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Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group
D and a (non-degenerate) quadratic form q : D → Q/Z, whose
associated bilinear form we denote by

b(x , y) := q(x + y)− q(x)− q(y).

Examples

p > 2 prime:
Ap = (Z/pZ, x 7→ x2/p)

Apr = (Z/prZ, x 7→ x2/pr )

At
pr = (Z/prZ, x 7→ t x2/pr ), (t, p) = 1
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The Weil Representation

Let (D, q) be a finite quadratic module. Let C(D) be the C-vector
space of functions f : D → C. This space has a canonical basis
{δx}x∈D of delta functions, i.e. δx(y) = δx ,y .

Definition

The Weil representation ρD : Mp2(Z) −→ GL(C(D)) is defined
with respect to the basis {δx}x∈D by

ρD(T )(δx) = e2πi q(x)δx

ρD(S)(δx) =
p−(D)

|D|
∑
y∈D

e−2πi b(x ,y)δy ,

where p−(D) =
∑

x∈D e−2πiq(x).
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Metaplectic covers of SL2(R)

• π1(SL2(R)) ' π1(SO(2)) ' Z

• For each n ∈ Z ≥ 1, there is a unique normal (topological)
cover Mpn(R)→ SL2(R).

• Mpn(R) is the group of pairs (
(
a b
c d

)
∈ SL2(R), φ(τ) ∈ O∗H)

such that φ(τ)n = cτ + d .

• Group law: (γ1, φ1)(γ2, φ2) = (γ1γ2, φ2(τ)φ1(γ2τ)).
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Metaplectic covers of SL2(Z)

Definition

The metaplectic group of degree n Mpn(Z) is the inverse image of
SL2(Z) in Mpn(R).

• Mpn(Z) is a non-trivial central extension:

1→ µn → Mpn(Z)→ SL2(Z)→ 1

• S =
(
0 −1
1 0

)
, T =

(
1 1
0 1

)
generate SL2(Z). The pairs

Sn = (S , n
√
τ), Tn = (T , 1)

generate Mpn(Z), S4
n = (I2, e

2πi/n), (SnTn)3 = (Sn)2.
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Examples of Weil representations

• A2 = (Z/2Z, x 7→ x2/4), ρA2 : Mp2(Z)→ GL2(C)

ρA2(T , 1) =

(
1 0
0 i

)
ρA2(S ,

√
τ) =

1− i

2

(
1 1
1 −1

)
• A3 = (Z/3Z, x 7→ x2/3), ρA3 : SL2(Z)→ GL3(C)

ρA3(T ) =

 1 0 0
0 ζ3 0
0 0 ζ3

 ρA3(S) =
1− 2ζ23

3

 1 1 1
1 ζ23 ζ3
1 ζ3 ζ23


ζ3 = e2πi/3
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Properties of the Weil representations

• N = ord(ρD(T )) = level of the finite quadratic module.

• ρD factors through finite group, a central extension

1→ {±1} → G → SL2(Z/NZ)→ 1

• Easy to decompose ρD '
⊕

i ρi into irreducibles.

Theorem (Nobs, 1970s)

Every complex irreducible representation of SL2(Z/NZ) appears as
a factor of a suitable Weil representation ρD , except for 18
exceptional ones when N = 2r .
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Integrality for the Weil representation

• The matrix entries of ρD are in Z[1/N, ζN ], ζN = e2πi/N .

Question: “clear the denominator”?

Is there a choice of basis for C(D) such that the matrix entries of
ρD are in Z[ζN ]?

Concretely: find a matrix M such that

MρD(T )M−1 ∈ GL|D|(Z[ζN ])

MρD(S)M−1 ∈ GL|D|(Z[ζN ])
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Example: A3

M =

 0 −2
3ζ3 + 2

3 0
1 1

3ζ3 + 2
3 1

1 1
3ζ3 + 2

3 −1



ρA3(T ) : M

 1 0 0
0 ζ3 0
0 0 ζ3

M−1 =

 ζ3 −1 0
0 1 0
0 0 ζ3



ρA3(S) : M

1− 2ζ23
3

 1 1 1
1 ζ23 ζ3
1 ζ3 ζ23

M−1 =

 ζ3 −1 0
−ζ3 −ζ3 0

0 0 1


ρAp ' ρ+Ap

⊕ ρ−Ap
⇒ block decompositions

10 / 24



Example: A3

M =

 0 −2
3ζ3 + 2

3 0
1 1

3ζ3 + 2
3 1

1 1
3ζ3 + 2

3 −1



ρA3(T ) : M

 1 0 0
0 ζ3 0
0 0 ζ3

M−1 =

 ζ3 −1 0
0 1 0
0 0 ζ3



ρA3(S) : M

1− 2ζ23
3

 1 1 1
1 ζ23 ζ3
1 ζ3 ζ23

M−1 =

 ζ3 −1 0
−ζ3 −ζ3 0

0 0 1


ρAp ' ρ+Ap

⊕ ρ−Ap
⇒ block decompositions

10 / 24



Example: A3

M =

 0 −2
3ζ3 + 2

3 0
1 1

3ζ3 + 2
3 1

1 1
3ζ3 + 2

3 −1



ρA3(T ) : M

 1 0 0
0 ζ3 0
0 0 ζ3

M−1 =

 ζ3 −1 0
0 1 0
0 0 ζ3



ρA3(S) : M

1− 2ζ23
3

 1 1 1
1 ζ23 ζ3
1 ζ3 ζ23

M−1 =

 ζ3 −1 0
−ζ3 −ζ3 0

0 0 1



ρAp ' ρ+Ap
⊕ ρ−Ap

⇒ block decompositions

10 / 24



Example: A3

M =

 0 −2
3ζ3 + 2

3 0
1 1

3ζ3 + 2
3 1

1 1
3ζ3 + 2

3 −1



ρA3(T ) : M

 1 0 0
0 ζ3 0
0 0 ζ3

M−1 =

 ζ3 −1 0
0 1 0
0 0 ζ3



ρA3(S) : M

1− 2ζ23
3

 1 1 1
1 ζ23 ζ3
1 ζ3 ζ23

M−1 =

 ζ3 −1 0
−ζ3 −ζ3 0

0 0 1


ρAp ' ρ+Ap

⊕ ρ−Ap
⇒ block decompositions

10 / 24



Example: A5
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Main Theorem

Theorem

Let (D, q) be a finite quadratic module of level N. Then the Weil
representation ρD is integral over Z[ζN ], i.e. there exists a basis for
C(D) such that the matrix entries of ρD with respect to this basis
are in Z[ζN ].

Note: by general representation theory of finite groups, ρD is
defined over OK , for K ⊇ Q(ζN). Not good enough!
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Decomposition of finite quadratic modules

• Decompose (D, q):

(D, q) ' ⊕(Di , qi )

and each (Di , qi ) is one of:

At
pk :=

(
Z/pkZ,

t x2

pk

)
, p > 2 prime, (t, p) = 1,

At
2k :=

(
Z/2kZ,

t x2

2k+1

)
, (t, 2) = 1,

B2k :=

(
Z/2kZ⊕ Z/2kZ,

x2 + 2xy + y2

2k

)
,

C2k :=
(
Z/2kZ⊕ Z/2kZ,

xy

2k

)
.

• If (D, q) '
⊕

i (Di , qi ), then ρD '
⊗

i ρDi
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At
pk case p odd

Let (D, q) = At
pk

, p odd.

R := Z[ζpn ],R ′ = Z[1/pn, ζpn ]

ρD defines an R ′[G ]-module W (D, q), free of rank |D| as an
R ′-module.

Lemma (Curtis-Reiner, Thm. 75.2)

There exists an R[G ]-module U(D, q) such that

W (D, q) ' U(D, q)⊗R R ′

as R ′[G ]-modules.

We need to prove that U(D, q) is free over R.
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How to prove a finitely generated module is free?

• Structure theorem of finitely generated modules over a
Dedekind domain:

U(D, q) '
p⊕

i=1

Ji

where each Ji is a fractional ideal of R.

• The isomorphism class of U(D, q) is determined by its Steinitz
class

[U(D, q)] := [
∏

Ji ] =
∏

[Ji ] ∈ Cl(R).

Theorem

The Steinitz class [U(D, q)] is trivial in Cl(R).

This implies U(D, q) is free.

15 / 24



How to prove a finitely generated module is free?

• Structure theorem of finitely generated modules over a
Dedekind domain:

U(D, q) '
p⊕

i=1

Ji

where each Ji is a fractional ideal of R.

• The isomorphism class of U(D, q) is determined by its Steinitz
class

[U(D, q)] := [
∏

Ji ] =
∏

[Ji ] ∈ Cl(R).

Theorem

The Steinitz class [U(D, q)] is trivial in Cl(R).

This implies U(D, q) is free.

15 / 24



How to prove a finitely generated module is free?

• Structure theorem of finitely generated modules over a
Dedekind domain:

U(D, q) '
p⊕

i=1

Ji

where each Ji is a fractional ideal of R.

• The isomorphism class of U(D, q) is determined by its Steinitz
class

[U(D, q)] := [
∏

Ji ] =
∏

[Ji ] ∈ Cl(R).

Theorem

The Steinitz class [U(D, q)] is trivial in Cl(R).

This implies U(D, q) is free.

15 / 24



How to prove a finitely generated module is free?

• Structure theorem of finitely generated modules over a
Dedekind domain:

U(D, q) '
p⊕

i=1

Ji

where each Ji is a fractional ideal of R.

• The isomorphism class of U(D, q) is determined by its Steinitz
class

[U(D, q)] := [
∏

Ji ] =
∏

[Ji ] ∈ Cl(R).

Theorem

The Steinitz class [U(D, q)] is trivial in Cl(R).

This implies U(D, q) is free.
15 / 24



Finding explicit integral bases

• For (Z/pZ, x 7→ x2/p) p prime: Pat Gilmer (LSU), Yilong
Wang (LSU).

• Take

ε+ = δ1 + δp−1, ε− = δ1 − δp−1
and let the basis be

ε+, ρD(U)(ε+), . . . , ρD(U)(ε+)(p+1)/2,

ε−, ρD(U)(ε−), . . . , ρD(U)(ε−)(p−1)/2

where U =
(

1 0
−1 1

)
.
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More integral bases: Z/9Z
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Applications

• Modular representations

SL2(Z/pnZ) −→ GL∗(Fp)

(Gilmer-Massbaum, 2015 for n = 1). What’s known for
n > 1?

• Integral Weil representations are toy models for Integral
Topological Quantum Field Theories of Gilmer and Massbaum.

• (2+1) TQFTs = Modular Tensor Categories

18 / 24
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Modular tensor categories

Sort of a Definition

A modular tensor category C is a braided spherical fusion category
satisfying a certain non-degeneracy condition...

• Simple objects Π(C) = {x1, . . . , xr}, r = rank of C.

• C is a ‘machine’ producing projective representations of
mapping class groups

M(X ) −→ PGL∗(C)

where X is an orientable surface with boundary components
labeled by Π(C).

19 / 24
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The modular representation

M(T 2) = SL2(Z)→ PGLr (C) is the modular representation of C.

Theorem

The modular representation lifts canonically to a linear
representation

ρC : Mpc(Z) −→ GLr (C)

where c is the order of the square of the global anomaly of C.

ρC factors through SL2(Z/NZ) where N = ord(ρC(Tc)) is the level
of C (Ng-Schauenberg, 2010)
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Example: Fibonacci modular category

• C is a fusion category with two simple objects (rank 2) {1, σ},
σ ⊗ σ ' 1⊕ σ.

• Modular representation ρ : Mp5(Z)→ GL2(C):

ρ(T , 1) =

(
1 0
0 ζ25

)
ρ(S , 5

√
τ) =

1 + ϕ2 ζ35
2 + ϕ

(
1 ϕ
ϕ −1

)
ϕ = 1+

√
5

2 is the golden ratio
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Integrality for modular tensor categories

Theorem (C., Ng, Wang 2019)

Let C be a modular tensor category of level N = pn, for prime p.
Then the modular representation ρC of the metaplectic cover
Mpc(Z) is integral over Z[ζN ].

• Uses the Cauchy Theorem of modular tensor categories
(Bruillard, Ng, Rowell, Zhang, 2015).

• ρC = ρD is the Weil rep., when C is pointed!

• Find explicit integral bases?
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Fibonacci example

Let p± = 1 + ϕ2ζ±25 , ϕ = 1+
√
5

2

ρ(T , 1) =

(
1 0
0 ζ25

)
ρ(S , 5

√
τ) =

p−

2 + ϕ

(
1 ϕ
ϕ −1

)

M =

(
1 1/p+

0 ϕ/p+

)

M−1TM =

(
1 ζ35
0 ζ25

)
, M−1SM =

(
0 −ζ45
1 0

)
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Thank you!
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