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Moonshine for Finite Groups
I. Introduction

Modular functions

Definition
A meromorphic function f : H 7→ C is a Γ-modular function if
for every γ ∈ Γ we have

f(γτ) = f(τ).

Example (Γ = SL2(Z))

The Hauptmodul is Klein’s j-function (q := e2πiτ )

J(τ) :=j(τ)− 744 =
∞∑

n=−1
c(n)qn

= q−1 + 196884q + 21493760q2 + 864299970q3 + . . .
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Moonshine for Finite Groups
I. Introduction

Glimpses of Monstrous Moonshine

John McKay observed that

196884 = 1 + 196883

John Thompson observed that

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326
864299970︸ ︷︷ ︸

Coefficients of j(τ)

1 + 1 + 196883 + 196883 + 21296876 + 842609326︸ ︷︷ ︸
Dimensions of irreducible representations of the Monster M
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Moonshine for Finite Groups
I. Introduction

The Monster characters

The character table for M (ordered by size) gives dimensions:

χ1(e) = 1

χ2(e) = 196883

χ3(e) = 21296876

χ4(e) = 842609326

...
χ194(e) = 258823477531055064045234375.
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Moonshine for Finite Groups
I. Introduction

Thompson’s Monstrous Conjecture

Conjecture (Thompson)

There is a “nice” infinite-dimensional graded module
V \ =

⊕∞
n=−1 V

\
n for which dim(V \

n) = c(n).

Remark
We can use the trivial representation which has dimχ1 = 1.
Using too many trivial representations is not “nice”.
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Moonshine for Finite Groups
I. Introduction

Web of Numerology?

Definition (Thompson)

Assuming the conjecture, if g ∈M, then define the
McKay–Thompson series

Tg(τ) :=

∞∑
n=−1

Tr(g|V \
n)qn.

Question

Is there a V \ for which all of the Tg(τ) are simultaneously nice?
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Moonshine for Finite Groups
I. Introduction

Monstrous Moonshine Conjecture

Conjecture (Conway and Norton, 1979)

For each g ∈M there is an explicit genus 0 congruence subgroup
Γg ⊂ SL2(R) for which Tg(τ) is the Hauptmodul.

Theorem (Frenkel–Lepowsky–Meurman (1980s))

If it exists, then the moonshine module V \ =
⊕∞

n=−1 V
\
n is a

specific vertex operator algebra whose automorphism group is M.

Theorem (Borcherds (1998 Fields Medal))

The Monstrous Moonshine Conjecture is true.
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Moonshine for Finite Groups
I. Introduction

Aftermath

Inspired by string theory, further moonshines have been found:

Mathieu (Gannon)
Umbral (Cheng, Duncan, Harvey, and Duncan, O, Griffin)
Thompson (Griffin and Mertens)
Pariah (Duncan, O, Mertens)
to name a few...
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Moonshine for Finite Groups
I. Introduction

Witten’s Problem

Question (Black Hole States)

Consider the monstrous moonshine expressions

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326
...

c(n) =

194∑
i=1

mi(n)χi(e)

How many ‘1’s, ‘196883’s, etc. show up in these expressions?
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Moonshine for Finite Groups
I. Introduction

Some Proportions

n δ (m1(n)) δ (m2(n)) · · · δ (m194(n))

1 1/2 1/2 · · · 0
...

...
...

...
...

40 4.011 . . .× 10−4 2.514 . . .× 10−3 · · · 0.00891. . .
60 2.699 . . .× 10−9 2.732 . . .× 10−8 · · · 0.04419. . .
80 4.809 . . .× 10−14 7.537 . . .× 10−13 · · · 0.04428. . .
100 4.427 . . .× 10−18 1.077 . . .× 10−16 · · · 0.04428. . .
120 1.377 . . .× 10−21 5.501 . . .× 10−20 · · · 0.04428. . .
140 1.156 . . .× 10−24 1.260 . . .× 10−22 · · · 0.04428. . .
160 2.621 . . .× 10−27 3.443 . . .× 10−23 · · · 0.04428. . .
180 1.877 . . .× 10−28 3.371 . . .× 10−23 · · · 0.04428. . .
200 1.715 . . .× 10−28 3.369 . . .× 10−23 · · · 0.04428. . .
220 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
240 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
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Moonshine for Finite Groups
I. Introduction

Distribution of Monstrous Moonshine

Theorem (Duncan, Griffin, O (2015))

If 1 ≤ i ≤ 194, then as n→ +∞ we have

mi(n) ∼ dim(χi)√
2|n|3/4|M|

· e4π
√
|n|

Corollary (Duncan, Griffin, O)

The Moonshine module is asymptotically regular.
In other words, we have

δ (mi) := lim
n→+∞

mi(n)∑194
i=1mi(n)

=
dim(χi)∑194
j=1 dim(χj)

.
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Moonshine for Finite Groups
II. All finite groups?

Natural Question

Question
How ubiquitous is moonshine if we relax some conditions?

Definition
A finite group G admits weak moonshine if there is an infinite
dimensional graded G-module

VG := ⊕nVG(n)

such that for all g ∈ G the McKay–Thompson series

Tg(τ) :=
∑
n

Tr(g|VG(n))qn

is a weakly holomorphic modular function.
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Moonshine for Finite Groups
II. All finite groups?

Finite groups enjoy weak moonshine

Theorem (Dehority, Gonzalez, Vafa, Van Peski (2017))

All finite groups admit asymptotically regular weak moonshine.

Variants
1 We can require that each Tg(τ) is modular on Γ0(ordG(g)).

2 In very special cases there are analytic “group compatibility”
relations between Tg(τ) and Tgp(τ).
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Moonshine for Finite Groups
II. All finite groups?

Example: Moonshine for D4 and Q8

• The MT series are Hauptmoduln JN (τ) for Γ0(N):

T (C1; τ) = J1(τ)

T (C2; τ) = T (C4; τ) = T (C5; τ) = J2(τ)

T (C3; τ) = J4(τ)
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Moonshine for Finite Groups
II. All finite groups?

Example of D4 and Q8 continued

• If 1 ≤ i ≤ 5 and n ≥ −1, then let

mi(n) = #{mult. of ρi in VG(n)}.

• The multiplicity generating functions are:

Mi(τ) :=
∑
n

mi(n)qn.
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Moonshine for Finite Groups
II. All finite groups?

Example of D4 and Q8 continued

This weak moonshine is asymptotically regular.
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Moonshine for Finite Groups
II. All finite groups?

Natural Problem

Fact
(1) As the D4 and Q8 example illustrates, nonisomorphic groups
with identical character tables have the same weak moonshine.

(2) There are infinitely many Brauer pairs, non-isomorphic
groups with isomorphic character tables with common power
maps on conjugacy classes.

Problem
Can weak moonshine be refined (in a uniformly bounded way) to
distinguish groups?
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Moonshine for Finite Groups
III. Our work

Main Takeaways

Theorem 1 (D–Ono)

If G is a finite group and s ∈ Z+, then weak moonshine for G
extends to width s weak moonshine.

Moreover, G admits
asymptotically regular width s weak moonshine.

Corollary (D–Ono)

If s ≥ 3, then complete width s weak moonshine determines
finite groups up to isomorphism.
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Moonshine for Finite Groups
III. Our work

Notation

G is a finite group

Let ρ1, ρ2, . . . , ρt be the irreducible representations

ρi : G→ GLdi(C).

Let χ1, χ2, . . . , χt be the corresponding characters, and so

χi(e) = di.

Let VG = ⊕nVG(n) be a weak moonshine module for G.
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Moonshine for Finite Groups
III. Our work

Frobenius r-characters

Definition (Frobenius, 1896)

Let χ be a character of G, and for positive integers r we let

G(r) := G× · · · ×G (r copies).

The Frobenius r-character χ(r) : G(r) → C is defined by:
(1) If r = 1, then χ(1)(g) := χ(g).

(2) If r = 2, then χ(2)(g1, g2) := χ(g1)χ(g2)− χ(g1g2).

(3) If r ≥ 3, then χ(r)(g1, g2, . . . , gr) is defined by

χ(r)
(
g1, . . . , gr

)
:= χ (g1)χ

(r−1) (g2, . . . , gr)

− χ(r−1) (g1g2, . . . , gr)− · · · − χ(r−1) (g2, . . . , g1gr) .
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Moonshine for Finite Groups
III. Our work

Basic Facts about r-characters

Facts (Vanishing)

(1) If dim(χ) = 1, then χ(2)(g1, g2) = χ(g1)χ(g2)− χ(g1g2) = 0.

(2) More generally, if r > dimχ, then for all g ∈ G(r) we have

χ(r)(g) = 0.

Fact (Expansion as 1-characters)

If r ≥ 2, then χ(r)(g1, . . . , gr) is a signed sum over Sr action on

χ(g1), χ(g2), . . . , χ(gr).
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Fact (Expansion as 1-characters)

If r ≥ 2, then χ(r)(g1, . . . , gr) is a signed sum over Sr action on

χ(g1), χ(g2), . . . , χ(gr).

Madeline Locus Dawsey (joint with Ken Ono) Moonshine for Finite Groups



Moonshine for Finite Groups
III. Our work

Deep Theorem about r-characters

Theorem (Hoehnke–Johnson, 1992, 1998)

A finite group is determined (up to isomorphism) by its 1, 2 and
3-characters.

Remark
Infinitely many nonisomorphic groups share 1 and
2-character tables.
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Width s Weak Moonshine

Definition
G has width s ≥ 1 weak moonshine if the following hold:

1 G satisfies weak moonshine with

VG :=
⊕

n�−∞
VG(n).

2 If 1 ≤ r ≤ s and g ∈ G(r), then the McKay–Thompson
series

T
(
r, g; τ

)
:=

∑
n�−∞

Frobr
(
g;n
)
qn

is a weakly holomorphic modular function.
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Computing Frobr(g;n)

Lemma
If the mi(n) are the multiplicities of ρi in VG(n), then

Frobr
(
g;n
)

= Tr
(
g|V (r)

G (n)
)

:=
∑
1≤i≤t

mi(n)χ
(r)
i

(
g
)
.
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Width s Moonshine

Theorem 1 (D–Ono)

If G is a finite group and s ∈ Z+, then weak moonshine for G
extends to width s weak moonshine. Moreover, G admits
asymptotically regular width s weak moonshine.

Corollary (D–Ono)

If s ≥ 3, then complete width s weak moonshine determines
finite groups up to isomorphism.
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Higher Width MT Series

Question
What information do the higher width MT series{

T (r, g; τ) : g ∈ G(r)
}

encode about structure of the “seed” module VG?

Answer
The width r MT series know the part of VG assembled from the
characters with dimχi ≥ r.
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Higher Width MT Series

Theorem 2 (D–Ono)

If width s weak moonshine holds for G, 1 ≤ r ≤ s and
dimχi ≥ r, then the χi multiplicity generating function satisfies

Mi(τ) :=
∑

n�−∞
mi(n)qn

=
(dimχi)

r−1

r!|G|r (dimχi − 1) · · · (dimχi − (r − 1))

∑
g∈G(r)

χ
(r)
i

(
g
)
T
(
r, g; τ

)
.

Remark
Theorem 2 follows from new orthogonality relations for
Frobenius r-characters.
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Orthogonality of Frobenius r-characters

Theorem (Frobenius, Johnson, D–Ono)

We have that∑
g∈G(r)

χ
(r)
i

(
g
)
χ
(r)
j

(
g
)

=
r!|G|rδij

(dimχi)
r−1 (dimχi − 1) · · · (dimχi − (r − 1)) .

Remarks
(1) The r = 1 case is due to Schur.
(2) The i 6= j case is due to Frobenius and Johnson.
(3) Our contribution is the i = j case which gives the “norms” of
Frobenius r-characters.
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Example of D4 and Q8 revisited

• The MT series for
(
r3s, rs

)
∈ D(2)

4 and (−k, k) ∈ Q(2)
8 are

T
(
2,
(
r3s, rs

)
; τ
)

=
∑

1≤i≤5
χ
(2)
i

(
r3s, rs

)
Mi(τ) = χ

(2)
5

(
r3s, rs

)
M5(τ)

= 98304q + 10747904q2 + 432144384q3 +O
(
q4
)
.

T (2, (−k, k); τ) =
∑

1≤i≤5
χ
(2)
i (−k, k)Mi(τ) = χ

(2)
5 (−k, k)M5(τ)

= −98304q − 10747904q2 − 432144384q3 +O
(
q4
)
.

• That they are unequal distinguishes D4 from Q8.
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Summary

Theorem 1 (D–Ono)

If G is a finite group and s ∈ Z+, then weak moonshine for G
extends to width s weak moonshine. Moreover, G admits
asymptotically regular width s weak moonshine.

Corollary (D–Ono)

For s ≥ 3, width s weak moonshine determines groups.

Theorem 2 (D–Ono)

If dimχi ≥ r, then the multiplicity generating functions satisfy

Mi(τ) :=
∑

n�−∞
mi(n)qn = ∗

∑
g∈G(r)

χ
(r)
i

(
g
)
T
(
r, g; τ

)
.
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