Existence of eta-quotients of squarefree levels

Michael Allen
April 13, 2019
Oregon State University

Dedekind's η function and η-quotients

The Dedekind η-function $\eta: \mathbb{H} \rightarrow \mathbb{C}$ is defined by

$$
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

where $q:=e^{2 \pi i \tau}$. We have $\eta(\tau)^{24}=\Delta(\tau) \in M_{12}\left(S L_{2}(\mathbb{Z})\right)$.
An eta-quotient is a function of the form

$$
f(\tau)=\prod_{0<\delta \mid N} \eta(\delta \tau)^{r_{\delta}}
$$

where each $r_{\delta} \in \mathbb{Z}$ and $N \in \mathbb{N}$.

Modular form spaces generated by η-quotients

Ono - Every modular form on $S L_{2}(\mathbb{Z})$ may be expressed as a rational function in $\eta(\tau)$, $\eta(2 \tau)$, and $\eta(4 \tau)$.
Rouse and Webb - There are precisely 121 positive integers $N \leqslant 500$ such that the graded ring of modular forms for $\Gamma_{0}(N)$ is generated by eta-quotients.
Rouse and Webb's computations make use of the following bound, originally obtained by Bhattacharya:
Theorem (Bhattacharya, Rouse and Webb)
Suppose that $f(\tau)=\Pi \eta(\delta \tau)^{r_{\delta}}$ is modular of level N and weight.
Then

$$
\sum_{\delta \mid N}\left|r_{\delta}\right| \leqslant 2 k \prod_{p \mid N}\left(\frac{p+1}{p-1}\right)^{\min \left\{2, o r d_{p}(N)\right\}}
$$

Informally, this says that in order for $M\left(\Gamma_{0}(N)\right)$ to be generated by η-quotients, it is necessary that N be "sufficiently composite".

Necessary Tools

Theorem (Newman)
Let $f(\tau)=\prod_{\delta \mid N} \eta^{r_{\delta}}(\delta \tau)$. Iff satisfies

$$
\begin{aligned}
& \sum_{\delta \mid N} \delta r_{\delta} \equiv 0 \quad(\bmod 24) \\
& \sum_{\delta \mid N} \frac{N}{\delta} r_{\delta} \equiv 0 \quad(\bmod 24)
\end{aligned}
$$

then for $k=\frac{1}{2} \sum_{\delta \mid N} r_{\delta}$ and $\chi(d)=\left(\frac{(-1)^{k} s}{d}\right)$ where $s=\prod_{\delta \mid N} \delta^{r_{\delta}}$,
$f \in M_{\dot{k}}^{!}\left(\Gamma_{0}(N), \chi\right)$.
In the case $\operatorname{gcd}(N, 6)=1$, the two congruence conditions are equivalent as every element of $(\mathbb{Z} / 24 \mathbb{Z})^{x}$ is its own inverse. Additionally, when N is coprime to 6 the converse of this theorem holds.

Necessary Tools

Theorem (Ligozat)

Let c, d, and N be positive integers with $d \mid N$ and $\operatorname{gcd}(c, d)=1$. If $f(\tau)$ is an η-quotient satisfying the conditions given in the prior theorem, then the order of vanishing for $f(\tau)$ at the cusp c/d is

$$
\frac{N}{24} \sum_{\delta \mid N} \frac{\operatorname{gcd}(d, \delta)^{2} r_{\delta}}{\operatorname{gcd}(d, N / d) d \delta}
$$

Note: If N is squarefree, the set $\{1 / d: d \mid N\}$ is a complete set of representatives of the cusps of $\Gamma_{0}(N)$.

Weakly holomorphic η-quotients of squarefree level

Suppose N is coprime to 6 . Newman's theorem states that existence of a weakly holomorphic modular η-quotient $f(\tau)=\prod_{\delta \mid N} \eta(\delta \tau)^{r_{\delta}}$ of level N and weight k is equivalent to existence of a solution in r_{δ} to

$$
24 m=\sum_{\delta \mid N} \delta r_{\delta}
$$

for some $m \in \mathbb{Z}$. As $2 k=\sum_{\delta \mid N} r_{\delta}$,

$$
2 k=24 m-\sum_{\delta \mid N}(\delta-1) r_{\delta}
$$

Thinking of this as a linear Diophantine equation in the variables m and r_{δ}, we obtain the following proposition:

$$
\begin{aligned}
& \text { Let } N=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{\ell}^{e_{\ell}} \text { be coprime to } 6 \text {, and let } \\
& h_{N}=\frac{1}{2} g c d\left(p_{1}-1, p_{2}-1, \ldots, p_{\ell}-1,24\right) \text {. Then there exist } \\
& \text { eta-quotients in } M_{k}^{\prime}\left(\Gamma_{0}(N)\right) \text { if and only if } h_{N} \mid k \text {. }
\end{aligned}
$$

Fully holomorphic η-quotients of prime levels

Theorem (A., Anderson, Hamakiotes, Oltsik, Swisher)
Let $p \geqslant 5$ be prime, set $h_{p}=\frac{1}{2} \operatorname{gcd}(p-1,24)$, and let k be an even integer. Then there exists a modular η-quotient $f=\eta(\tau)^{r_{1}} \eta(p \tau)^{r_{p}}$ of level N and weight k if and only if
(1) $h_{p} \mid k$
(2) It is not the case that $p \neq 5, p \equiv 5(\bmod 24)$, and $k=2$.

The forwards direction is by exhaustion on the possible residues of p modulo 24. We will focus on the exceptional case laid out in (2).

The exceptional case

We want to show that there are no η-quotients $\eta(\tau)^{r_{1}} \eta(p \tau)^{r_{p}}$ in $M_{2}\left(\Gamma_{0}(p)\right)$ if $p \neq 5$, but $p \equiv 5(\bmod 24)$.
Recall the bound of Bhattacharya,

$$
\left|r_{1}\right|+\left|r_{p}\right| \leqslant 4\left(\frac{p+1}{p-1}\right)<5 .
$$

By Ligozat's theorem,

$$
\begin{aligned}
24 v_{1} & =p r_{1}+r_{p} \\
24 v_{1 / p} & =r_{1}+p r_{p} .
\end{aligned}
$$

As $\left|r_{1}\right|+\left|r_{p}\right| \leqslant 4$, for these to be non-negative, we must have r_{1} and r_{p} both non-negative. But by Newman's theorem we must also have

$$
r_{1}+5 r_{p} \equiv 0 \quad(\bmod 24)
$$

No such r_{1}, r_{p} exist.

Semiprime levels

Theorem (AAHOS)

Let $p, q \geqslant 5$ be distinct primes, $N=p q$ and k be an even integer. Let $h_{N}=\frac{1}{2} \operatorname{gcd}(p-1, q-1,24)$. Then there exists
$f(\tau)=\prod_{\delta \mid N} \eta(\delta \tau)^{r_{\delta}} \in M_{k}\left(\Gamma_{0}(N)\right)$ if and only if
(1) $h_{N} \mid k$
(2) It is not the case that $(p, q)(\bmod 24) \in\{(1,5),(5,1),(5,5)\}$, $p, q \neq 5$, and $k=2$.

Remark: When N is composite, for η-quotients to generate the graded ring of modular forms on $\Gamma_{0}(N)$ it is necessary that η-quotients span $M_{2}\left(\Gamma_{0}(N)\right)$. So, for all exceptional p, q described in (2) as well as all p, q such that $h_{p q}>2, M\left(\Gamma_{0}(N)\right)$ is not generated by η-quotients.

The exceptional case

Again we use Bhattacharya's bound to obtain

$$
\left|r_{1}\right|+\left|r_{p}\right|+\left|r_{q}\right|+\left|r_{N}\right| \leqslant 4\left(\frac{p+1}{p-1}\right)\left(\frac{q+1}{q-1}\right)<5 .
$$

By Ligozat's Theorem,

$$
\begin{aligned}
24 v_{1} & =N r_{1}+q r_{p}+p r_{q}+r_{N} \\
24 v_{1 / p} & =q r_{1}+N r_{p}+r_{q}+p r_{N} \\
24 v_{1 / q} & =p r_{1}+r_{p}+N r_{q}+q r_{N} \\
24 v_{1 / N} & =r_{1}+p r_{p}+q r_{q}+N r_{N} .
\end{aligned}
$$

Again, in order for these all to be non-negative we must have each $r_{\delta} \geqslant 0$. But, for such r_{δ}, there exist no solutions to either of the equations

$$
\begin{aligned}
& r_{1}+r_{p}+5 r_{q}+5 r_{N} \equiv 0 \quad(\bmod 24) \\
& r_{1}+5 r_{p}+5 r_{q}+r_{N} \equiv 0 \quad(\bmod 24)
\end{aligned}
$$

Squarefree levels

Theorem

Let $N=p_{1} p_{2} \cdots p_{\ell}$ be squarefree and coprime to 6 and let $k \in \mathbb{N}$ be even. Define $h_{N}=\frac{1}{2} \operatorname{gcd}\left(p_{1}-1, p_{2}-1, \ldots, p_{\ell}-1,24\right.$.) Suppose p_{1} is the smallest prime dividing N and that

$$
4 \prod_{p \mid N} \frac{p+1}{p-1}<p_{1}+1 .
$$

Then there exist η-quotients in $M_{k}\left(\Gamma_{0}(N)\right)$ if and only if
(1) $h_{N} \mid k$
(2) It is not the case that $k=2$, each $p_{i} \equiv 1$ or $5(\bmod 24)$, at least one p_{i} is congruent to $5(\bmod 24)$, and no $p_{i}=5$.

That is, we gain no "new" cases where there are weakly holomorphic η-quotients by no fully holomorphic η-quotients when we go from semiprime to squarefree.

The exceptional case

For the exceptional case, we use the fact that for each $\delta \mid N$

$$
24 v_{1 / \delta}=N r_{\delta}+\ldots
$$

So, if any $r_{\delta}<0$, then the largest that $24 v_{1 / \delta}$ can be is if $r_{\delta}=-1$ and $r_{\delta^{\prime}}$ is as large as possible (which is $p_{1}-1$ by hypothesis), where δ^{\prime} is picked so that r^{\prime}, appears in the equation for $v_{1 / \delta}$ with coefficient $p_{2} \cdots p_{\ell}$. But even in this scenario,

$$
24 v_{1 / \delta}=-N+\left(p_{1}-1\right) \frac{N}{p_{1}}<0
$$

Thus, every r_{δ} must be non-negative. By Newman's theorem,

$$
\sum_{\substack{\delta \mid N \\ \delta \equiv 1}} r_{\delta}+5 \sum_{\substack{\delta \mid N \\ \delta \equiv 5}} r_{\delta} \equiv 0 \quad(\bmod 24)
$$

and as $\mathrm{k}=2$,

$$
\sum_{\delta \mid N} r_{\delta}=4
$$

This is impossible to achieve.

The inequality hypothesis for squarefree levels

We could only extend our techniques to squarefree levels when

$$
4 \prod_{p \mid N} \frac{p+1}{p-1}<p_{1}+1 .
$$

A very reasonable question to then ask is how easily this inequality fails.
The smallest integer of the desired form for which this fails would be obtained by taking the product of every prime congruent to either 1 or 5 modulo 24 starting from 29 until the product on the left exceeds 30.

If we look at the product taking every such prime from 29 up to 10^{7}, the product is still only approximately 8.434.

Further directions and obstacles

Extending past squarefree:
If N is not squarefree, the "sudoku" property for the orders of vanishing no longer holds. For any r_{δ}, there is still a cusp whose order of vanishing involves the expression Nr_{δ}, but there could be other N's on other r_{δ} 's.

Dropping the assumption that $4 \prod_{p \mid N} \frac{p+1}{p-1}<p_{1}+1$:
We lose the fact that all r_{δ} must be nonnegative, which makes $\sum r_{\delta}=4$ a significantly looser restriction.

Including 2 and 3 :
In this case, Newman's theorem no longer gives a necessary condition, so it would need a completely different approach.

