∇𝑓
(︁
𝑠̃︀Φ(𝑎) + (1− 𝑠)Φ𝜂(𝑎)

)︁
·
(︁̃︀Φ(𝑎)−Φ𝜂(𝑎)

)︁
𝑑𝑠, (72)

and so

|𝑇6| ≤
∫︁
Ω

(︁
𝑓(̃︀Φ(𝑎))− 𝑓(Φ𝜂(𝑎))

)︁
det(∇𝑎

̃︀Φ(𝑎))𝑑𝑎 +
∫︁
Ω

𝑓(Φ𝜂(𝑎))
(︁

det(∇𝑎
̃︀Φ(𝑎))− det(∇𝑎Φ𝜂(𝑎))

)︁
𝑑𝑎

≤ 𝐶‖𝑓‖𝑊 1,1(R𝑑)‖∇𝜂‖2𝐿∞ + 𝐶‖𝑓‖𝐿1(R𝑑)
(︀
‖𝜂‖2𝑊 2,∞ + ‖𝜑𝑘‖𝑊 3,∞‖𝜂‖2𝐿∞ + ‖𝜑𝑘 − 𝜑‖𝑊 2,∞‖𝜂‖𝐿∞

)︀
,

(73)

where we used Theorem 4 and Corollary 2. Therefore,

𝐽(Ω(𝜑+ 𝜂))− 𝐽(Ω(𝜑))− 𝐽 ′(Ω(𝜑))(𝜂) = 𝑇6 + 𝐽(Ω𝑉𝜂
)− 𝐽(Ω)− 𝐽 ′(Ω)(𝑉𝜂), (74)

and since ‖𝑉𝜂‖𝑊 1,∞ ≤ 𝐶𝜂‖𝜂‖𝑊 1,∞ , for all 𝑘 ≥ 1, we obtain

lim
‖𝜂‖𝑊 2,∞ →0

|𝐽(Ω(𝜑+ 𝜂))− 𝐽(Ω(𝜑))− 𝐽 ′(Ω(𝜑))(𝜂)|
‖𝜂‖𝑊 2,∞

≤ 𝐶‖𝜑𝑘 − 𝜑‖𝑊 2,∞

+ 𝐶𝜂 lim
‖𝑉𝜂‖𝑊 1,∞ →0

|𝐽(Ω𝑉𝜂
)− 𝐽(Ω)− 𝐽 ′(Ω)(𝑉𝜂)|
‖𝑉𝜂‖𝑊 1,∞

≤ 𝐶‖𝜑𝑘 − 𝜑‖𝑊 2,∞ , (75)

where we used Theorem 3. Taking 𝑘 →∞ proves the result.

4.3 Shape Differentiability on a Cut Subdomain

We now extend the above formula to computing shape derivatives when Ω is “cut” by another fixed domain.
In other words, consider the shape functional:

𝐽𝑇 (Ω) =
∫︁

𝑇 ∩Ω

𝑓(𝑥) 𝑑𝑥, (76)
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where, again, 𝑓 ∈𝑊 1,1(R𝑑) and 𝑇 is a fixed, bounded Lipschitz domain with piecewise smooth boundary.
We seek to prove that (76) is Fréchet differentiable with respect to Ω keeping 𝑇 fixed. In Section 4.4, 𝑇 will
correspond to an element in the mesh.

We start by introducing a smooth regularization 𝜌𝜖 of the characteristic function 𝜒𝑇 with 𝜖 > 0, that
satisfies the following properties:

𝜌𝜖(𝑥)→ 𝜒𝑇 (𝑥), for all 𝑥 /∈ 𝜕𝑇, ‖𝜌𝜖 − 𝜒𝑇 ‖𝐿1(R𝑑) → 0, as 𝜖→ 0. (77)

With this, we define

𝐽𝜖
𝑇 (Ω) =

∫︁
Ω

𝜌𝜖(𝑥)𝑓(𝑥) 𝑑𝑥, ⇒ lim
𝜖→0

𝐽𝜖
𝑇 (Ω) =

∫︁
Ω

𝜒𝑇 (𝑥)𝑓(𝑥) 𝑑𝑥 = 𝐽𝑇 (Ω). (78)

The following assumption is crucial.

Assumption 2. Assume that 𝜕Ω ∩ 𝜕𝑇 has vanishing R𝑑−1 Lebesgue measure.

Under Assumption 2, we have that

𝜒𝜕Ω(𝑥)𝜌𝜖(𝑥)→ 𝜒𝜕Ω∩𝑇 (𝑥), for a.e. 𝑥 ∈ 𝜕Ω, as 𝜖→ 0, (79)

and also

lim
𝜖→0

∫︁
𝜕Ω

𝜌𝜖(𝑥)𝑔(𝑥) 𝑑𝑆(𝑥) =
∫︁

𝜕Ω∩𝑇

𝑔(𝑥) 𝑑𝑆(𝑥), for all 𝑔 ∈ 𝐿1(𝜕Ω). (80)

4.3.1 Fréchet Differentiability on a Cut Subdomain

We first show the Fréchet differentiability of the shape functional for standard domain perturbations
(analogous to Section 4.1). We start with the following lemmas.

Lemma 4. Given 𝑓 ∈ 𝐿1(R𝑑) and 𝑈 ∈ [𝑊 1,∞(R𝑑)]𝑑 we have that

lim
‖𝑈‖𝑊 1,∞ →0

∫︀
Ω [𝑓(Φ𝑈 (𝑎))𝜒𝑇 (Φ𝑈 (𝑎))− 𝑓(𝑎)𝜒𝑇 (𝑎)]𝐺(∇𝑎𝑈(𝑎))𝑑𝑎

‖𝑈‖𝑊 1,∞
= 0, (81)

where 𝐺 : R𝑑×𝑑 → R is continuous and |𝐺(𝑀)| ≤ 𝐶|𝑀 | for all 𝑀 ∈ R𝑑×𝑑, for some bounded constant
𝐶 > 0.

Proof. Since 𝜒𝑇 ∈ 𝐿∞(R𝑑), then 𝑓 · 𝜒𝑇 ∈ 𝐿1(R𝑑). Thus, the result follows from Lemma 2.

Lemma 5. Given 𝑓 ∈𝑊 1,1(R𝑑) and 𝑈 ∈ [𝑊 1,∞(R𝑑)]𝑑 we have that

lim
‖𝑈‖𝑊 1,∞ →0

lim
𝜖→0

∫︀
Ω 𝑓(Φ𝑈 (𝑎))𝜌𝜖(Φ𝑈 (𝑎))− 𝑓(𝑎)𝜌𝜖(𝑎)𝑑𝑎−

∫︀
Ω∇[𝑓(𝑎)𝜌𝜖(𝑎)] ·𝑈(𝑎)𝑑𝑎

‖𝑈‖𝑊 1,∞
= 0, (82)

provided Assumption 2 holds.

Proof. Let 𝜖 > 0 be fixed and start by expanding the numerator in (82), i.e.

𝐼𝜖(𝑈) :=
∫︁
Ω

𝑓(Φ𝑈 (𝑎))𝜌𝜖(Φ𝑈 (𝑎))− 𝑓(𝑎)𝜌𝜖(𝑎)𝑑𝑎−
∫︁
Ω

∇[𝑓(𝑎)𝜌𝜖(𝑎)] ·𝑈(𝑎)𝑑𝑎

=
∫︁
Ω

1∫︁
0

[∇ [𝑓(Φ𝑠𝑈 (𝑎))𝜌𝜖(Φ𝑠𝑈 (𝑎))]−∇[𝑓(𝑎)𝜌𝜖(𝑎)]] ·𝑈(𝑎)𝑑𝑠𝑑𝑎, (83)
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where we used the fundamental theorem of calculus. Expanding further, we get

𝐼𝜖(𝑈) =
∫︁
Ω

1∫︁
0

[∇ [𝑓(Φ𝑠𝑈 (𝑎))𝜌𝜖(Φ𝑠𝑈 (𝑎))]−∇[𝑓(Φ𝑠𝑈 (𝑎))𝜌𝜖(𝑎)]] ·𝑈(𝑎)𝑑𝑠𝑑𝑎

+
∫︁
Ω

1∫︁
0

[𝜌𝜖(𝑎) (∇𝑓(Φ𝑠𝑈 (𝑎))−∇𝑓(𝑎))] ·𝑈(𝑎)𝑑𝑠𝑑𝑎 +
∫︁
Ω

1∫︁
0

∇ · [𝜌𝜖(𝑎) (𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎)) 𝑈(𝑎)] 𝑑𝑠𝑑𝑎

−
∫︁
Ω

1∫︁
0

𝜌𝜖(𝑎)∇ · [(𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎)) 𝑈(𝑎)] 𝑑𝑠𝑑𝑎 =: 𝐴1
𝜖 +𝐴2

𝜖 +𝐴3
𝜖 −𝐴4

𝜖 .

(84)

Next, estimate 𝐴2
𝜖 . By the Lebesgue dominated convergence theorem and Fubini’s Thm. (using Prop. 2),

lim
𝜖→0

|𝐴2
𝜖 |

‖𝑈‖𝑊 1,∞
= 1
‖𝑈‖𝑊 1,∞

⃒⃒⃒⃒
⃒⃒∫︁
Ω

𝜒𝑇 (𝑎)
1∫︁

0

(∇𝑓(Φ𝑠𝑈 (𝑎))−∇𝑓(𝑎)) ·𝑈(𝑎)𝑑𝑠𝑑𝑎

⃒⃒⃒⃒
⃒⃒

≤ 1
‖𝑈‖𝑊 1,∞

1∫︁
0

∫︁
Ω∩𝑇

|∇𝑓(Φ𝑠𝑈 (𝑎))−∇𝑓(𝑎)| 𝑑𝑎𝑑𝑠‖𝑈‖𝐿∞ ≤
1∫︁

0

∫︁
Ω

|∇𝑓(Φ𝑠𝑈 (𝑎))−∇𝑓(𝑎)| 𝑑𝑎𝑑𝑠. (85)

We then have

lim
‖𝑈‖𝑊 1,∞ →0

lim
𝜖→0

|𝐴2
𝜖 |

‖𝑈‖𝑊 1,∞
= 0, (86)

by a similar proof as in Lemma 3. For 𝐴3
𝜖 , we apply the divergence theorem:

lim
𝜖→0

𝐴3
𝜖 = lim

𝜖→0

1∫︁
0

∫︁
𝜕Ω

𝜌𝜖(𝑎) (𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎)) 𝑈(𝑎) · 𝜈(𝑎)𝑑𝑆(𝑎)𝑑𝑠

=
∫︁

𝜕Ω

𝜒𝑇 (𝑎)
1∫︁

0

(𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎)) 𝑈(𝑎) · 𝜈(𝑎)𝑑𝑠𝑑𝑆(𝑎). (87)

Then,

lim
‖𝑈‖𝑊 1,∞ →0

lim
𝜖→0

|𝐴3
𝜖 |

‖𝑈‖𝑊 1,∞
≤ lim

‖𝑈‖𝑊 1,∞ →0

1∫︁
0

∫︁
𝜕Ω

|𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎)| 𝑑𝑆(𝑎)𝑑𝑠 = 0, (88)

by a similar argument as for 𝐴2
𝜖 and using a trace theorem. As for 𝐴4

𝜖 , we have

lim
𝜖→0

𝐴4
𝜖 =

∫︁
Ω

𝜒𝑇 (𝑎)
1∫︁

0

∇ · [(𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎)) 𝑈(𝑎)] 𝑑𝑠𝑑𝑎, (89)

and so

lim
‖𝑈‖𝑊 1,∞ →0

lim
𝜖→0

|𝐴4
𝜖 |

‖𝑈‖𝑊 1,∞
≤ lim

‖𝑈‖𝑊 1,∞ →0

1
‖𝑈‖𝑊 1,∞

1∫︁
0

∫︁
Ω∩𝑇

∇ · [(𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎)) 𝑈(𝑎)] 𝑑𝑎𝑑𝑠

≤ lim
‖𝑈‖𝑊 1,∞ →0

1∫︁
0

∫︁
Ω

|∇ (𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎))| 𝑑𝑎𝑑𝑠+
1∫︁

0

∫︁
Ω

|𝑓(Φ𝑠𝑈 (𝑎))− 𝑓(𝑎)| 𝑑𝑎𝑑𝑠

≤ 𝛾1‖𝑓 − 𝑓𝑘‖𝑊 1,1(R𝑑), (90)
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for all 𝑘 ≥ 1 by a similar proof as in Lemma 3. Thus,

lim
‖𝑈‖𝑊 1,∞ →0

lim
𝜖→0

|𝐴4
𝜖 |

‖𝑈‖𝑊 1,∞
= 0.

Now, we expand 𝐴1
𝜖 :

𝐴1
𝜖 =

1∫︁
0

∫︁
Ω

𝑈(𝑎) · ∇𝑓(Φ𝑠𝑈 (𝑎)) (𝜌𝜖(Φ𝑠𝑈 (𝑎))− 𝜌𝜖(𝑎)) 𝑑𝑎𝑑𝑠

+
1∫︁

0

∫︁
Ω

∇ · [𝑓(Φ𝑠𝑈 (𝑎)) (𝜌𝜖(Φ𝑠𝑈 (𝑎))− 𝜌𝜖(𝑎)) 𝑈(𝑎)] 𝑑𝑎𝑑𝑠

−
1∫︁

0

∫︁
Ω

(𝜌𝜖(Φ𝑠𝑈 (𝑎))− 𝜌𝜖(𝑎))∇ · [𝑓(Φ𝑠𝑈 (𝑎))𝑈(𝑎)] 𝑑𝑎𝑑𝑠 =: 𝐵1
𝜖 +𝐵2

𝜖 −𝐵3
𝜖 . (91)

By the Lebesgue dominated convergence theorem,

lim
𝜖→0

|𝐵1
𝜖 |

‖𝑈‖𝑊 1,∞
≤

1∫︁
0

∫︁
Ω

|∇𝑓(Φ𝑠𝑈 (𝑎))| |𝜒𝑇 (Φ𝑠𝑈 (𝑎))− 𝜒𝑇 (𝑎)| 𝑑𝑎𝑑𝑠. (92)

For each fixed 𝑈 and 𝑠 ∈ [0, 1], let 𝐸𝑠 = {𝑎 ∈ R𝑑 | |𝜒𝑇 (Φ𝑠𝑈 (𝑎))− 𝜒𝑇 (𝑎)| = 1}, and note that
|𝜒𝑇 (Φ𝑠𝑈 (𝑎))− 𝜒𝑇 (𝑎)| = 0 on R𝑑 ∖ 𝐸𝑠. Note that 𝜒𝑇 ∘ Φ𝑠𝑈 = 𝜒̃︀𝑇 , i.e. is the characteristic function
of ̃︀𝑇 = Φ−1

𝑠𝑈 (𝑇 ).
A simple argument gives that 𝐸𝑠 ⊂ ̃︀𝐸 := (𝑇 ∖ ̃︀𝑇 ) ∪ ( ̃︀𝑇 ∖ 𝑇 ). Set 𝛿 = 𝑠‖𝑈‖𝐿∞ . Clearly, dist(𝑥, 𝜕𝑇 ) ≤ 𝛿

for all 𝑥 ∈ ̃︀𝑇 ∖ 𝑇 . Moreover, let 𝑥 ∈ 𝑇 ∖ ̃︀𝑇 , so it has a pre-image 𝑎 /∈ 𝑇 with 𝑥 = Φ𝑠𝑈 (𝑎). Since |𝑥− 𝑎| ≤ 𝛿,
and the line segment with endpoints 𝑥, 𝑎 intersects 𝜕𝑇 , then dist(𝑥, 𝜕𝑇 ) ≤ 𝛿, which holds for all 𝑥 ∈ 𝑇 ∖ ̃︀𝑇 .
Therefore, by symmetry, we have dist(𝑥, 𝜕𝑇 ) ≤ 𝛿 for all 𝑥 ∈ ̃︀𝐸.

Let 𝜔𝑇 be the signed distance function to 𝜕𝑇 that is negative inside 𝑇 . Since 𝜕𝑇 is Lipschitz and
piecewise smooth, the level sets {𝜔𝑇 = 𝑐} are Lipschitz and piecewise smooth for all |𝑐| sufficiently small.
Clearly, ̃︀𝐸 ⊂ ̃︀𝑆𝛿 := {𝜔𝑇 ≥ −𝛿} ∩ {𝜔𝑇 ≤ 𝛿} ≡ {𝜔𝑇 ≥ −𝛿} ∖ {𝜔𝑇 > 𝛿}.

Since the level sets are Lipschitz and piecewise smooth, one can show that |̃︀𝑆𝛿| ≤ 𝛿𝐶0, where 𝐶0 is a bounded
constant depending on the perimeter of 𝜕𝑇 . Indeed, by the monotone convergence theorem, 𝜒̃︀𝑆𝛿

→ 𝜒𝜕𝑇 as
‖𝑈‖𝑊 1,∞ → 0.

Returning to (92), we find that

lim
𝜖→0

|𝐵1
𝜖 |

‖𝑈‖𝑊 1,∞
≤ 𝛾2‖𝑓 − 𝑓𝑘‖𝑊 1,1 + max

0≤𝑠≤1
‖∇𝑓𝑘 ∘Φ𝑠𝑈‖𝐿∞

1∫︁
0

∫︁
𝐸𝑠

1𝑑𝑎𝑑𝑠

≤ 𝛾2‖𝑓 − 𝑓𝑘‖𝑊 1,1 + 𝐿𝑘

1∫︁
0

∫︁
̃︀𝑆𝛿

1𝑑𝑎𝑑𝑠 ≤ 𝛾2‖𝑓 − 𝑓𝑘‖𝑊 1,1 + 𝐿𝑘𝐶0‖𝑈‖𝐿∞ . (93)

As before, we get

lim
‖𝑈‖𝑊 1,∞ →0

lim
𝜖→0

|𝐵1
𝜖 |

‖𝑈‖𝑊 1,∞
= 0, lim

‖𝑈‖𝑊 1,∞ →0
lim
𝜖→0

|𝐵3
𝜖 |

‖𝑈‖𝑊 1,∞
= 0,

where the 𝐵3
𝜖 term follows similarly.

For 𝐵2
𝜖 , we have by the Divergence thm. and the Lebesgue dominated convergence thm.,

lim
𝜖→0

|𝐵2
𝜖 |

‖𝑈‖𝑊 1,∞
≤

1∫︁
0

∫︁
𝜕Ω

|𝑓(Φ𝑠𝑈 (𝑎))| |𝜒𝑇 (Φ𝑠𝑈 (𝑎))− 𝜒𝑇 (𝑎)| 𝑑𝑆(𝑎)𝑑𝑠. (94)
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Similar to (93), we get

lim
𝜖→0

|𝐵2
𝜖 |

‖𝑈‖𝑊 1,∞
≤ 𝛾3‖𝑓 − 𝑓𝑘‖𝑊 1,1 + max

0≤𝑠≤1
‖|∇𝑓𝑘 ∘Φ𝑠𝑈‖𝐿∞

1∫︁
0

∫︁
𝐸𝑠∩𝜕Ω

1𝑑𝑆(𝑎)𝑑𝑠

≤ 𝛾3‖𝑓 − 𝑓𝑘‖𝑊 1,1 + 𝐿𝑘

1∫︁
0

∫︁
̃︀𝑆𝛿∩𝜕Ω

1𝑑𝑆(𝑎)𝑑𝑠, (95)

and note that, by the monotone convergence theorem, 𝜒̃︀𝑆𝛿∩𝜕Ω → 𝜒𝜕𝑇 ∩𝜕Ω as ‖𝑈‖𝑊 1,∞ → 0, which yields

lim
‖𝑈‖𝑊 1,∞ →0

lim
𝜖→0

|𝐵2
𝜖 |

‖𝑈‖𝑊 1,∞
≤ 𝛾3‖𝑓 − 𝑓𝑘‖𝑊 1,1 + 𝐿𝑘|𝜕𝑇 ∩ 𝜕Ω|𝑑−1, (96)

where |𝜕𝑇 ∩ 𝜕Ω|𝑑−1 is the R𝑑−1 Lebesgue measure of 𝜕𝑇 ∩ 𝜕Ω. Invoking Assumption 2, and taking the
limit in 𝑘, we obtain

lim
‖𝑈‖𝑊 1,∞ →0

lim
𝜖→0

|𝐵2
𝜖 |

‖𝑈‖𝑊 1,∞
= 0.

The proof of (82) is complete.

Theorem 6. Given the shape functional 𝐽𝑇 (Ω) :=
∫︀

Ω∩𝑇
𝑓(𝑥)𝑑𝑥 with 𝑓 ∈𝑊 1,1(R𝑑) we have that 𝐽𝑇 (Ω) is

shape differentiable at Ω (in the sense of Definition 1) with Fréchet derivative 𝐽 ′
𝑇 (Ω)(𝑈) =

∫︀
𝜕Ω∩𝑇

𝑓(𝑎)𝑈(𝑎) ·
𝜈(𝑎)𝑑𝑆(𝑎) for all 𝑈 ∈ [𝑊 1,∞(R𝑑)]𝑑, provided Assumption 2 holds.

Proof. Set 𝐴𝑇 (𝑈) := 𝐽 ′
𝑇 (Ω)(𝑈), let 𝜖 > 0 be fixed, and define 𝐴𝜖

𝑇 (𝑈) =
∫︀

𝜕Ω 𝜌𝜖(𝑎)𝑓(𝑎)𝑈(𝑎) · 𝜈(𝑎)𝑑𝑆(𝑎),
where 𝐴𝜖

𝑇 (𝑈)→ 𝐴𝑇 (𝑈) by (80). Using (38), we have

𝐽𝜖
𝑇 (Ω𝑈 )− 𝐽𝜖

𝑇 (Ω) =
∫︁
Ω

𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎)) det(𝐼 +∇𝑎𝑈(𝑎))𝑑𝑎−
∫︁
Ω

𝜌𝜖(𝑎)𝑓(𝑎)𝑑𝑎

=
∫︁
Ω

𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))− 𝜌𝜖(𝑎)𝑓(𝑎)𝑑𝑎 +
∫︁
Ω

𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))tr(∇𝑎𝑈(𝑎))𝑑𝑎

+
∫︁
Ω

𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))𝑂(|∇𝑎𝑈(𝑎)|2)𝑑𝑎. (97)

Continuing, we get

𝐽𝜖
𝑇 (Ω𝑈 )− 𝐽𝜖

𝑇 (Ω) =
∫︁
Ω

𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))− 𝜌𝜖(𝑎)𝑓(𝑎)𝑑𝑎−
∫︁
Ω

∇𝑎 (𝜌𝜖(𝑎)𝑓(𝑎)) ·𝑈(𝑎)𝑑𝑎

+
∫︁
Ω

[𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))− 𝜌𝜖(𝑎)𝑓(𝑎)]∇𝑎 ·𝑈(𝑎)𝑑𝑎

+
∫︁
Ω

[︀
𝜌𝜖(𝑎)𝑓(𝑎)∇𝑎 ·𝑈(𝑎) +∇𝑎 (𝜌𝜖(𝑎)𝑓(𝑎)) ·𝑈(𝑎)

]︀
𝑑𝑎 +

∫︁
Ω

𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))𝑂(|∇𝑎𝑈(𝑎)|2)𝑑𝑎.

(98)

By Gauss’ divergence theorem, we arrive at

𝐽𝜖
𝑇 (Ω𝑈 )− 𝐽𝜖

𝑇 (Ω)−𝐴𝜖
𝑇 (𝑈) =

∫︁
Ω

𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))− 𝜌𝜖(𝑎)𝑓(𝑎)𝑑𝑎−
∫︁
Ω

∇𝑎 (𝜌𝜖(𝑎)𝑓(𝑎)) ·𝑈(𝑎)𝑑𝑎

+
∫︁
Ω

[︀
𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))− 𝜌𝜖(𝑎)𝑓(𝑎)

]︀
∇𝑎 ·𝑈(𝑎)𝑑𝑎 +

∫︁
Ω

𝜌𝜖(Φ𝑈 (𝑎))𝑓(Φ𝑈 (𝑎))𝑂(|∇𝑎𝑈(𝑎)|2)𝑑𝑎. (99)
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Then, by Lemmas 4, 5, we find that

lim
‖𝑈‖𝑊 1,∞ →0

𝐽𝑇 (Ω𝑈 )− 𝐽𝑇 (Ω)− 𝐽 ′
𝑇 (Ω)(𝑈)

‖𝑈‖𝑊 1,∞
= lim

‖𝑈‖𝑊 1,∞ →0
lim
𝜖→0

𝐽𝜖
𝑇 (Ω𝑈 )− 𝐽𝜖

𝑇 (Ω)−𝐴𝜖
𝑇 (𝑈)

‖𝑈‖𝑊 1,∞
= 0, (100)

which proves the assertion.

4.3.2 Level Set Fréchet Differentiability on a Cut Subdomain

We now prove the cut version of Theorem 5.

Theorem 7. Adopt the hypothesis of Theorem 6. Assume 𝜑 ∈ 𝑊 2,∞(R𝑑) and that it satisfies Definition
2 for some positive constants 𝑐0, 𝛿0. Let Ω(𝜑 + 𝜂) be the sub-zero level set of 𝜑 + 𝜂. Then, 𝐽𝑇 (Ω) is
level set shape differentiable at Ω (in the sense of Definition 3) with Fréchet derivative 𝐽 ′

𝑇 (Ω)(𝜂) =∫︀
𝜕Ω∩𝑇

𝑓(𝑎)
(︀
−𝜂|∇𝜑(𝑎)|−1)︀

𝑑𝑎 for all 𝜂 ∈ [𝑊 2,∞(R𝑑)]𝑑.

Proof. First note that Ω(𝜑+ 𝜂) = Ω1 = Φ1(Ω0) ≡ ̃︀Φ(Ω) and Ω(𝜑) = Ω0 ≡ Ω. In addition,

𝐽 ′
𝑇 (Ω(𝜑))(𝜂) =

∫︁
𝜕Ω(𝜑)∩𝑇

𝑓(𝑎)
(︂
− 𝜂(𝑎)
|∇𝜑(𝑎)|

)︂
𝑑𝑎 =

∫︁
𝜕Ω∩𝑇

𝑓(𝑎)𝑉𝜂(𝑎) · 𝜈 𝑑𝑎 = 𝐽 ′
𝑇 (Ω)(𝑉𝜂),

where 𝑉𝜂 is given by (56). Now, note that

𝐽𝑇 (Ω(𝜑+ 𝜂)) =
∫︁

̃︀Φ(Ω)∩𝑇

𝑓(𝑥)𝑑𝑥−
∫︁

Φ𝜂(Ω)∩𝑇

𝑓(𝑥)𝑑𝑥 +
∫︁

Φ𝜂(Ω)∩𝑇

𝑓(𝑥)𝑑𝑥

= lim
𝜖→0

∫︁
̃︀Φ(Ω)

𝑓(𝑥)𝜌𝜖(𝑥)𝑑𝑥−
∫︁

Φ𝜂(Ω)

𝑓(𝑥)𝜌𝜖(𝑥)𝑑𝑥 + 𝐽𝑇 (Ω𝑉𝜂
)

= lim
𝜖→0

∫︁
Ω

𝑓(̃︀Φ(𝑎))𝜌𝜖(̃︀Φ(𝑎)) det(∇𝑎
̃︀Φ(𝑎))𝑑𝑎−

∫︁
Ω

𝑓(Φ𝜂(𝑎))𝜌𝜖(Φ𝜂(𝑎)) det(∇𝑎Φ𝜂(𝑎))𝑑𝑎

⏟  ⏞  
=𝑍𝜖

+ 𝐽(Ω𝑉𝜂
). (101)

Next, we split the 𝑍𝜖 term as 𝑍𝜖 = 𝑄1
𝜖 +𝑄2

𝜖 , where

𝑄1
𝜖 =

∫︁
Ω

(︁
𝑓(̃︀Φ(𝑎))− 𝑓(Φ𝜂(𝑎))

)︁
𝜌𝜖(̃︀Φ(𝑎)) det(∇𝑎

̃︀Φ(𝑎))𝑑𝑎

+
∫︁
Ω

𝑓(Φ𝜂(𝑎))𝜌𝜖(Φ𝜂(𝑎))
(︁

det(∇𝑎
̃︀Φ(𝑎))− det(∇𝑎Φ𝜂(𝑎))

)︁
𝑑𝑎,

𝑄2
𝜖 =

∫︁
Ω

(︁
𝜌𝜖(̃︀Φ(𝑎))− 𝜌𝜖(Φ𝜂(𝑎))

)︁
𝑓(Φ𝜂(𝑎)) det(∇𝑎

̃︀Φ(𝑎))𝑑𝑎. (102)

Estimating 𝑄1
𝜖 is similar to (73), i.e. we have

lim
𝜖→0
|𝑄1

𝜖 | ≤ 𝐶‖𝑓‖𝑊 1,1(R𝑑)‖∇𝜂‖2𝐿∞ + 𝐶‖𝑓‖𝐿1(R𝑑)
(︀
‖𝜂‖2𝑊 2,∞ + ‖𝜑𝑘‖𝑊 3,∞‖𝜂‖2𝐿∞ + ‖𝜑𝑘 − 𝜑‖𝑊 2,∞‖𝜂‖𝐿∞

)︀
.

(103)

As for 𝑄2
𝜖 , we follow a similar argument to estimating (92). By the Lebesgue dominated convergence

theorem,

lim
𝜖→0
|𝑄2

𝜖 | ≤ 𝐶
∫︁
Ω

|𝑓(Φ𝜂(𝑎))|
⃒⃒⃒
𝜒𝑇 (̃︀Φ(𝑎))− 𝜒𝑇 (Φ𝜂(𝑎))

⃒⃒⃒
𝑑𝑎𝑑𝑠. (104)
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For each fixed 𝜂, let 𝐸 = {𝑎 ∈ R𝑑 |
⃒⃒⃒
𝜒𝑇 (̃︀Φ(𝑎))− 𝜒𝑇 (Φ𝜂(𝑎))

⃒⃒⃒
= 1}. Note that 𝜒𝑇 ∘ ̃︀Φ = 𝜒̃︀𝑇 and

𝜒𝑇 ∘Φ𝜂 = 𝜒𝑇𝜂
, i.e. is the characteristic function of ̃︀𝑇 = ̃︀Φ−1(𝑇 ) and 𝑇𝜂 = Φ−1

𝜂 (𝑇 ). Similar to the proof of
(93), we find that |𝐸| ≤ 𝐶‖𝜂‖2𝑊 1,∞ , where we also used (59) and 𝐶 depends on the perimeter of 𝑇𝜂, which
depends on the perimeter of 𝑇 independently of 𝜂 (for ‖𝜂‖𝑊 2,∞ small).

Returning to (104), for any 𝑘 ≥ 1, we find that

lim
𝜖→0
|𝑄2

𝜖 | ≤ 𝛾1‖𝑓 − 𝑓𝑘‖𝑊 1,1 + ‖𝑓𝑘 ∘Φ𝜂‖𝐿∞

∫︁
𝐸

1𝑑𝑎

≤ 𝛾1‖𝑓 − 𝑓𝑘‖𝑊 1,1 + 𝐿𝑘

∫︁
𝐹

1𝑑𝑎𝑑𝑠 ≤ 𝛾1‖𝑓 − 𝑓𝑘‖𝑊 1,1 + 𝐿𝑘𝐶‖𝜂‖2𝑊 1,∞ , (105)

where 𝑓𝑘 → 𝑓 in 𝑊 1,1 and 𝑓𝑘 is smooth for all 𝑘. Therefore,

𝐽𝑇 (Ω(𝜑+ 𝜂))− 𝐽𝑇 (Ω(𝜑))− 𝐽 ′
𝑇 (Ω(𝜑))(𝜂) = lim

𝜖→0
𝑍𝜖 + 𝐽𝑇 (Ω𝑉𝜂

)− 𝐽𝑇 (Ω)− 𝐽 ′
𝑇 (Ω)(𝑉𝜂), (106)

and since ‖𝑉𝜂‖𝑊 1,∞ ≤ 𝐶𝜂‖𝜂‖𝑊 1,∞ , for all 𝑘 ≥ 1, we obtain

lim
‖𝜂‖𝑊 2,∞ →0

|𝐽𝑇 (Ω(𝜑+ 𝜂))− 𝐽𝑇 (Ω(𝜑))− 𝐽 ′
𝑇 (Ω(𝜑))(𝜂)|

‖𝜂‖𝑊 2,∞
≤ 𝐶‖𝜑𝑘 − 𝜑‖𝑊 2,∞ + 𝛾1‖𝑓 − 𝑓𝑘‖𝑊 1,1

+𝐶𝜂 lim
‖𝑉𝜂‖𝑊 1,∞ →0

|𝐽𝑇 (Ω𝑉𝜂
)− 𝐽𝑇 (Ω)− 𝐽 ′

𝑇 (Ω)(𝑉𝜂)|
‖𝑉𝜂‖𝑊 1,∞

≤ 𝐶‖𝜑𝑘 − 𝜑‖𝑊 2,∞ + 𝛾1‖𝑓 − 𝑓𝑘‖𝑊 1,1 , (107)

where we used Theorem 6. Taking 𝑘 →∞ proves the result.

4.4 Shape Fréchet Differentiability over a Mesh

We now consider piecewise defined functions over the mesh ̂︀𝒯ℎ. In particular, on ̂︀𝒯ℎ, define:

𝒲ℎ = {𝑤ℎ ∈ 𝐿1(̂︀D) | 𝑤ℎ|𝑇 ∈𝑊 1,1(𝑇 ), ∀𝑇 ∈ ̂︀𝒯ℎ}, (108)

with norm given by
‖𝑤ℎ‖𝒲ℎ

:= ‖𝑤ℎ‖𝐿1(̂︀D) +
∑︁

𝑇 ∈̂︀𝒯ℎ

‖∇𝑤ℎ‖𝐿1(𝑇 ). (109)

By using the previous results, we can generalize Theorem 3 to allow for functions in 𝒲ℎ. To this end, we
need a global mesh version of Assumption 2.

Assumption 3. Assume that 𝜕Ω ∩ 𝜕𝑇 has vanishing R𝑑−1 Lebesgue measure for all 𝑇 ∈ ̂︀𝒯ℎ.

Theorem 8. For the shape functional 𝐽(Ω) :=
∫︀

Ω 𝑓ℎ(𝑥)𝑑𝑥 with 𝑓ℎ ∈ 𝒲ℎ we have that 𝐽(Ω) is shape
differentiable at Ω (in the sense of Definition 1) with Fréchet derivative 𝐽 ′(Ω)(𝑈) =

∫︀
𝜕Ω 𝑓ℎ(𝑎)𝑈(𝑎) ·𝜈(𝑎)𝑑𝑎

for all 𝑈 ∈ [𝑊 1,∞(R𝑑)]𝑑, provided Assumption 3 holds.

Proof. First, note that 𝑓ℎ|𝑇 ∈𝑊 1,1(𝑇 ) for all 𝑇 ∈ ̂︀𝒯ℎ. Let 𝑓𝑇 : R𝑑 → R be a bounded extension of 𝑓ℎ|𝑇 to
𝑊 1,1(R𝑑), for all 𝑇 ∈ ̂︀𝒯ℎ. Then,

𝐽(Ω𝑈 )− 𝐽(Ω)− 𝐽 ′(Ω)(𝑈) =
∑︁

𝑇 ∈̂︀𝒯ℎ

𝐽𝑇 (Ω𝑈 )− 𝐽𝑇 (Ω)− 𝐽 ′
𝑇 (Ω)(𝑈),

where

𝐽𝑇 (Ω) =
∫︁

Ω∩𝑇

𝑓𝑇 (𝑎)𝑑𝑎, 𝐽 ′
𝑇 (Ω)(𝑈) =

∫︁
𝜕Ω∩𝑇

𝑓𝑇 (𝑎)𝑈(𝑎) · 𝜈(𝑎)𝑑𝑎. (110)

For each term in the sum, one can apply Theorem 6. Since the sum is finite, we easily obtain the Fréchet
shape differentiability of 𝐽(Ω).
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Next, we consider domains defined using the space ℬℎ given in Section 3.1. Thus, let Ω(𝜑ℎ) be the sub-zero
level set of 𝜑ℎ, where 𝜑ℎ ∈ ℬℎ and satisfies Definition 2 for some positive constants 𝑐0, 𝛿0. We will show
that 𝐽(Ω(𝜑ℎ)) is level set shape Fréchet differentiable in the sense of Definition 3 with 𝒳 = ℬℎ.

Theorem 9. Assume 𝜑ℎ ∈ ℬℎ satisfies Definition 2 for some positive constants 𝑐0, 𝛿0. For the shape
functional 𝐽(Ω(𝜑ℎ)) :=

∫︀
Ω(𝜑ℎ) 𝑓ℎ(𝑥)𝑑𝑥 with 𝑓ℎ ∈ 𝒲ℎ, we have that 𝐽(Ω(𝜑ℎ)) is level set shape differ-

entiable at Ω(𝜑ℎ) (in the sense of Definition 3 with 𝒳 = ℬℎ) with Fréchet derivative 𝐽 ′(Ω(𝜑ℎ))(𝜂ℎ) =∫︀
𝜕Ω(𝜑ℎ) 𝑓ℎ(𝑎)

(︀
−𝜂ℎ|∇𝜑ℎ(𝑎)|−1)︀

𝑑𝑎 for all 𝜂ℎ ∈ ℬℎ, provided Assumption 3 holds.

Proof. We proceed similarly to the proof of Theorem 8. Let 𝑓𝑇 : R𝑑 → R be a bounded extension of 𝑓ℎ|𝑇
to 𝑊 1,1(R𝑑), for all 𝑇 ∈ ̂︀𝒯ℎ. Moreover, let 𝜑𝑇 : R𝑑 → R be a bounded extension of 𝜑ℎ|𝑇 to 𝑊 2,∞(R𝑑), for
all 𝑇 ∈ ̂︀𝒯ℎ; similarly, do a piecewise extension for 𝜂ℎ to {𝜂𝑇 } ⊂𝑊 2,∞(R𝑑). See [51, Sec. VI.3.1] for details
of the extension. Then,

𝐽(Ω(𝜑ℎ + 𝜂ℎ))− 𝐽(Ω(𝜑ℎ))− 𝐽 ′(Ω(𝜑ℎ))(𝜂ℎ) =
∑︁

𝑇 ∈̂︀𝒯ℎ

𝐽𝑇 (Ω(𝜑𝑇 + 𝜂𝑇 ))− 𝐽𝑇 (Ω(𝜑𝑇 ))− 𝐽 ′
𝑇 (Ω(𝜑𝑇 ))(𝜂𝑇 ),

where

𝐽𝑇 (Ω(𝜑𝑇 )) =
∫︁

Ω(𝜑𝑇 )∩𝑇

𝑓𝑇 (𝑎)𝑑𝑎, 𝐽 ′
𝑇 (Ω(𝜑𝑇 ))(𝜂𝑇 ) =

∫︁
𝜕Ω(𝜑𝑇 )∩𝑇

𝑓𝑇 (𝑎)
(︂
− 𝜂𝑇

|∇𝜑𝑇 (𝑎)|

)︂
𝑑𝑎. (111)

For each term in the sum, one can apply Theorem 7. Since the sum is finite, we easily obtain the Fréchet
shape differentiability of 𝐽(Ω(𝜑ℎ)).

4.5 When the Boundary Intersects a Facet

We now consider the case where Assumption 3 is violated. Suppose the violation happens on a single facet
𝐹 = 𝑇+ ∩ 𝑇− where 𝐸 := 𝜕Ω ∩ 𝜕𝑇 ⊂ 𝐹 with |𝐸|𝑑−1 > 0. Since Ω is 𝐶1,1, then |𝜈 · 𝑛| = 1 on 𝐸 where 𝑛 is
the outer normal of 𝜕𝑇+. Then, one can obtain the following modification of Theorem 8:

𝐽 ′(Ω)(𝑈) =
∫︁

𝜕Ω∖𝐸

𝑓ℎ𝑈 · 𝜈𝑑𝑆 +
∫︁
𝐸

[︂
𝑓ℎ,+

(︂
1− sgn(𝑈 · 𝑛)

2

)︂
+ 𝑓ℎ,−

(︂
1 + sgn(𝑈 · 𝑛)

2

)︂]︂
𝑈 · 𝑛 𝑑𝑆, (112)

where 𝑓ℎ,± is the restriction of 𝑓ℎ from 𝑇±. Note that (112) is not a Fréchet derivative, or even a Gâteaux
derivative, because (112) is not linear in 𝑈 ; hence, we refer to (112) as the first variation of 𝐽(Ω). If 𝑓ℎ is
continuous across the mesh, then (112) reduces the Fréchet derivative in Thm. 8.

The corresponding modification of Theorem 9 is given by

𝐽 ′(Ω(𝜑ℎ))(𝜂ℎ) = −
∫︁

𝜕Ω∖𝐸

𝑓ℎ
𝜂ℎ

|∇𝜑ℎ|
𝑑𝑆

−
∫︁
𝐸

[︂
𝑓ℎ,+
|∇𝜑ℎ,+|

(︂
1 + sgn(𝜂ℎ(∇𝜑ℎ · 𝑛))

2

)︂
+

𝑓ℎ,−
|∇𝜑ℎ,−|

(︂
1− sgn(𝜂ℎ(∇𝜑ℎ · 𝑛))

2

)︂]︂
𝜂ℎ 𝑑𝑆, (113)

where we have assumed that sgn(∇𝜑ℎ,+ · 𝑛) = sgn(∇𝜑ℎ,− · 𝑛) on 𝐸 with 𝜑ℎ,± denoting the restriction of
𝜑ℎ from 𝑇±. If 𝑓ℎ and ∇𝜑ℎ are continuous across the mesh, then (113) reduces the Fréchet derivative in
Thm. 9.

We discuss the effects on the numerics of the domain boundary lying along a mesh facet in Section 6.3.
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5 Unfitted Shape Optimization
We consider a discrete form of the optimization problem discussed in Section 2.2 using the unfitted
formulation in (24). Furthermore, we develop a gradient-descent optimization method to find discrete
minimizers using the level set shape derivative formulas derived earlier.

5.1 Admissible Set

The domain Ωℎ is parameterized by a level set function 𝜑ℎ ∈ 𝐵ℎ. Thus, in principle, we seek to minimize a
shape functional 𝐽(Ωℎ) over the set of admissible shapes

̃︀𝒜ℎ = {𝜙ℎ ∈ 𝐵ℎ | 𝑐−1 ≥ |∇𝜙ℎ| ≥ 𝑐}, (114)

for some suitable constant 𝑐 > 0, where the inequality constraints are needed to ensure the domain does not
degenerate. Unfortunately, ̃︀𝒜ℎ is not a convex set.

Therefore, we define a localized admissible set, that is convex, in order to pose a well-defined minimization
problem. Suppose we have a given domain Ωℎ that is represented through the level set function 𝜑ℎ ∈ ̃︀𝒜ℎ.
Next, define the convex set

𝒞(Σ) = {𝜙ℎ ∈ 𝐵ℎ | |∇𝜙ℎ| ≤ 𝑐/2, 𝜙ℎ|Σ = 0}, (115)

where Σ ⊂ 𝜕 ̂︀D, which may be empty, is used to impose additional design constraints in our optimization
(see Figure 4 for an example). Now, define the local admissible set 𝒜ℎ(𝜑ℎ,Σ) = {𝜑ℎ}+ 𝒞(Σ), where 𝜑ℎ is
a given reference level set function, and note that any 𝜓ℎ ∈ 𝒜ℎ(𝜑ℎ,Σ) satisfies 𝜓ℎ = 𝜑ℎ + 𝜙ℎ, for some
𝜙ℎ ∈ 𝒞(Σ) and

|∇𝜑ℎ +∇𝜙ℎ| ≥ ||∇𝜑ℎ| − |∇𝜙ℎ|| = |∇𝜑ℎ| − |∇𝜙ℎ| ≥ 𝑐− 𝑐/2 > 𝑐/2 > 0.

Ergo, any 𝜓ℎ ∈ 𝒜ℎ(𝜑ℎ,Σ) parameterizes a well-defined domain as its sub-zero level set. In our computations,
we iteratively update the convex set 𝒜ℎ(·,Σ) in our gradient descent procedure (see Section 5.4).

In practice, we do not allow |∇𝜑ℎ| to become close to 0 during the optimization. In fact, we strive
to maintain |∇𝜑ℎ| ≈ 1 or at least |∇𝜑ℎ| ≥ 1

2 . Then, the constraint in (115) corresponds to |∇𝜙ℎ| ≤ 1/4.
During the optimization, we periodically reinitialize 𝜑ℎ so that it is close to a signed distance function
having the same zero level set as before (see Section 5.4).

5.2 Discrete Optimization Problem

For any 𝑣ℎ ∈ 𝑉ℎ(Ωℎ(𝜑ℎ)), let 𝐽 (𝜑ℎ; 𝑣ℎ) ≡ 𝐽 (Ωℎ(𝜑ℎ); 𝑣ℎ) be the shape (cost) functional in (5). For a given
reference domain Ωℎ(̂︀𝜑ℎ), with reference level set function ̂︀𝜑ℎ, consider the following minimization problem

𝐽
(︀
𝜑ℎ,min; 𝑢ℎ(𝜑ℎ,min)

)︀
= min

𝜑ℎ∈𝒜ℎ(̂︀𝜑ℎ,Σ),
𝑢ℎ∈𝑉ℎ(Ωℎ(𝜑ℎ))

𝐽 (𝜑ℎ; 𝑢ℎ) , subject to 𝑢ℎ solving (24) on Ωℎ(𝜑ℎ), (116)

where 𝑢ℎ(𝜑ℎ) ≡ 𝑢ℎ(Ωℎ(𝜑ℎ)). Since 𝐵ℎ is finite dimensional, 𝒜ℎ(̂︀𝜑ℎ,Σ) effectively enforces a bounded
Lipschitz constant on the domains it contains; thus, 𝒜ℎ(̂︀𝜑ℎ,Σ) has enough compactness to ensure existence
of a minimizer (see [2]).

We rewrite the minimization problem using a Lagrangian to free the PDE-constraint, i.e. for any
𝜑ℎ ∈ 𝒜ℎ(̂︀𝜑ℎ,Σ), define

𝐿 (𝜑ℎ; 𝑣ℎ, 𝑞ℎ) := 𝐽 (𝜑ℎ; 𝑣ℎ)−𝐴ℎ (Ωℎ(𝜑ℎ); 𝑣ℎ, 𝑞ℎ) + 𝜒ℎ (Ωℎ(𝜑ℎ); 𝑞ℎ) , ∀𝑣ℎ, 𝑞ℎ ∈ 𝐵ℎ, (117)
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and note that by (24) the following property holds

𝐽 (𝜑ℎ; 𝑢ℎ(𝜑ℎ)) = 𝐿 (𝜑ℎ; 𝑢ℎ(𝜑ℎ), 𝑞ℎ) , ∀𝑞ℎ ∈ 𝑉ℎ(Ωℎ(𝜑ℎ)), (118)

for any 𝜑ℎ ∈ ̃︀𝒜ℎ. The Lagrangian framework allows us to characterize the minimizer in (116) as a
saddle-point, i.e.

𝐿
(︀
𝜑ℎ; 𝑢̄ℎ,𝑝ℎ

)︀
= min

𝜑ℎ∈𝒜ℎ(̂︀𝜑ℎ,Σ),
𝑢ℎ∈𝑉ℎ(Ωℎ(𝜑ℎ))

max
𝑞ℎ∈𝑉ℎ(Ωℎ(𝜑ℎ))

𝐿 (𝜑ℎ; 𝑢ℎ, 𝑞ℎ) , (119)

for some 𝜑ℎ = ̂︀𝜑ℎ + 𝑞ℎ with 𝑞ℎ ∈ 𝒞(Σ), 𝑢̄ℎ ∈ 𝑉ℎ(Ω̄ℎ), and 𝑝ℎ ∈ 𝑉ℎ(Ω̄ℎ), where Ω̄ℎ ≡ Ω̄ℎ(𝜑ℎ). Since 𝐿 is
Fréchet differentiable, with 𝛿𝑎𝐿 (Ω; 𝑣, 𝑞) (·) denoting the Fréchet derivative with respect to the argument 𝑎,
the following first order conditions must hold for 𝑢̄ℎ and 𝑝ℎ:

𝛿𝑞ℎ𝐿
(︀
𝜑ℎ; 𝑢̄ℎ,𝑝ℎ

)︀
(𝑧ℎ) = 0, 𝛿𝑣ℎ𝐿

(︀
𝜑ℎ; 𝑢̄ℎ,𝑝ℎ

)︀
(𝑤ℎ) = 0, ∀ 𝑧ℎ,𝑤ℎ ∈ 𝑉ℎ(Ω̄ℎ), (120)

which implies that 𝑢̄ℎ and 𝑝ℎ solve the following variational problems

𝐴ℎ

(︀
Ω̄ℎ(𝜑ℎ); 𝑢̄ℎ,𝑣ℎ

)︀
= 𝜒ℎ

(︀
Ω̄ℎ(𝜑ℎ); 𝑣ℎ

)︀
, ∀𝑣ℎ ∈ 𝑉ℎ(Ω̄ℎ),

𝐴ℎ

(︀
Ω̄ℎ(𝜑ℎ); 𝑤ℎ,𝑝ℎ

)︀
= 𝛿𝑣ℎ𝐽

(︀
𝜑ℎ; 𝑢̄ℎ

)︀
(𝑤ℎ), ∀𝑤ℎ ∈ 𝑉ℎ(Ω̄ℎ). (121)

Thus, 𝜑ℎ = 𝜑ℎ,min, Ω̄ℎ = Ωℎ,min, 𝑢̄ℎ = 𝑢ℎ(𝜑ℎ,min) solves (24) on Ωℎ,min, and 𝑝ℎ = 𝑝ℎ(𝜑ℎ,min) solves an
adjoint problem. In addition, we have the following first order condition for 𝜑ℎ:

𝐿′ (︀
𝜑ℎ; 𝑢̄ℎ,𝑝ℎ

)︀
(𝑟ℎ − 𝑞ℎ) ≥ 0, ∀ 𝑟ℎ ∈ 𝒞(Σ). (122)

5.3 Reduced Gradient

Note that, ultimately, we are after the derivative of the reduced functional 𝒥 (𝜑ℎ) := 𝐽 (𝜑ℎ; 𝑢ℎ(𝜑ℎ)) in
(118), i.e. we seek to compute the level set shape derivative 𝒥 ′ (𝜑ℎ) (𝜂ℎ) ≡ 𝐽 ′ (𝜑ℎ; 𝑢(𝜑ℎ)) (𝜂ℎ), so that we
can perform gradient based optimization. This is given by the Correa-Seeger theorem [14, pg. 427]:

𝒥 ′ (𝜑ℎ) (𝜂ℎ) = 𝐿′ (𝜑ℎ; 𝑢̄ℎ(𝜑ℎ),𝑝ℎ(𝜑ℎ)) (𝜂ℎ), ∀ 𝜂ℎ ∈ 𝐵ℎ, (123)

for any 𝜑ℎ ∈ ̃︀𝒜ℎ. In our case, because of (5), the problem is self-adjoint and 𝑝ℎ = 𝑢̄ℎ.
We now apply our results from Section 4.4 to compute (123). However, our formulas only consider

bulk functionals (not boundary functionals). Thus, we restrict our problem by taking 𝛾N = 0, ΓD = ∅, and
𝑔N ≠ 0 only within Σ ⊂ 𝜕 ̂︀D. This allows us to avoid differentiating any boundary integrals (see discussion
in Section 7). In addition, for convenience, we take 𝑓 = 0, which implies that 𝜒ℎ (Ωℎ; 𝑣ℎ) is independent of
any shape perturbations in 𝒞(Σ).

Evaluating the Fréchet derivatives, we obtain for all 𝜑ℎ ∈ ̃︀𝒜ℎ that

𝜒′
ℎ (Ωℎ(𝜑ℎ); 𝑣ℎ) (𝜂ℎ) = 0, 𝐽 ′ (Ωℎ(𝜑ℎ); 𝑣ℎ) (𝜂ℎ) = −𝑎0

∫︁
Γℎ(𝜑ℎ)

𝜂ℎ

|∇𝜑ℎ|
𝑑𝑆(𝑥),

𝐴′
ℎ (Ωℎ(𝜑ℎ); 𝑢ℎ,𝑣ℎ) (𝜂ℎ) = −

∫︁
Γℎ(𝜑ℎ)

(2𝜇𝜀(∇𝑢ℎ) : 𝜀(∇𝑣ℎ) + 𝜆(∇ · 𝑢ℎ)(∇ · 𝑣ℎ)) 𝜂ℎ

|∇𝜑ℎ|
𝑑𝑆(𝑥), (124)

for all 𝑢ℎ,𝑣ℎ ∈ 𝑉ℎ(Ωℎ(𝜑ℎ)), and all 𝜂ℎ ∈ 𝐵ℎ. Note that the facet stabilization terms in (22) do not contribute
anything because we take the facet patch selections to be fixed and independent of the perturbation 𝜂ℎ.
Hence, since 𝑝ℎ = 𝑢̄ℎ, (123) reduces to

𝒥 ′ (𝜑ℎ) (𝜂ℎ) = 𝐿′ (𝜑ℎ; 𝑢̄ℎ,𝑝ℎ) (𝜂ℎ) =
∫︁

Γℎ(𝜑ℎ)

(︀
2𝜇|𝜀(∇𝑢̄ℎ)|2 + 𝜆(∇ · 𝑢̄ℎ)2 − 𝑎0

)︀ 𝜂ℎ

|∇𝜑ℎ|
𝑑𝑆(𝑥). (125)
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Implementing (125) is straightforward within an unfitted finite element software, e.g. ngsolve [48],
ngsxfem [35], provided Assumption 3 holds. Otherwise, we need to compute (113), which can be problematic.
Fortunately, since 𝜑ℎ is a piecewise polynomial, the set 𝐸 in (113) must equal the entire facet 𝐹 , which
delivers some simplification. But (113) is still non-linear in the perturbation 𝜂ℎ. In our computations, we
simply choose a side of 𝐹 , either 𝑇+ or 𝑇−, which is automatically done by ngsxfem because the domain
boundary is never allowed to fall exactly on a mesh facet. See Section 6.3 for more discussion on this, as
well as Figure 3.

5.4 Shape Optimization Algorithm

Our algorithm is essentially gradient decent. Let 𝐵 (𝜔ℎ, 𝜂ℎ) be a bilinear form defined for all 𝜔ℎ, 𝜂ℎ in
𝐵ℎ; for example, we may take 𝐵 (𝜔ℎ, 𝜂ℎ) = (𝜔ℎ, 𝜂ℎ)

𝐻1(̂︀D). Moreover, we introduce the following restricted
finite element space 𝑄ℎ = {𝜙ℎ ∈ 𝐵ℎ | 𝜙ℎ|Σ = 0}. Then, given a current domain Ωℎ(𝜑ℎ), we find a descent
direction 𝛿𝜑ℎ ∈ 𝑄ℎ that satisfies

𝐵 (𝛿𝜑ℎ, 𝜂ℎ) = −𝒥 ′ (𝜑ℎ) (𝜂ℎ), ∀ 𝜂ℎ ∈ 𝑄ℎ. (126)

We then update 𝜑ℎ by 𝜑ℎ ← 𝜑ℎ + 𝛼𝛿𝜑ℎ, where 𝛼 > 0 is a step-size determined through a back-tracking
line search. Note that the choice of the facet patches for stabilization stays fixed during the line search.

As mentioned earlier in Section 5.1, we want the level set function 𝜑ℎ to satisfy |∇𝜑ℎ| ≈ 1 or at least
|∇𝜑ℎ| ≥ 1

2 . To satisfy this requirement, we start with an initial level set function which is the signed distance
function for our initial shape, hence |∇𝜑ℎ| = 1 almost everywhere. The shape optimization algorithm
however does not preserve this property and over many iterations we may no longer have |∇𝜑ℎ| ≈ 1. To
remedy this, we reinitialize 𝜑ℎ to that of a signed distance function after a set number of iterations.

Several methods for level set reinitialization on unstructured grids exist, such as the DRLSE algorithm
[37], in which the reinitialization involves solving a fully explicit difference scheme. Other methods include
[42], which use local projections and [3], which uses a fixed-point method.

In our algorithm, we compute the signed distance function directly by sampling the boundary, computing
the signed distance using a sample from the entire mesh, and then computing a regularized least squares
problem. One can also use the method in [46].

6 Numerical Results
We present some numerical tests to confirm the accuracy of our shape derivative formulation. Next, we
solve a pure geometric shape optimization problem (no PDE constraint) using the algorithm in Section
5.4. Finally, we solve a shape optimization problem under the linear elasticity PDE constraint described
in Section 2. All numerical tests were preformed using the NGSolve library [48] with the add-on package
ngsxfem [35] for implementing the unfitted scheme. Note that the order of the geometry approximation
matches the order of the finite element space used to solve a PDE constraint (when present).

6.1 First Order Accuracy Test

For some fixed initial shape, given by 𝜑ℎ, we define a perturbation 𝜂ℎ and compare our shape derivative
formula with a finite difference approximation:

𝐽 ′
FD(𝜑ℎ)(𝜂ℎ) = 𝐽(𝜑ℎ + 𝜖𝜂ℎ)− 𝐽(𝜑ℎ)

𝜖
,

for a sequence of decreasing 𝜖. The design domain is defined to be ̂︀D := (0.0, 2.0) × (0.0, 1.0) and the
initial shape is Ω := ̂︀D ∖ 𝐵𝑟(𝑥0), where 𝐵𝑟(𝑥0) is the ball of radius 𝑟 centered at 𝑥0 with 𝑟 = 0.2
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and 𝑥0 = (0.3, 0.3). Here, the exact level set representation of Ω is 𝜑(𝑥) = 𝑟 − |𝑥 − 𝑥0| and the exact
perturbation is 𝜂(𝑥) = sin(3.3𝑥+ 2.5𝑦). The cost functional 𝐽 (Ω; 𝑢̄ℎ) is (5), where 𝑢̄ℎ solves (24) on Ω(𝜑ℎ).
All elasticity and numerical parameters are the same as those used in Section 6.4. The exact shape derivative
𝐽 ′

exact(𝜑ℎ)(𝜂ℎ) is given by (125).
We use degree 𝑘 = 1 for 𝐵ℎ and set 𝜑ℎ = 𝐼ℎ𝜑 and 𝜂ℎ = 𝐼ℎ𝜂, where 𝐼ℎ is the standard nodal interpolant

for 𝐵ℎ. In doing the comparison, we compute the following

𝜁(𝜖) =
⃒⃒
𝐽 ′

exact − 𝐽 ′
FD

⃒⃒
𝜖

.

The finite difference approximation is a first order accurate approximation of the exact formula, so if 𝜁
remains bounded as 𝜖→ 0, then first order accuracy is confirmed; see Table 1. Note that taking 𝜖 smaller
than 10−7 leads to a loss of accuracy because of round-off errors.

Tab. 1: Shape derivative test accuracy results.

𝜖 𝐽(𝜑ℎ) 𝐽(𝜑ℎ + 𝜖𝜂ℎ) 𝐽 ′
exact 𝐽 ′

FD 𝜁

1.0E-01 0.75860 0.95387 0.38283 1.95275 15.69922
1.0E-03 0.75860 0.75899 0.38283 0.38804 5.21949
1.0E-05 0.75860 0.75860 0.38283 0.38287 4.94585
1.0E-07 0.75860 0.75860 0.38283 0.38283 6.47544

6.2 Translation Test

This is a similar test as in the previous section, except we translate the hole with a given velocity. Specifically,
we define Ω(𝑡) := ̂︀D ∖𝐵𝑟(𝑥(𝑡)), where 𝑥(𝑡) = 𝑥0 + 𝑡𝑣 with 𝑥0 = (0.3, 0.3), 𝑣 = (2.0, 1.0), 𝑟 = 0.2, and set
𝜑(𝑥, 𝑡) to be the signed distance function of Ω(𝑡). We again choose the compliance functional with the same
parameters, and set 𝜂(𝑥) = sin(3.3𝑥+ 2.5𝑦) as our perturbation and fix 𝜖 = 10−7. We use degree 𝑘 = 1 for
𝐵ℎ and set 𝜑ℎ(𝑥, 𝑡) = 𝐼ℎ𝜑(𝑥, 𝑡) and 𝜂ℎ(𝑥) = 𝐼ℎ𝜂(𝑥). Table 2 gives the results.

Tab. 2: Translation test accuracy results.

𝑡 𝐽(𝜑ℎ(·, 𝑡)) 𝐽(𝜑ℎ(·, 𝑡) + 𝜖𝜂ℎ(·)) 𝐽 ′
exact 𝐽 ′

FD 𝜁

0.00 0.75860 0.75860 0.38283 0.38283 6.47544
0.05 0.74186 0.74186 0.13959 0.13959 12.51948
0.10 0.73253 0.73253 0.03503 0.03503 3.21555
0.15 0.72807 0.72807 0.02159 0.02159 4.34587
0.20 0.72670 0.72670 0.05205 0.05205 0.03602

6.3 Geometric Problem

Consider the following purely geometric shape optimization problem. Let 𝑢 = 𝑢(𝑥, 𝑦) be given by

𝑢(𝑥, 𝑦) = 1
𝑝

(︂
1
𝛼
𝑥𝑝 + 1

𝛽
𝑦𝑝

)︂
, ⇒ ∇𝑢 =

(︂
1
𝛼
𝑥𝑝−1,

1
𝛽
𝑦𝑝−1

)︂
, |∇𝑢|2 =

(︂
𝑥𝑝−1

𝛼

)︂2
+

(︂
𝑦𝑝−1

𝛽

)︂2
, (127)

for any 𝛼, 𝛽 > 0 and 𝑝 ≥ 2. Next, let 𝜆 > 0 and 𝐴0 > 0 be given, and define the following shape functional:

𝐽(Ω) =
∫︁
Ω

|∇𝑢|2 𝑑𝐴− 𝜆 (|Ω| −𝐴0) , (128)
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and note that 𝑢 does not depend on Ω. Standard shape differentiation yields

𝛿𝐽(Ω; 𝑈) =
∫︁

𝜕Ω

(︀
|∇𝑢|2 − 𝜆

)︀
𝑈 · 𝜈 𝑑𝑆, (129)

for all smooth 𝑈 . For any critical point Ω* of (128), we have 𝛿𝐽(Ω*; 𝑈) = 0 for all smooth 𝑈 , which yields
the optimality conditions:

|∇𝑢(𝑥, 𝑦)|2 = 𝜆, for all (𝑥, 𝑦) ∈ 𝜕Ω*, |Ω*| = 𝐴0, ⇒
(︂
𝑥𝑝−1

𝛼
√
𝜆

)︂2
+

(︂
𝑦𝑝−1

𝛽
√
𝜆

)︂2
= 1, (130)

which means 𝜕Ω* is a superellipse depending on 𝜆. Furthermore, the area constraint determines a unique
relationship between 𝜆 and 𝐴0 through the following relation from [31]:

4(𝛼𝛽𝜆)
1

𝑝−1

(︁
Γ

(︁
1 + 1

2𝑝−2

)︁)︁2

Γ
(︁

1 + 1
𝑝−1

)︁ = 𝐴0, (131)

where Γ represents the Gamma function.
In our numerical test, we take 𝛼 = 1, 𝛽 = 2, 𝜆 = 0.18, and 𝑝 = 4. The design domain is ̂︀D :=

(−1.0, 1.0)× (−1.1, 1.1) and the initial guess for the optimal shape is a disk of radius 0.5 centered at the
origin. We use 𝑘 = 1, 2, 3 for 𝐵ℎ in the level set approximation 𝜑ℎ. See Table 3 for a list of converged 𝐽 and
𝐽 ′ values for different mesh sizes. The computed values of 𝐽 ′ are the vector 2-norm of the coefficients of the
basis representation of the linear form: 𝐽 ′(𝜑ℎ)(𝜂ℎ) =

(︀
(|∇𝑢|2 − 𝜆)|∇𝜑ℎ|−1, 𝜂ℎ

)︀
𝜕Ωℎ(𝜑ℎ). Since 𝑝 = 4, the

superellipse can be represented exactly by a discrete level set function using degree 6 piecewise polynomials.
Thus, we computed the exact value of the cost at the minimizer, which is 𝐽exact = −0.3702425373188486
and we confirmed that |𝐽 ′

exact| = 3.3 · 10−18.
The ngsxfem add-on package to NGSolve uses an isoparametric mapping for implementing higher order

unfitted schemes. But this is technically outside of our theory because we assume exact integration on the
higher order interface without invoking an isoparametric map. On the other hand, ngsxfem provides an
alternative method for integrating with higher order interfaces that uses subdivision of the underlying mesh.
Essentially, with enough subdivision levels, one can get a sufficiently accurate approximation of the various
integrals, which is the approach we use in this superellipse experiment.

Tab. 3: Superellipse (𝑝 = 4) shape optimization results. The degree of 𝐵ℎ is 𝑘.

max ℎ 𝑘 = 1 𝑘 = 2 𝑘 = 3

|𝐽 − 𝐽exact| |𝐽 ′| |𝐽 − 𝐽exact| |𝐽 ′| |𝐽 − 𝐽exact| |𝐽 ′|
0.1 1.1700e-03 1.7223e-02 3.6038e-05 1.5115e-06 1.9625e-07 9.0576e-08
0.05 7.3293e-04 5.0726e-03 4.8018e-06 3.7531e-07 9.5482e-09 4.3523e-08
0.025 1.7098e-04 2.2085e-03 2.0907e-07 1.2123e-07 1.9605e-10 1.6617e-08
0.0125 5.7855e-05 7.8292e-04 9.4514e-08 7.6382e-08 5.7451e-11 1.5158e-08

Figure 3 shows plots of the numerical minimizers compared against the exact minimizer. We now
discuss the practical issue of when the discrete boundary, 𝜕Ωℎ, lies along a mesh facet (recall Section
4.5). First, note that if 𝜕Ωℎ has a non-trivial intersection with a facet 𝐹 , then it must lie along the entire
facet, because 𝜕Ωℎ is represented by piecewise polynomials. Moreover, the ngsxfem package avoids these
ambiguous situations by adding a small number, e.g. 10−14, to the nodal values of the level set function 𝜑ℎ

that lie along the facet. In effect, this forces the derivative formula (113) to “choose a side.”
Nevertheless, when the boundary does lie along a facet, the derivative of the cost is discontinuous at

that facet. The practical effect on the optimization is that the numerical interface, 𝜕Ωℎ, can be “faceted.”
Consider Figure 3(a). Aside from the rounded corners where the numerical minimizer (red) deviates from
the exact minimizer (blue), we see that the red interface (mostly) follows the mesh facets along the nearly
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(a) Polynomial degree 𝑘 = 1. (b) Polynomial degree 𝑘 = 2. (c) Polynomial degree 𝑘 = 3.

Fig. 3: Superellipse (𝑝 = 4) shape optimization results. Background grid of the design domain is shown along with the
exact interface in blue and the numerical interface in red.

straight portions of the interface. The exact interface, for the most part, does not lie along any mesh facets.
This is particularly noticeable at the top of Figure 3(a).

It is not surprising that the exact discrete minimizer has some mesh dependence. In these experiments,
and others we have run, this effect is fairly mild. Moreover, this faceting effect is significantly reduced when
using higher order methods, as Figure 3(b,c) indicates.

6.4 Shape Optimization Elasticity

We solve the shape optimization problem in (116), with the compliance shape functional (5), using our
unfitted FEM framework. The material parameters are 𝜆 = 0, 𝜇 = 5, and the area penalization is 𝑎0 = 0.3.
Moreover, we choose the facet stabilization parameter 𝛾s = 2 with layer thickness parameter 𝛿 = ℎ, and
choose Nitsche stabilization parameters 𝛾D = 10𝜇 and 𝛾N = 0.

Fig. 4: Left: initial shape for optimization algorithm. Right: level set function constraint set Σ ⊂ 𝜕 ̂︀D denoted by solid lines.

We mimic the setup of [10] in order to compare our results. The design domain is ̂︀D := (0.0, 2.0)×(0.0, 1.0)
and the initial shape is depicted in Figure 4 (left), where the 10 (smaller) holes have a radius of 0.1, while
the two “holes” centered at the top right and bottom right corners have radius 0.25. Furthermore, ΓD = ∅
and ̂︀ΓD consists of the line segment between (0.0, 0.0) and (0.0, 0.15) and a second line segment between
(0.0, 1.0) and (0.0, 0.85). Also, 𝑔N = (0.0,−1.0) on the line segment between (2.0, 0.4) and (2.0, 0.6), which
is contained in ̂︀ΓN, and 𝑔N = (0, 0) everywhere else. Figure 5 shows the initial domain shape for the
optimization. We used a mesh size of ℎ = 0.02.

Note that the level set function is constrained to not change along Σ ⊂ 𝜕 ̂︀D as depicted in Figure 4
(right). This is to ensure the feasibility of the resulting shape. During the shape optimization process, we
choose an initial step size of 0.4, and do a backtracking line search to determine the update of the shape.
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(a) The initial guess and an exaggerated displacement of the can-
tilever is shown. (b) Same initial shape, but with the mesh shown.

Fig. 5: Initial shape for the optimization algorithm.

(a) Optimal shape (exaggerated displacement) with degree 𝑘 = 1. (b) Optimal shape (exaggerated displacement) with degree 𝑘 = 2.

Fig. 6: Resulting optimal shapes using degree 𝑘 = 1 and 𝑘 = 2 for 𝐵ℎ.

The resulting optimal shapes for both piecewise linear and piecewise quadratic 𝐵ℎ are nearly identical
(see Figure 6). The optimization history is given in Figure 7. The optimization for degree 𝑘 = 2 used the
isoparametric mapping approach in ngsxfem because the subdivision method would have been prohibitively
expensive. Since the mesh size was ℎ = 0.02, the isoparametric mapping was only a small perturbation
from a linear triangle element. Nevertheless, this does induce a small error in our shape derivative, which
introduces a small error when computing a descent direction. This is evidenced by the red curve in Figure
7a stopping at iteration index ≈ 340.

Figure 8 shows the accepted step size 𝛼 versus iteration index. For degree 𝑘 = 1, the step sizes do
not get excessively small; toward the end of the optimization 𝛼 = 0.025. The same holds for degree 𝑘 = 2,
though it does prematurely stop at index ≈ 340 as discussed earlier.

7 Conclusion
We presented a numerical shape optimization technique that takes advantage of unfitted finite element
methods. We showed how to compute the exact discrete shape derivative of bulk shape functionals, under
mild assumptions, and establish the Fréchet differentiability of discrete bulk shape functionals. This is
done using both the perturbation of the identity approach, as well as direct perturbation of the level set
representation of the domain. Our formulation allows for including a discrete PDE constraint and our
discrete derivative mimics the shape derivative formula from the continuous problem. In other words, our
method enjoys advantages of both the discretize-then-optimize and optimize-then-discretize philosophies.

We illustrated our method by considering the shape optimization of an elastic body. Specifically, we used
a Lagrangian approach to deal with the linear elasticity PDE constraint. Furthermore, our level set based
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Fig. 7: Optimization history. Blue indicates degree 𝑘 = 1 for 𝐵ℎ; red indicates degree 𝑘 = 2.
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(a) Degree 𝑘 = 1 for 𝐵ℎ.
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(b) Degree 𝑘 = 2 for 𝐵ℎ.

Fig. 8: Accepted step size vs. iteration index. The maximum step size allowed was 𝛼 = 0.4.

shape derivative approach allowed for directly optimizing the level set representation of the domain. No
ad-hoc extension velocities were needed to update the level set function. Our numerical results demonstrated
the effectiveness of our approach. For instance, the step sizes chosen by our gradient descent method are
not excessively small, which can happen with some optimize-then-discretize approaches.

A point of future work is to extend our method to handle boundary functionals. Most likely, this will
require some kind of regularization of the cost functional. Another area to investigate is the connection of
our method to time-dependent problems, i.e. to extend our approach to solving PDEs in time-dependent
geometries, as well as shape optimization with time-varying shape constraints.
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