MOONSHINE FOR FINITE GROUPS

Madeline Locus Dawsey (joint with Ken Ono)

Emory University

イロト イボト イヨト イヨト

MODULAR FUNCTIONS

DEFINITION

A meromorphic function $f : \mathbb{H} \to \mathbb{C}$ is a Γ -modular function if for every $\gamma \in \Gamma$ we have

 $f(\gamma \tau) = f(\tau).$

イロト イロト イヨト イヨト 三日

MODULAR FUNCTIONS

DEFINITION

A meromorphic function $f : \mathbb{H} \to \mathbb{C}$ is a Γ -modular function if for every $\gamma \in \Gamma$ we have

$$f(\gamma \tau) = f(\tau).$$

EXAMPLE $(\Gamma = \operatorname{SL}_2(\mathbb{Z}))$

The **Hauptmodul** is Klein's *j*-function $(q := e^{2\pi i \tau})$

$$J(\tau) := j(\tau) - 744 = \sum_{n=-1}^{\infty} c(n)q^n$$

= $q^{-1} + 196884q + 21493760q^2 + 864299970q^3 + \dots$

Madeline Locus Dawsey (joint with Ken Ono)

Moonshine for Finite Groups

・ロト ・聞ト ・ヨト ・ヨト

э

GLIMPSES OF MONSTROUS MOONSHINE

John McKay observed that

196884 = 1 + 196883

Madeline Locus Dawsey (joint with Ken Ono) Moonshine for Finite Groups

・ロト ・四ト ・ヨト ・ヨト

3

GLIMPSES OF MONSTROUS MOONSHINE

John McKay observed that

196884 = 1 + 196883

John Thompson observed that

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326

Coefficients of $j(\tau)$

Dimensions of irreducible representations of the Monster \mathbbm{M}

< ロト (同) (三) (三) (

The Monster characters

The character table for $\mathbb M$ (ordered by size) gives dimensions:

$$\chi_1(e) = 1$$

$$\chi_2(e) = 196883$$

$$\chi_3(e) = 21296876$$

$$\chi_4(e) = 842609326$$

$$\vdots$$

$$\chi_{194}(e) = 258823477531055064045234375.$$

イロト イポト イヨト イヨト 二日

THOMPSON'S MONSTROUS CONJECTURE

CONJECTURE (THOMPSON)

There is a "nice" infinite-dimensional graded module $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ for which $\dim(V_n^{\natural}) = c(n)$.

・ロト ・四ト ・ヨト ・ヨト

THOMPSON'S MONSTROUS CONJECTURE

CONJECTURE (THOMPSON)

There is a "nice" infinite-dimensional graded module $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ for which $\dim(V_n^{\natural}) = c(n)$.

Remark

We can use the trivial representation which has dim $\chi_1 = 1$. Using too many trivial representations is not "nice".

イロト 不得 トイヨト イヨト

Moonshine for Finite Groups I. Introduction

Web of Numerology?

DEFINITION (THOMPSON)

Assuming the conjecture, if $g \in \mathbb{M}$, then define the McKay–Thompson series

$$T_g(\tau) := \sum_{n=-1}^{\infty} \operatorname{Tr}(g|V_n^{\natural}) q^n.$$

・ロト ・聞 ト ・ヨト ・ヨト

Moonshine for Finite Groups I. Introduction

Web of Numerology?

DEFINITION (THOMPSON)

Assuming the conjecture, if $g \in \mathbb{M}$, then define the McKay–Thompson series

$$T_g(\tau) := \sum_{n=-1}^{\infty} \operatorname{Tr}(g|V_n^{\natural}) q^n.$$

QUESTION

Is there a V^{\natural} for which all of the $T_g(\tau)$ are simultaneously nice?

MONSTROUS MOONSHINE CONJECTURE

CONJECTURE (CONWAY AND NORTON, 1979)

For each $g \in \mathbb{M}$ there is an explicit genus 0 congruence subgroup $\Gamma_g \subset \mathrm{SL}_2(\mathbb{R})$ for which $T_g(\tau)$ is the **Hauptmodul**.

・ロト ・ 一日 ト ・ 日 ト

MONSTROUS MOONSHINE CONJECTURE

CONJECTURE (CONWAY AND NORTON, 1979)

For each $g \in \mathbb{M}$ there is an explicit genus 0 congruence subgroup $\Gamma_g \subset \mathrm{SL}_2(\mathbb{R})$ for which $T_g(\tau)$ is the **Hauptmodul**.

THEOREM (FRENKEL-LEPOWSKY-MEURMAN (1980s))

If it exists, then the moonshine module $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ is a specific vertex operator algebra whose automorphism group is \mathbb{M} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

MONSTROUS MOONSHINE CONJECTURE

CONJECTURE (CONWAY AND NORTON, 1979)

For each $g \in \mathbb{M}$ there is an explicit genus 0 congruence subgroup $\Gamma_g \subset \mathrm{SL}_2(\mathbb{R})$ for which $T_g(\tau)$ is the **Hauptmodul**.

THEOREM (FRENKEL-LEPOWSKY-MEURMAN (1980s))

If it exists, then the moonshine module $V^{\natural} = \bigoplus_{n=-1}^{\infty} V_n^{\natural}$ is a specific vertex operator algebra whose automorphism group is \mathbb{M} .

イロト イポト イヨト イヨト

THEOREM (BORCHERDS (1998 FIELDS MEDAL))

The Monstrous Moonshine Conjecture is true.

AFTERMATH

Inspired by string theory, further moonshines have been found:

- Mathieu (Gannon)
- Umbral (Cheng, Duncan, Harvey, and Duncan, O, Griffin)

イロト イロト イヨト イヨト 三日

- Thompson (Griffin and Mertens)
- Pariah (Duncan, O, Mertens)
- to name a few...

Moonshine for Finite Groups I. Introduction

WITTEN'S PROBLEM

QUESTION (BLACK HOLE STATES)

Consider the monstrous moonshine expressions

196884 = 1 + 196883 21493760 = 1 + 196883 + 21296876 864299970 = 1 + 1 + 196883 + 196883 + 21296876 + 842609326 \vdots $c(n) = \sum_{i=1}^{194} \mathbf{m}_i(n)\chi_i(e)$

How many '1's, '196883's, etc. show up in these expressions?

- ロト - (四下 - (日下 - (日下

Moonshine for Finite Groups I. Introduction

Some Proportions

n	$\delta\left(\mathbf{m}_{1}(n)\right)$	$\delta\left(\mathbf{m}_{2}(n)\right)$		$\delta\left(\mathbf{m}_{194}(n)\right)$
1	1/2	1/2		0
÷	:	÷	:	:
40	$4.011\ldots imes 10^{-4}$	$2.514\ldots imes 10^{-3}$		0.00891
60	$2.699 \ldots \times 10^{-9}$	$2.732\ldots imes 10^{-8}$		0.04419
80	$4.809 \ldots \times 10^{-14}$	$7.537 \ldots imes 10^{-13}$		0.04428
100	4.427×10^{-18}	$1.077 \ldots imes 10^{-16}$		0.04428
120	1.377×10^{-21}	$5.501 \ldots imes 10^{-20}$		0.04428
140	1.156×10^{-24}	$1.260 \ldots \times 10^{-22}$		0.04428
160	$2.621 \dots \times 10^{-27}$	3.443×10^{-23}		0.04428
180	$1.877 \ldots \times 10^{-28}$	$3.371 \ldots imes 10^{-23}$		0.04428
200	$1.715 \ldots \times 10^{-28}$	$3.369 \ldots imes 10^{-23}$		0.04428
220	$1.711 \ldots \times 10^{-28}$	$3.368\ldots imes 10^{-23}$		0.04428
240	1.711×10^{-28}	$3.368\ldots \times 10^{-23}$	•••	0.04428

Madeline Locus Dawsey (joint with Ken Ono)

Moonshine for Finite Groups

DISTRIBUTION OF MONSTROUS MOONSHINE

THEOREM (DUNCAN, GRIFFIN, O (2015)) If $1 \le i \le 194$, then as $n \to +\infty$ we have

$$\mathbf{m}_i(n) \sim \frac{\dim(\chi_i)}{\sqrt{2}|n|^{3/4}|\mathbb{M}|} \cdot e^{4\pi\sqrt{|n|}}$$

Madeline Locus Dawsey (joint with Ken Ono) Moonshine for Finite Groups

・ロト ・聞 ト ・ヨト ・ヨト

DISTRIBUTION OF MONSTROUS MOONSHINE

Theorem (Duncan, Griffin, O (2015))

If $1 \leq i \leq 194$, then as $n \to +\infty$ we have

$$\mathbf{m}_i(n) \sim \frac{\dim(\chi_i)}{\sqrt{2}|n|^{3/4}|\mathbb{M}|} \cdot e^{4\pi\sqrt{|n|}}$$

COROLLARY (DUNCAN, GRIFFIN, O)

The Moonshine module is asymptotically regular. In other words, we have

$$\delta(\mathbf{m}_i) := \lim_{n \to +\infty} \frac{\mathbf{m}_i(n)}{\sum_{i=1}^{194} \mathbf{m}_i(n)} = \frac{\dim(\chi_i)}{\sum_{j=1}^{194} \dim(\chi_j)}.$$

Madeline Locus Dawsey (joint with Ken Ono)

NATURAL QUESTION

QUESTION

How ubiquitous is moonshine if we relax some conditions?

Madeline Locus Dawsey (joint with Ken Ono) Moonshine for Finite Groups

NATURAL QUESTION

QUESTION

How ubiquitous is moonshine if we relax some conditions?

DEFINITION

A finite group G admits **weak moonshine** if there is an infinite dimensional graded G-module

 $V_G := \oplus_n V_G(n)$

NATURAL QUESTION

QUESTION

How ubiquitous is moonshine if we relax some conditions?

DEFINITION

A finite group G admits **weak moonshine** if there is an infinite dimensional graded G-module

 $V_G := \oplus_n V_G(n)$

such that for all $g \in G$ the McKay–Thompson series

$$T_g(\tau) := \sum_n \operatorname{Tr}(g|V_G(n))q^n$$

is a weakly holomorphic modular function.

FINITE GROUPS ENJOY WEAK MOONSHINE

Theorem (Dehority, Gonzalez, Vafa, Van Peski (2017))

All finite groups admit asymptotically regular weak moonshine.

Madeline Locus Dawsey (joint with Ken Ono) Moonshine for Finite Groups

・ロト ・ 一日 ト ・ 日 ト

FINITE GROUPS ENJOY WEAK MOONSHINE

THEOREM (DEHORITY, GONZALEZ, VAFA, VAN PESKI (2017)) All finite groups admit asymptotically regular weak moonshine.

VARIANTS

• We can require that each $T_g(\tau)$ is modular on $\Gamma_0(\operatorname{ord}_G(g))$.

イロト イポト イヨト イヨト

FINITE GROUPS ENJOY WEAK MOONSHINE

THEOREM (DEHORITY, GONZALEZ, VAFA, VAN PESKI (2017)) All finite groups admit asymptotically regular weak moonshine.

VARIANTS

- We can require that each $T_g(\tau)$ is modular on $\Gamma_0(\operatorname{ord}_G(g))$.
- **2** In very special cases there are analytic "group compatibility" relations between $T_g(\tau)$ and $T_{g^p}(\tau)$.

EXAMPLE: MOONSHINE FOR D_4 and Q_8

D ₄	{1}	$\{r^2\}$	$\{r,r^3\}$	$\{s,r^2s\}$	$\{rs,r^3s\}$
Q_8	{1}	$\{-1\}$	$\{i,-i\}$	$\{j,-j\}$	$\{k,-k\}$
	C_1	C_2	C_3	C_4	C_5
χ_1	1	1	1	1	1
χ_2	1	1	$^{-1}$	1	$^{-1}$
χ_3	1	1	$^{-1}$	$^{-1}$	1
χ_4	1	1	1	$^{-1}$	$^{-1}$
χ_5	2	-2	0	0	0

EXAMPLE: MOONSHINE FOR D_4 and Q_8

D ₄	{1}	$\{r^2\}$	$\{r,r^3\}$	$\{s,r^2s\}$	$\{rs,r^3s\}$
Q_8	{1}	$\{-1\}$	$\{i,-i\}$	$\{j,-j\}$	$\{k,-k\}$
	C_1	C_2	C_3	C_4	C_5
χ_1	1	1	1	1	1
χ_2	1	1	$^{-1}$	1	$^{-1}$
X 3	1	1	$^{-1}$	$^{-1}$	1
χ_4	1	1	1	$^{-1}$	$^{-1}$
χ_5	2	-2	0	0	0

• The MT series are Hauptmoduln $J_N(\tau)$ for $\Gamma_0(N)$:

$$T(C_{1};\tau) = J_{1}(\tau)$$

$$T(C_{2};\tau) = T(C_{4};\tau) = T(C_{5};\tau) = J_{2}(\tau)$$

$$T(C_{3};\tau) = J_{4}(\tau)$$

Madeline Locus Dawsey (joint with Ken Ono)

Moonshine for Finite Groups

Example of D_4 and Q_8 continued

• If
$$1 \le i \le 5$$
 and $n \ge -1$, then let

$$m_i(n) = \#\{ \text{mult. of } \rho_i \text{ in } V_G(n) \}.$$

Madeline Locus Dawsey (joint with Ken Ono) Moonshine for Finite Groups

Example of D_4 and Q_8 continued

• If
$$1 \leq i \leq 5$$
 and $n \geq -1$, then let

$$m_i(n) = \#\{ \text{mult. of } \rho_i \text{ in } V_G(n) \}.$$

• The multiplicity generating functions are:

$$\mathcal{M}_i(\tau) := \sum_n m_i(n) q^n.$$

$$\begin{split} \mathcal{M}_{1}(\tau) &= q^{-1} + 24788q + 2685440q^{2} + 108044482q^{3} + O\left(q^{4}\right), \\ \mathcal{M}_{2}(\tau) &= 24640q + 2686464q^{2} + 108038912q^{3} + O\left(q^{4}\right), \\ \mathcal{M}_{3}(\tau) &= 24640q + 2686464q^{2} + 108038912q^{3} + O\left(q^{4}\right), \\ \mathcal{M}_{4}(\tau) &= 24512q + 2687488q^{2} + 108033280q^{3} + O\left(q^{4}\right), \\ \mathcal{M}_{5}(\tau) &= 49152q + 5373952q^{2} + 216072192q^{3} + O\left(q^{4}\right). \end{split}$$

(日) (四) (日) (日)

Example of D_4 and Q_8 continued

This weak moonshine is **asymptotically regular**.

n	$\delta_1(n)$	$\delta_2(n)=\delta_3(n)$	$\delta_4(n)$	$\delta_5(n)$
1	0.16779	0.16678	0.16592	0.33271
2	0.16659	0.16665	0.16671	0.33337
3	0.16666	0.16666	0.16665	0.33332
:	:	:	:	:
∞	1/6	1/6	1/6	1/3

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

3

NATURAL PROBLEM

Fact

(1) As the D_4 and Q_8 example illustrates, nonisomorphic groups with identical character tables have the same weak moonshine.

Madeline Locus Dawsey (joint with Ken Ono) Moonshine for Finite Groups

NATURAL PROBLEM

Fact

(1) As the D_4 and Q_8 example illustrates, nonisomorphic groups with identical character tables have the same weak moonshine.

(2) There are infinitely many **Brauer pairs**, non-isomorphic groups with isomorphic character tables with common power maps on conjugacy classes.

NATURAL PROBLEM

Fact

(1) As the D_4 and Q_8 example illustrates, nonisomorphic groups with identical character tables have the same weak moonshine.

(2) There are infinitely many **Brauer pairs**, non-isomorphic groups with isomorphic character tables with common power maps on conjugacy classes.

Problem

Can weak moonshine be refined (in a uniformly bounded way) to distinguish groups?

Madeline Locus Dawsey (joint with Ken Ono) Moonsl

Moonshine for Finite Groups

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MAIN TAKEAWAYS

Theorem 1 (D-Ono)

If G is a finite group and $s \in \mathbb{Z}^+$, then weak moonshine for G extends to width s weak moonshine.

・ロト ・四ト ・ヨト ・ヨト

MAIN TAKEAWAYS

THEOREM 1 (D-ONO)

If G is a finite group and $s \in \mathbb{Z}^+$, then weak moonshine for G extends to width s weak moonshine. Moreover, G admits asymptotically regular width s weak moonshine.

イロト 不得 トイヨト イヨト

MAIN TAKEAWAYS

THEOREM 1 (D-ONO)

If G is a finite group and $s \in \mathbb{Z}^+$, then weak moonshine for G extends to width s weak moonshine. Moreover, G admits asymptotically regular width s weak moonshine.

COROLLARY (D-ONO)

If $s \ge 3$, then complete width s weak moonshine determines finite groups up to isomorphism.

NOTATION

- $\bullet~G$ is a finite group
- Let $\rho_1, \rho_2, \ldots, \rho_t$ be the irreducible representations

 $\rho_i \colon G \to \mathrm{GL}_{d_i}(\mathbb{C}).$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

NOTATION

- G is a finite group
- Let $\rho_1, \rho_2, \ldots, \rho_t$ be the irreducible representations

$$\rho_i \colon G \to \mathrm{GL}_{d_i}(\mathbb{C}).$$

• Let $\chi_1, \chi_2, \ldots, \chi_t$ be the corresponding **characters**, and so

$$\chi_i(e) = d_i.$$

イロト イポト イヨト イヨト 二日

NOTATION

- G is a finite group
- Let $\rho_1, \rho_2, \ldots, \rho_t$ be the irreducible representations

$$\rho_i \colon G \to \mathrm{GL}_{d_i}(\mathbb{C}).$$

• Let $\chi_1, \chi_2, \ldots, \chi_t$ be the corresponding **characters**, and so

$$\chi_i(e) = d_i.$$

• Let $V_G = \bigoplus_n V_G(n)$ be a weak moonshine module for G.

DEFINITION (FROBENIUS, 1896)

Let χ be a character of G, and for positive integers r we let

$$G^{(r)} := G \times \cdots \times G$$
 (r copies).

DEFINITION (FROBENIUS, 1896)

Let χ be a character of G, and for positive integers r we let

$$G^{(r)} := G \times \cdots \times G \quad (r \text{ copies}).$$

イロト イポト イヨト イヨト

The **Frobenius** *r*-character $\chi^{(r)} : G^{(r)} \to \mathbb{C}$ is defined by:

DEFINITION (FROBENIUS, 1896)

Let χ be a character of G, and for positive integers r we let

$$G^{(r)} := G \times \cdots \times G$$
 (r copies).

イロト イポト イヨト イヨト

The **Frobenius** *r*-character $\chi^{(r)}: G^{(r)} \to \mathbb{C}$ is defined by: (1) If r = 1, then $\chi^{(1)}(g) := \chi(g)$.

DEFINITION (FROBENIUS, 1896)

Let χ be a character of G, and for positive integers r we let

$$G^{(r)} := G \times \cdots \times G$$
 (r copies).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The **Frobenius** *r*-character $\chi^{(r)}: G^{(r)} \to \mathbb{C}$ is defined by: (1) If r = 1, then $\chi^{(1)}(g) := \chi(g)$. (2) If r = 2, then $\chi^{(2)}(g_1, g_2) := \chi(g_1)\chi(g_2) - \chi(g_1g_2)$.

DEFINITION (FROBENIUS, 1896)

Let χ be a character of G, and for positive integers r we let

$$G^{(r)} := G \times \cdots \times G$$
 (r copies).

The **Frobenius** *r*-character $\chi^{(r)}: G^{(r)} \to \mathbb{C}$ is defined by: (1) If r = 1, then $\chi^{(1)}(g) := \chi(g)$. (2) If r = 2, then $\chi^{(2)}(g_1, g_2) := \chi(g_1)\chi(g_2) - \chi(g_1g_2)$. (3) If $r \ge 3$, then $\chi^{(r)}(g_1, g_2, \dots, g_r)$ is defined by $\chi^{(r)}(g_1, \dots, g_r) := \chi(g_1)\chi^{(r-1)}(g_2, \dots, g_r)$ $-\chi^{(r-1)}(g_1g_2, \dots, g_r) - \dots - \chi^{(r-1)}(g_2, \dots, g_1g_r)$.

BASIC FACTS ABOUT r-CHARACTERS

Madeline Locus Dawsey (joint with Ken Ono) Moonshine for Finite Groups

・ロト ・四ト ・ヨト ・ヨト 三日

BASIC FACTS ABOUT r-CHARACTERS

FACTS (VANISHING)

(1) If dim $(\chi) = 1$, then $\chi^{(2)}(g_1, g_2) = \chi(g_1)\chi(g_2) - \chi(g_1g_2) = 0$.

BASIC FACTS ABOUT r-CHARACTERS

FACTS (VANISHING)

(1) If dim $(\chi) = 1$, then $\chi^{(2)}(g_1, g_2) = \chi(g_1)\chi(g_2) - \chi(g_1g_2) = 0$. (2) More generally, if $r > \dim \chi$, then for all $\underline{g} \in G^{(r)}$ we have

$$\chi^{(r)}(\underline{g}) = \mathbf{0}.$$

BASIC FACTS ABOUT r-CHARACTERS

FACTS (VANISHING)

(1) If dim $(\chi) = 1$, then $\chi^{(2)}(g_1, g_2) = \chi(g_1)\chi(g_2) - \chi(g_1g_2) = 0$. (2) More generally, if $r > \dim \chi$, then for all $\underline{g} \in G^{(r)}$ we have

$$\chi^{(r)}(\underline{g}) = \mathbf{0}.$$

FACT (EXPANSION AS 1-CHARACTERS)

If $r \ge 2$, then $\chi^{(r)}(g_1, \ldots, g_r)$ is a signed sum over S_r action on $\chi(g_1), \chi(g_2), \ldots, \chi(g_r).$

イロト 不得下 イヨト イヨト 二日

Deep Theorem about r-characters

THEOREM (HOEHNKE–JOHNSON, 1992, 1998)

A finite group is determined (up to isomorphism) by its 1, 2 and 3-characters.

イロト イボト イヨト イヨト

Deep Theorem about r-characters

THEOREM (HOEHNKE–JOHNSON, 1992, 1998)

A finite group is determined (up to isomorphism) by its 1, 2 and 3-characters.

イロト イポト イヨト イヨト

Remark

Infinitely many nonisomorphic groups share 1 and 2-character tables.

WIDTH s Weak Moonshine

DEFINITION

G has width $s \ge 1$ weak moonshine if the following hold:

Madeline Locus Dawsey (joint with Ken Ono)

Moonshine for Finite Groups

WIDTH s Weak Moonshine

DEFINITION

G has width $s \ge 1$ weak moonshine if the following hold:

O G satisfies weak moonshine with

$$V_G := \bigoplus_{n \gg -\infty} V_G(n).$$

WIDTH s Weak Moonshine

DEFINITION

G has width $s \ge 1$ weak moonshine if the following hold:

0 G satisfies weak moonshine with

$$V_G := \bigoplus_{n \gg -\infty} V_G(n).$$

② If $1 \le r \le s$ and $\underline{g} \in G^{(r)}$, then the *McKay*-Thompson series

$$T(r,\underline{g};\tau) := \sum_{n\gg-\infty} \operatorname{Frob}_r(\underline{g};n)q^n$$

Madeline Locus Dawsey (joint with Ken Ono)

Moonshine for Finite Groups

WIDTH s Weak Moonshine

DEFINITION

G has width $s \ge 1$ weak moonshine if the following hold:

0 G satisfies weak moonshine with

$$V_G := \bigoplus_{n \gg -\infty} V_G(n).$$

② If $1 \le r \le s$ and $\underline{g} \in G^{(r)}$, then the *McKay*-Thompson series

$$T\left(r,\underline{g};\tau\right) := \sum_{n\gg-\infty} \operatorname{Frob}_{r}\left(\underline{g};n\right)q^{n}$$

is a weakly holomorphic modular function.

Madeline Locus Dawsey (joint with Ken Ono)

Moonshine for Finite Groups

Computing $\operatorname{Frob}_r(\overline{g}; n)$

LEMMA

If the $m_i(n)$ are the multiplicities of ρ_i in $V_G(n)$, then

$$\operatorname{Frob}_{\boldsymbol{r}}\left(\underline{g};n\right) = \operatorname{Tr}\left(\underline{g}|V_{G}^{(\boldsymbol{r})}(n)\right) := \sum_{1 \leq i \leq t} m_{i}(n)\chi_{i}^{(\boldsymbol{r})}\left(\underline{g}\right).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

WIDTH s Moonshine

THEOREM 1 (D-ONO)

If G is a finite group and $s \in \mathbb{Z}^+$, then weak moonshine for G extends to width s weak moonshine. Moreover, G admits asymptotically regular width s weak moonshine.

WIDTH s Moonshine

THEOREM 1 (D-ONO)

If G is a finite group and $s \in \mathbb{Z}^+$, then weak moonshine for G extends to width s weak moonshine. Moreover, G admits asymptotically regular width s weak moonshine.

COROLLARY (D-ONO)

If $s \ge 3$, then complete width s weak moonshine determines finite groups up to isomorphism.

HIGHER WIDTH MT SERIES

QUESTION

What information do the higher width MT series

$$\left\{T(r,\underline{g};\tau) : \underline{g} \in G^{(r)}\right\}$$

イロト イヨト イヨト イヨト

encode about structure of the "seed" module V_G ?

HIGHER WIDTH MT SERIES

QUESTION

What information do the higher width MT series

$$\left\{ T(r,\underline{g};\tau) : \underline{g} \in G^{(r)} \right\}$$

encode about structure of the "seed" module V_G ?

Answer

The width r MT series know the part of V_G assembled from the characters with dim $\chi_i \geq r$.

HIGHER WIDTH MT SERIES

THEOREM 2 (D-ONO)

If width s weak moonshine holds for G, $1 \le r \le s$ and $\dim \chi_i \ge r$, then the χ_i multiplicity generating function satisfies

$$\mathcal{M}_{i}(\tau) := \sum_{n \gg -\infty} m_{i}(n)q^{n}$$

= $\frac{(\dim \chi_{i})^{r-1}}{r!|G|^{r} (\dim \chi_{i} - 1) \cdots (\dim \chi_{i} - (r-1))} \sum_{\underline{g} \in G^{(r)}} \overline{\chi_{i}^{(r)}(\underline{g})} T(\underline{r}, \underline{g}; \tau)$

イロト イボト イヨト イヨト

HIGHER WIDTH MT SERIES

THEOREM 2 (D-ONO)

If width s weak moonshine holds for G, $1 \le r \le s$ and $\dim \chi_i \ge r$, then the χ_i multiplicity generating function satisfies

$$\mathcal{M}_{i}(\tau) := \sum_{n \gg -\infty} m_{i}(n)q^{n}$$

= $\frac{(\dim \chi_{i})^{r-1}}{r!|G|^{r} (\dim \chi_{i}-1) \cdots (\dim \chi_{i}-(r-1))} \sum_{\underline{g} \in G^{(r)}} \overline{\chi_{i}^{(r)}(\underline{g})} T(\underline{r}, \underline{g}; \tau)$

Remark

Theorem 2 follows from new orthogonality relations for Frobenius r-characters.

Madeline Locus Dawsey (joint with Ken Ono)

Moonshine for Finite Groups

ORTHOGONALITY OF FROBENIUS *r*-CHARACTERS

THEOREM (FROBENIUS, JOHNSON, D-ONO)

We have that

$$\sum_{\underline{g}\in G^{(r)}} \chi_i^{(r)}(\underline{g}) \overline{\chi_j^{(r)}(\underline{g})}$$
$$= \frac{r! |G|^r \delta_{ij}}{(\dim \chi_i)^{r-1}} \left(\dim \chi_i - 1\right) \cdots \left(\dim \chi_i - (r-1)\right).$$

・ロト ・聞 ト ・ヨト ・ヨト

ORTHOGONALITY OF FROBENIUS *r*-CHARACTERS

THEOREM (FROBENIUS, JOHNSON, D-ONO)

We have that

$$\sum_{\underline{g}\in G^{(r)}} \chi_i^{(r)}(\underline{g}) \overline{\chi_j^{(r)}(\underline{g})}$$
$$= \frac{r! |G|^r \delta_{ij}}{(\dim \chi_i)^{r-1}} \left(\dim \chi_i - 1\right) \cdots \left(\dim \chi_i - (r-1)\right).$$

Remarks

(1) The r = 1 case is due to Schur.
(2) The i ≠ j case is due to Frobenius and Johnson.
(3) Our contribution is the i = j case which gives the "norms" of Frobenius r-characters.

Madeline Locus Dawsey (joint with Ken Ono)

Example of D_4 and Q_8 revisited

• The MT series for
$$(r^3s, rs) \in D_4^{(2)}$$
 and $(-k, k) \in Q_8^{(2)}$ are

$$T\left(2, \left(r^{3}s, rs\right); \tau\right) = \sum_{1 \le i \le 5} \chi_{i}^{(2)}\left(r^{3}s, rs\right) \mathcal{M}_{i}(\tau) = \chi_{5}^{(2)}\left(r^{3}s, rs\right) \mathcal{M}_{5}(\tau)$$
$$= 98304q + 10747904q^{2} + 432144384q^{3} + O\left(q^{4}\right).$$

$$T(2, (-k, k); \tau) = \sum_{1 \le i \le 5} \chi_i^{(2)}(-k, k) \mathcal{M}_i(\tau) = \chi_5^{(2)}(-k, k) \mathcal{M}_5(\tau)$$

= -98304q - 10747904q² - 432144384q³ + O(q⁴).

Example of D_4 and Q_8 revisited

• The MT series for $(r^3s, rs) \in D_4^{(2)}$ and $(-k, k) \in Q_8^{(2)}$ are

$$T\left(2, (r^{3}s, rs); \tau\right) = \sum_{1 \le i \le 5} \chi_{i}^{(2)} (r^{3}s, rs) \mathcal{M}_{i}(\tau) = \chi_{5}^{(2)} (r^{3}s, rs) \mathcal{M}_{5}(\tau)$$
$$= 98304q + 10747904q^{2} + 432144384q^{3} + O(q^{4}).$$

$$T(2, (-k,k); \tau) = \sum_{1 \le i \le 5} \chi_i^{(2)}(-k,k)\mathcal{M}_i(\tau) = \chi_5^{(2)}(-k,k)\mathcal{M}_5(\tau)$$

= -98304q - 10747904q² - 432144384q³ + O(q⁴).

・ロト ・御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• That they are unequal distinguishes D_4 from Q_8 .

SUMMARY

THEOREM 1 (D-ONO)

If G is a finite group and $s \in \mathbb{Z}^+$, then weak moonshine for G extends to width s weak moonshine. Moreover, G admits asymptotically regular width s weak moonshine.

SUMMARY

THEOREM 1 (D-ONO)

If G is a finite group and $s \in \mathbb{Z}^+$, then weak moonshine for G extends to width s weak moonshine. Moreover, G admits asymptotically regular width s weak moonshine.

COROLLARY (D-ONO)

For $s \geq 3$, width s weak moonshine determines groups.

SUMMARY

Theorem 1 (D–Ono)

If G is a finite group and $s \in \mathbb{Z}^+$, then weak moonshine for G extends to width s weak moonshine. Moreover, G admits asymptotically regular width s weak moonshine.

COROLLARY (D-ONO)

For $s \geq 3$, width s weak moonshine determines groups.

THEOREM 2 (D-ONO)

If $\dim \chi_i \geq r$, then the multiplicity generating functions satisfy

$$\mathcal{M}_{i}(\tau) := \sum_{n \gg -\infty} m_{i}(n)q^{n} = * \sum_{\underline{g} \in G^{(r)}} \overline{\chi_{i}^{(r)}(\underline{g})} T\left(r, \underline{g}; \tau\right).$$

Madeline Locus Dawsey (joint with Ken Ono)

Moonshine for Finite Groups