Integrality properties of the Weil representation of a finite quadratic module

Luca Candelori
Wayne State University, Detroit, MI

Southern Regional Number Theory, April 13th, 2019

Acknowledgments

This talk is based on two ongoing projects:

- Integrality for the modular representation of a modular tensor category, with Siu-Hung "Richard" Ng (LSU) and Yilong Wang (LSU)
- Explicit integral bases for the Weil representation, with Yilong Wang (LSU) and Shaul Zemel (Hebrew University).

Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group D and a (non-degenerate) quadratic form $q: D \rightarrow \mathbb{Q} / \mathbb{Z}$, whose associated bilinear form we denote by

$$
b(x, y):=q(x+y)-q(x)-q(y) .
$$

Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group D and a (non-degenerate) quadratic form $q: D \rightarrow \mathbb{Q} / \mathbb{Z}$, whose associated bilinear form we denote by

$$
b(x, y):=q(x+y)-q(x)-q(y) .
$$

Examples

$p>2$ prime:

$$
\begin{gathered}
A_{p}=\left(\mathbb{Z} / p \mathbb{Z}, x \mapsto x^{2} / p\right) \\
A_{p^{r}}=\left(\mathbb{Z} / p^{r} \mathbb{Z}, x \mapsto x^{2} / p^{r}\right) \\
A_{p^{r}}^{t}=\left(\mathbb{Z} / p^{r} \mathbb{Z}, x \mapsto t x^{2} / p^{r}\right),(t, p)=1
\end{gathered}
$$

The Weil Representation

Let (D, q) be a finite quadratic module. Let $\mathbb{C}(D)$ be the \mathbb{C}-vector space of functions $f: D \rightarrow \mathbb{C}$. This space has a canonical basis $\left\{\delta_{x}\right\}_{x \in D}$ of delta functions, i.e. $\delta_{x}(y)=\delta_{x, y}$.

The Weil Representation

Let (D, q) be a finite quadratic module. Let $\mathbb{C}(D)$ be the \mathbb{C}-vector space of functions $f: D \rightarrow \mathbb{C}$. This space has a canonical basis $\left\{\delta_{x}\right\}_{x \in D}$ of delta functions, i.e. $\delta_{x}(y)=\delta_{x, y}$.

Definition

The Weil representation $\rho_{D}: \mathrm{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}(D))$ is defined with respect to the basis $\left\{\delta_{x}\right\}_{x \in D}$ by

$$
\begin{aligned}
\rho_{D}(T)\left(\delta_{x}\right) & =e^{2 \pi i q(x)} \delta_{x} \\
\rho_{D}(S)\left(\delta_{x}\right) & =\frac{p^{-}(D)}{|D|} \sum_{y \in D} e^{-2 \pi i b(x, y)} \delta_{y}
\end{aligned}
$$

where $p^{-}(D)=\sum_{x \in D} e^{-2 \pi i q(x)}$.

Metaplectic covers of $\mathrm{SL}_{2}(\mathbb{R})$

- $\pi_{1}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \simeq \pi_{1}(\mathrm{SO}(2)) \simeq \mathbb{Z}$

Metaplectic covers of $\mathrm{SL}_{2}(\mathbb{R})$

- $\pi_{1}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \simeq \pi_{1}(\mathrm{SO}(2)) \simeq \mathbb{Z}$
- For each $n \in \mathbb{Z} \geq 1$, there is a unique normal (topological) cover $\mathrm{Mp}_{n}(\mathbb{R}) \rightarrow \mathrm{SL}_{2}(\mathbb{R})$.

Metaplectic covers of $\mathrm{SL}_{2}(\mathbb{R})$

- $\pi_{1}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \simeq \pi_{1}(\mathrm{SO}(2)) \simeq \mathbb{Z}$
- For each $n \in \mathbb{Z} \geq 1$, there is a unique normal (topological) cover $\mathrm{Mp}_{n}(\mathbb{R}) \rightarrow \mathrm{SL}_{2}(\mathbb{R})$.
- $\operatorname{Mp}_{n}(\mathbb{R})$ is the group of pairs $\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}), \phi(\tau) \in \mathcal{O}_{\mathbb{H}}^{*}\right)$ such that $\phi(\tau)^{n}=c \tau+d$.

Metaplectic covers of $\mathrm{SL}_{2}(\mathbb{R})$

- $\pi_{1}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \simeq \pi_{1}(\mathrm{SO}(2)) \simeq \mathbb{Z}$
- For each $n \in \mathbb{Z} \geq 1$, there is a unique normal (topological) cover $\mathrm{Mp}_{n}(\mathbb{R}) \rightarrow \mathrm{SL}_{2}(\mathbb{R})$.
- $\mathrm{Mp}_{n}(\mathbb{R})$ is the group of pairs $\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R}), \phi(\tau) \in \mathcal{O}_{\mathbb{H}}^{*}\right)$ such that $\phi(\tau)^{n}=c \tau+d$.
- Group law: $\left(\gamma_{1}, \phi_{1}\right)\left(\gamma_{2}, \phi_{2}\right)=\left(\gamma_{1} \gamma_{2}, \phi_{2}(\tau) \phi_{1}\left(\gamma_{2} \tau\right)\right)$.

Metaplectic covers of $\mathrm{SL}_{2}(\mathbb{Z})$

Definition

The metaplectic group of degree $n \mathrm{Mp}_{n}(\mathbb{Z})$ is the inverse image of $\mathrm{SL}_{2}(\mathbb{Z})$ in $\mathrm{Mp}_{n}(\mathbb{R})$.

Metaplectic covers of $\mathrm{SL}_{2}(\mathbb{Z})$

Definition

The metaplectic group of degree $n \mathrm{Mp}_{n}(\mathbb{Z})$ is the inverse image of $\mathrm{SL}_{2}(\mathbb{Z})$ in $\mathrm{Mp}_{n}(\mathbb{R})$.

- $\mathrm{Mp}_{n}(\mathbb{Z})$ is a non-trivial central extension:

$$
1 \rightarrow \mu_{n} \rightarrow \mathrm{Mp}_{n}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow 1
$$

Metaplectic covers of $\mathrm{SL}_{2}(\mathbb{Z})$

Definition

The metaplectic group of degree $n \mathrm{Mp}_{n}(\mathbb{Z})$ is the inverse image of $\mathrm{SL}_{2}(\mathbb{Z})$ in $\mathrm{Mp}_{n}(\mathbb{R})$.

- $\mathrm{Mp}_{n}(\mathbb{Z})$ is a non-trivial central extension:

$$
1 \rightarrow \mu_{n} \rightarrow \mathrm{Mp}_{n}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow 1
$$

- $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ generate $\mathrm{SL}_{2}(\mathbb{Z})$. The pairs

$$
S_{n}=(S, \sqrt[n]{\tau}), \quad T_{n}=(T, 1)
$$

generate $\mathrm{Mp}_{n}(\mathbb{Z}), \quad S_{n}^{4}=\left(I_{2}, e^{2 \pi i / n}\right), \quad\left(S_{n} T_{n}\right)^{3}=\left(S_{n}\right)^{2}$.

Examples of Weil representations

- $A_{2}=\left(\mathbb{Z} / 2 \mathbb{Z}, x \mapsto x^{2} / 4\right), \rho_{A_{2}}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$

Examples of Weil representations

- $A_{2}=\left(\mathbb{Z} / 2 \mathbb{Z}, x \mapsto x^{2} / 4\right), \rho_{A_{2}}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$

$$
\rho_{A_{2}}(T, 1)=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad \rho_{A_{2}}(S, \sqrt{\tau})=\frac{1-i}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Examples of Weil representations

- $A_{2}=\left(\mathbb{Z} / 2 \mathbb{Z}, x \mapsto x^{2} / 4\right), \rho_{A_{2}}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$

$$
\rho_{A_{2}}(T, 1)=\left(\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right) \quad \rho_{A_{2}}(S, \sqrt{\tau})=\frac{1-i}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- $A_{3}=\left(\mathbb{Z} / 3 \mathbb{Z}, x \mapsto x^{2} / 3\right), \rho_{A_{3}}: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{3}(\mathbb{C})$

$$
\begin{gathered}
\rho_{A_{3}}(T)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta_{3} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right) \quad \rho_{A_{3}}(S)=\frac{1-2 \zeta_{3}^{2}}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta_{3}^{2} & \zeta_{3} \\
1 & \zeta_{3} & \zeta_{3}^{2}
\end{array}\right) \\
\zeta_{3}=e^{2 \pi i / 3}
\end{gathered}
$$

Properties of the Weil representations

- $N=\operatorname{ord}\left(\rho_{D}(T)\right)=$ level of the finite quadratic module.

Properties of the Weil representations

- $N=\operatorname{ord}\left(\rho_{D}(T)\right)=$ level of the finite quadratic module.
- ρ_{D} factors through finite group, a central extension

$$
1 \rightarrow\{ \pm 1\} \rightarrow G \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow 1
$$

Properties of the Weil representations

- $N=\operatorname{ord}\left(\rho_{D}(T)\right)=$ level of the finite quadratic module.
- ρ_{D} factors through finite group, a central extension

$$
1 \rightarrow\{ \pm 1\} \rightarrow G \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow 1
$$

- Easy to decompose $\rho_{D} \simeq \bigoplus_{i} \rho_{i}$ into irreducibles.

Properties of the Weil representations

- $N=\operatorname{ord}\left(\rho_{D}(T)\right)=$ level of the finite quadratic module.
- ρ_{D} factors through finite group, a central extension

$$
1 \rightarrow\{ \pm 1\} \rightarrow G \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z}) \rightarrow 1
$$

- Easy to decompose $\rho_{D} \simeq \bigoplus_{i} \rho_{i}$ into irreducibles.

Theorem (Nobs, 1970s)

Every complex irreducible representation of $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ appears as a factor of a suitable Weil representation ρ_{D}, except for 18 exceptional ones when $N=2^{r}$.

Integrality for the Weil representation

- The matrix entries of ρ_{D} are in $\mathbb{Z}\left[1 / N, \zeta_{N}\right], \zeta_{N}=e^{2 \pi i / N}$.

Integrality for the Weil representation

- The matrix entries of ρ_{D} are in $\mathbb{Z}\left[1 / N, \zeta_{N}\right], \zeta_{N}=e^{2 \pi i / N}$.

Question: "clear the denominator"?

Is there a choice of basis for $\mathbb{C}(D)$ such that the matrix entries of ρ_{D} are in $\mathbb{Z}\left[\zeta_{N}\right]$?

Integrality for the Weil representation

- The matrix entries of ρ_{D} are in $\mathbb{Z}\left[1 / N, \zeta_{N}\right], \zeta_{N}=e^{2 \pi i / N}$.

Question: "clear the denominator"?

Is there a choice of basis for $\mathbb{C}(D)$ such that the matrix entries of ρ_{D} are in $\mathbb{Z}\left[\zeta_{N}\right]$?

Concretely: find a matrix M such that

$$
\begin{aligned}
& M \rho_{D}(T) M^{-1} \in G L_{|D|}\left(\mathbb{Z}\left[\zeta_{N}\right]\right) \\
& M \rho_{D}(S) M^{-1} \in G L_{|D|}\left(\mathbb{Z}\left[\zeta_{N}\right]\right)
\end{aligned}
$$

Example: A_{3}

$$
M=\left(\begin{array}{rrr}
0 & -\frac{2}{3} \zeta_{3}+\frac{2}{3} & 0 \\
1 & \frac{1}{3} \zeta_{3}+\frac{2}{3} & 1 \\
1 & \frac{1}{3} \zeta_{3}+\frac{2}{3} & -1
\end{array}\right)
$$

Example: A_{3}

$$
\begin{gathered}
M=\left(\begin{array}{rrr}
0 & -\frac{2}{3} \zeta_{3}+\frac{2}{3} & 0 \\
1 & \frac{1}{3} \zeta_{3}+\frac{2}{3} & 1 \\
1 & \frac{1}{3} \zeta_{3}+\frac{2}{3} & -1
\end{array}\right) \\
\rho_{A_{3}}(T): M\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta_{3} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right) M^{-1}=\left(\begin{array}{rrr}
\zeta_{3} & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right)
\end{gathered}
$$

Example: A_{3}

$$
\begin{gathered}
M=\left(\begin{array}{rrr}
0 & -\frac{2}{3} \zeta_{3}+\frac{2}{3} & 0 \\
1 & \frac{3}{3} \zeta_{3}+\frac{3}{3} & 1 \\
1 & \frac{1}{3} \zeta_{3}+\frac{2}{3} & -1
\end{array}\right) \\
\rho_{A_{3}}(T): M\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & \zeta_{3} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right) M^{-1}=\left(\begin{array}{rrr}
\zeta_{3} & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right) \\
\rho_{A_{3}}(S): M\left(\frac{1-2 \zeta_{3}^{2}}{3}\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & \zeta_{3}^{2} & \zeta_{3} \\
1 & \zeta_{3} & \zeta_{3}^{2}
\end{array}\right)\right) M^{-1}=\left(\begin{array}{rrr}
\zeta_{3} & -1 & 0 \\
-\zeta_{3} & -\zeta_{3} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Example: A_{3}

$$
\begin{gathered}
M=\left(\begin{array}{rrr}
0 & -\frac{2}{3} \zeta_{3}+\frac{2}{3} & 0 \\
1 & \frac{1}{3} \zeta_{3}+\frac{2}{3} & 1 \\
1 & \frac{1}{3} \zeta_{3}+\frac{2}{3} & -1
\end{array}\right) \\
\rho_{A_{3}}(T): M\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta_{3} & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right) M^{-1}=\left(\begin{array}{rrr}
\zeta_{3} & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & \zeta_{3}
\end{array}\right) \\
\rho_{A_{3}}(S): M\left(\frac{1-2 \zeta_{3}^{2}}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta_{3}^{2} & \zeta_{3} \\
1 & \zeta_{3} & \zeta_{3}^{2}
\end{array}\right)\right) M^{-1}=\left(\begin{array}{rrr}
\zeta_{3} & -1 & 0 \\
-\zeta_{3} & -\zeta_{3} & 0 \\
0 & 0 & 1
\end{array}\right) \\
\rho_{A_{p}} \simeq \rho_{A_{p}}^{+} \oplus \rho_{A_{p}}^{-} \Rightarrow \text { block decompositions }
\end{gathered}
$$

Example: A_{5}

In [76]: M M
Out [76]:

$$
\left(\begin{array}{rrrrr}
0 & \frac{2}{5} \zeta_{5}^{3}-\frac{2}{5} \zeta_{5}^{2}-\frac{2}{5} \zeta_{5}+\frac{2}{5} & -\frac{4}{5} \zeta_{5}^{3}-\frac{2}{5} \zeta_{5}^{2}-\frac{4}{5} \zeta_{5} & 0 & \\
1 & -\frac{2}{5} \zeta_{5}^{3}+\frac{1}{5} \zeta_{5}+\frac{1}{5} & \frac{3}{5} \zeta_{5}^{3}+\frac{2}{5} \zeta_{5}^{2}+\frac{2}{5} \zeta_{5}+\frac{3}{5} & 1 & -\frac{2}{5} \zeta_{5}^{3}-\frac{4}{5} \zeta_{5}^{2}-\frac{1}{5} \zeta_{5}-\frac{3}{5} \\
0 & \frac{1}{5} \zeta_{5}^{3}+\frac{1}{5} \zeta_{5}^{2}+\frac{3}{5} & -\frac{1}{5} \zeta_{5}^{3}-\frac{1}{5} \zeta_{5}^{2}+\frac{2}{5} & 0 & \frac{1}{5} \zeta_{5}^{3}-\frac{3}{5} \zeta_{5}^{2}-\frac{2}{5} \zeta_{5}-\frac{1}{5} \\
0 & \frac{1}{5} \zeta_{5}^{3}+\frac{1}{5} \zeta_{5}^{2}+\frac{3}{5} & -\frac{1}{5} \zeta_{5}^{3}-\frac{1}{5} \zeta_{5}^{2}+\frac{2}{5} & 0 & -\frac{1}{5} \zeta_{5}^{3}+\frac{3}{5} \zeta_{5}^{2}+\frac{2}{5} \zeta_{5}+\frac{1}{5} \\
1 & -\frac{2}{5} \zeta_{5}^{3}+\frac{1}{5} \zeta_{5}+\frac{1}{5} & \frac{3}{5} \zeta_{5}^{3}+\frac{2}{5} \zeta_{5}^{2}+\frac{2}{5} \zeta_{5}+\frac{3}{5} & -1 & \frac{2}{5} \zeta_{5}^{3}+\frac{4}{5} \zeta_{5}^{2}+\frac{1}{5} \zeta_{5}+\frac{3}{5}
\end{array}\right)
$$

In [65]: $\boldsymbol{M} M^{\wedge}(-1) * T * M$
Out [65]: $\left(\begin{array}{rrrrr}\zeta_{5} & \zeta_{5}^{3}+\zeta_{5}^{2}+1 & -\zeta_{5}^{3}-\zeta_{5}^{2}-\zeta_{5}-1 & 0 & 0 \\ 0 & -\zeta_{5}^{3} & \zeta_{5}^{2}+\zeta_{5} & 0 & 0 \\ 0 & -\zeta_{5}^{2}-1 & -\zeta_{5}^{2}-\zeta_{5} & 0 & 0 \\ 0 & 0 & 0 & \zeta_{5} & -\zeta_{5}^{3} \\ 0 & 0 & 0 & 0 & -\zeta_{5}^{3}-\zeta_{5}^{2}-\zeta_{5}-1\end{array}\right)$

In [66]: $\boldsymbol{M} M^{\wedge}(-1) * S * M$
Out [66]: $\left(\begin{array}{rrrrr}-\zeta_{5}^{2}-1 & -\zeta_{5}^{2}-\zeta_{5} & -\zeta_{5}^{3}-2 \zeta_{5}^{2}-\zeta_{5}-1 & 0 & 0 \\ \zeta_{5}^{3}+\zeta_{5}^{2}+\zeta_{5}+1 & \zeta_{5}^{2}+\zeta_{5} & \zeta_{5}^{3}+\zeta_{5}^{2}+2 \zeta_{5}+1 & 0 & 0 \\ -\zeta_{5}^{3}-\zeta_{5} & -\zeta_{5}^{3}-\zeta_{5}^{2}-\zeta_{5}-1 & -\zeta_{5} & 0 & 0 \\ 0 & 0 & 0 & -\zeta_{5}^{3}-\zeta_{5}^{2}-\zeta_{5}-1 & 0 \\ 0 & 0 & 0 & -1 & \zeta_{5}^{3}+\zeta_{5}^{2}+\zeta_{5}+1\end{array}\right)$

Main Theorem

Theorem

Let (D, q) be a finite quadratic module of level N. Then the Weil representation ρ_{D} is integral over $\mathbb{Z}\left[\zeta_{N}\right]$, i.e. there exists a basis for $\mathbb{C}(D)$ such that the matrix entries of ρ_{D} with respect to this basis are in $\mathbb{Z}\left[\zeta_{N}\right]$.

Main Theorem

Theorem

Let (D, q) be a finite quadratic module of level N. Then the Weil representation ρ_{D} is integral over $\mathbb{Z}\left[\zeta_{N}\right]$, i.e. there exists a basis for $\mathbb{C}(D)$ such that the matrix entries of ρ_{D} with respect to this basis are in $\mathbb{Z}\left[\zeta_{N}\right]$.

Note: by general representation theory of finite groups, ρ_{D} is defined over \mathcal{O}_{K}, for $K \supseteq \mathbb{Q}\left(\zeta_{N}\right)$.

Main Theorem

Theorem

Let (D, q) be a finite quadratic module of level N. Then the Weil representation ρ_{D} is integral over $\mathbb{Z}\left[\zeta_{N}\right]$, i.e. there exists a basis for $\mathbb{C}(D)$ such that the matrix entries of ρ_{D} with respect to this basis are in $\mathbb{Z}\left[\zeta_{N}\right]$.

Note: by general representation theory of finite groups, ρ_{D} is defined over \mathcal{O}_{K}, for $K \supseteq \mathbb{Q}\left(\zeta_{N}\right)$. Not good enough!

Decomposition of finite quadratic modules

- Decompose (D, q) :

$$
(D, q) \simeq \oplus\left(D_{i}, q_{i}\right)
$$

Decomposition of finite quadratic modules

- Decompose (D, q) :

$$
(D, q) \simeq \oplus\left(D_{i}, q_{i}\right)
$$

and each $\left(D_{i}, q_{i}\right)$ is one of:

$$
\begin{aligned}
& A_{p^{k}}^{t}:=\left(\mathbb{Z} / p^{k} \mathbb{Z}, \frac{t x^{2}}{p^{k}}\right), \quad p>2 \text { prime }, \quad(t, p)=1, \\
& A_{2^{k}}^{t}:=\left(\mathbb{Z} / 2^{k} \mathbb{Z}, \frac{t x^{2}}{2^{k+1}}\right), \quad(t, 2)=1, \\
& B_{2^{k}}:=\left(\mathbb{Z} / 2^{k} \mathbb{Z} \oplus \mathbb{Z} / 2^{k} \mathbb{Z}, \frac{x^{2}+2 x y+y^{2}}{2^{k}}\right), \\
& C_{2^{k}}:=\left(\mathbb{Z} / 2^{k} \mathbb{Z} \oplus \mathbb{Z} / 2^{k} \mathbb{Z}, \frac{x y}{2^{k}}\right) .
\end{aligned}
$$

Decomposition of finite quadratic modules

- Decompose (D, q) :

$$
(D, q) \simeq \oplus\left(D_{i}, q_{i}\right)
$$

and each $\left(D_{i}, q_{i}\right)$ is one of:

$$
\begin{aligned}
& A_{p^{k}}^{t}:=\left(\mathbb{Z} / p^{k} \mathbb{Z}, \frac{t x^{2}}{p^{k}}\right), \quad p>2 \text { prime }, \quad(t, p)=1, \\
& A_{2^{k}}^{t}:=\left(\mathbb{Z} / 2^{k} \mathbb{Z}, \frac{t x^{2}}{2^{k+1}}\right), \quad(t, 2)=1, \\
& B_{2^{k}}:=\left(\mathbb{Z} / 2^{k} \mathbb{Z} \oplus \mathbb{Z} / 2^{k} \mathbb{Z}, \frac{x^{2}+2 x y+y^{2}}{2^{k}}\right), \\
& C_{2^{k}}:=\left(\mathbb{Z} / 2^{k} \mathbb{Z} \oplus \mathbb{Z} / 2^{k} \mathbb{Z}, \frac{x y}{2^{k}}\right) .
\end{aligned}
$$

- If $(D, q) \simeq \bigoplus_{i}\left(D_{i}, q_{i}\right)$, then $\rho_{D} \simeq \bigotimes_{i} \rho_{D_{i}}$

$A_{p^{k}}^{t}$ case p odd

Let $(D, q)=A_{p^{k}}^{t}, p$ odd.

$$
R:=\mathbb{Z}\left[\zeta_{p^{n}}\right], R^{\prime}=\mathbb{Z}\left[1 / p^{n}, \zeta_{p^{n}}\right]
$$

ρ_{D} defines an $R^{\prime}[G]$-module $W(D, q)$, free of rank $|D|$ as an R^{\prime}-module.

$A_{p^{k}}^{t}$ case p odd

Let $(D, q)=A_{p^{k}}^{t}, p$ odd.

$$
R:=\mathbb{Z}\left[\zeta_{p^{n}}\right], R^{\prime}=\mathbb{Z}\left[1 / p^{n}, \zeta_{p^{n}}\right]
$$

ρ_{D} defines an $R^{\prime}[G]$-module $W(D, q)$, free of rank $|D|$ as an R^{\prime}-module.

Lemma (Curtis-Reiner, Thm. 75.2)

There exists an $R[G]$-module $U(D, q)$ such that

$$
W(D, q) \simeq U(D, q) \otimes_{R} R^{\prime}
$$

as $R^{\prime}[G]$-modules.

$A_{p^{k}}^{t}$ case p odd

Let $(D, q)=A_{p^{k}}^{t}, p$ odd.

$$
R:=\mathbb{Z}\left[\zeta_{p^{n}}\right], R^{\prime}=\mathbb{Z}\left[1 / p^{n}, \zeta_{p^{n}}\right]
$$

ρ_{D} defines an $R^{\prime}[G]$-module $W(D, q)$, free of rank $|D|$ as an R^{\prime}-module.

Lemma (Curtis-Reiner, Thm. 75.2)
There exists an $R[G]$-module $U(D, q)$ such that

$$
W(D, q) \simeq U(D, q) \otimes_{R} R^{\prime}
$$

as $R^{\prime}[G]$-modules.
We need to prove that $U(D, q)$ is free over R.

How to prove a finitely generated module is free?

How to prove a finitely generated module is free?

- Structure theorem of finitely generated modules over a Dedekind domain:

$$
U(D, q) \simeq \bigoplus_{i=1}^{p} J_{i}
$$

where each J_{i} is a fractional ideal of R.

How to prove a finitely generated module is free?

- Structure theorem of finitely generated modules over a Dedekind domain:

$$
U(D, q) \simeq \bigoplus_{i=1}^{p} J_{i}
$$

where each J_{i} is a fractional ideal of R.

- The isomorphism class of $U(D, q)$ is determined by its Steinitz class

$$
[U(D, q)]:=\left[\prod J_{i}\right]=\prod\left[J_{i}\right] \in \mathrm{Cl}(R)
$$

How to prove a finitely generated module is free?

- Structure theorem of finitely generated modules over a Dedekind domain:

$$
U(D, q) \simeq \bigoplus_{i=1}^{p} J_{i}
$$

where each J_{i} is a fractional ideal of R.

- The isomorphism class of $U(D, q)$ is determined by its Steinitz class

$$
[U(D, q)]:=\left[\prod J_{i}\right]=\prod\left[J_{i}\right] \in \mathrm{Cl}(R)
$$

Theorem

The Steinitz class $[U(D, q)]$ is trivial in $\mathrm{Cl}(R)$.
This implies $U(D, q)$ is free.

Finding explicit integral bases

Finding explicit integral bases

- For ($\left.\mathbb{Z} / p \mathbb{Z}, x \mapsto x^{2} / p\right) p$ prime: Pat Gilmer (LSU), Yilong Wang (LSU).

Finding explicit integral bases

- For $\left(\mathbb{Z} / p \mathbb{Z}, x \mapsto x^{2} / p\right) p$ prime: Pat Gilmer (LSU), Yilong Wang (LSU).
- Take

$$
\epsilon_{+}=\delta_{1}+\delta_{p-1}, \quad \epsilon_{-}=\delta_{1}-\delta_{p-1}
$$

and let the basis be

$$
\begin{aligned}
& \epsilon_{+}, \rho_{D}(U)\left(\epsilon_{+}\right), \ldots, \rho_{D}(U)\left(\epsilon_{+}\right)^{(p+1) / 2}, \\
& \epsilon_{-}, \rho_{D}(U)\left(\epsilon_{-}\right), \ldots, \rho_{D}(U)\left(\epsilon_{-}\right)^{(p-1) / 2}
\end{aligned}
$$

where $U=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$.

More integral bases: $\mathbb{Z} / 9 \mathbb{Z}$

$$
\begin{aligned}
& \left(\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 \\
0 & \zeta_{9} & -\zeta_{9}^{4} & 0 & -\zeta_{9}^{4}-\zeta_{9} & \zeta_{9}^{4}+\zeta_{9} & 0 & \zeta_{9}^{4} & -\zeta_{9} \\
0 & \zeta_{9}^{2} & \zeta_{9}^{5}+\zeta_{9}^{2} & 0 & \zeta_{9}^{5} & -\zeta_{9}^{5} & 0 & -\zeta_{9}^{5}-\zeta_{9}^{2} & -\zeta_{9}^{2} \\
0 & 0 & 0 & -\zeta_{9}^{3}-2 & 0 & 0 & \zeta_{9}^{3}+2 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & \zeta_{9} & \zeta_{9}^{4} & 0 & -\zeta_{9}^{4}-\zeta_{9} & -\zeta_{9}^{4}-\zeta_{9} & 0 & \zeta_{9}^{4} & \zeta_{9} \\
0 & \zeta_{9}^{2} & -\zeta_{9}^{5}-\zeta_{9}^{2} & 0 & \zeta_{9}^{5} & \zeta_{9}^{5} & 0 & -\zeta_{9}^{5}-\zeta_{9}^{2} & \zeta_{9}^{2} \\
2 \zeta_{9}^{3} & 0 & 0 & -\zeta_{9}^{3} & 0 & 0 & -\zeta_{9}^{3} & 0 & 0
\end{array}\right), \\
& \left.\left(\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\zeta_{9}^{3}-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\zeta_{9}^{3}-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\zeta_{9}^{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\zeta_{9}^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\zeta_{9}^{3}-1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\zeta_{9}^{3}-1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \zeta_{9}^{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \zeta_{9}^{3} & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \zeta_{9}^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \zeta_{9}^{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\right)
\end{aligned}
$$

Applications

- Modular representations

$$
\mathrm{SL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right) \longrightarrow \mathrm{GL}_{*}\left(\mathbb{F}_{p}\right)
$$

(Gilmer-Massbaum, 2015 for $n=1$). What's known for $n>1$?

Applications

- Modular representations

$$
\mathrm{SL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right) \longrightarrow \mathrm{GL}_{*}\left(\mathbb{F}_{p}\right)
$$

(Gilmer-Massbaum, 2015 for $n=1$). What's known for $n>1$?

- Integral Weil representations are toy models for Integral Topological Quantum Field Theories of Gilmer and Massbaum.

Applications

- Modular representations

$$
\mathrm{SL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right) \longrightarrow \mathrm{GL}_{*}\left(\mathbb{F}_{p}\right)
$$

(Gilmer-Massbaum, 2015 for $n=1$). What's known for $n>1$?

- Integral Weil representations are toy models for Integral Topological Quantum Field Theories of Gilmer and Massbaum.
- $(2+1)$ TQFTs $=$ Modular Tensor Categories

Modular tensor categories

Sort of a Definition

A modular tensor category \mathcal{C} is a braided spherical fusion category satisfying a certain non-degeneracy condition...

Modular tensor categories

Sort of a Definition

A modular tensor category \mathcal{C} is a braided spherical fusion category satisfying a certain non-degeneracy condition...

- Simple objects $\Pi(\mathcal{C})=\left\{x_{1}, \ldots, x_{r}\right\}, r=$ rank of \mathcal{C}.

Modular tensor categories

Sort of a Definition

A modular tensor category \mathcal{C} is a braided spherical fusion category satisfying a certain non-degeneracy condition...

- Simple objects $\Pi(\mathcal{C})=\left\{x_{1}, \ldots, x_{r}\right\}, r=$ rank of \mathcal{C}.
- \mathcal{C} is a 'machine' producing projective representations of mapping class groups

$$
\mathcal{M}(X) \longrightarrow \mathrm{PGL}_{*}(\mathbb{C})
$$

where X is an orientable surface with boundary components labeled by $\Pi(\mathcal{C})$.

The modular representation

$\mathcal{M}\left(T^{2}\right)=\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{PGL}_{r}(\mathbb{C})$ is the modular representation of \mathcal{C}.

The modular representation

$\mathcal{M}\left(T^{2}\right)=\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{PGL}_{r}(\mathbb{C})$ is the modular representation of \mathcal{C}.

Theorem

The modular representation lifts canonically to a linear representation

$$
\rho_{\mathcal{C}}: \mathrm{Mp}_{c}(\mathbb{Z}) \longrightarrow \mathrm{GL}_{r}(\mathbb{C})
$$

where c is the order of the square of the global anomaly of \mathcal{C}.

The modular representation

$\mathcal{M}\left(T^{2}\right)=\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{PGL}_{r}(\mathbb{C})$ is the modular representation of \mathcal{C}.

Theorem

The modular representation lifts canonically to a linear representation

$$
\rho_{\mathcal{C}}: \mathrm{Mp}_{c}(\mathbb{Z}) \longrightarrow \mathrm{GL}_{r}(\mathbb{C})
$$

where c is the order of the square of the global anomaly of \mathcal{C}.
$\rho_{\mathcal{C}}$ factors through $\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$ where $N=\operatorname{ord}\left(\rho_{\mathcal{C}}\left(T_{c}\right)\right)$ is the level of \mathcal{C} (Ng-Schauenberg, 2010)

Example: Fibonacci modular category

- \mathcal{C} is a fusion category with two simple objects (rank 2) $\{1, \sigma\}$, $\sigma \otimes \sigma \simeq 1 \oplus \sigma$.

Example: Fibonacci modular category

- \mathcal{C} is a fusion category with two simple objects (rank 2) $\{1, \sigma\}$, $\sigma \otimes \sigma \simeq 1 \oplus \sigma$.
- Modular representation $\rho: \mathrm{Mp}_{5}(\mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$:

$$
\begin{aligned}
\rho(T, 1) & =\left(\begin{array}{cc}
1 & 0 \\
0 & \zeta_{5}^{2}
\end{array}\right) \\
\rho(S, \sqrt[5]{\tau}) & =\frac{1+\varphi^{2} \zeta_{5}^{3}}{2+\varphi}\left(\begin{array}{cc}
1 & \varphi \\
\varphi & -1
\end{array}\right)
\end{aligned}
$$

$\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio

Integrality for modular tensor categories

Theorem (C., Ng, Wang 2019)

Let \mathcal{C} be a modular tensor category of level $N=p^{n}$, for prime p. Then the modular representation $\rho_{\mathcal{C}}$ of the metaplectic cover $\mathrm{Mp}_{c}(\mathbb{Z})$ is integral over $\mathbb{Z}\left[\zeta_{N}\right]$.

Integrality for modular tensor categories

Theorem (C., Ng, Wang 2019)

Let \mathcal{C} be a modular tensor category of level $N=p^{n}$, for prime p. Then the modular representation $\rho_{\mathcal{C}}$ of the metaplectic cover $\mathrm{Mp}_{c}(\mathbb{Z})$ is integral over $\mathbb{Z}\left[\zeta_{N}\right]$.

- Uses the Cauchy Theorem of modular tensor categories (Bruillard, Ng, Rowell, Zhang, 2015).

Integrality for modular tensor categories

Theorem (C., Ng, Wang 2019)

Let \mathcal{C} be a modular tensor category of level $N=p^{n}$, for prime p. Then the modular representation $\rho_{\mathcal{C}}$ of the metaplectic cover $\mathrm{Mp}_{c}(\mathbb{Z})$ is integral over $\mathbb{Z}\left[\zeta_{N}\right]$.

- Uses the Cauchy Theorem of modular tensor categories (Bruillard, Ng, Rowell, Zhang, 2015).
- $\rho_{\mathcal{C}}=\rho_{D}$ is the Weil rep., when \mathcal{C} is pointed!

Integrality for modular tensor categories

Theorem (C., Ng, Wang 2019)

Let \mathcal{C} be a modular tensor category of level $N=p^{n}$, for prime p. Then the modular representation $\rho_{\mathcal{C}}$ of the metaplectic cover $\mathrm{Mp}_{c}(\mathbb{Z})$ is integral over $\mathbb{Z}\left[\zeta_{N}\right]$.

- Uses the Cauchy Theorem of modular tensor categories (Bruillard, Ng, Rowell, Zhang, 2015).
- $\rho_{\mathcal{C}}=\rho_{D}$ is the Weil rep., when \mathcal{C} is pointed!
- Find explicit integral bases?

Fibonacci example

$$
\text { Let } p^{ \pm}=1+\varphi^{2} \zeta_{5}^{ \pm 2}, \quad \varphi=\frac{1+\sqrt{5}}{2}
$$

$$
\begin{aligned}
\rho(T, 1) & =\left(\begin{array}{cc}
1 & 0 \\
0 & \zeta_{5}^{2}
\end{array}\right) \\
\rho(S, \sqrt[5]{\tau}) & =\frac{p^{-}}{2+\varphi}\left(\begin{array}{cc}
1 & \varphi \\
\varphi & -1
\end{array}\right)
\end{aligned}
$$

Fibonacci example

$$
\text { Let } p^{ \pm}=1+\varphi^{2} \zeta_{5}^{ \pm 2}, \quad \varphi=\frac{1+\sqrt{5}}{2}
$$

$$
\begin{aligned}
\rho(T, 1) & =\left(\begin{array}{cc}
1 & 0 \\
0 & \zeta_{5}^{2}
\end{array}\right) \\
\rho(S, \sqrt[5]{\tau}) & =\frac{p^{-}}{2+\varphi}\left(\begin{array}{cc}
1 & \varphi \\
\varphi & -1
\end{array}\right)
\end{aligned}
$$

$$
M=\left(\begin{array}{cc}
1 & 1 / p^{+} \\
0 & \varphi / p^{+}
\end{array}\right)
$$

$$
M^{-1} T M=\left(\begin{array}{cc}
1 & \zeta_{5}^{3} \\
0 & \zeta_{5}^{2}
\end{array}\right), \quad M^{-1} S M=\left(\begin{array}{rr}
0 & -\zeta_{5}^{4} \\
1 & 0
\end{array}\right)
$$

Thank you!

