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Abstract

This thesis gives an analysis of modeling and numerical issues in the Landau-de

Gennes (LdG) model of nematic liquid crystals (LCs) with cholesteric effects. We de-

rive various time-step restrictions for a (weighted) L2 gradient flow scheme to be energy

decreasing. Furthermore, we prove a mesh size restriction, for finite element discretiza-

tions, that is critical to avoid spurious numerical artifacts in discrete minimizers that is

not well-known in the LC literature, particularly when simulating cholesteric LCs that ex-

hibit “twist”.

Furthermore, we perform a computational exploration of the model and present

several numerical simulations in 3-D, on both slab geometries and spherical shells, using a

fully-implicit gradient flow scheme applied to a finite element discretization of the model.

The simulations are consistent with experiments, illustrate the richness of the cholesteric

model, and demonstrate the importance of the mesh size restriction.
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Chapter 1. Introduction

New types of materials are a necessary component in many new technologies [49,

75]. Liquid crystals (LCs), in particular, are finding innovative uses in many material de-

sign problems. Originally, nematic LCs were developed and commercialized for their opti-

cal properties [31, 17, 47, 86, 53, 29], which is what enables LC displays. A key component

of the functionality of LC displays is the mechanical response of LCs to electric and mag-

netic actuation [24, 5, 82]. Indeed, LCs’ mechanical actuation enables various applications,

such as liquid crystal elastomers [102, 32, 15, 79], dynamic shape control of elastic bod-

ies [25, 95], and self-assembly of colloids [82, 89, 90].

Many nematic LCs are characterized by several material constants [68, 70], which

provide useful tuning parameters that can be tailored to specific applications. This the-

sis is concerned with the modeling and numerical simulation of a particular sub-type of

LC which are known as cholesteric nematic LCs where the molecules have a chiral struc-

ture that affects their actuation and equilibrium behavior [31, 88, 60]. Cholesteric LCs

are present in many biological systems, such as viruses [37], chitin [74], and the struc-

tured coloring of the scarab beetle [4]. These materials often exhibit stripe patterns in

their optical response, which can be exploited for engineering materials for the built en-

vironment [59, 81]. This thesis presents a numerical method and analysis for simulating

cholesteric LCs in order to predict their structural features. Numerical modeling can yield

greater insight into the functional effects of cholesteric LCs in biological systems and en-

able the design of programmable materials [66, 44, 58].

Numerical analysis and simulation of LCs began with an earlier model known as

the Oseen-Frank model, which uses a vector field as the order parameter, e.g. see [7, 13,
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76, 1, 2, 3, 33, 72, 73, 93, 69, 35] and [27, 46, 54, 98, 99, 94] which model full dynamics.

The multi-constant Oseen-Frank model was the workhorse of the LCD industry. However,

non-orientable line fields cannot be modeled with Oseen-Frank [19] and defects (see Re-

mark 1) require regularization. This is why the LdG model is usually preferred because it

can model general line fields with defects. Many numerical methods and implementations

exist for the standard LdG model, e.g. [42, 8, 30, 14, 18, 61, 100, 101]. These methods

have also been extended to tackle cholesteric LCs [78, 89, 88, 60]. However, to the best

of our knowledge, a proper numerical analysis of the general LdG model that includes the

cholesteric term appears to be lacking.

1.1. Summary

This thesis gives a full numerical analysis of the general Landau-de Gennes model

with cholesteric effects. We address both computing L2 gradient flow dynamics, as well

as solving the equilibrium equations that characterize a local minimizer. In particular,

restrictions on the time-step and mesh-size appear that are not obvious to most liquid

crystal scientists. For example, the well-known convex-splitting scheme for handling the

bulk potential has a time-step restriction depending on the cholesteric twist. Moreover,

if the computational mesh size is not small enough, unphysical solutions may occur (i.e.

the computed local minimizer may exhibit numerical artifacts). Furthermore, we investi-

gate two slightly different cholesteric models which can potentially produce very different

results. We also demonstrate that the choice of initial condition can significantly affect

which local minimizer is found, as well as the speed of convergence to a solution.

Part of the contribution of this thesis is to present these issues, and how to han-
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dle them, to a diverse audience of computational scientists. Another contribution is to

explore the cholesteric LdG model and illustrate the rich phenomena that result from it;

see [81, 60, 88] for related work. Our presentation here should enable more robust compu-

tations for exploring the LC physics and device design of systems that are governed by the

cholesteric Landau-de Gennes model.

1.2. Notational Conventions

We focus on three dimensional liquid crystal models, thus 2-tensors are elements

of R3×3 denoted by standard capital letters, e.g. the 3 × 3 identity tensor is written as I.

Moreover, 4-tensors are elements of R34 and denoted by calligraphic capitals. Constants

and scalar-valued functions will be denoted by lowercase letters. Moreover, Greek letters

will typically denote certain important functions and constants. Vectors will be denoted

by boldface lowercase letters.

Let the D operator denote differentiation of a scalar-valued function with respect

to each argument of a tensor; that is, for any function ϕ mapping to R, define

Dϕ(P ) :=

[
∂ϕ

∂Pij

]3
i,j=1

, (1.1)

for all P ∈ R3×3. Likewise, let the D2 operator denote the Hessian; that is, for all ϕ as

above define

D2ϕ(P ) :=

[
∂2ϕ

∂Pij∂Pkl

]3
i,j,k,l=1

, (1.2)

for all P ∈ R3×3. For derivatives with respect to spatial coordinates, we use ∂iϕ := ∂xi
ϕ,

where x = (x1, x2, x3)
† is the spatial coordinate, or we use the comma-subscript notation,

e.g. ϕ,i := ∂iϕ and Pij,k := ∂kPij.
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Next, we define the L2 inner products on Ω and Γ:

(A,B)Ω :=

∫
Ω

A : B dx, (A,B)Γ :=

∫
Γ

A : B dS(x),

where A,B are tensors and : is the Frobenius inner-product (similar relations hold for vec-

tors and scalars). Moreover, |A| =
√
A : A is the Frobenius norm. The norms for L2(Ω)

and H1(Ω) are then given by

∥P∥20,Ω := (P, P )Ω , ∥P∥20,Γ := (P, P )Γ ,

∥P∥21,Ω := (P, P )Ω + (∇P,∇P )Ω , |P |21,Ω := (∇P,∇P )Ω ,

where ∇P = [∂kPij]
3
i,j,k=1 is the gradient of P and |P |1,Ω is the H1(Ω) semi -norm. Simi-

larly for the H2(Ω) norm and semi-norm we have

∥P∥22,Ω := (P, P )Ω + (∇P,∇P )Ω +
(
∇2P,∇2P

)
Ω
, |P |22,Ω :=

(
∇2P,∇2P

)
Ω
,

where ∇2P = [∂l∂kPij]
3
i,j,k,l=1 denotes the Hessian of the tensor P . When we need to spec-

ify an Lp(Ω) or Lp(Γ) norm for 1 ≤ p <∞ and p ̸= 2, we use

∥P∥p0,p,Ω := (|P |p, 1)Ω , ∥P∥p0,p,Γ := (|P |p, 1)Γ .

And finally, for the L∞(Ω) norm we use

∥P∥0,∞,Ω := ess sup
Ω

|P |, ∥P∥0,∞,Γ := ess sup
Γ

|P |.
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Chapter 2. Liquid Crystal Theory

We briefly review the Landau-de Gennes theory for a nematic LC phase.

2.1. Coarse-grained Molecular Theory

LCs are a meso-phase of matter where the ordered macroscopic state is between a

spatially disordered liquid and a fully crystalline solid [91]. Nematic LC molecules are rod-

like and are free to slide about, meaning no positional order is maintained. The (partial)

spatial order that is maintained is orientational, i.e. the rod-like molecules prefer to be

aligned with their neighbors due to molecular forces. When long ranged orientational or-

der exists, it is known as the nematic phase. Since the LC molecules have fore-aft symme-

try, their orientational order throughout space is modeled by a line field (as opposed to a

vector field). The Landau-de Gennes (LdG) theory [31, 91, 84] introduces a tensor-valued

function Q to describe the local order (at each point in space) in the LC material. In par-

ticular, the eigenframe of Q yields information about the statistics of the distribution of

LC molecule orientations (see Section 2.1). Equilibrium configurations of an LC material

are modeled by finding a function Q that minimizes an appropriate energy functional that

includes a non-convex bulk potential, an “elastic” contribution involving spatial deriva-

tives of Q, as well as a “surface anchoring” energy (see Section 2.2).

We derive the Q-tensor order parameter of the LdG model following the presen-

tation in [91]. Let Ω be a domain containing liquid crystals, and consider a small region

around a point x ∈ Ω. It is essentially intractable to model the individual LC molecules

at every point in space. Thus, we adopt a coarse-grained approach and introduce a prob-

ability distribution f(r) which specifies the probability density of finding an LC molecule

5



oriented in the direction of r ∈ S2 at x, where S2 is the unit sphere. We also give f the

property that f(−r) = f(r), since LC molecules are practically indistinguishable under a

mirror reflection.

The fundamental quantity that captures the basic statistical distribution of the LC

molecules is the covariance 2-tensor M given by

M :=

∫
S2

(r⊗ r)f(r) dA. (2.1)

The properties of M to note are that trM = 1, M † = M , and n†Mn = ⟨cos2 θ⟩ for any

fixed n ∈ S2, where n · r = cos θ and ⟨·⟩ indicates the statistical average. A constant

f (representing “isotropic,” i.e. randomly oriented molecules) yields M = 1
3
I, which we

will denote by M0. The Q-tensor is obtained by simply normalizing M using M0: Q :=

M −M0. Thus, in addition to Q being symmetric, it is also traceless and vanishes when f

is isotropic, i.e. for every point x ∈ Ω, Q(x) belongs to

S0 := {Q ∈ R3×3 | Q† = Q, tr(Q) = 0}. (2.2)

Next, writing Q in its eigenframe, we have

Q = λiei ⊗ ei, (2.3)

where λi ≡ λi(Q) are the eigenvalues of Q, and ei are the normalized eigenvectors. From

the probability density and definition of Q, one can show that each λi satisfies

−1

3
≤ λi(Q) ≤

2

3
, for i = 1, 2, 3. (2.4)

Also, since Q is traceless, (2.3) implies that λ3 = −(λ1 + λ2). In the case that all eigenval-

ues are equal, they are 0 and we simply have Q = 0, the isotropic state. Likewise, when
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all eigenvalues are different from one another, we have what is called the biaxial state.

Most commonly, when just two of the eigenvalues are equal, we have the so-called uniaxial

state, where Q may be expressed as

Q = s

(
n⊗ n− 1

3
I

)
, (2.5)

where s is called the degree-of-orientation, and is a measure of the orientational order of

the LC molecules at each point, and n is called the director, which has unit length, |n| =

1, and represents the average direction in which the molecules are pointing. If cos θ = r · n

as above, then

s =
3⟨cos2 θ⟩ − 1

2
, (2.6)

which implies that −1
2
≤ s ≤ 1. For many nematic LCs, the default state is usually uniax-

ial with a particular value of s that depends on the material. Typically, the optimal s is in

the range 0.5 ≤ s ≤ 0.8 [31].

Remark 1. Defects are ubiquitous in liquid crystals. They correspond to sudden spatial

changes in Q with particular characteristics. Specifically, when Q is uniaxial, the director

n has a discontinuity which is regularized by s vanishing at the point of discontinuity. The

degree of the defect is the “winding number” of the director; see [87, Sec. 7] for a short

discussion, as well as [63] for a more extensive introduction to the mathematical aspects of

defects in liquid crystals.

2.2. Landau-de Gennes Theory

Next, we model the state of an LC system through a tensor-valued function Q :

Ω → S0, where Ω is the physical domain of interest. We assume throughout that Ω has

Lipschitz boundary Γ with outward pointing unit normal vector ν (e.g. box-like domains
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and domains with smooth boundary are allowed). The free energy of the LdG model is

defined as [68, 70, 78]:

E [Q] :=
∫
Ω

f(Q,∇Q) dx+

∫
Ω

ψ(Q) dx

+

∫
Γ

g(Q) dS(x) +

∫
Γ

ϕ(Q) dS(x)−
∫
Ω

χ(Q) dx,

(2.7)

with the elastic energy (with twist component as in [88, 78]) given by

f(Q,∇Q) := 1

2

(
ℓ1|∇Q|2 + ℓ2|∇ ·Q|2 + ℓ3(∇Q)† ··· ∇Q

+ 4ℓ1τ0∇Q ··· (ε ·Q)
)
,

(2.8)

where {ℓi}3i=1 (units of J · m−1) and τ0 (units of m−1) are material dependent elastic con-

stants, and

|∇Q|2 := Qij,kQij,k, |∇ ·Q|2 := Qij,jQik,k,

(∇Q)† ··· ∇Q := Qij,kQik,j, ∇Q ··· (ε ·Q) := εjklQik,lQij,

(2.9)

where we use the convention of summation over repeated indices and εjkl is the Levi-

Civita tensor. The transpose in the third term indicates to swap one of the Q indices with

the derivative index. The elastic constants in the LdG model can be related to the elastic

constants in the Oseen-Frank model (see [68, 70]). Note that taking ℓi = 0, for i = 2, 3,

and τ0 = 0 gives the often used one constant LdG model. More complicated models can

also be considered [70, 31, 84].

Next, the bulk potential ψ is a double-well type of function that is given by

ψ(Q) = a0 −
a2
2
tr(Q2)− a3

3
tr(Q3) +

a4
4

(
tr(Q2)

)2
. (2.10)

Above, a2, a3, a4 are material parameters (units of J · m−3) such that a2, a3, a4 are pos-

itive; a0 is a convenient constant to ensure ψ ≥ 0. Stationary points of ψ are either uni-
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axial or isotropic Q-tensors [65]. Combined with (2.5), the critical values of the scalar or-

der parameter s for ψ(Q(s)), where Q(s) is uniaxial, are s = 0 (local maximum), s =(
a3 −

√
a23 + 24a2a4

)
/4a4 (local minimum) and the global minimum [84]:

s0 =
a3 +

√
a23 + 24a2a4
4a4

, (2.11)

and is typically in the range 0.5 ≤ s0 ≤ 0.8 [31] for a2 sufficiently large positive, which

we shall always assume. Note that, for thermotropic LCs, a2 is temperature dependent

where a2 can become a large negative parameter for high enough temperature [70, 91]. In

this case, ψ becomes a convex function with a global minimum at Q = 0 (the isotropic

state). Though this potential is rather simplistic in that it does not guarantee that the

eigenvalues of Q remain in the physical range (2.4), it is effective in most modeling situa-

tions (c.f. [65]).

The surface energy, composed of the quadratic g(Q) and higher-order ϕ(Q), ac-

counts for weak anchoring of the LC (i.e. penalization of boundary conditions). For ex-

ample, a Rapini-Papoular type anchoring energy [12] can be considered:

g(Q) =
w0

2
|Q−QΓ|2 +

w1

2
|Q̃− Q̃⊥|2, ϕ(Q) =

w2

4
(|Q̃|2 − s20)

2
, (2.12)

where w0, w1, and w2 are positive constants (units of J · m−2), QΓ(x) ∈ S0 for all x ∈ Γ,

and s0 is the scalar order parameter of the uniaxial Q that minimizes the double well. We

set Q̃ := Q + s0
3
I, and define the standard projection onto the plane orthogonal to ν, that

is, Q⊥ := ΠQΠ where Π = I − ν ⊗ ν. We define QΓ to be uniaxial of the form

QΓ = s0

(
ν ⊗ ν − 1

3
I

)
. (2.13)
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Γ
ν ν ν ν νn∥ n∥ n∥ n∥

Γ
ν ν ν ν ν

n⊥ n⊥ n⊥ n⊥

Figure 2.1. Left: Illustration of homeotropic anchoring. Here the director n, which we
denote by n∥, is closely aligned with the outward normal vector ν; the closesness of align-
ment is controlled by the constant w0. Right: Illustration of planar degenerate anchoring.
Here the director n, which we denote by n⊥, is closely aligned tangent to the surface; the
closesness of alignment is controlled by the constants w1 and w2.

The w0 term in (2.12) models homeotropic (normal) anchoring, while w1 and w2 model

planar degenerate anchoring. See Figure 2.1 for an illustration.

The function χ(·) accounts for interactions with external fields. For example, the

energy density of a dielectric LC with fixed boundary potential is given by −1/2D ·E [92],

where the electric displacement D is related to the electric field E by the linear constitu-

tive law [40, 31, 16]:

D = εE = ε̄E+ εaQE, ε(Q) = ε̄I + εaQ, (2.14)

where ε is the LC material’s dielectric tensor and ε̄, εa are constitutive dielectric permit-

tivities. Thus, we may rewrite the dielectric energy density as

−1

2
D · E = −1

2
ε̄|E|2 + χ(Q), χ(Q) = −1

2
εaE ·QE ≡ −1

2
εaE⊗ E : Q, (2.15)

where χ(Q) has units of J/m3. Note that we do not include the term (ε̄/2)|E|2 in (2.7)

because it is independent of Q.

2.3. Non-dimensionalization

We start by noting that Q and s are already non-dimensional. Lengths and coor-

dinates are non-dimensionalized by introducing a characteristic length ξ, e.g. x̂ = x/ξ,

where x̂ is non-dimensional. Then, set ℓm to be the maximum or average of {|ℓi|}3i=1 and

simply divide (2.7) by ℓm · ξ to obtain a dimensionless energy. This effectively rescales
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all spatial derivatives, integral measures, and the various constants in the problem. Other

non-dimensionalizations are possible (c.f. [39, Sec. 2.]).

However, ψ(Q) and ϕ(Q) are non-convex functions, which significantly affect the

numerical analysis of the model. Thus, we describe their non-dimensionalization in more

detail. Set c0 := ψ(0)−ψ(Q(s0)) and define the non-dimensional bulk potential by ψ̂(Q) :=

ψ(Q)/c0; thus, ψ̂(0) − ψ̂(Q(s0)) = 1. This immediately implies that |Dψ̂(Q)| = O(1) as Q

varies between the isotropic state and the global minimum of ψ̂. Then, upon introducing

the non-dimensional parameter η :=
√
ℓm/(c0ξ2), we have

1

ℓmξ

∫
Ω

ψ(Q) dx =
1

η2

∫
Ω̂

ψ̂(Q) dx̂, (2.16)

where Ω̂ is the scaled domain. As for ϕ(Q), upon setting ϕ̂(Q) = (|Q̃|2 − s20)
2
/4 and ω :=

ℓm/(w2ξ), we have

1

ℓmξ

∫
Γ

ϕ(Q) dS(x) =
1

ω

∫
Γ̂

ϕ̂(Q) dŜ(x̂), (2.17)

where Γ̂ is the scaled boundary. Then, the total non-dimensional energy is

Ê [Q] =
∫
Ω̂

f̂(Q, ∇̂Q) dx̂+
1

η2

∫
Ω̂

ψ̂(Q) dx̂

+

∫
Γ̂

ĝ(Q) dŜ(x̂) +
1

ω

∫
Γ̂

ϕ̂(Q) dŜ(x̂)−
∫
Ω̂

χ̂(Q) dx̂.

(2.18)

For simplicity, we drop the “hat” notation for the remainder of the thesis.

Remark 2. The LdG model will not create sharp point (line) discontinuities in two (three)

dimensions because Q(t, ·) ∈ H1(Ω;S0) (see Section 3.1). For example, n = x/|x| is a unit

length director with a point defect at the origin, but n /∈ H1(Ω;R2); thus, the corresponding

uniaxial Q, via (2.5), is not in H1(Ω;S0).
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Therefore, any potential discontinuities get smoothed out causing Q to vanish there.

A physical interpretation of this is that the liquid crystal “melts” in a small region around

the defect, i.e. the LC material loses all orientational order. The size of the melt region

is controlled by the bulk potential parameter η. Thus, in the LdG model, the location of

defects are usually identified with regions where |Q| = 0. For more information on defects,

see [23, 22, 80, 91, 48, 63, 71, 56, 19].

2.4. The Cholesteric LdG Model

Cholesteric LCs are created by adding a chiral dopant (i.e. molecules with a chiral

structure) to nematic LCs. This induces a helical superstructure on the nematic phase,

which means the local behavior of the LC is nematic (i.e. line segments are aligned with

their immediate neighbors) but the larger, super-molecular arrangement of the line seg-

ments follows a helical structure with a certain periodicity (or pitch), p. By varying the

amount of dopant, one can tune the periodicity from infinity to about 100 nm [81, Sec.

2.2]. The physical manifestation of the cholesteric phase is that the helix modulates the

optical properties in a periodic fashion.

The cholesteric, LdG model in (2.7) can be obtained through a mapping proce-

dure from the cholesteric, Oseen-Frank (director) model (see [68]). But we also consider

a slightly different cholesteric model given in [88]. In the following sections, we relate this

model (which we refer to as the cholesteric model) to the LdG model we have defined in

Section 2.2. The elastic energy in [88] is, mainly, a rewriting of the terms in (2.8). How-

ever, there is an implicit interference of the elastic energy in [88] with the bulk potential

that brings up a modeling issue we highlight in Section 2.4.2.
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2.4.1. Elastic energy

The cholesteric model in [88] gives the elastic energy as

fgrad(Q) =

(
ℓ̆1
2

)
|∇ ×Q+ 2τ0Q|2 +

(
ℓ̆2
2

)
|∇ ·Q|2 +

(
ℓ̆24
2

)
(Qij,kQik,j −Qij,jQik,k), (2.19)

where ℓ̆1, ℓ̆2, ℓ̆24 are elastic constants, τ0 = 2π/p with p being the pitch, and

∇×Q = εiklQlj,ke
i ⊗ ej, (2.20)

where ei is the ith vector in the standard basis of R3. This is referred to as the curl of Q

and is consistent with the definition of curl for vectors, which is defined for a vector v =

(v1, v2, v3)
† as ∇ × v = εikl(∂kvl)e

i. In fact, the columns of ∇ × Q are the curls of the

corresponding columns of Q. The term |∇ × Q + 2τ0Q|2 is what frustrates the equilibrium

state from having a constant director and models the chiral structure of the molecules. As

we will see in the numerical results, choosing τ0 > 0 causes a “twisting” of the director

throughout the LC domain.

It is a straightforward exercise in index notation to prove the identity |∇ × Q|2 =

Qij,kQij,k−Qij,kQik,j. Moreover, from the definition of ∇×Q, we have the identity (∇×Q) :

Q = (εiklQlj,ke
i ⊗ ej) : Q = εiklQlj,kQij.

With this, we can rewrite (2.19) in the form of (2.8) by first noting that(
ℓ̆1
2

)
|∇ ×Q+ 2τ0Q|2 =

(
ℓ̆1
2

)
Qij,kQij,k −

(
ℓ̆1
2

)
Qij,kQik,j

+

(
4ℓ̆1
2

)
τ0εiklQlj,kQij + 2ℓ̆1τ

2
0 |Q|2.

From here, we note that tr(Q2) ≡ |Q|2, rearrange the terms and group them as:

fgrad(Q) =

(
ℓ̆1
2

)
Qij,kQij,k +

(
ℓ̆2 − ℓ̆24

2

)
Qij,jQik,k

+

(
ℓ̆24 − ℓ̆1

2

)
Qij,kQik,j +

(
4ℓ̆1
2

)
τ0εiklQlj,kQij + 2ℓ̆1τ

2
0 tr(Q

2).

(2.21)
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We then use the frame-indifferent invariants in (2.9) to map these constants to the LdG

elastic and twist energy densities as given in (2.8), i.e.

ℓ1 = ℓ̆1, ℓ2 = ℓ̆2 − ℓ̆24, ℓ3 = ℓ̆24 − ℓ̆1, (2.22)

where the twist constant τ0 is the same in both models. Note that there is an extra term

of |Q|2 ≡ tr(Q2) in (2.21) that is not found in (2.8) but does appear in (2.10). We discuss

the implications of this in Section 2.4.2.

2.4.2. Alternative Cholesteric Model

In [78], they consider the (cholesteric) elastic energy as not containing a tr(Q2)

term like [88] does. Indeed, keeping this term can have a significant effect on the behav-

ior of energy minimizers.

For simplicity of exposition, we assume all energies have been non-dimensionalized,

take ℓ1 = 1, τ0 > 0, and set the other elastic constants to zero. If we keep the tr(Q2) term

in (2.21), it will combine with the a2 coefficient in (2.10) to produce a new effective (non-

dimensional) bulk potential in (2.18), namely

ψ̃(Q) = a0 −
a2 − 4ℓ1η

2τ 20
2

tr(Q2)− a3
3
tr(Q3) +

a4
4

(
tr(Q2)

)2
, (2.23)

where ã2 = a2 − 4η2τ 20 is the coefficient in front of tr(Q2). If τ0 = 15 and a2 = 1, for

instance, then choosing η = 0.0408 yields ã2 ≈ 0.5, which is a significant change in the

global minimum. One would have to choose η = 0.01 to have ã2 > 0.9. Moreover, if η is

not small enough to compensate for τ0, then ã2 will be negative, which makes the tr(Q2)

term positive. If ã2 is sufficiently large and negative, then ψ̃(Q) will be a convex function,

with a single minimum at Q = 0, implying that the isotropic phase is preferred. Further-

more, in the case of thermotropic LCs, the tr(Q2) coefficient depends on temperature.

14



Figure 2.2. The two double wells from the two models. This compares the double well
ψ in (2.10) to the effective double well ψ̃ in (2.23), which arises when the alternate

cholesteric model is used. Notice that the global minima, s0 for ψ and s̃0 for ψ̃, of the
two bulk potentials differ greatly.

Thus, using (2.19) for the elastic energy leads to the effect that increasing the twist pa-

rameter is akin to increasing the temperature, which is not consistent with experiments.

Figure 2.2 shows a comparison between the original double well and the modified one;

clearly, the location of the global minima are different.

Hence, a moderate twist will change the effective double well (bulk) potential,

which directly controls the nematic phase diagram of the LC; the severity of the change

increases with the twist. To the best of our knowledge, the material doping discussed at

the beginning of Section 2.4, which is needed to create a cholesteric LC, should not change

the nematic phase diagram, which is directly connected to the double well potential.

Moreover, choosing η sufficiently small to reduce the interference with the bulk potential is

computationally inconvenient because it makes the problem more stiff; smaller time-steps

15



will be needed to ensure energy decrease in a gradient descent scheme. Therefore, we

mainly adopt the approach in [78], which is justified in [68], and simply drop the tr(Q2)

term in (2.21). But we do provide a comparison with the model in [88] in Section 5.6.

Remark 3. The surface anchoring energy proposed in [88] is the same as that given

in (2.12), (2.13) but with a trivial change in the constants.
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Chapter 3. Minimizing the Landau-de Gennes Energy

Existence of a minimizer of (2.18) can be established through the direct method of

the calculus of variations; for instance, see [30]. Computing a minimizer can, in principle,

be done by solving the Euler-Lagrange equations associated with (2.18) (i.e. the first or-

der condition). However, these equations are non-linear and the energy is non-convex, so

simply applying Newton’s method will not necessarily converge nor produce a minimizer.

We begin by developing a weak formulation of the first order condition. Then, we

describe multiple gradient flow schemes for finding (local) minimizers. The main purpose

is to explain how different choices of the scheme (i.e. different implicit-explicit splittings)

require different time step restrictions that are affected by the bulk and boundary parame-

ters η and ω, and the twist parameter τ0.

3.1. Existence of a Minimizer

The minimization problem for the LdG energy functional (2.18), and associated

first order condition, is

Q̄ = argmin
Q∈V

E [Q], δQE [Q̄;P ] = 0, ∀P ∈ V, (3.1)

where V := H1(Ω;S0) is the admissible space and δQE [·; ·] is the variational derivative of

E [·]. Note that S0 can be uniquely identified with a five dimensional vector space [42], i.e.

there exists 3× 3, symmetric traceless basis matrices {Ei}5i=1 such that any Q ∈ S0 can be

uniquely expressed as Q = qiE
i, for some coefficients q1, . . . , q5. Therefore, V is isomorphic

to H1(Ω;R5).

Existence of a minimizer requires the energy to be bounded from below. To show

this, we introduce various bilinear forms that will be convenient in our analysis. The fol-
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lowing theorem [30, Lem. 4.1] establishes this result for the ℓ1, ℓ2, ℓ3 terms in the elastic

energy.

Theorem 4. Let ae (·, ·) : V ×V → R be the symmetric bilinear form defined by

ae (Q,P ) := ℓ1 (Qij,k, Pij,k)Ω + ℓ2 (Qij,j, Pik,k)Ω + ℓ3 (Qij,k, Pik,j)Ω .
(3.2)

Then ae (·, ·) is bounded. If ℓ1, ℓ2, ℓ3 satisfy

0 < ℓ1, −ℓ1 < ℓ3 < 2ℓ1, −3

5
ℓ1 −

1

10
ℓ3 < ℓ2, (3.3)

then there is a constant c > 0 such that ae (P, P ) ≥ c∥∇P∥20,Ω for all P ∈ V.

Proposition 5 (Coercivity). Let as (·, ·) : V × V → R be the symmetric bilinear form

defined by

as (Q,P ) = w0 (Q,P )Γ + w1

(
Q−Q⊥, P

)
Γ
. (3.4)

There exists a constant α1 > 0 such that

ae (P, P ) + as (P, P ) ≥ α1∥P∥21,Ω, ∀P ∈ V. (3.5)

Proof. We start by noting that it is clear from (3.4) that

as (P, P ) ≥ w0∥P∥20,Γ.

Now, we compute the following inequality. Let r(x) := x−x0, where x0 is the central point

in Ω, i.e. the point such that

max
x∈Ω

|r(x)| = (1/2) diamΩ =: r∗.

Now, for each i ∈ {1, 2, 3} the spatial derivative with respect to i of the ith component of

18



r is 1, so |∇ · r| = 3. And so, for any symmetric traceless tensor P we have

∥P∥20,Ω =
1

3

(
|∇ · r||P |2, 1

)
Ω

= −1

3

(
r · ∇(|P |2), 1

)
Ω
+

1

3

(
(ν · r)|P |2, 1

)
Γ

= −2

3
(PijPij,krk, 1)Ω +

1

3
(νkrkPijPij, 1)Γ

≤ 2

3
(|r||P ||∇P |, 1)Ω +

1

3

(
|r||P |2, 1

)
Γ

≤ 2r∗

3
(|P ||∇P |, 1)Ω +

r∗

3

(
|P |2, 1

)
Γ

≤ r∗δ

3
∥P∥20,Ω +

r∗δ−1

3
∥∇P∥20,Ω +

r∗

3
∥P∥20,Γ

= (1/2)∥P∥20,Ω + (2/9)(r∗)2∥∇P∥20,Ω + (1/3)r∗∥P∥20,Γ,

where we have chosen δ = 3/2r∗. This establishes that

∥P∥20,Ω ≤ (4/9)(r∗)2∥∇P∥20,Ω + (2/3)r∗∥P∥20,Γ ≤ (4/9)r∗max{r∗, 3/2}
[
∥∇P∥20,Ω + ∥P∥20,Γ

]
,

Therefore,

ae (P, P ) + as (P, P ) ≥ α0∥∇P∥20,Ω + w0∥P∥20,Γ

≥ α0

2
∥∇P∥20,Ω +min{α0/2, w0}

[
∥∇P∥20,Ω + ∥P∥20,Γ

]
≥ α0

2
∥∇P∥20,Ω +

min{α0/2, w0}
(4/9)r∗max{r∗, 3/2}

∥P∥20,Ω

≥ min

{
α0

2
,
9min{α0/2, w0}
4r∗max{r∗, 3/2}

}
∥P∥21,Ω

=: α1∥P∥21,Ω.

We also have the bilinear form at (·, ·) : V ×V → R, which is not coercive, account-

ing for the twist term:

at (Q,P ) := 2ℓ1τ0
[
εikl (Qjk,l, Pij)Ω + εikl (Pjk,l, Qij)Ω

]
, (3.6)
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and can be bounded by first noting:

∣∣εikl (Qjk,l, Pij)Ω
∣∣ ≤ ∑

ijkl

(|εikl||Qjk,l|, |Pij|)Ω

≤
∑
ijkl

(|Qjk,l|, |Pij|)Ω ≤
∑
ijkl

∥Qjk,l∥0,Ω∥Pij∥0,Ω

≤
∑
ikl

(∑
m

∥Qmk,l∥20,Ω
)1/2(∑

n

∥Pin∥20,Ω
)1/2

≤ (33)
1/2

(∑
mkl

∥Qmk,l∥20,Ω
)1/2(∑

in

∥Pin∥20,Ω
)1/2

=
√
27 · |Q|1,Ω∥P∥0,Ω,

(3.7)

which implies that

at (Q,P ) = 2ℓ1τ0εikl
[
(Qjk,l, Pij)Ω + (Pjk,l, Qij)Ω

]
≤ 2ℓ1τ0

√
27 [|Q|1,Ω∥P∥0,Ω + |P |1,Ω∥Q∥0,Ω] .

(3.8)

For later use, we define one bilinear form to contain (3.2), (3.4), and (3.6):

a (Q,P ) = ae (Q,P ) + at (Q,P ) + as (Q,P ) , (3.9)

which satisfies the following continuity result.

Proposition 6 (Continuity). There holds

ae (Q,P ) ≤ ce|Q|1,Ω|P |1,Ω, at (Q,P ) ≤ ct∥Q∥1,Ω∥P∥1,Ω,

as (Q,P ) ≤ cs∥Q∥0,Γ∥P∥0,Γ, a (Q,P ) ≤ c0∥Q∥1,Ω∥P∥1,Ω,
(3.10)

for all Q,P ∈ V, where

ce = ℓ1 + 3ℓ2 + ℓ3, ct = 2
√
27ℓ1τ0, cs = w0 + 3w1, c0 = ce + ct + β3cs, (3.11)

where β3 > 0 is a trace embedding constant depending on Ω.
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Proof. Let Q,P be arbitrary in V. By the Cauchy-Schwarz inequality, we have

ae (Q,P ) = ℓ1 (Qij,k, Pij,k)Ω + ℓ2 (Qij,j, Pik,k)Ω + ℓ3 (Qij,k, Pik,j)Ω

≤ ℓ1|Q|1,Ω|P |1,Ω + 3ℓ2|Q|1,Ω|P |1,Ω + ℓ3|Q|1,Ω|P |1,Ω

≤ (ℓ1 + 3ℓ2 + ℓ3)|Q|1,Ω|P |1,Ω.

Applying a simple Cauchy-Schwarz estimate to (3.8), we get

at (Q,P ) ≤ 2
√
27ℓ1τ0∥Q∥1,Ω∥P∥1,Ω.

The surface anchoring term satisfies

as (Q,P ) = w0 (Q,P )Γ + w1

(
Q−Q⊥, P

)
Γ

≤ (w0 + 3w1)∥Q∥0,Γ∥P∥0,Γ,

which can be shown by keeping in mind that

|Q⊥ : P | ≤ |Q⊥||P | ≤ |Π|2|Q||P | = 2|Q||P |,

where Π := ν ⊗ ν − I is the projection tensor. Combining these inequalities, and using a

trace theorem, the proof is complete.

Next, consider the following sub-part of the energy (2.18):

Ẽ [Q] :=
∫
Ω

f(Q,∇Q) dx+
1

η2

∫
Ω

ψ(Q) dx,

≡ 1

2
ae (Q,Q) +

1

2
at (Q,Q) +

1

η2

∫
Ω

ψ(Q) dx.

(3.12)

Combining Theorem 4 with the form of the energy in (2.18) and other basic results

(see [30, Lem. 4.2, Thm. 4.3] for instance) we arrive at the following result.
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Theorem 7 (existence of a minimizer). Let Ẽ be given by (3.12), where ψ is given

by (2.10). Furthermore, let τ0 be bounded and assume that ℓ1, ℓ2, ℓ3 satisfy (3.3). Then Ẽ

has a minimizer in the space V. Furthermore, E in (2.18), with g and ϕ given by (2.12),

and χ a bounded linear functional on V, has a minimizer in V.

Proof. When τ0 = 0, the result essentially follows from [30, Lem. 4.2, Thm. 4.3]. Other-

wise, consider the case where τ0 ̸= 0. Using Theorem 4, we have that Ẽ satisfies the bound

Ẽ [Q] = 1

2

∫
Ω

ℓ1|∇Q|2 + ℓ2(∇ ·Q)2 + ℓ3(∇Q)† ··· ∇Qdx

+ 2τ0

∫
Ω

∇Q ··· (ε ·Q) dx+
1

η2

∫
Ω

ψ(Q) dx

≥ c

2

∫
Ω

|∇Q|2 dx+ 2τ0

∫
Ω

∇Q ··· (ε ·Q) dx+
1

η2

∫
Ω

ψ(Q) dx,

(3.13)

for all Q ∈ V, for some constant c > 0. Furthermore, one can show

Ẽ [Q] ≥ 1

2
(c− ζ0)

∫
Ω

|∇Q|2 dx− c′

ζ0

∫
Ω

|Q|2 dx+
1

η2

∫
Ω

ψ(Q) dx, (3.14)

for any ζ0 > 0 where c′ > 0 is some bounded constant. Choosing ζ0 = c/2, we get

Ẽ [Q] ≥ c

4

∫
Ω

|∇Q|2 dx+
1

η2

∫
Ω

ψ̂(Q) dx, (3.15)

where ψ̂(Q) := ψ(Q) − 2η2(c′/c)|Q|2. Thus, Ẽ [Q] is clearly bounded below by a coercive

energy on V. By standard calculus of variations [20, 55], there exists a minimizer, Q̂, of

Ẽ [·] in V. The same holds true for E [·].

For convenience, we collect all linear terms in δQE [Q;P ] into a single linear form,

denoted lrhs:

lrhs(P ) = (χ(P ), 1)Ω + w0 (QΓ, P )Γ + w1

(
−s0

3
ν ⊗ ν, P

)
Γ
. (3.16)
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Using (3.9) and (3.16), we can now write E [Q] in the form

E [Q] = (1/2)a (Q,Q) + (1/η2) (ψ(Q), 1)Ω + (1/ω) (ϕ(Q), 1)Γ − lrhs(Q), (3.17)

which yields the following expression for the first variation of E :

δQE [Q;P ] = a (Q,P ) + (1/η2) (Dψ(Q), P )Ω + (1/ω) (Dϕ(Q), P )Γ − lrhs(P ). (3.18)

The full strong form for the non-dimensional LdG model consists of a tensor-

valued, elliptic partial differential equation (PDE) defined over Ω with a tensor-valued

Robin boundary condition. In terms of indices, 1 ≤ i, j ≤ 3, the bulk PDE is (with χ

taken as in (2.15), e.g.)

− ℓ1Qij,kk − ℓ2Qik,kj − ℓ3Qik,jk − 4ℓ1τ0εiℓkQℓj,k

+
1

η2

(
− a2Qij − a3(Q

2)ij + a4|Q|2Qij

)
= −1

2
εa(E⊗ E)ij, in Ω, (3.19)

where only the traceless part of the tensor equation is considered. The boundary condition

is given by

ℓ1νkQij,k + ℓ2νjQik,k + ℓ3νkQik,j + 2ℓ1τ0νkεiℓkQℓj + w0Qij + w1(Qij −Q⊥
ij)

+
1

ω

(
|Q|2 − 2(s0)

2

3

)
Qij = w0(QΓ)ij −

w1s0
3

νiνj, on Γ, (3.20)

where, again, only the traceless part is considered. In (3.19), note that the term

4ℓ1τ0εiℓkQℓj,k is analogous to a convective term, e.g. (V · ∇)Q, where Viℓk = 4ℓ1τ0εiℓk

is like a “velocity”. It is well known [85] that convection-diffusion problems present some

difficulties in their numerical approximation, especially when the velocity is large. This is

the case here when τ0 is large, which manifests as a mesh-size restriction in Thm. 13, as

well as restricting the time-step when a popular convex-splitting scheme is used for finding

an energy minimum (see Thm. 11).
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3.2. Continuous Gradient Flow

We look for an energy minimizer using a gradient flow strategy [61, 78, 100, 8, 19]

applied to the energy (2.18). Let t represent “time” and suppose that Q ≡ Q(x, t) evolves

by an L2(Ω) gradient flow:

(∂tQ(·, t), P )Ω = −δQE [Q;P ], ∀P ∈ V, (3.21)

where Q(x, 0) = Q0 ∈ V is the initial guess for the flow. Formally, the solution of (3.21)

will converge to Q∗ := limt→∞Q(·, t), which is a local minimizer of E . In this case,

Q(x, t) satisfies a parabolic PDE (in strong form), and by the standard theory of parabolic

PDEs [41, 57], it has a unique solution. Gradient flows are related to the natural relax-

ation that many physical systems undergo, including LCs, which is why we use it in our

simulations. Directly minimizing E by some other optimization technique is also possible

and may yield other minimizers that are not commonly observed in experiment.

If ψ is the Landau-de Gennes bulk potential in (2.10), and we use the one-constant

elastic energy, then (3.21) is essentially a tensor-valued Allen-Cahn type of equation, i.e.

(∂tQ(·, t))ij −∆Qij + (Dψ(Q))ij = 0, in Ω, for t > 0, ∀i, j = 1, 2, 3. (3.22)

By the standard theory of parabolic PDEs [41, 57], it has a unique solution.

3.3. Discrete Gradient Flow

We discretize (3.21) in time by first letting Qk(x) ≈ Q(x, kδt), where δt > 0 is

a finite time-step and k is the time index. Next, we replace ∂tQ(·, t) by a finite difference

approximation, so then (3.21) becomes a sequence of elliptic problems. In other words,
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given Qk, find Qk+1 ∈ V such that

δt−1 (Qk+1 −Qk, P )δt = −δQE [Qk+1;P ], ∀P ∈ V, (3.23)

where we have defined a time-stepping inner product (·, ·)δt by

(P, T )δt :=
1

η2
(P, T )Ω +

1

ω
(P, T )Γ . (3.24)

We also define a norm by ∥P∥2δt := (P, P )δt. One can show that (3.26) is equivalent to a

minimizing movements strategy [67]:

Qk+1 = argmin
Q∈V

Fk(Q), Fk(Q) :=
1

2δt
∥Q−Qk∥2δt + E [Q], (3.25)

which immediately yields the useful property Fk(Qk+1) ≤ Fk(Qk) ≤ Fk−1(Qk) and implies

that E [Qk+1] ≤ E [Qk] for all k. However, (3.23) is a fully implicit equation and requires an

iterative solution because of the non-linearities in ψ(Q) and ϕ(Q).

3.3.1. Fully implicit gradient descent

The fully implicit gradient descent scheme given by (3.23) may be explicitly written

as follows. Given Qk ∈ V, we seek Qk+1 ∈ V such that

δt−1 (Qk+1 −Qk, P )δt + a (Qk+1, P ) + (1/η2) (Dψ(Qk+1), P )Ω

+ (1/ω) (Dϕ(Qk+1), P )Γ = lrhs(P ), ∀P ∈ V.

(3.26)

Starting from an initial guess Q0, we iterate (3.26) until we reach a final iteration index or

some other stopping criteria (see Section 5.1). Note that Newton’s method is required for

solving (3.26) because of ψ and ϕ. The following theorem gives a time-step restriction to

ensure energy decrease.
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Theorem 8. The sequence {Qk}∞k=0 defined by the method in (3.26) is monotonically en-

ergy decreasing, i.e.

E [Qk+1] ≤ E [Qk],

provided that

δt ≤ 2/max{a2 + a23/a4, 2s
2
0/3}. (3.27)

Proof. We start with the following inequality for any P, T ∈ V (recall that a2, a3, a4 > 0):

(
T,D2ψ(P )T

)
Ω
= −a2∥T∥20,Ω − 2a3 (PT, T )Ω + 2a4 (P : T, P : T )Ω + a4

(
|T |2, |P |2

)
Ω

≥ −a2∥T∥20,Ω − (a3δ)
(
|T |2, |P |2

)
Ω
− (a3/δ)∥T∥20,Ω + a4

(
|T |2, |P |2

)
Ω

= −(a2 + a23/a4)∥T∥20,Ω = −a′∥T∥20,Ω,

(3.28)

by choosing δ = a4/a3, where a
′ = a2 + a23/a4. Similarly, we have

(
T,D2ϕ(P )T

)
Γ
= (−2s20/3)∥T∥20,Γ + 2 (P : T, P : T )Γ +

(
|T |2, |P |2

)
Γ

≥ (−2s20/3)∥T∥20,Γ = −s′∥T∥20,Γ,
(3.29)

where s′ = 2s20/3. Next, setting Sk+1 := Qk+1 −Qk, we have the identity:

a (Qk, Qk) = a (Qk+1, Qk+1) + a (Sk+1, Sk+1)− 2a (Sk+1, Qk+1) . (3.30)

Note also that, substituting P = Sk+1 into (3.26), we have

δt−1 (Sk+1, Sk+1)δt = −a (Qk+1, Sk+1)− (1/η2) (Dψ(Qk+1), Sk+1)Ω

− (1/ω) (Dϕ(Qk+1), Sk+1)Γ + lrhs(Sk+1).

(3.31)

Now use a Taylor expansion of ψ(Qk) and ϕ(Qk) about Qk+1, i.e. set Q̄(s) := (1−s)Qk+1+
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sQk, and for some s1, s2 ∈ (0, 1) we obtain from (3.17) combined with (3.28), (3.29), (3.30):

E [Qk] = (1/2)a (Qk, Qk) + (1/η2) (ψ(Qk+1), 1)Ω + (1/ω) (ϕ(Qk+1), 1)Γ

− lrhs(Qk+1) + lrhs(Sk+1)− (1/η2) (Dψ(Qk+1), Sk+1)Ω

− (1/ω) (Dϕ(Qk+1), Sk+1)Γ + (1/(2η2))
(
Sk+1, D

2ψ(Q̄(s1))Sk+1

)
Ω

+ (1/(2ω))
(
Sk+1, D

2ϕ(Q̄(s2))Sk+1

)
Γ

≥ (1/2)a (Qk+1, Qk+1) + (1/η2) (ψ(Qk+1), 1)Ω + (1/ω) (ϕ(Qk+1), 1)Γ

− lrhs(Qk+1) + (1/2)a (Sk+1, Sk+1)− a (Sk+1, Qk+1) + lrhs(Sk+1)

− (1/η2) (Dψ(Qk+1), Sk+1)Ω − (1/ω) (Dϕ(Qk+1), Sk+1)Γ

− (1/η2)(a′/2)∥Sk+1∥20,Ω − (1/ω)(s′/2)∥Sk+1∥20,Γ.

We then substitute (3.31) into the above line and use (3.17) again to see that

E [Qk] ≥ E [Qk+1] + δt−1 (Sk+1, Sk+1)δt − (1/η2)(a′/2)∥Sk+1∥20,Ω − (1/ω)(s′/2)∥Sk+1∥20,Γ

= E [Qk+1] + (1/η2)

(
1

δt
− a′

2

)
∥Sk+1∥20,Ω + (1/ω)

(
1

δt
− s′

2

)
∥Sk+1∥20,Γ ≥ E [Qk+1],

provided that δt ≤ 2/max{a′, s′}.

The time step restriction in (3.27) involves non-dimensional constants of O(1).

However, the time step inner product (3.24) used in (3.26) accounts for the strength of

the non-convex terms through the positive constants η and ω. In other words, when either

η and ω are small, the minimizing movements scheme in (3.25) penalizes Qk+1 − Qk to be

small. Hence, the minimization sequence will take more iterations when either η and ω are

small.
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3.3.2. Implicit-explicit gradient descent

Other types of time-discretizations can be used, but they usually have more strin-

gent time-step restrictions. The first of these that we shall discuss is the implicit-explicit

gradient descent method, which is as follows. Given Qk ∈ V, we seek Qk+1 ∈ V that solves

the following linear equation:

δt−1 (Qk+1 −Qk, P )δt + a (Qk+1, P ) + (1/η2) (Dψ(Qk), P )Ω

+ (1/ω) (Dϕ(Qk), P )Γ = lrhs(P ), ∀P ∈ V.

(3.32)

Theorem 9. Assume the sequence {Qk}∞k=0 defined by the method in (3.32) enjoys the

additional regularity |Qk| ∈ L∞(Ω) for all k ≥ 0. Then, the sequence is monotonically

energy decreasing, i.e.

E [Qk+1] ≤ E [Qk],

if δt is small enough.

Proof. We first note that, similarly to the fully implicit case, we substitute P = Sk+1 :=

Qk+1 −Qk into (3.32) and have

δt−1 (Sk+1, Sk+1)δt = −a (Qk+1, Sk+1)− (1/η2) (Dψ(Qk), Sk+1)Ω

− (1/ω) (Dϕ(Qk), Sk+1)Γ + lrhs(Sk+1).

(3.33)

Using a Taylor expansion of ψ(Qk+1) and ϕ(Qk+1) about Qk (analogous to the fully

implicit case, i.e. using Q̄(s) defined in the proof of Theorem 8), we find that for some
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s1, s2 ∈ (0, 1) we obtain from (3.17) combined with a slightly rearranged (3.30):

E [Qk+1] = (1/2)a (Qk+1, Qk+1) + (1/η2) (ψ(Qk), 1)Ω + (1/ω) (ϕ(Qk), 1)Γ

− lrhs(Qk)− lrhs(Sk+1) + (1/η2) (Dψ(Qk), Sk+1)Ω

+ (1/ω) (Dϕ(Qk), Sk+1)Γ + (1/(2η2))
(
Sk+1, D

2ψ(Q̄(s1))Sk+1

)
Ω

+ (1/(2ω))
(
Sk+1, D

2ϕ(Q̄(s2))Sk+1

)
Γ

≤ (1/2)a (Qk, Qk) + (1/η2) (ψ(Qk), 1)Ω + (1/ω) (ϕ(Qk), 1)Γ

− lrhs(Qk)− (1/2)a (Sk+1, Sk+1) + a (Sk+1, Qk+1)− lrhs(Sk+1)

+ (1/η2) (Dψ(Qk), Sk+1)Ω + (1/ω) (Dϕ(Qk), Sk+1)Γ

+ (1/η2)(D2ψ/2)∥Sk+1∥20,Ω + (1/ω)(D2ϕ/2)∥Sk+1∥20,Γ,

where D2ψ := ∥D2ψ(Q̄(s1))∥0,∞,Ω and D2ϕ := ∥D2ϕ(Q̄(s2))∥0,∞,Γ. We then substi-

tute (3.33) into the above and again use (3.17) to see that

E [Qk+1] ≤ E [Qk]− δt−1 (Sk+1, Sk+1)δt + (1/η2)(D2ψ/2)∥Sk+1∥20,Ω

+ (1/ω)(D2ϕ/2)∥Sk+1∥20,Γ

= E [Qk] + (1/η2)

(
D2ψ

2
− 1

δt

)
∥Sk+1∥20,Ω

+ (1/ω)

(
D2ϕ

2
− 1

δt

)
∥Sk+1∥20,Γ

≤ E [Qk],

provided that

δt ≤ 2/max{D2ψ,D2ϕ}, (3.34)

as desired.
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The result of Theorem 9 is not so useful because of the additional regularity re-

quired on Qk.

3.3.3. Gradient descent using convex splitting

Another related strategy is convex-splitting, which is popular in gradient flow

schemes [96, 100, 97]. Let

ψ(Q) ≡ ψc(Q)− ψe(Q), (3.35)

where ψc and ψe are convex functions of Q. We modify (3.23) by treating ψc implicitly

and ψe explicitly. We also drop the nonlinear ϕ term so that

E [Q] = 1

2
a (Q,Q) +

1

η2
(ψ(Q), 1)Ω − lrhs(Q), (3.36)

and simplify the definition of the time stepping inner product to (P, T )δt := (P, T )Ω.

Then, (3.26) is replaced by the following. Given Qk, find Qk+1 ∈ V such that

δt−1 (Qk+1 −Qk, P )δt + a (Qk+1, P ) + (1/η2) (Dψc(Qk+1), P )Ω

= lrhs(P ) + (1/η2) (Dψe(Qk), P )Ω , ∀P ∈ V.

(3.37)

This scheme also has an energy decrease property with a time-step restriction, for which

the following lemma is needed.

Lemma 10. Let Q,P ∈ S0 be any tensors. Then

ψ(P )− ψ(T ) ≤ (Dψc(P )−Dψe(T )) : (P − T ). (3.38)

Proof. We first invoke the Fundamental Theorem of Calculus, and then evaluate the re-

sulting inner derivative using the chain rule:

ψ(P )− ψ(T ) =

∫ 1

0

d

dθ

[
ψ(Sθ)

]
dθ =

∫ 1

0

Dψ(Sθ) : (P − T ) dθ,
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where Sθ := T + θ(P − T ). With a bit of algebra this may be rewritten so that

ψ(P )− ψ(T ) = (Dψc(P )−Dψe(T )) : (P − T ) +

∫ 1

0

ξ(θ) dθ,

where

ξ(θ) := (Dψc(Sθ)−Dψc(P )) : (P − T )︸ ︷︷ ︸
=:ξ1(θ)

+(Dψe(Sθ)−Dψe(T )) : (T − P )︸ ︷︷ ︸
=:ξ2(θ)

.

What remains is to show that ξ(θ) ≤ 0 for all θ ∈ [0, 1]. We can do this by showing that

the first and second terms of ξ are bounded above by 0. For the first term, note that

d

dθ

[
(Dψc(Sθ)−Dψc(P )) : (P − T )

]
= (P − T ) : D2ψc(Sθ)(P − T ) ≥ 0,

since D2ψc(Sθ) is positive definite. And so ξ1 is monotonically increasing with respect to

θ. Thus, for all θ ∈ [0, 1], we have

(Dψc(Sθ)−Dψc(P )) : (P − T ) ≤ (Dψc(S1)−Dψc(P )) : (P − T ) = 0,

which shows that the first term is bounded above by 0.

For the second term, we have

d

dθ

[
(Dψe(Sθ)−Dψe(T )) : (T − P )

]
= −(P − T ) : D2ψe(Sθ)(P − T ) ≤ 0,

since D2ψe(Sθ) is positive definite. Thus, ξ2 is monotonically decreasing with respect to θ.

And so, for all θ ∈ [0, 1], we have

(Dψe(Sθ)−Dψe(P )) : (T − P ) ≤ (Dψe(S0)−Dψe(P )) : (T − P ) = 0,

which shows the second term is also bounded above by 0, as desired.
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Theorem 11. The sequence {Qk}∞k=0 defined by the method in (3.37) is monotonically

energy decreasing, i.e.

E [Qk+1] ≤ E [Qk],

provided that

δt ≤ 2α1

108ℓ21τ
2
0 − α2

1

, (3.39)

where α1 is the coercivity constant in (3.5). If |τ0| ≤ α1/(2
√
27ℓ1), there is no restriction

on δt.

Proof. The first series of inequalities we will prove will bound the difference of energies by

integrals of Qk+1 −Qk and its first-order derivatives. First of all, note that since a(·, ·) is a

bilinear form, we have for all tensors P, T ∈ R3×3 that

a (P, P )− a (T, T ) = −a (P − T, P − T ) + 2a (P − T, P ) .

In particular, letting Sk+1 := Qk+1 −Qk,

a (Qk+1, Qk+1)− a (Qk, Qk) = −a (Sk+1, Sk+1) + 2a (Sk+1, Qk+1) . (3.40)

We can also substitute P = Sk+1 into (3.37), as in the proofs for the implicit-explicit and

fully implicit cases, and arrive at

−δt−1 (Sk+1, Sk+1)δt = a (Qk+1, Sk+1)

+ (1/η2) (Dψc(Qk+1)−Dψe(Qk), Sk+1)Ω − lrhs(Sk+1).

(3.41)
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Thus we obtain from (3.36) combined with (3.38), (3.40), and (3.41):

E [Qk+1]− E [Qk] = (1/2)a (Qk+1, Qk+1)− (1/2)a (Qk, Qk)

+ (1/η2) (ψ(Qk+1)− ψ(Qk), 1)Ω − lrhs(Sk+1)

≤ (−1/2)a (Sk+1, Sk+1) + a (Sk+1, Qk+1)

+ (1/η2) (Dψc(Qk+1)−Dψe(Qk), Sk+1)Ω − lrhs(Sk+1)

= −(1/2)a (Sk+1, Sk+1)− δt−1 (Sk+1, Sk+1)δt .

Now, we rewrite the form a (·, ·) using (3.9), then bound it using (3.5), the estimate

in (3.8), as well as a weighted Young’s inequality:

−(1/2)a (Sk+1, Sk+1) = −(1/2)ae (Sk+1, Sk+1)− (1/2)at (Sk+1, Sk+1)

− (1/2)as (Sk+1, Sk+1)

≤ −α1

2
∥Sk+1∥21,Ω + 2

√
27ℓ1τ0∥∇Sk+1∥0,Ω∥Sk+1∥0,Ω

≤ 1

2
(cδ − α1) ∥∇Sk+1∥20,Ω +

1

2

(c
δ
− α1

)
∥Sk+1∥20,Ω,

where c = 2
√
27ℓ1τ0 and δ > 0. Choosing δ = α1/c, we get

−(1/2)a (Sk+1, Sk+1) ≤
(
c2

2α1

− α1

2

)
∥Sk+1∥20,Ω.

Thus, combining this with the above, we obtain

E [Qk+1]− E [Qk] ≤
(
c2

2α1

− α1

2
− 1

δt

)
∥Sk+1∥20,Ω ≤ 0,

provided that

δt ≤ 2α1

(4 · 27ℓ21τ 20 )− α2
1

.

The above also implies that if |τ0| ≤ α1/(2
√
27ℓ1), there is no restriction on the size of

δt.

33



Usually, a convex splitting scheme is used to avoid a time-step restriction. How-

ever, the above discussion shows that a sufficiently large τ0 will cause a restriction. More-

over, according to [97], a convex splitting scheme is nothing but a fully implicit scheme

with time re-scaled (when τ0 = 0). Thus, we always use the fully implicit scheme as our

gradient descent strategy to find a minimizer of E [·].

34



Chapter 4. Finite Element Method

We approximate (3.26) by a finite element method [21]. In doing so, we assume

that Ω ⊂ R3 is discretized by a conforming shape regular triangulation Th = {Ti} con-

sisting of tetrahedra, i.e. we define Ωh := ∪T∈ThT , where h is the maximum diameter of

the elements in Th. For the sake of simplicity, we assume that Ω is a box-like domain, or

polyhedral, so that Ωh = Ω. One can consider curved domains as well and derive error

estimates using the theory developed in [62].

Let Mh(Ωh) be the space of continuous, piecewise Lagrange polynomial functions

on Ωh, subordinate to the mesh Th of Ωh, with polynomial degree r, i.e.:

Mh(Ωh) :=
{
v ∈ C0(Ωh) | v|T ∈ Pr(T ), ∀T ∈ Th

}
, (4.1)

where Pr(T ) is the space of all polynomials of degree ≤ r on T , with r ≥ 1.

In Section 4.2, we present a numerical analysis for the discretization of the equilib-

rium problem, i.e. we derive an error estimate (Theorem 13) for the finite element approx-

imation of a (local) minimizer of (2.18). In particular, we will show that a minimum mesh

size is required to obtain an error estimate because of the non-convexity of the double-well

potential and cholesteric twist term.

4.1. Discretization of the Cholesteric Landau-de Gennes Model

We discretize (3.26) by approximating Q by a finite element function Qh. To this

end, define

Sh(Ωh) :=
{
P ∈ C0(Ωh;S0) | P = qi,hE

i, qi,h ∈ Mh(Ωh), 1 ≤ i ≤ 5
}
, (4.2)

and let Qh ∈ Vh := Sh(Ωh) ⊂ V. Thus, Qh = qi,hE
i, and qi,h ∈ H1(Ω) for i = 1, . . . , 5.
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The fully discrete L2-gradient flow now follows from (3.26), i.e. given Qh,k, find

Qh,k+1 ∈ Vh such that

δt−1 (Qh,k+1 −Qh,k, Ph)δt = −δQE [Qh,k+1;Ph], ∀Ph ∈ Vh, (4.3)

We iterate this procedure until some stopping criteria is achieved (see Section 5.1). Since

Vh ⊂ V, the same arguments in Section 3.3 still hold when replacing V by Vh. Therefore,

the same time-stepping restrictions apply to the fully discrete formulation.

4.2. Numerical Analysis for the Equilibrium Problem

4.2.1. Preliminary Facts and Assumptions

We seek to derive an error estimate for a local minimizer of the LdG energy, which

has the form

E [Q] = (1/2)a (Q,Q) + (1/η2) (ψ(Q), 1)Ω + (1/ω) (ϕ(Q), 1)Γ − lrhs(Q). (4.4)

If Q ∈ V is a local minimizer of E [·], then

δE [Q](P ) = a (Q,P ) + (1/η2) (Dψ(Q), P )Ω

+ (1/ω) (Dϕ(Q), P )Γ − lrhs(P ) = 0, ∀P ∈ V.

(4.5)

Moreover, let Qh ∈ Vh be a local minimizer of E [·]; thus,

δE [Qh](Ph) = a (Qh, Ph) + (1/η2) (Dψ(Qh), Ph)Ω

+ (1/ω) (Dϕ(Qh), Ph)Γ − lrhs(Ph) = 0, ∀Ph ∈ Vh.

(4.6)

In order to derive an error estimate, we need the following assumption, which says

that the energy landscape around a minimizer is not too flat.

Assumption 12 (Isolated minimizer and coercivity). For a given local minimizer Q of E,

we assume there exists ζ > 0 such that for all Q̃ with ∥Q − Q̃∥1,Ω < ζ, the following two
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inequalities hold:

E [Q] ≤ E [Q̃], (4.7)

δ2E [Q̃](P, P ) = a (P, P ) + (1/η2)
(
P,D2ψ(Q̃)P

)
Ω

+(1/ω)
(
P,D2ϕ(Q̃)P

)
Γ
≥ m0∥P∥21,Ω,

(4.8)

for some m0 > 0 and all P ∈ V.

4.2.2. Error Estimates

In order to avoid additional technicalities, and streamline the presentation, we as-

sume that if Q is a solution of (4.5), then it has the additional regularity Q ∈ H2(Ω).

Moreover, we also assume an associated adjoint problem also enjoys additional H2(Ω) reg-

ularity; see Remark 17 for further details. We have the following result that yields an error

estimate for the finite element solution Qh, which requires a restriction on the mesh size h.

Theorem 13. Let Q ∈ V be a local minimizer of E [·] that satisfies (3.1) and also satisfies

Q ∈ H2(Ω), and let Qh ∈ Vh be a local minimizer of E [·] that satisfies (4.6). Moreover,

adopt Assumption 12 and assume that ∥Q−Qh∥1,Ω < ζ. Then, there exists c > 0 such that

for all h ≤ h0, we have ∥Q−Qh∥1,Ω ≤ ch|Q|2,Ω, where

h0 =

(
α1

k + (a′/η2) + (s′′/ω2)

)1/2
1√

8(c0 + β′
1/η

2 + β′
2/ω)c2c3

, (4.9)

where k = max ((216ℓ21τ
2
0 /α1)− (α1/2), 0), c1, c2, c3, β

′
1, β

′
2, a

′, and s′′ are constants de-

pending on the domain, and

c0 = ℓ1 + 3ℓ2 + ℓ3 + 4ℓ1
√
27τ0 + β3(w0 + 3w1) (4.10)

is the constant such that |a (Q,P ) | ≤ c0∥Q∥1,Ω∥P∥1,Ω, with β3 also depending on the do-

main.
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Note that (4.9) says that small values of η and ω, and large values of τ0, lead to

small values of h0. Furthermore, Theorem 13 says there is no error estimate if the mesh

size is too large. This means that the discrete problem may have no connection to the

physical problem of interest.

To facilitate the proof of Theorem 13, we first give several intermediate results.

Lemma 14 (G̊arding’s inequality). There exists k ≥ 0 such that

a (P, P ) + k∥P∥20,Ω ≥ α1

2
∥P∥21,Ω, ∀P ∈ V,

where α1 is the constant found in (3.5).

Proof. We follow the proof found in [21], with modifications for our particular case. First,

note the coercivity result from (3.5): ae (P, P ) + as (P, P ) ≥ α1∥P∥21,Ω. Next, recall (3.9)

and note that |εikl (Pjk,l, Pij)Ω | ≤
√
27|P |1,Ω∥P∥0,Ω, and using a weighted Young’s inequal-

ity, we have

a (P, P ) + k∥P∥20,Ω ≥ α1∥P∥21,Ω + 4ℓ1τ0εikl (Pjk,l, Pij)Ω + k∥P∥20,Ω

≥ α1∥P∥21,Ω − (4ℓ1
√
27)τ0|P |1,Ω∥P∥0,Ω + k∥P∥20,Ω

≥ α1|P |21,Ω − 2ℓ1
√
27τ0δ|P |21,Ω − 2ℓ1

√
27τ0δ

−1∥P∥20,Ω + (k + α1)∥P∥20,Ω

=
(
α1 − 2ℓ1

√
27τ0δ

)
|P |21,Ω +

(
k + α1 − 2ℓ1

√
27τ0δ

−1
)
∥P∥20,Ω

≥ (α1/2)∥∇P∥20,Ω + (α1/2)∥P∥20,Ω.

Finally, by choosing δ = α1/(4ℓ1τ0
√
27) the result follows by assuming

k = max

[(
216ℓ21τ

2
0

α1

− α1

2

)
, 0

]
. (4.11)

Thus the proof is complete.
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Lemma 15. The following inequality holds:

α1

4
∥Q−Qh∥21,Ω ≤ c1∥Q−Qh∥1,Ω∥Q− Ph∥1,Ω + k̃∥Q−Qh∥20,Ω, ∀Ph ∈ Vh,

where c1 and k̃ are nonnegative constants, and Q, Qh are defined in Thm. 13.

Proof. First, observe that, by subtracting (4.6) from (3.18) (choosing P = Ph ∈ Vh), we

obtain

a (Q−Qh, Ph) + (1/η2) (Dψ(Q)−Dψ(Qh), Ph)Ω + (1/ω) (Dϕ(Q)−Dϕ(Qh), Ph)Γ = 0,

(4.12)

for all Ph ∈ Vh. Secondly, for all symmetric tensors Q1, Q2, P , note that:

(Dψ(Q1)−Dψ(Q2)) : P = −a2(H : P )− a3(Q
2
1 −Q2

2) : P + a4(|Q1|2Q1 − |Q2|2Q2) : P

= −a2(H : P )− a3(H : (Q1 +Q2)P )

+
a4
2

[
(|Q1|2 + |Q2|2)H : P + (H : (Q1 +Q2))((Q1 +Q2) : P )

]
= H :

(
− a2I − a3(Q1 +Q2)I +

a4
2

[
(|Q1|2 + |Q2|2)I

+ (Q1 +Q2)⊗ (Q1 +Q2)
])
P =: H : Θ(Q1, Q2)P,

where H = Q1 −Q2 and I is the 4-tensor identity. Similarly, we have

(Dϕ(Q1)−Dϕ(Q2)) : P = −2s0
3
H : P + (|Q1|2Q1 − |Q2|2Q2) : P

= −2s20
3
H : P + (1/2)

[
(|Q1|2 + |Q2|2)H : P + (P : (Q1 +Q2))((Q1 +Q2) : H)

]
= H :

(
− 2s20

3
I + (1/2)

[
(|Q1|2 + |Q2|2)I

+ (Q1 +Q2)⊗ (Q1 +Q2)
])
P =: H : Ξ(Q1, Q2)P.
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Note also that these tensors obey the inequality

(P,Θ(Q1, Q2)P )Ω ≥
∫
Ω

−a2|P |2 − a3(P : (Q1 +Q2)P ) + (a4/2)(|Q1|2 + |Q2|2)|P |2

≥
∫
Ω

−a2|P |2 − (a3δ
−1/2)|P |2 − (a3δ/2)|Q1 +Q2|2|P |2

+ (a4/2)(|Q1|2 + |Q2|2)|P |2

≥
∫
Ω

−a2|P |2 − (a3δ
−1/2)|P |2 − (a3δ)(|Q1|2 + |Q2|2)|P |2

+ (a4/2)(|Q1|2 + |Q2|2)|P |2

= −(a2 + a23/a4)∥P∥20,Ω = −a′∥P∥20,Ω,

and also

(P,Ξ(Q1, Q2)P )Γ =

∫
Γ

−(2s20/3)|P |2 + (1/2)(|Q1|2 + |Q2|2)|P |2 + (1/2)((Q1 +Q2) : P )
2

≥
∫
Γ

−(2s20/3)|P |2 = −s′∥P∥20,Γ,

for all Q1, Q2, P , where we have chosen δ = a4/2a3, a
′ = a2 + a23/a4, and s

′ = 2s20/3. Then,

for all Ph ∈ Vh, we have

a (Q−Qh, Q−Qh) = a (Q−Qh, Q− Ph) + a (Q−Qh, Ph −Qh)

= a (Q−Qh, Q− Ph)− (1/η2) (Dψ(Q)−Dψ(Qh), Ph −Qh)Ω

− (1/ω) (Dϕ(Q)−Dϕ(Qh), Ph −Qh)Ω .
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Substituting Θ and Ξ into the above, we see that

a (Q−Qh, Q−Qh) = a (Q−Qh, Q− Ph)− (1/η2) (Q−Qh,Θ(Q,Qh)(Ph −Qh))Ω

− (1/ω) (Q−Qh,Ξ(Q,Qh)(Ph −Qh))Γ

= a (Q−Qh, Q− Ph) + (1/η2) (Q−Qh,Θ(Q,Qh)(Q− Ph))Ω

+ (1/ω) (Q−Qh,Ξ(Q,Qh)(Q− Ph))Γ

−(1/η2) (Q−Qh,Θ(Q,Qh)(Q−Qh))Ω − (1/ω) (Q−Qh,Ξ(Q,Qh)(Q−Qh))Γ

≤ c0∥Q−Qh∥1,Ω∥Q− Ph∥1,Ω

+ (1/η2)∥Θ(Q,Qh)∥0,3,Ω∥Q−Qh∥0,6,Ω∥Q− Ph∥0,Ω

+ (1/ω)∥Ξ(Q,Qh)∥0,Γ∥Q−Qh∥0,4,Γ∥Q− Ph∥0,4,Γ

+
a′

η2
∥Q−Qh∥20,Ω +

s′

ω
∥Q−Qh∥20,Γ,

where c0 is the continuity constant defined in (4.10). Applying the Sobolev trace and em-

bedding theorems, with induced constants β1, β2 > 0, we get

a (Q−Qh, Q−Qh) ≤ c0∥Q−Qh∥1,Ω∥Q− Ph∥1,Ω

+ (β1/η
2)∥Θ(Q,Qh)∥0,3,Ω∥Q−Qh∥1,Ω∥Q− Ph∥1,Ω

+ (β2/ω)∥Ξ(Q,Qh)∥0,Γ∥Q−Qh∥1,Ω∥Q− Ph∥1,Ω

+
a′

η2
∥Q−Qh∥20,Ω +

s′

ω
∥Q−Qh∥20,Γ.

Next, by another classic trace theorem, ∥P∥20,Γ ≤ β3∥P∥0,Ω∥P∥1,Ω combined with a

weighted inequality, we have

s′

ω
∥Q−Qh∥20,Γ ≤ (β3s

′)2

ω2α1

∥Q−Qh∥20,Ω +
α1

4
∥Q−Qh∥21,Ω,
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which leads to

a (Q−Qh, Q−Qh) ≤ c1∥Q−Qh∥1,Ω∥Q− Ph∥1,Ω

+

(
a′

η2
+

(β3s
′)2

ω2α1

)
∥Q−Qh∥20,Ω +

α1

4
∥Q−Qh∥21,Ω,

where

c1 := c0 + (β1/η
2)∥Θ(Q,Qh)∥0,3,Ω + (β2/ω)∥Ξ(Q,Qh)∥0,Γ = c0 + β′

1/η
2 + β′

2/ω. (4.13)

Now, by G̊arding’s inequality, we have

α1

2
∥Q−Qh∥21,Ω ≤ a (Q−Qh, Q−Qh) + k∥Q−Qh∥20,Ω.

And so, if we combine this with the above, define s′′ = (β3s
′)2/α1, and set

k̃ = k +
a′

η2
+
s′′

ω2
, (4.14)

then the proof is complete.

Now we move towards an estimate in L2(Ω) of Q − Qh. In order to do this, we first

introduce the solution to and regularity of an adjoint problem.

Lemma 16. There exists a solution R ∈ V to the adjoint problem

a (P,R) + (1/η2) (R,Θ(Q,Qh)P )Ω + (1/ω) (R,Ξ(Q,Qh)P )Γ = (Q−Qh, P )Ω , ∀P ∈ V,

(4.15)

where we assume the regularity estimate

|R|2,Ω ≤ c3∥Q−Qh∥0,Ω. (4.16)
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Proof. First note the inequality

P : Θ(Q,Qh)P = −a2|P |2 − a3(P : (Q1 +Q2)P ) + (a4/2)

(
(|Q1|2 + |Q2|2)|P |2

+ (P : (Q1 +Q2))
2

)
= −a2|P |2 − 2a3(P : Q̄P ) + a4

(
|Q1|2 + |Q2|2

2
|P |2 + 2(Q̄ : P )

2

)
≥ −a2|P |2 − 2a3(P : Q̄P ) + a4

(
|Q̄|2|P |2 + 2(Q̄ : P )

2

)
= P : D2ψ(Q̄)P,

as well as the inequality,

P : Ξ(Q,Qh)P = −(2s20/3)|P |2 + (1/2)

(
(|Q1|2 + |Q2|2)|P |2 + (P : (Q1 +Q2))

2

)
≥ −(2s20/3)|P |2 +

(
|Q̄|2|P |2 + 2(Q̄ : P )

2

)
= P : D2ϕ(Q̄)P,

where Q̄ = (Q1 +Q2)/2, and where we have used the Cauchy-Schwarz and Young inequali-

ties. From here, using (4.8), we see that

a (P, P ) + (1/η2) (P,Θ(Q,Qh)P )Ω + (1/ω) (P,Ξ(Q,Qh)P )Γ

≥ a (P, P ) + (1/η2)
(
P,D2ψ(Q̄)P

)
Ω
+
(
P,D2ϕ(Q̄)P

)
Γ
≥ m0∥P∥21,Ω,

showing that this problem is coercive, and so the solution to the above is guaranteed by

Lax-Milgram, which also shows that ∥R∥1,Ω ≤ c∥Q−Qh∥0,Ω for some constant c > 0.

Remark 17. The additional H2(Ω) regularity assumed in Thm. 13 on the solution Q,

as well as the additional regularity on the adjoint solution in (4.16), may be shown rigor-

ously (given certain smoothness assumptions on Ω) by applying bootstrapping techniques,

and combining the previous a priori estimate for ∥R∥1,Ω with the theory in [45, Ch. 4].

See [38, 43] for other techniques for proving higher regularity of solutions to elliptic sys-

tems.
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Lemma 18. The following estimate holds for the L2-norm difference of Q and its finite

element approximation:

∥Q−Qh∥0,Ω ≤ c4h∥Q−Qh∥1,Ω.

Proof. Starting from (4.12), replace Ph with Rh ∈ Vh and use Θ and Ξ from earlier to get:

a (Q−Qh, Rh) + (1/η2) (Rh,Θ(Q,Qh)(Q−Qh))Ω + (1/ω) (Rh,Ξ(Q,Qh)(Q−Qh))Γ = 0.

Then, set P = Q−Qh in (4.15) to produce an estimate for ∥Q−Qh∥0,Ω:

(Q−Qh, Q−Qh)Ω = a (Q−Qh, R) + (1/η2) (R,Θ(Q,Qh)(Q−Qh))Ω

+ (1/ω) (R,Ξ(Q,Qh)(Q−Qh))Γ

= a (Q−Qh, R−Rh) + (1/η2) (R−Rh,Θ(Q,Qh)(Q−Qh))Ω

+ (1/ω) (R−Rh,Ξ(Q,Qh)(Q−Qh))Γ

≤ a (Q−Qh, R−Rh)

+ (1/η2)∥Θ(Q,Qh)∥0,3,Ω∥R−Rh∥0,6,Ω∥Q−Qh∥0,Ω

+ (1/ω)∥Ξ(Q,Qh)∥0,Γ∥R−Rh∥0,4,Γ∥Q−Qh∥0,4,Γ.

We apply the Sobolev trace and embedding theorems to the above line and obtain that

(Q−Qh, Q−Qh)Ω ≤ a (Q−Qh, R−Rh)

+ (β1/η
2)∥Θ(Q,Qh)∥0,3,Ω∥R−Rh∥1,Ω∥Q−Qh∥1,Ω

+ (β2/ω)∥Ξ(Q,Qh)∥0,Γ∥R−Rh∥1,Ω∥Q−Qh∥1,Ω

≤ c0∥Q−Qh∥1,Ω∥R−Rh∥1,Ω +
(
(β1/η

2)∥Θ(Q,Qh)∥0,3,Ω

+ (β2/ω)∥Ξ(Q,Qh)∥0,Γ
)
∥Q−Qh∥1,Ω∥R−Rh∥1,Ω

= c1∥Q−Qh∥1,Ω∥R−Rh∥1,Ω,
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for all Rh ∈ Vh, where β1, β2 > 0 are constants induced from the trace and embedding the-

orems, and c1 is the same as in (4.13). We then note that infPh∈Vh
∥P − Ph∥1,Ω ≤ c2h|P |2,Ω

for all P ∈ H2(Ω), for some constant c2 > 0, a result from standard finite element inter-

polation theory (cf. [21], for instance). So, we can choose Rh such that by this estimate as

well as (4.16), we obtain

(Q−Qh, Q−Qh)Ω ≤ c1c2h∥Q−Qh∥1,Ω|R|2,Ω ≤ c1c2c3h∥Q−Qh∥1,Ω∥Q−Qh∥0,Ω.

Dividing everything by ∥Q−Qh∥0,Ω, we obtain

∥Q−Qh∥0,Ω ≤ c4h∥Q−Qh∥1,Ω, (4.17)

where c4 := c1c2c3 and we are done.

Proof of Theorem 13. Combining Lemma 15 with Lemma 18, we obtain the following for

all Ph ∈ Vh:

Lem. 15 :
α1

4
∥Q−Qh∥21,Ω ≤ c1∥Q−Qh∥1,Ω∥Q− Ph∥1,Ω + k̃∥Q−Qh∥20,Ω

≤ c1∥Q−Qh∥1,Ω∥Q− Ph∥1,Ω + k̃(c1c2c3)
2h2∥Q−Qh∥21,Ω.

Moving the last term to the left hand side and then dividing by ∥Q−Qh∥1,Ω:

(α1/4− k̃(c1c2c3)
2h2)∥Q−Qh∥1,Ω ≤ c1∥Q− Ph∥1,Ω.

If we choose h ≤ h0, where

h0 =

(
α1

8k̃

)1/2
1

c1c2c3
,

then

α1∥Q−Qh∥1,Ω ≤ 8c1∥Q− Ph∥1,Ω, ∀Ph ∈ Vh. (4.18)
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Next, substituting c1 from (4.13) and k̃ from (4.14), the explicit form of h0 is

h0 =

(
α1

k + (a′/η2) + (s′′/ω2)

)1/2
1√

8(c0 + β′
1/η

2 + β′
2/ω)c2c3

.

Finally, using the interpolation theory result from the previous lemma, we see that the

estimate (4.18) is bounded by a multiple of h|Q|2,Ω, thus completing the proof.

4.3. Numerical Analysis for the Gradient Flow Problem

The previous sections describe the energy decrease property of our gradient flow

scheme which is necessary to obtain a local minimizer; this holds for both the continuous

problem and the finite element discretized problem. Furthermore, we have shown that a

local minimizer for the finite element discretization of the equilibrium problem converges

to a local minimizer of the full equilibrium problem as the mesh size h goes to 0, which

required Assumption 12 (i.e. the minimizer is isolated and coercive).

One can also analyze the numerical convergence of the fully discrete scheme toward

the solution of the continuous gradient flow problem in space and time on a finite time-

interval, i.e. does the solution of (4.3) converge to the solution of (3.21) as δt → 0 and

h → 0? This does indeed hold and can be shown by well-known numerical techniques

for parabolic equations; for instance, see [96, 83, 97] in the context of phase-field models.

However, in many liquid crystal modeling situations, the equilibrium problem is of pri-

mary interest.

In addition, the mesh-size restriction that is in Theorem 13 does not appear in the

error analysis for the time-dependent problem on a finite time-interval. This is due to the

fact that the discrete time-derivative term acts to regularize the problem for sufficiently

small time-steps. Hence, it can be misleading to only consider the numerical analysis of
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the time-dependent problem with respect to the numerical parameters needed to accu-

rately capture the phenomena being modeled. In other words, if the mesh size is not suffi-

ciently small, then the numerical solution of the equilibrium problem may not be trustwor-

thy. Section 5.5 gives examples that demonstrate this.
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Chapter 5. Numerical Results

We present several simulations that illustrate the cholesteric Landau-de Gennes

model on both a slab geometry and a spherical shell for a range of twist parameters. We

illustrate both the richness of the model, as well as issues that can arise when the mesh

size is not small enough. Our software is implemented in Firedrake [77], which heavily uses

the PETSc library [10, 9, 11], as well as various algorithms for computing and finite ele-

ments [50, 64, 52, 51]. We also made use of parallel computing in our simulations [28, 26].

We used Paraview [6] to visualize our simulations. We simulated on two of the machines

owned by the LSU Department of Mathematics. Each machine was equipped with two In-

tel Xeon Gold 6242R processors running at 3.10/4.10 GHz, as well as a 768 GiB RAM. We

ran our simulations on a single node using 25 processes.

5.1. Minimization technique

As discussed in Section 3.3, the gradient descent method can be used to find a local

minimizer of the LdG equilibrium problem. In our implementation, we apply this method

to the finite element discretization of the problem. At each time step, we must solve a

nonlinear system in (4.3), so Firedrake’s builtin nonlinear solver (which utilizes Newton’s

method) is employed. We use the Geometric agglomerated Algebraic MultiGrid (GAMG)

preconditioner, as well as the Minimal Residual Method (MINRES) for our Krylov sub-

space method.

However, the fully implicit gradient descent method we use comes with a time-step

restriction (see Theorem 8) that is affected by η and ω through the minimizing movements

inner product (3.25), as well as the twist τ0. This can lead to excessive computation times.
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Therefore, in practice, we start with a time-step that satisfies the various restrictions given

earlier and compute several steps (e.g. we start with a time-step of δt = 0.001 and we

compute 50 steps). Then, we increase the time-step by a factor of 10 and do several more

steps (e.g. 50), checking that the energy continues to decrease with each step. If the en-

ergy does not decrease after increasing the time-step, or if the solver diverges, then we

go back to the smaller time-step and perform more iterations before attempting to in-

crease the time-step again. In practice, however, the energy always decreased in our sim-

ulations; the only situation in which we had to go back to the smaller time-step was when

the solver diverged. This continues until δt reaches a maximum value of δt = 100, 000, af-

ter which we continue iterating. During this procedure, for any value of δt, if the energy

decrease between successive iterates is less than a tolerance (e.g. 10−6), then we stop iter-

ating and solve the equilibrium problem directly (i.e. no gradient descent). If the nonlinear

solver for the equilibrium problem diverges, then we continue with several more gradient

descent iterations. Despite the ad-hoc nature of this procedure, it was effective in obtain-

ing (discrete) local minimizers of the discrete LdG energy in a reasonable amount of time.

5.2. Parameter choices and visualization

The following parameter values were used for all simulations in Sections 5.3, 5.4,

and 5.5. The coefficients of the double well in (2.10), were chosen as

a0 = 1, a2 = 7.502104, a3 = 60.975813, a4 = 66.519069. (5.1)

The function ψ(Q) has a global minimum at Q∗ = s0 (l⊗ l− I/3), where l ∈ R3 is any

unit vector, and s0 = 0.7. The other coefficients are given by ℓ1 = 1.0, ℓ2 = ℓ3 = 0, and

η = 0.1. We conducted experiments with both homeotropic anchoring (i.e. w0 = 10.0,
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w1 = w2 = 0) and planar degenerate anchoring (i.e. w0 = 0, w1 = w2 = 10.0 and

ω = 0.1). The twist was varied, with values typically chosen as τ0 = 0, 5, 10, 15, 20, 25.

In Section 5.6, a different set of parameters was used corresponding to the liquid crystal

5CB.

The numerical solution for Q is visualized by first performing an eigendecomposi-

tion of Q at each node of the mesh. We then set n to be the eigenvector of Q correspond-

ing to the largest eigenvalue of Q. If Q has a uniaxial form, then this choice of n is consis-

tent with (2.5). Finally, we compute |n · r|, where r is a given vector that corresponds to

the computational domain, and visualize |n · r| as a scalar field. Typically, r is chosen to

face a hypothetical viewer, and this varies depending on the geometry of the LC domain.

Thus, |n · r| = 0 means the LCs are facing orthogonal to the viewer’s line of sight, and

|n · r| = 1 means the LCs are facing the viewer directly.

5.3. Slab Configuration

5.3.1. Experimental Setup

The domain Ω is a rectangular solid (slab geometry), where two choices were used

with different aspect ratios. For the first slab, we set Ω = (0, 1) × (0, 1) × (0, 0.2). The

boundary is partitioned as Γ = Γ1 ∪ Γ0 where Γ1 = (0, 1) × (0, 1) × {0, 0.2} (top and

bottom of the slab) and Γ0 = Γ \ Γ1 (sides of the slab). Then, in the formulation (3.26),

we replace Γ with Γ1, i.e. we enforce the weak anchoring condition on Γ1 and use a zero

Neumann condition on Γ0. For the finite element discretized domain Ωh, we chose a mesh

size of h = 0.02.

The initial condition Q0 for this case was a periodic function defined as follows.
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First, let w = w(x1, x2, x3) be given by

w = (0, cos(τ0x1), sin(τ0x1))
† . (5.2)

Then, we set n = w/|w| and

Q0 = s0 (n⊗ n− I/3) . (5.3)

This initial condition corresponds to a helical configuration of the director field, which is

visualized in the far left column of Figure B.1 where the color corresponds to |n · r| with

r = e3 (see Section 5.2). The period 2π/τ0 decreases with larger values of τ0, which corre-

sponds with more stripes positioned closer together. See Figure B.1 for a visualization of

the initial condition Q0 and the computed local minimizers for both homeotropic and pla-

nar degenerate anchoring for a range of twist values τ0. Note that the color corresponds to

|n · r| with r = e3 (see Section 5.2).

For the larger aspect ratio slab, we set Ω = (0, 2) × (0, 2) × (0, 0.2), with boundary

conditions chosen similarly to the smaller slab, i.e. a zero Neumann condition is enforced

on the sides of Ω and weak anchoring on the top and bottom. The mesh size was again

set to h = 0.02. The initial condition was chosen to have an oscillatory component in the

following way. First, define

w1 = (0, cos(τ0x1), sin(τ0x1))
†, w2 = (cos(τ0x2), sin(τ0x2), 0)

†. (5.4)

Then for i = 1, 2 we define ni = wi/|wi|, and Qi by

Qi = s0 (ni ⊗ ni − I/3) . (5.5)

Then, choosing ρ = (cos(τ0x1) cos(τ0x2) + 1)/2, we set

Q0 = (1− ρ)Q1 + ρQ2. (5.6)
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See Figure B.2 for a visualization of Q on the larger slab that is analogous to Figure B.1.

5.3.2. Results

We begin with the smaller aspect ratio slab. Table A.1 lists the (non-dimensional)

energies of the initial condition for each τ0 compared to the energies of the equilibrium

state (a local minimizer), for both homeotropic and planar degenerate anchoring.

Figure B.1 (middle column) depicts the final equilibrium solutions with homeotropic

anchoring, all of which had very regular stripe patterns. In addition, as τ0 increased, the

final stripe patterns aligned more with the diagonal of the slab. This is most likely due to

the zero Neumann condition imposed on the sides. If a periodic boundary condition were

used, then the final configuration would be invariant to rotations of the e1, e2 plane. We

were not able to enforce this condition because of a limitation of Firedrake.

For the planar degenerate anchoring case (Figure B.1, right column), similar

striped patterns occurred in the equilibrium solutions for each twist value. However,

the alignment with the diagonal was not quite as pronounced. Moreover, the transition

between stripes was slightly different from the homeotropic case and the period was dif-

ferent. For instance, τ0 = 20 corresponds to an ideal period of p = 2π/τ0 ≈ 0.314, but

the measured period from the simulation was p = 0.35 (p = 0.41) for the homeotropic

(planar degenerate) case. We also note that in the planar degenerate case, with τ0 = 5, we

approximately see a circular region of tangential directors surrounding a center where the

director becomes normal to e3. This is because the anchoring constants, which are set to

w1 = w2 = (1/ω) = 10, outweigh the twist.

Simulation times varied, ranging from 0 to 8 minutes for the homeotropic case, and
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0 to 7 minutes for the planar degenerate case. There seemed to be no pattern with regard

to which anchoring case led to longer simulation times.

For the larger slab, Table A.2 lists the (non-dimensional) energies of the initial con-

dition for each τ0 compared to the energies of the equilibrium state (a local minimizer), for

both homeotropic and planar degenerate anchoring. Figure B.2 illustrates the final equilib-

rium solutions with homeotropic and planar degenerate anchoring, which shows very simi-

lar solutions as for the small slab. Again, the diagonal alignment was more pronounced for

the homeotropic case. For example, for τ0 = 20, the homeotropic case yielded a period p

of p = 0.35, while the planar degenerate case yielded p = 0.38. One major difference from

the first set of simulations was that when τ0 = 5, the solution for the homeotropic case

consisted of the director pointing normal to the surface on the entire domain. Simulation

times varied, ranging from 0 to 41 hours for the homeotropic case, and 0 to 16 hours for

the planar degenerate case. Times were generally shorter for the planar degenerate case.

5.4. Shell Configuration

5.4.1. Details

The domain Ω is a spherical annulus (shell), where two choices were used. For the

first shell, we set Ω = Ωshell,0 := B(0, 1) \ B(0, 0.9), where B(0, r) is an open ball of radius

r. For the finite element discretization Ωh, we set the mesh size to be h = 0.02. For the

initial condition, when τ0 > 0, we let w = w(x1, x2, x3) be given by

w = (cos(τ0x3), sin(τ0x3), 0)
† . (5.7)

Then, similarly to the initial conditions for the slabs, we set n = w/|w| and

Q0 = s0 (n⊗ n− I/3) . (5.8)
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For τ0 = 0, we let n = x/|x|, and set Q0 as in (5.8).

The far left column of Figures B.3 and B.4 depicts the initial condition, where the

color corresponds to |n · r| with r = x/|x|, i.e. the radial unit vector (see Section 5.2).

The stripes in the initial condition form a spiral on the spherical boundary running top

to bottom, with spacing inversely proportional to τ0. Moreover, Figures B.3 and B.4 show

the final equilibrium state of Q, corresponding to a local minimizer, for both homeotropic

and planar degenerate anchoring for a range of twist values τ0.

For the second shell, we set Ω = Ωshell,1 := B(0, 1)\B(p, 0.9), where p = (0, 0, 0.05)†,

i.e. an off-centered annulus. Our mesh size was again set to h = 0.02. We used the same

initial condition here as in (5.8). Figures B.5 and B.6 show the initial condition, as well as

the final equilibrium state, for a range of twist values.

We also performed another set of numerical experiments for the first shell, Ω =

Ωshell,0, but with the initial condition set to Q0 in (5.6). Figures B.7 and B.8 show the ini-

tial condition, as well as the final equilibrium state, for a range of twist values. We omit-

ted the case of τ0 = 0, since the results were not appreciably different from the previous

experiments.

5.4.2. Results

We begin with the centered shell Ωshell,0 and initial condition (5.8). Table A.3 lists

the (non-dimensional) energies of the initial condition for each τ0 compared to the energies

of the equilibrium state (a local minimizer), for both homeotropic and planar degenerate

anchoring.

Figures B.3 and B.4 (middle column) depict the final equilibrium solutions with
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homeotropic anchoring, where the spiral stripe pattern has a slight undulation. Moreover,

the spirals meet as two “fingers” at the poles of the shell. The slice views show that the

spiral pattern persists through the shell’s thickness. For τ0 = 5, instead of a stripe pattern,

the director n is radial pointing outward from the origin, because the anchoring strength

outweighs the twist effect.

For the planar degenerate anchoring case (Figures B.3 and B.4 (right column)),

similar striped patterns are present in the equilibrium solutions for each twist value. We

note that the transition between stripes is slightly different from the homeotropic case (as

for the slab). For τ0 = 5, the director field is mainly tangential, except for two “poles”

where the director becomes normal to the surface of the shell. Again, this is because the

anchoring constants outweigh the twist.

Each simulation time ranged from 0 to 26 hours for the homeotropic case, and 0 to

11 hours for the planar degenerate case (with an exception for τ0 = 10 which took nearly

20 hours). In general, higher twist correlates with longer simulation times, and the planar

degenerate case took longer than the homeotropic case.

Next, we consider the off-centered shell Ωshell,1 and initial condition (5.8). Table A.4

lists the (non-dimensional) energies of the initial condition for each τ0 compared to the

energies of the equilibrium state (a local minimizer), for both homeotropic and planar de-

generate anchoring.

Figures B.5 and B.6 depict the final equilibrium solutions for both homeotropic and

planar degenerate anchoring, which show similar stripe patterns as for the previous cen-

tered shell. But there are some differences. For τ0 = 5 with planar degenerate anchoring,

the two “poles” where the director becomes normal to the surface are shifted down toward
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the thicker part of the shell. For τ0 = 10 and homeotropic anchoring, the stripe pattern is

absent at the top (thinnest) part of the shell; for planar degenerate, the spiral pattern is

only present on the lower (thicker) half of the shell. For higher twists, the spiral patterns

are similar to the previous (centered) shell. This is due to the interplay of the anchoring

strength and the twist. Basically, there is not enough “room” in the thinnest part of the

shell to develop a twist of the director field if τ0 is not sufficiently large. Each simulation

time ranged from 0 to 24 hours for the homeotropic case, and 2 to 80 hours for the planar

degenerate case. In general, higher twist correlates with longer simulation times, and the

planar degenerate case took longer than the homeotropic case. For example, with τ0 = 0,

it took around 30 minutes for the homeotropic case, and 32 hours for the planar degener-

ate case.

We now reconsider the centered shell Ωshell,0 but with the initial condition (5.6).

Table A.5 lists the (non-dimensional) energies of the initial condition for each τ0 compared

to the energies of the equilibrium state (a local minimizer), for both homeotropic and pla-

nar degenerate anchoring.

Figures B.7 and B.8 depict the final equilibrium solutions for both homeotropic

and planar degenerate anchoring, which show similar stripe patterns as before. However,

the stripe patterns break away from being a spiral in some cases. For instance, with

homeotropic anchoring and τ0 = 15, 20, we see multiple triple junctions of the blue re-

gion. In addition, we see similar triple junctions for the planar degenerate anchoring with

τ0 = 15. The τ0 = 10 case (planar degenerate) exhibits a somewhat bizarre hexagonal pat-

tern with a slightly lower energy than the minimizer in Figures B.3 and B.4 (E = −66.795

vs. E = −62.482). Despite redoing this case with a finer mesh size of h = 0.015, the
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pattern persisted (with a final energy of E = −68.244), suggesting that this may represent

a true minimizer. The other cases exhibited a similar spiral pattern as before. Each simu-

lation took from 1 to 33 hours for the homeotropic case, and 4 to 14 hours for the planar

degenerate case, with the latter case generally taking a shorter time than the former.

5.5. Comments on computing minimizers

We demonstrate the ramifications of Theorem 13, which has a mesh size restric-

tion, on the form of discrete minimizers. Because of the non-convex terms in the energy,

i.e. the double well and cholesteric term, the choice of mesh size affects more than just the

resolution of the features of the minimizer Q. Indeed, too coarse a mesh can yield discrete

minimizers that contain numerical artifacts, i.e. the “minimizer” may be very far from a

true minimizer of the continuous problem. Figure B.9 show two simulations, one for the

slab and one for shell, that illustrate how these numerical artifacts may manifest. In other

words, when the mesh size is too large, the energy landscape of the discrete energy func-

tional may contain artificial minima, so the gradient flow finds a different minimizer with

a very different structure.

We also consider another type of perturbation of the initial condition in Fig-

ure B.10. Here, a centered shell, with homeotropic anchoring, is considered with τ0 = 15,

but the initial condition corresponds to τ0 = 25, i.e. more tightly packed stripes. Because

of this mismatch of the initial condition, the simulation took approximately 1 week to

“unwind” the extra twist in the initial condition to arrive at a minimizer with τ0 = 15.

Moreover, the gradient flow obtained a different minimizer (E = −151.78) with a stripe

pattern that contained two triple junctions, as opposed to Figure B.3 (E = −151.98) which
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had no triple junctions.

5.6. Other Cholesteric Model

We attempted to reproduce a result produced by Lavrentovich and Tran in [60,

Fig. 6], which models a cholesteric shell with outer radius 0.42 µm and inner radius

0.24 µm. From this, we choose the characteristic length ξ = 0.42 µm.

The dimensional parameters used are for the 5CB liquid crystal, which can

be found in [78]. The double well constants are a2 = 0.172 × 106 J/m3, a3 =

2.12 × 106 J/m3, and a4 = 1.73 × 106 J/m3. Following Section 2.3, we then calculate

c0 = 0.038362224 × 106 J/m3, and divide the double well coefficients by c0 to obtain the

non-dimensional double well:

a0 = 1.0, a2 = 4.4835774, a3 = 55.262698, a4 = 45.096447,

which gives s0 = 0.7992969.

For the elastic coefficients (for 5CB in [78]), we have ℓ̆1 = ℓ̆2 = 4 × 10−11 J/m,

ℓ̆24 = 0. Since ℓ̆24 = 0, this corresponds, via the mapping of the constants in Section 2.4,

to ℓ1 = ℓ2 = 4×10−11 J/m, ℓ3 = −4×10−11 J/m. From here, we choose ℓm = 4×10−11 J/m

and divide by ℓm to obtain ℓ1 = ℓ2 = 1, ℓ3 = −1. Note that the inequalities in (3.3) are

not strictly satisfied in this case. We also have a cholesteric pitch of p = 0.18 µm, and so

the non-dimensional twist is τ0 = 14.660766. The anchoring condition is planar degenerate

with w0 = 0, w1 = 4 × 10−4 J/m2, w2 = 8 × 10−4 J/m2. Multiplying the first two

by ξ/ℓm, we obtain w0 = 0, w1 = 4.2. Finally, using the formulas η =
√
ℓm/(c0ξ2) and

ω = ℓm/(w2ξ), we have that η = 0.07688273 and ω = 0.11904762.

We ran simulations for the above parameters using the following three models: A,
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B-1, B-2. Model A is given in (2.7) (see [68, 70, 78]), and model B-1 is the cholesteric

model in [88] and discussed in Section 2.4. Since s0 is inconsistent with their effective dou-

ble well ψ̃ (see Section 2.4.2 and the discussion about the extra tr(Q2) term), we ran the

simulation for a model B-2, which is identical to B-1, except that we replace s0 with the

correct global minimum s̃0 for ψ̃.

The energy results of these simulations are found in Table A.6, and the results of

the simulation using model A are found in Figure B.11, which does not exactly match the

result in [60, Fig. 6]. Their method uses a conjugate gradient method which is different

from our minimization scheme, i.e. their method travels along a different path in the en-

ergy landscape so finds a different local minimizer.

We do not give the visualization of the other two models (B-1, B-2), because they

look nearly identical to Model A. We suspect this is due to the cholesteric twist having a

dominant effect. It should be noted, however, that models A and B-1, B-2 differ greatly in

their final energies, as well as in the values of the maximum eigenvalue λ̄ of Q, the latter

of which is shown in Figure B.12. We emphasize that, due to the energetic differences, if

other physics were to be coupled to the liquid crystal (e.g. electro-static effects), then the

models would most likely give vastly different equilibrium states. In addition, if the twist

parameter is sufficiently large, then the effective bulk potential (recall Section 2.4 (2.4.2))

will favor an isotropic state, which is not consistent with cholesteric LC behavior [88, 60,

81].

It took approximately 2 hours to simulate model A, while it took about 40 minutes

to simulate models B-1 and B-2. The mesh size used was 0.04285714.
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Chapter 6. Conclusions

The first part of this thesis gives an overview of the Landau-de Gennes (LdG)

model [68, 70, 78] for nematic LCs, with cholesteric effects, and connects it to a slightly

different cholesteric model in [88]. We then presented a gradient flow and numerical

scheme for the cholesteric LdG model. An adaptive time-stepping strategy was used to

reduce the computation time. We also derived time-step restrictions to have an energy

decreasing algorithm, restrictions which indicate that the classic convex splitting approach

is not uniformly stable in the presence of the cholesteric twist. Moreover, we showed that

a mesh size restriction is necessary to ensure that discrete minimizers are approximate

versions of isolated, true minimizers.

Using our gradient flow, we computed (local) minimizers with an adaptive time-

stepping strategy to reduce the computation time. This produced several numerical sim-

ulations that illustrate the rich behavior of the cholesteric LdG model. For both slab and

shell geometries, the minimizer has regular stripe patterns that are affected by the domain

shape. Specifically, the off-centered shell has a very different minimizer than the centered

shell for intermediate values of the twist τ0. We also demonstrate that our gradient flow

scheme can compute different (local) minimizers for the same set of parameters but de-

pending on the initial condition. Some of the simulations show perturbed stripe patterns

that exhibit “triple junctions” of the stripe and are due to using initial conditions with a

high spatial frequency. All of these (equilibrium) stripe patterns are in line with known

experiments for cholesteric LCs (for instance, see [34, 36] for examples with thin slab ge-

ometries, and [88, 60, 59, 81] for shell geometries).

We also gave examples of how artificial solutions may arise if the mesh size is not
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small enough, i.e. the computed minimizer may exhibit discrete artifacts. Furthermore, we

showed that the two cholesteric models exhibit very different energies, though the com-

puted solution may still have a very similar configuration of the director n.

The results of this thesis should help inform LC computational scientists about po-

tential pitfalls in the simulation of the cholesteric LdG model and lead to more robust nu-

merical predictions of cholesteric LC physics.
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Appendix A. Tables

Homeotropic anchoring Planar degenerate anchoring
τ0 Initial energy Final energy Initial energy Final energy
0 9.80015487 8.21500396 0.0 0.0
5 2.19357782 -0.91492417 0.73088994 -3.10989917
10 -4.33873728 -10.98108043 -6.50203019 -14.33213509
15 -15.42302005 -31.95613716 -16.98598006 -34.85051092
20 -28.16438688 -65.69156577 -30.05907645 -68.243013

Table A.1. Energies for the small slab (1× 1× 0.2) in Figure B.1 (Sec. 5.3.2).

Homeotropic anchoring Planar degenerate anchoring
τ0 Initial energy Final energy Initial energy Final energy
0 39.20061947 32.86058337 0.0 0.0
5 49.25887441 -2.64966269 43.13556899 -11.06811563
10 70.41495358 -41.83731193 65.18722048 -51.78216459
15 104.88188461 -122.7420167 100.38078589 -133.893747
20 151.32789951 -254.83515683 147.15907691 -265.87890179

Table A.2. Energies for the large slab (2× 2× 0.2) in Figure B.2 (Sec. 5.3.2).

Homeotropic anchoring Planar degenerate anchoring
τ0 Initial energy Final energy Initial energy Final energy
0 1.23566209 1.23349847 56.94106826 51.13769725
5 60.49129983 1.23349741 12.23300007 -13.13068291
10 21.34536007 -33.76001607 -26.81216759 -62.48198396
15 -36.59992963 -151.97707415 -84.58904161 -185.01096392
20 -103.25794942 -348.22427414 -151.0115368 -384.49961726
25 -166.11557298 -639.23581796 -213.57414074 -677.04411588

Table A.3. Energies for the centered shell (Ωshell,0) in Figures B.3 and B.4 (Sec. 5.4.2).
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Homeotropic anchoring Planar degenerate anchoring
τ0 Initial energy Final energy Initial energy Final energy
0 1.34958562 1.26765658 56.95232872 1.56772626
05 60.4884546 1.24104888 12.23023189 -13.2233694
10 21.30137144 -34.07603296 -26.85588133 -64.03286781
15 -36.81485612 -149.89711829 -84.80477055 -182.77158029
20 -103.91110362 -342.9675383 -151.66656546 -379.13022842
25 -167.63544101 -630.70950725 -215.09203743 -668.63027357

Table A.4. Energies for the off-centered shell (Ωshell,1) in Figures B.5 and B.6 (Sec. 5.4.2).

Homeotropic anchoring Planar degenerate anchoring
τ0 Initial energy Final energy Initial energy Final energy
5 107.21684588 1.23349885 65.88019321 -12.85142139
10 143.69128926 -33.21147874 103.37532314 -66.79504813
15 198.33754579 -151.71328798 158.2365114 -185.18312273
20 269.46171783 -348.4203652 229.41729719 -384.3815465
25 352.2492802 -639.0239269 312.42189391 -676.81099557

Table A.5. Energies for the centered shell (Ωshell,0), with oscillatory initial condition, in
Figures B.7 and B.8 (Sec. 5.4.2).

Model Initial energy Final energy
A -196.83349123 -479.36144656
B-1 310.00570697 185.52404418
B-2 365.134880212 183.86282819

Table A.6. Energies for the model comparisons in Figures B.11 and B.12 (Sec. 5.6).
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Appendix B. Simulation Figures

Figure B.1. Small aspect ratio slab: 1×1×0.2 (Sec. 5.3.2). Color is proportional to |n ·e3|.
Initial condition column shows top view (viewing the xy plane) of slab. Homeotropic an-
choring columns show the top view and a vertical slice (viewing the xz plane) through the
middle of the slab. Planar degenerate anchoring columns have the same format.
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Figure B.2. Large aspect ratio slab: 2×2×0.2 (Sec. 5.3.2). Color is proportional to |n ·e3|.
Similar format to Figure B.1.
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Figure B.3. Centered shell (Ωshell,0), front view (viewing the yz plane) (Sec. 5.4.2). Color
is proportional to |n · r| with r = x/|x|. Homeotropic anchoring columns show the outer
boundary and a vertical slice through the shell. Planar degenerate anchoring columns have
the same format.
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Figure B.4. Centered shell (Ωshell,0), top view (viewing the xy plane) (Sec. 5.4.2). Similar
format to Figure B.3; the slices are parallel to the view plane.
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Figure B.5. Off-centered shell (Ωshell,1), front view (Sec. 5.4.2). Similar format to Fig-
ure B.3.
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Figure B.6. Off-centered shell (Ωshell,1), top view (Sec. 5.4.2). Similar format to Fig-
ure B.4.
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Figure B.7. Centered shell (Ωshell,0) with oscillatory initial condition, front view (viewing
the yz plane) (Sec. 5.4.2). Similar format to Figure B.3.
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Figure B.8. Centered shell (Ωshell,0) with oscillatory initial condition, top view (viewing the
xy plane) (Sec. 5.4.2). Similar format to Figure B.4. The choice of the initial condition
caused the local minimizer to have a different orientation relative to the previous plots.
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Figure B.9. Equilibrium states when the mesh size is not small enough (Sec. 5.5). Ex-
ample (a) shows an energy minimizer, with E = −213.62, for the large slab with the
oscillatory initial condition and τ0 = 20, but with a mesh size of 0.05 (cf. Figure B.2
(homeotropic), with E = −254.84, that used a mesh size of 0.02). Clearly, the period
of the stripes in Figure B.2 is much smaller than in (a) (to be exact, the period here is
around 0.576). Example (b) shows a minimizer, with E = −757.69, for the centered shell
with the periodic initial condition and τ0 = 25, but with a mesh size of 0.05 and a shell
thickness of 0.2 (cf. Figure B.3 (homeotropic), with E = −639.24, that used a mesh size of
0.02 and a thickness of 0.1). Even though all other parameters were the same, the gradient
flow finds a different minimizer with a very different structure.
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Figure B.10. Different equilibrium states with mismatched initial condition (Sec. 5.5).
We consider a centered shell with homeotropic anchoring and a twist of τ0 = 15 (re-
call Figure B.3 (homeotropic)). However, we use a periodic initial condition consistent
with τ0 = 25 (see far left col. in Figure B.3), i.e. more stripes than the minimizer should
have. The computed minimizer has energy E = −151.78, compared to E = −151.98 in
Figure B.3 (homeotropic), and contains two triple junctions not present in the previous
simulation.

73



Figure B.11. Results from the simulation of Model A (Sec. 5.6). Both a front view (view-
ing the yz plane) and a top view (viewing the xy plane) are shown, with a view of the
initial condition and final state (both outside view and slice are shown). Models B-1 and
B-2 had visually indistinguishable patterns.
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Figure B.12. Results from the simulation of Models A, B-1, B-2 (Sec. 5.6), except viewing
the largest eigenvalue λ̄ = max {λi}3i=1 of the energy minimizing Q. We have Model A (our
formulation), Model B-1, (their formulation with their inconsistent s0), and Model B-2
(their formulation with a consisent s0).

75



Bibliography

[1] J. H. Adler, T. J. Atherton, T. R. Benson, D. B. Emerson, and S. P. MacLachlan.
Energy minimization for liquid crystal equilibrium with electric and flexoelectric ef-
fects. SIAM Journal on Scientific Computing, 37(5):S157–S176, 2015.

[2] J. H. Adler, T. J. Atherton, D. B. Emerson, and S. P. MacLachlan. An energy-
minimization finite-element approach for the frank–oseen model of nematic liquid
crystals. SIAM Journal on Numerical Analysis, 53(5):2226–2254, 2015.

[3] J. H. Adler, D. B. Emerson, S. P. MacLachlan, and T. A. Manteuffel. Constrained
optimization for liquid crystal equilibria. SIAM Journal on Scientific Computing,
38(1):B50–B76, 2016.
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[14] Sören Bartels and Alexander Raisch. Simulation of Q-tensor fields with constant
orientational order parameter in the theory of uniaxial nematic liquid crystals. In
Michael Griebel, editor, Singular Phenomena and Scaling in Mathematical Models,
pages 383–412. Springer International Publishing, 2014.

[15] J.S. Biggins, M. Warner, and K. Bhattacharya. Elasticity of polydomain liquid crys-
tal elastomers. Journal of the Mechanics and Physics of Solids, 60(4):573 – 590,
2012.

[16] Paolo Biscari and Pierluigi Cesana. Ordering effects in electric splay freedericksz
transitions. Continuum Mechanics and Thermodynamics, 19(5):285–298, 2007.

[17] L.M. Blinov. Electro-optical and magneto-optical properties of liquid crystals. Wiley,
1983.

[18] Juan-Pablo Borthagaray, Ricardo H. Nochetto, and Shawn W. Walker. A structure-
preserving FEM for the uniaxially constrained Q-tensor model of nematic liquid
crystals. Numerische Mathematik, 145:837 – 881, 2020.

[19] Juan Pablo Borthagaray and Shawn W. Walker. Chapter 5 - the Q-tensor model
with uniaxial constraint. In Andrea Bonito and Ricardo H. Nochetto, editors, Geo-
metric Partial Differential Equations - Part II, volume 22 of Handbook of Numerical
Analysis, pages 313 – 382. Elsevier, 2021.

[20] Andrea Braides. Gamma-Convergence for Beginners, volume 22 of Oxford Lecture
Series in Mathematics and Its Applications. Oxford Scholarship, 2002.

[21] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Ele-
ment Methods, volume 15 of Texts in Applied Mathematics. Springer, New York, NY,
3rd edition, 2008.

77

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
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