Integer sequences and their valuations
 Southern Regional Number Theory Conference Modular Curves, Modular Forms, and Hypergeometric Functions

 April 13-14, 2019

 April 13-14, 2019

 LSU

 LSU
 Victor H. Moll, Tulane University, New Orleans

April 13, 2019

Joint work with:

Tewodros Amdeberhan
Xiao Guan
Dante Manna
Luis A. Medina
Vaishavi Sharma
Xinyu Sun
Armin Straub
Diego Villamizar

General project

Given a sequence of integers $\left\{x_{n}\right\}$ and a prime p, determine properties of the sequence $\left\{\nu_{p}\left(x_{n}\right)\right\}$

General project

Given a sequence of integers $\left\{x_{n}\right\}$ and a prime p,
determine properties of the sequence $\left\{\nu_{p}\left(x_{n}\right)\right\}$
In particular, can one obtain a closed form for the valuations?

General project

Given a sequence of integers $\left\{x_{n}\right\}$ and a prime p,
determine properties of the sequence $\left\{\nu_{p}\left(x_{n}\right)\right\}$
In particular, can one obtain a closed form for the valuations?
Perhaps create a version of OEIS for valuations

p-adic valuations

For a prime p and $n \in \mathbb{N}$ write

$$
n=p^{x} \times b
$$

with b not divisible by p.
The integer x is the p-adic valuation of n denoted by $x=\nu_{p}(n)$

The 2 -adic valuation of n

The 2 -adic valuation of n

Is there an analytic formula for this expression?

The 2-adic valuation of $n!$ and deviation from asymptotics

The 2-adic valuation of $n!$ and deviation from asymptotics

Is there an analytic formula for this expression?

The p-adic valuation of factorials

Theorem
Let $n \in \mathbb{N}$ and p prime. Then

$$
\nu_{p}(n!)=\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}\right\rfloor
$$

The p-adic valuation of factorials. An example.

Example

$$
\begin{aligned}
& \nu_{5}(581!)=143 \\
\nu_{5}(581!)= & \sum_{k=1}^{\infty}\left\lfloor\frac{581}{5^{k}}\right\rfloor \\
= & \left\lfloor\frac{581}{5}\right\rfloor+\left\lfloor\frac{581}{25}\right\rfloor+\left\lfloor\frac{581}{125}\right\rfloor \\
= & 116+23+4 \\
= & 143 .
\end{aligned}
$$

The number 581! ends with 143 zeros.

A theorem of Legendre.

Theorem

For $n \in \mathbb{N}$ and p prime write

$$
n=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{r} p^{r}
$$

the base p representation of n
Define $s_{p}(n)=a_{0}+a_{1}+\cdots+a_{r}$ then

$$
\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1}
$$

A theorem of Legendre. An example.

Example

$$
\begin{aligned}
& 581=1 \cdot 5^{0}+1 \cdot 5^{1}+3 \cdot 5^{3}+4 \cdot 5^{3}=(4311)_{5} \\
& \qquad \nu_{5}(581!)=\frac{581-(1+1+3+4)}{5-1}=\frac{572}{4}=143
\end{aligned}
$$

The valuation of n

Now write

$$
n=\frac{n!}{(n-1)!}
$$

to obtain

The valuation of n

Now write

$$
n=\frac{n!}{(n-1)!}
$$

to obtain

$$
\nu_{p}(n)=\frac{-s_{p}(n)+1+s_{p}(n-1)}{p-1}
$$

Sequences satisfying first order recurrences. Reducible case

Theorem
Assume $t_{n}=Q(n) t_{n-1}$
$Q \in \mathbb{Z}[x]$
$Q(x)=\prod_{j=1}\left(x-\beta_{j}\right) \times Q_{1}(x)$
$\beta_{j} \in \mathbb{Z}_{p}$
with $Q_{1}(x) \equiv 0 \bmod p$ unsolvable.
Then

$$
\nu_{p}\left(t_{n}\right)=\frac{m n}{p-1}+O(\log n)
$$

Sequences satisfying first order recurrences. Irreducible case

Theorem

Assume $t_{n}=Q(n) t_{n-1}$
$Q \in \mathbb{Z}[x]$ irreducible over \mathbb{Z}_{p}
$l=\operatorname{Sup}\left\{k: p^{k} \mid Q(i)\right.$ for some $\left.i \in \mathbb{Z}\right\}$
Then, with $m=\operatorname{deg}(Q)$ and $w=\lfloor l / m\rfloor$,

$$
\nu_{p}\left(t_{n}\right)=\left(\sum_{k=1}^{w} \frac{m}{p^{k}}\right) \times n+(l-m w) \frac{n}{p^{w+1}}+O(1)
$$

Central binomial coefficients

Central binomial coefficients

$$
\begin{gathered}
\binom{2 n}{n}=\frac{(2 n)!}{n!^{2}} \\
\nu_{p}\left(\binom{2 n}{n}\right)=\frac{2 s_{p}(n)-s_{p}(2 n)}{p-1} \\
\nu_{2}\left(\binom{2 n}{n}\right)=2 s_{2}(n)-s_{2}(2 n)=s_{2}(n)
\end{gathered}
$$

Central binomial coefficients

$$
\begin{gathered}
\binom{2 n}{n}=\frac{(2 n)!}{n!^{2}} \\
\nu_{p}\left(\binom{2 n}{n}\right)=\frac{2 s_{p}(n)-s_{p}(2 n)}{p-1} \\
\nu_{2}\left(\binom{2 n}{n}\right)=2 s_{2}(n)-s_{2}(2 n)=s_{2}(n)
\end{gathered}
$$

Corollary

The central binomial coefficient is always even. It is divisible exactly by 2 if and only if $n=2^{r}$.

The 3-adic valuation of central binomial coefficients

The 3-adic valuation of central binomial coefficients

The 3 -adic valuation of central binomial coefficients.

 Continuation.The 3 -adic valuation of central binomial coefficients. Continuation.

Data for $\nu_{3}\left(\binom{2 n}{n}\right)$

$$
\begin{aligned}
& 0,1,0,0,2,1,1,2,0,0,1,0,0,3,2,2,3,1,1,2,1,1,3, \\
& 2,2,3,0,0,1,0,0,2,1,1,2,0,0,1,0,0,4,3,3,4,2,2, \\
& 3,2,2,4,3,3,4,1,1,2,1,1,3,2,2,3,1,1,2,1,1,4,3, \\
& 3,4,2,2,3,2,2,4,3,3,4,0,0,1,0,0,2,1,1,2,0,0,1, \\
& 0,0,3,2,2,3,1,1,2,1,1,3,2,2,3,0,0,1,0,0,2,1,1
\end{aligned}
$$

Data for $\nu_{3}\left(\binom{2 n}{n}\right)$

$$
\begin{array}{r}
\mathbf{0}, \mathbf{1}, \mathbf{0}, 0,2,1,1,2,0, \mathbf{0}, \mathbf{1}, \mathbf{0}, 0,3,2,2,3,1, \mathbf{1}, \mathbf{2}, \mathbf{1}, 1,3 \\
2,2,3,0,0,1,0,0,2,1,1,2,0,0,1,0,0,4,3,3,4,2,2 \\
3,2,2,4,3,3,4,1,1,2,1,1,3,2,2,3,1,1,2,1,1,4,3 \\
3,4,2,2,3,2,2,4,3,3,4,0,0,1,0,0,2,1,1,2,0,0,1 \\
0,0,3,2,2,3,1,1,2,1,1,3,2,2,3,0,0,1,0,0,2,1,1
\end{array}
$$

Data for $\nu_{3}\left(\binom{2 n}{n}\right)$

$$
\begin{array}{r}
\mathbf{0}, \mathbf{1}, \mathbf{0}, 0,2,1,1,2,0, \mathbf{0}, \mathbf{1}, \mathbf{0}, 0,3,2,2,3,1, \mathbf{1}, \mathbf{2}, \mathbf{1}, 1,3 \\
2,2,3,0,0,1,0,0,2,1,1,2,0,0,1,0,0,4,3,3,4,2,2 \\
3,2,2,4,3,3,4,1,1,2,1,1,3,2,2,3,1,1,2,1,1,4,3 \\
3,4,2,2,3,2,2,4,3,3,4,0,0,1,0,0,2,1,1,2,0,0,1 \\
0,0,3,2,2,3,1,1,2,1,1,3,2,2,3,0,0,1,0,0,2,1,1
\end{array}
$$

Compare with

$$
0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0
$$

repeated with period 3

The first refinement

$\nu_{3}\binom{2 n}{n}-\{0,1,0\} \quad$ (periodic extension)

The first refinement

$\nu_{3}\binom{2 n}{n}-\{0,1,0\} \quad$ (periodic extension)

Further refinements

Further refinements

Further refinements

Further refinements

A simpler example:

Back to the valuation of n

Observe that

$$
n=\frac{n!}{(n-1)!}
$$

Theorem

Let $n \in \mathbb{N}$ and p prime. Then

$$
\nu_{p}(n)=\sum_{k=1}^{\infty}\left(\left\lfloor\frac{n}{p^{k}}\right\rfloor-\left\lfloor\frac{n-1}{p^{k}}\right\rfloor\right)
$$

Each summand is periodic of period p^{k}.
Similar to Fourier series.

The ASM numbers

The numbers

$$
T_{n}=\prod_{j=0}^{n-1} \frac{(3 j+1)!}{(n+j)!}
$$

count the numbers of $n \times n$ matrices such that

- entries are $+1,0,-1$
- non-zero entries alternate
- row sum and column sum is +1

Problem. Prove $T_{n} \in \mathbb{N}$ without counting.

The 2-adic valuation of ASM

The Jacobstahl numbers

$$
J_{n}=J_{n-1}+2 J_{n-2} \quad J_{0}=J_{1}=1
$$

Theorem

The ASM number T_{n} is odd if and only if n is a Jacobstahl number.

The 2-adic valuation of ASM numbers

The 2-adic valuation of ASM numbers

Theorem

(X. Sun - V.M.)

$$
\text { for } 0<i \leq 2 J_{n-3} \quad \nu_{2}\left(T\left(2^{n}\right)\right)=J_{n-1} \quad \nu_{2}\left(T\left(J_{n}\right)\right)=0, ~ \nu_{2}\left(T\left(J_{n}+i\right)\right)=i+\nu_{2}\left(T\left(J_{n-2}+i\right)\right), ~ \begin{array}{r}
\nu_{2}(T(j))>0 \text { for } J_{n}<j<2^{n}-J_{n-2} \\
\nu_{2}\left(T\left(2^{n}-J_{n-2}+i\right)\right)=\nu_{2}\left(T\left(J_{n-1}+i\right)\right)+2 J_{n-3} \\
\nu_{2}\left(T\left(2^{n}-i\right)\right)=\nu_{2}\left(T\left(2^{n}+i\right)\right)
\end{array}
$$

The p-adic valuation of ASM numbers

The p-adic valuation of ASM numbers

Theorem

(E. Beyerstedt, X. Sun, V.M.)

$$
\varphi_{j, p}(n)=\left\{\begin{array}{lll}
0 & \text { if } & 0 \leq n \leq\left\lfloor\frac{p^{j}+1}{3}\right\rfloor \\
n-\left\lfloor\frac{p^{j}+1}{3}\right\rfloor & \text { if } & \left\lfloor\frac{p^{j}+1}{3}\right\rfloor+1 \leq n \leq \frac{p^{j}-1}{2} \\
\left\lfloor\frac{2 p^{j}+1}{3}\right\rfloor-n & \text { if } & \frac{p^{j^{+}+1}}{2} \leq n \leq\left\lfloor\frac{2 p^{j}+1}{3}\right\rfloor \\
0 & \text { if } & \left\lfloor\frac{2 p^{j}+1}{3}\right\rfloor+1 \leq n \leq p^{j}-1 .
\end{array}\right.
$$

Then

$$
\nu_{p}\left(T_{n}\right)=\sum_{j=1}^{\infty} \varphi_{j, p}\left(n \bmod p^{j}\right)
$$

each summand is of period p^{j}.

A generalization

The same phenomena should work for

$$
T_{n}(q)=\prod_{j=0}^{n-1} \frac{(q j+1)!}{(n+j)!}
$$

Question: what do these numbers count?

Stirling numbers of the second kind

$$
\begin{aligned}
S(n, k) & =S(n-1, k-1)+k S(n-1, k) \\
\sum_{k=1}^{\infty} S(n, k) x^{n} & =\frac{1}{(1-x)(1-2 x)(1-3 x) \cdots(1-k x)} \\
S(n, k) & =\frac{1}{k!} \sum_{j=0}^{k-1}(-1)^{j}\binom{k}{j}(k-j)^{n} .
\end{aligned}
$$

Valuations of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Valuation of Stirling numbers

Conjecture

Fix k, then the tree associated to $\nu_{2}(S(n, k))$ is a complete binary tree up a certain level. From that point on, each vertex has two descendents: one terminates and the other continues.

The Moll doctrine

Someone said

Every talk must contain a proof

The Moll doctrine

Someone said

Every talk must contain a proof
I say
Every talk must contain an integral

A quartic integral

Theorem

For $m \in \mathbb{N}$ and $a>-1$

$$
\begin{gathered}
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi}{2} \frac{P_{m}(a)}{[2(a+1)]^{m+1 / 2}} \\
P_{m}(a)=\sum_{l=0}^{m} d_{l, m} a^{l} \\
d_{l, m}=2^{-2 m} \sum_{k=l}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l}
\end{gathered}
$$

Nice change of variables

Theorem

Given a function f, define

$$
f_{ \pm}(x)=f\left(x+\sqrt{x^{2}+1}\right) \pm f\left(x-\sqrt{x^{2}+1}\right) .
$$

Then

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} f_{+}(y) d y+\int_{-\infty}^{\infty} f_{-}(y) \frac{y}{\sqrt{y^{2}+1}} d y
$$

Proof.

Let

$$
y=\frac{x^{2}-1}{2 x}
$$

Nice change of variables. Continuation

The nice change of variables reduces the integral

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}
$$

to a finite sum of integrals of the form

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{j+1}}
$$

This was evaluated by J. Wallis before integration was invented.

The coefficients

$$
d_{l, m}=2^{-2 m} \sum_{k=l}^{m} 2^{k}\binom{2 m-2 k}{m-k}\binom{m+k}{m}\binom{k}{l}
$$

The original version was uglier

$$
\begin{aligned}
d_{l, m} & =\sum_{j=0}^{l} \sum_{s=0}^{m-l} \sum_{k=s+l}^{m} \frac{(-1)^{k-l-s}}{2^{3 k}}\binom{2 k}{k}\binom{2 m+1}{2 s+2 j}\binom{m-s-j}{m-k} \\
& \times\binom{ s+j}{j}\binom{k-s-j}{l-j}
\end{aligned}
$$

A short visit to Ramanujan's world

$$
N_{0,4}(a, m)=\int_{0}^{\infty} \frac{d x}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}
$$

then

$$
\sqrt{a+\sqrt{1+c}}=\sqrt{a+1}+\frac{1}{\pi \sqrt{2}} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} N_{0,4}(a, k-1) c^{k}
$$

Then apply Ramanujan Master Theorem to get $d_{l, m}$

Pretty identity

Two evaluations of the quartic integral produced

$$
\sum_{k=0}^{m} 2^{-2 k}\binom{2 k}{k}\binom{2 m-k}{m}=\sum_{k=0}^{m} 2^{-2 k}\binom{2 k}{k}\binom{2 m+1}{2 k}
$$

Pretty identity

Two evaluations of the quartic integral produced

$$
\sum_{k=0}^{m} 2^{-2 k}\binom{2 k}{k}\binom{2 m-k}{m}=\sum_{k=0}^{m} 2^{-2 k}\binom{2 k}{k}\binom{2 m+1}{2 k}
$$

We have many proofs, but no combinatorial one.

Combinatorial aspects

Theorem
 $d_{l, m}$ is unimodal (Boros, M.)

Theorem
$d_{l, m}$ is logconcave (Kauers, Paule)
Theorem
$d_{l, m}$ is 2 -logconcave (Chen et al.)

Conjecture

$d_{l, m}$ is infinitely logconcave

2-adic valuations of $d_{l, m}$

A binary tree associated to these valuations

Theorem

(X. Sun- V.M.) There is a binary tree that encodes the formulas for

$$
\left\{\nu_{2}\left(d_{l, m}\right): l \text { is fixed and } m \geq l\right\}
$$

$\nu_{2}\left(d_{5, m}\right)$

The decision tree for $\nu_{2}\left(d_{5, m}\right)$

Every tree is a formula

$$
\begin{gathered}
\nu_{2}\left(d_{5,2 m}\right)=\nu_{2}\left(d_{5,2 m+1}\right) \\
\nu_{2}\left(d_{5,2 m}\right)= \begin{cases}13+\nu_{2}\left(\frac{m+3}{4}\right) & \text { if } m \equiv 1 \bmod 4, \\
13+\nu_{2}\left(\frac{m+1}{4}\right) & \text { if } m \equiv 3 \bmod 4, \\
14+\nu_{2}\left(\frac{m+2}{4}\right) & \text { if } m \equiv 2 \bmod 4, \\
16+\nu_{2}\left(\frac{m}{8}\right) & \text { if } m \equiv 0 \bmod 8 \\
16+\nu_{2}\left(\frac{m+4}{8}\right) & \text { if } m \equiv 4 \bmod 8\end{cases}
\end{gathered}
$$

Problem

Extend this theory to odd primes.

Problems

- What properties of a sequence produces infinite trees?

Problems

- What properties of a sequence produces infinite trees?
- Determine properties of the Stirling random walks

Problems

- What properties of a sequence produces infinite trees?
- Determine properties of the Stirling random walks
- Do they extend to other recurrences?

Problems

- What properties of a sequence produces infinite trees?
- Determine properties of the Stirling random walks
- Do they extend to other recurrences?
- Develop orthogonality theory for valuation series.

All roads lead to Ramanujan

Define

$$
a_{n}=\sum_{k=0}^{n} \frac{n!}{k!} n^{k}
$$

All roads lead to Ramanujan

Define

$$
a_{n}=\sum_{k=0}^{n} \frac{n!}{k!} n^{k}
$$

Show

$$
a_{n}=\frac{1}{2} n!e^{n}+(1-\theta) n^{n}
$$

for some θ in the range between $\frac{1}{2}$ and $\frac{1}{3}$.
S. Ramanujan: Question 294
J. Indian Math. Soc. 1911

All roads lead to Ramanujan. Continuation

$2,10,78,824,10970,176112$,
3309110, 71219584, 1727242866, 46602156800

Look for them in OEIS

All roads lead to Ramanujan. Continuation

$2,10,78,824,10970,176112$,
3309110, 71219584, 1727242866, 46602156800

Look for them in OEIS
This is sequence A063170.
They are called Schenker sums with n-th term

$$
a_{n}=\int_{0}^{\infty} e^{-x}(x+n)^{n} d x
$$

posted by M. Somos.

All roads lead to Ramanujan. Continuation

The asymptotics of Ramanujan's problem have been studied extensively

$$
\begin{gathered}
Q(n)=\int_{0}^{\infty} e^{-x}\left(1+\frac{x}{n}\right)^{n-1} d x \\
a_{n}=(1+Q(n)) n^{n}
\end{gathered}
$$

See B. Berndt, Part II, Chapter 12, Entry 47.

G. McGarvey's conjecture

$$
\nu_{2}\left(a_{n}\right)= \begin{cases}1 & \text { if } n \text { is odd } \\ n-s_{2}(n) & \text { if } n \text { is even }\end{cases}
$$

G. McGarvey's conjecture

$$
\nu_{2}\left(a_{n}\right)= \begin{cases}1 & \text { if } n \text { is odd } \\ n-s_{2}(n) & \text { if } n \text { is even }\end{cases}
$$

$s_{2}(n)$ is the sum of binary digits of n.
Related to valuations by Legendre's formula

$$
\nu_{2}(n!)=n-s_{2}(n)
$$

The proof

Lemma

Assume $A(x)$ polynomial with integer coefficients and every coefficient of A is divisible by r, for some $r \in \mathbb{Z}$.

Then the integer

$$
\int_{0}^{\infty} A(x) e^{-x} d x
$$

is divisible by r.

Corollary

If $A(x) \equiv B(x) \bmod r$ then

$$
\int_{0}^{\infty} A(x) e^{-x} d x \equiv \int_{0}^{\infty} B(x) e^{-x} d x \bmod r
$$

The proof. Continuation

$$
a_{n}=\int_{0}^{\infty} e^{-x}(x+n)^{n} d x
$$

The proof. Continuation

$$
a_{n}=\int_{0}^{\infty} e^{-x}(x+n)^{n} d x
$$

$n=2 m+1$ odd
m even

$$
a_{n} \equiv \int_{0}^{\infty}(1+x) e^{-x} d x=2 \equiv 2 \bmod 4
$$

m odd

$$
a_{n} \equiv \int_{0}^{\infty}(3+x) e^{-x} d x=78 \equiv 2 \bmod 4
$$

Therefore $a_{n} \equiv 2 \bmod 4$ for all $n \in \mathbb{N}$.

The proof. Continuation

$n=2 m$ even

$$
\begin{aligned}
& a_{2 m}=\int_{0}^{\infty}(2 m+x)^{2 m} e^{-x} d x \\
&=\sum_{k=0}^{2 m}\binom{2 m}{k}(2 m)^{2 m-k} k! \\
& t_{k, m}=\binom{2 m}{k}(2 m)^{2 m-k} k! \\
& \text { satisfies } \quad 2 m t_{2 m-j+1, m}=j t_{2 m-j, m}
\end{aligned}
$$

This gives the result in the form

$$
\nu_{2}\left(a_{n}\right)=\nu_{2}(n!)
$$

The proof. Continuation

$n=2 m$ even

$$
\begin{aligned}
& a_{2 m}=\int_{0}^{\infty}(2 m+x)^{2 m} e^{-x} d x \\
&=\sum_{k=0}^{2 m}\binom{2 m}{k}(2 m)^{2 m-k} k! \\
& t_{k, m}=\binom{2 m}{k}(2 m)^{2 m-k} k! \\
& \text { satisfies } \quad 2 m t_{2 m-j+1, m}=j t_{2 m-j, m}
\end{aligned}
$$

This gives the result in the form

$$
\nu_{2}\left(a_{n}\right)=\nu_{2}(n!)
$$

The last term in the sum controls the valuation.

The valuation for odd primes

Theorem
p odd prime and $n=m p$

$$
\nu_{p}\left(a_{n}\right)=\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1}
$$

residue 0 case

The valuation for odd primes

Theorem
p odd prime and $n=m p$

$$
\nu_{p}\left(a_{n}\right)=\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1}
$$

residue 0 case
Theorem
p odd prime and $n=m p+r$ with $0<r<p$
(that is $n \equiv r \neq 0 \bmod p$)
then

$$
a_{n} \equiv 0 \bmod p \text { if and only if } a_{r} \equiv 0 \bmod p
$$

modularity property

The valuation for odd primes. Some examples

Example

$p=3$
$a_{1}=2, a_{2}=10$ not divisible by 3

$$
\nu_{3}\left(a_{n}\right)= \begin{cases}\frac{1}{2}\left(n-s_{3}(n)\right) & \text { if } n \equiv 0 \bmod 3 \\ 0 & \text { if } n \not \equiv 0 \bmod 3\end{cases}
$$

Example

$p=7$
$a_{1}=2, a_{2}=10, a_{3}=78, a_{4}=824, a_{5}=10970, a_{6}=176112$ not divisible by 7

$$
\nu_{7}\left(a_{n}\right)= \begin{cases}\frac{1}{6}\left(n-s_{7}(n)\right) & \text { if } n \equiv 0 \bmod 7 \\ 0 & \text { if } n \not \equiv 0 \bmod 7\end{cases}
$$

The valuation for odd primes. The bad cases

Definition

p is called a Schenker prime if p divides a_{r} for some r in the range $1 \leq r \leq p-1$.

The valuation for odd primes. The bad cases

Definition

p is called a Schenker prime if p divides a_{r} for some r in the range $1 \leq r \leq p-1$.

Example

$p=5$ is a Schenker prime because it divides $a_{2}=10$.

The valuation for odd primes. The bad cases

Definition

p is called a Schenker prime if p divides a_{r} for some r in the range $1 \leq r \leq p-1$.

Example

$p=5$ is a Schenker prime because it divides $a_{2}=10$.
Theorem
Assume p is NOT a Schenker prime. Then

$$
\nu_{p}\left(a_{n}\right)= \begin{cases}\frac{1}{p-1}\left(n-s_{p}(n)\right) & \text { if } n \equiv 0 \bmod p \\ 0 & \text { if } n \not \equiv 0 \bmod p\end{cases}
$$

The case $p=5$

$$
\nu_{5}\left(a_{5 n}\right)=\frac{n-s_{5}(n)}{4}
$$

This is the residue 0 case.

The case $p=5$

$$
\nu_{5}\left(a_{5 n}\right)=\frac{n-s_{5}(n)}{4}
$$

This is the residue 0 case.

$$
a_{1}=2, a_{3}=78, a_{4}=824
$$

not divisible by 5 , therefore

$$
\nu_{5}\left(a_{n}\right)=0 \text { if } n \equiv 1,3,4 \bmod 5 .
$$

The case $p=5$

$$
\nu_{5}\left(a_{5 n}\right)=\frac{n-s_{5}(n)}{4}
$$

This is the residue 0 case.

$$
a_{1}=2, a_{3}=78, a_{4}=824
$$

not divisible by 5 , therefore

$$
\nu_{5}\left(a_{n}\right)=0 \text { if } n \equiv 1,3,4 \bmod 5 .
$$

The case $\nu_{5}\left(a_{5 n+2}\right)$ requires further discussion.

The case $p=5$

$$
\nu_{5}\left(a_{5 n}\right)=\frac{n-s_{5}(n)}{4}
$$

This is the residue 0 case.

$$
a_{1}=2, a_{3}=78, a_{4}=824
$$

not divisible by 5 , therefore

$$
\nu_{5}\left(a_{n}\right)=0 \text { if } n \equiv 1,3,4 \bmod 5 .
$$

The case $\nu_{5}\left(a_{5 n+2}\right)$ requires further discussion.
The results depends on the digits of the expansion in base 5 :

$$
n=x_{0}+x_{1} \cdot 5+x_{2} \cdot 5^{2}+x_{3} \cdot 5^{3}+\cdots
$$

The Schenker primes

The list of Schenker primes begins with
$5,13,23,31,37,41,43,47,53,59,61,71,79,101,103,107,109$, $127,137,149,157,163,173,179,181,191,197,199,211,223$.

The Schenker primes

The list of Schenker primes begins with
$5,13,23,31,37,41,43,47,53,59,61,71,79,101,103,107,109$, $127,137,149,157,163,173,179,181,191,197,199,211,223$. It does not appear in OEIS

The Schenker primes

The list of Schenker primes begins with
$5,13,23,31,37,41,43,47,53,59,61,71,79,101,103,107,109$, $127,137,149,157,163,173,179,181,191,197,199,211,223$. It does not appear in OEIS

Definition

The $i n d e x(p)$ of a prime p is the number of indices r in the range $1 \leq r \leq p-1$ such that p divides a_{r}.

The Schenker primes

The list of Schenker primes begins with
$5,13,23,31,37,41,43,47,53,59,61,71,79,101,103,107,109$
$127,137,149,157,163,173,179,181,191,197,199,211,223$.

It does not appear in OEIS

Definition

The $i n d e x(p)$ of a prime p is the number of indices r in the range $1 \leq r \leq p-1$ such that p divides a_{r}.

Smallest prime with a given index

$\operatorname{index}(\mathrm{p})$	0	1	2	3	4	5
$\min (\mathrm{p})$	2	3	41	179	1553	593

The next step in the project

$$
R_{n}(a):=\sum_{k=0}^{n}\left(\frac{n!}{k!}\right)^{a} n^{k}
$$

Valuations present interesting modular properties.

The next step in the project

$$
R_{n}(a):=\sum_{k=0}^{n}\left(\frac{n!}{k!}\right)^{a} n^{k}
$$

Valuations present interesting modular properties.
Techniques developed for this example will lead to the analysis of partial sums of hypergeometric series.

As in the special case $p=5$, experiments suggest that the tree is controlled by a small number of p-adic integers.

Fibonacci polynomials

$$
F_{n}(x)=x F_{n-1}(x)+F_{n-2}
$$

and

$$
F_{0}(x)=1, F_{1}(x)=x .
$$

Fibonacci polynomials

$$
F_{n}(x)=x F_{n-1}(x)+F_{n-2}
$$

and

$$
F_{0}(x)=1, F_{1}(x)=x .
$$

Define

$$
e_{n}=\int_{0}^{\infty} e^{-x} F_{n}(x) d x
$$

Fibonacci polynomials

$$
F_{n}(x)=x F_{n-1}(x)+F_{n-2}
$$

and

$$
F_{0}(x)=1, F_{1}(x)=x .
$$

Define

$$
e_{n}=\int_{0}^{\infty} e^{-x} F_{n}(x) d x
$$

$e_{n} \in \mathbb{Z}^{+}$

Fibonacci polynomials

$$
F_{n}(x)=x F_{n-1}(x)+F_{n-2}
$$

and

$$
F_{0}(x)=1, F_{1}(x)=x
$$

Define

$$
e_{n}=\int_{0}^{\infty} e^{-x} F_{n}(x) d x
$$

$e_{n} \in \mathbb{Z}^{+}$
Natural question:

Fibonacci polynomials

$$
F_{n}(x)=x F_{n-1}(x)+F_{n-2}
$$

and

$$
F_{0}(x)=1, F_{1}(x)=x
$$

Define

$$
e_{n}=\int_{0}^{\infty} e^{-x} F_{n}(x) d x
$$

$e_{n} \in \mathbb{Z}^{+}$
Natural question:
What can we say about $\nu_{p}\left(e_{n}\right)$?

Fibonacci polynomials. Continuation

Fibonacci polynomials. Continuation

Theorem
The sequence $e_{n} \bmod m$ is periodic of period $2 m$.

Fibonacci polynomials. Continuation

Theorem

The sequence $e_{n} \bmod m$ is periodic of period $2 m$.
In particular $e_{n} \bmod p$ is periodic of period $2 p$.

Fibonacci polynomials. Continuation

Theorem

The sequence $e_{n} \bmod m$ is periodic of period $2 m$.
In particular $e_{n} \bmod p$ is periodic of period $2 p$.
Theorem
If $1 \leq j \leq 2 p$ and $e_{j} \not \equiv 0 \bmod p$ implies $\nu_{p}\left(e_{j+2 k p}\right)=0($ for $k \in \mathbb{N})$.

Fibonacci polynomials. Continuation

Theorem

The sequence $e_{n} \bmod m$ is periodic of period $2 m$.
In particular $e_{n} \bmod p$ is periodic of period $2 p$.
Theorem
If $1 \leq j \leq 2 p$ and $e_{j} \not \equiv 0 \bmod p$ implies $\nu_{p}\left(e_{j+2 k p}\right)=0($ for $k \in \mathbb{N})$.
Numbers e_{j} with $1 \leq j \leq 2 p$ with $e_{j} \equiv 0 \bmod p$ are called roots.

Example

$e_{10}=405845$, so e_{10} is a root modulo 11

Fibonacci polynomials. Continuation

Theorem

The sequence $e_{n} \bmod m$ is periodic of period $2 m$.
In particular $e_{n} \bmod p$ is periodic of period $2 p$.
Theorem
If $1 \leq j \leq 2 p$ and $e_{j} \not \equiv 0 \bmod p$ implies $\nu_{p}\left(e_{j+2 k p}\right)=0($ for $k \in \mathbb{N})$.
Numbers e_{j} with $1 \leq j \leq 2 p$ with $e_{j} \equiv 0 \bmod p$ are called roots.

Example

$e_{10}=405845$, so e_{10} is a root modulo 11
The other roots are e_{12} and e_{22}.

Fibonacci polynomials. Continuation

Theorem

For any prime $p, e_{2 p}$ is always a root.

Fibonacci polynomials. Continuation

Theorem

For any prime $p, e_{2 p}$ is always a root.
For 343 out of the first 1000 primes, this is the only root.

Fibonacci polynomials. Continuation

Theorem

For any prime $p, e_{2 p}$ is always a root.
For 343 out of the first 1000 primes, this is the only root.

Theorem

For p prime, $\nu_{p}\left(e_{2 p}\right)=1$ if and only if $\sum_{j=0}^{p-1}(-1)^{j}(j!)^{2} \not \equiv 0 \bmod p$.

Fibonacci polynomials. Continuation

Theorem

For any prime $p, e_{2 p}$ is always a root.
For 343 out of the first 1000 primes, this is the only root.
Theorem
For p prime, $\nu_{p}\left(e_{2 p}\right)=1$ if and only if $\sum_{j=0}^{p-1}(-1)^{j}(j!)^{2} \not \equiv 0 \bmod p$.
Strange fact: the only prime up to p_{50000} with sum $0 \bmod p$ is $p=97$

Fibonacci polynomials. Continuation

Theorem

For any prime $p, e_{2 p}$ is always a root.
For 343 out of the first 1000 primes, this is the only root.
Theorem
For p prime, $\nu_{p}\left(e_{2 p}\right)=1$ if and only if $\sum_{j=0}^{p-1}(-1)^{j}(j!)^{2} \not \equiv 0 \bmod p$.
Strange fact: the only prime up to p_{50000} with sum $0 \bmod p$ is $p=97$ Stranger fact: if p is not prime, then 0 appears if $n=2^{m} \times 97, \quad 0 \leq m \leq 4$.

The Yablonskii-Vorob'ev polynomials

This is a family of polynomials defined by

The Yablonskii-Vorob'ev polynomials

This is a family of polynomials defined by

$$
P_{n+1}(x)=\frac{x P_{n}^{2}(x)-4\left(P_{n}(x) P_{n}^{\prime \prime}(x)-\left(P_{n}^{\prime}(x)\right)^{2}\right.}{\left.P_{n-1}(x)\right)}
$$

with $P_{0}(x)=1$ and $P_{1}(x)=x$.

The Yablonskii-Vorob'ev polynomials

This is a family of polynomials defined by

$$
P_{n+1}(x)=\frac{x P_{n}^{2}(x)-4\left(P_{n}(x) P_{n}^{\prime \prime}(x)-\left(P_{n}^{\prime}(x)\right)^{2}\right.}{\left.P_{n-1}(x)\right)}
$$

with $P_{0}(x)=1$ and $P_{1}(x)=x$.
These are polynomials Laurent phenomenon

The Yablonskii-Vorob'ev polynomials

This is a family of polynomials defined by

$$
P_{n+1}(x)=\frac{x P_{n}^{2}(x)-4\left(P_{n}(x) P_{n}^{\prime \prime}(x)-\left(P_{n}^{\prime}(x)\right)^{2}\right.}{\left.P_{n-1}(x)\right)}
$$

with $P_{0}(x)=1$ and $P_{1}(x)=x$.
These are polynomials Laurent phenomenon
Every rational solution of Painlevé equation is given in terms of $P_{n}(x)$

The Yablonskii-Vorob'ev polynomials

This is a family of polynomials defined by

$$
P_{n+1}(x)=\frac{x P_{n}^{2}(x)-4\left(P_{n}(x) P_{n}^{\prime \prime}(x)-\left(P_{n}^{\prime}(x)\right)^{2}\right.}{\left.P_{n-1}(x)\right)}
$$

with $P_{0}(x)=1$ and $P_{1}(x)=x$.
These are polynomials Laurent phenomenon
Every rational solution of Painlevé equation is given in terms of $P_{n}(x)$
These are polynomials with integer coefiicients

Prime $p=2$

Valuations of coefficients

Prime $p=5$

Valuations of coefficients

Prime $p=7$

Valuations of coefficients

Prime $p=3$

If you paying attention, you noticed that I skipped the prime $p=3$. Why?

Prime $p=3$

If you paying attention, you noticed that I skipped the prime $p=3$. Why?

Subject of current work.

THANKS FOR YOUR ATTENTION

