
Generalized Legendre Curves and Quaternionic
Multiplication

Fang-Ting Tu,
joint with

Alyson Deines, Jenny Fuselier, Ling Long, Holly Swisher
a Women in Numbers 3 project

National Center for Theoretical Sciences, Taiwan

Mini-workshop on Algebraic Varieties, Hypergeometric series, and
Modular Forms

Fang Ting Tu (NCTS) Generalized Legendre Curves and QM April 7th, 2015 1 / 47



Introduction

2F1-hypergeometric Function

Let a,b, c ∈ R. The hypergeometric function 2F1

[
a b

c
; z

]
is defined

by

2F1

[
a b

c
; z

]
=
∞∑

n=0

(a)n(b)n

(c)nn!
zn,

where (a)n = a(a + 1) . . . (a + n − 1) is the Pochhammer symbol.

Facts. Assume a,b, c ∈ Q.

• 2F1

[
a b

c
; z

]
satisfies a hypergeometric differential equation,

whose monodromy group is a triangle group.

• 2F1

[
a b

c
; z

]
can be viewed as a quotient of periods on some

abelian varieties defined over Q.
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Introduction

Hypergeometriic Differential Equation

2F1

[
a b

c
; z

]
satisfies the differential equation HDE(a,b, c; z):

z(1− z)F ′′ + [(a + b + 1)z − c]F ′ + abF = 0.

Theorem (Schwarz)

Let f ,g be two independent solutions to HDE(a,b; c;λ) at a point
z ∈ H, and let p = |1− c|, q = |c − a− b|, and r = |a− b|. Then the
Schwarz map D = f/g gives a bijection from H ∪ R onto a curvilinear
triangle with vertices D(0),D(1),D(∞), and corresponding angles
pπ,qπ, rπ.

When p,q, r are rational numbers in the lowest form with 0 = 1
∞ , let ei

be the denominators of p,q, r arranged in the non-decreasing order,
the monodromy group is isomorphic to the triangle group (e1,e2,e3).
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Introduction

Arithmetic triangle groups

• A triangle group (e1,e2,e3) with 2 ≤ e1,e2,e3 ≤ ∞ is

〈x , y | xe1 = ye2 = (xy)e3 = id〉.

• A triangle group Γ is called arithmetic if it has a unique embedding
to SL2(R) with image commensurable with norm 1 group of an
order of an indefinite quaternion algebra.
• Γ acts on the upper half plane. The fundamental half domain Γ\h

gives a tessellation of h by congruent triangles with internal angles
π/e1, π/e2, π/e3. (1/e1 + 1/e2 + 1/e3 < 1)
• The quotient space is a modular curve when at least one of ei is
∞; otherwise, it is a Shimura curve.
• Arithmetic triangle groups Γ have been classified by Takeuchi.
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Introduction

Examples

• The triangle group corresponding to

2F1

[
1

12
5

12

1
; z

]
, 2F1

[
7

12
11
12
3
2

; z

]

is (2,3,∞) ' SL(2,Z).
• The triangle group corresponding to

2F1

[
1
5

2
5
4
5

; z

]
, 2F1

[
1
84

43
84
2
3

; z

]

is (2,3,7).
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Introduction

(2,3,∞)-tessellation of the hyperbolic plane
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Introduction

(2,3,7)-tessellation of the hyperbolic plane
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Introduction Legendre Family

Legendre Family

For λ 6= 0, 1, let
Eλ : y2 = x(x − 1)(x − λ)

be the elliptic curve in Legendre normal form.

• The periods of the Legendre family of elliptic curves are

Ω(Eλ) =

∫ ∞
1

dx√
x(x − 1)(x − λ)

• If 0 < λ < 1, then

2F1

[
1
2

1
2

1
;λ

]
=

Ω(Eλ)

π
.

The triangle group Γ = (∞,∞,∞) ' Γ(2).
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Introduction Legendre Family

Generalized Legendre Curves

Euler’s integral representation of the 2F1 with c > b > 0

P(λ) =

∫ 1

0
xb−1(1− x)c−b−1(1− λx)−adx

= 2F1

[
a,b

c
; λ

]
B(b, c − b),

where

B(a,b) =

∫ 1

0
xa−1(1− x)b−1dx =

Γ(a)Γ(b)

Γ(a + b)

is the so-called Beta function.
Following Wolfart , P(λ) can be realized as a period of

C[N;i,j,k ]
λ : yN = x i(1− x)j(1− λx)k ,

where N = lcd(a,b, c), i = N(1− b), j = N(1 + b − c), k = Na.
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Introduction Legendre Family

Let N ≥ 2. For the curve

C[N;i,j,k ]
λ : yN = x i(1− x)j(1− λx)k ,

• a period can be chosen as

P(λ) = B
(

1− i
N
,1− j

N

)
2F1

[
k
N ,

N−i
N

2N−i−j
N

; λ

]
,

• the corresponding Schwarz triangle is a triangle with angles

| N − i − j
N

| π, | N − k − j
N

| π, | N − i − k
N

| π.

Example. For the curve C[6;4,3,1]
λ : y6 = x4(1− x)3(1− λx),

• P(λ) = B
(1

3 ,
1
2

)
2F1

[
1
6 ,

1
3
5
6

; λ

]
.

• the corresponding Schwarz triangle is ∆
(
π
6 ,

π
3 ,

π
6

)
; the

corresponding triangle group is Γ ' (3,6,6).
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Introduction (3,6,6)

Petkoff-Shiga’s result

Fact. The triangle group Γ = (3,6,6) can be realized as the norm 1
group of the maximal order O6 of the quaternion algebra B6 over Q of
discriminant 6.

Petkoff-Shiga. The Jacobians of these genus 3 Picard curves

C(λ) : w3 = (z2 − 1/4)
(

z2 − λ/4
)

decompose into E ′(λ)⊕ A′(λ) where
• E ′(λ) : w3 = (z − 1/4) (z − λ/4) is a CM elliptic curve
• A′(λ) is an abelian surface with QM by O6.

Definition. For a simple abelian surface A, we say that A is with
quaternionic multiplication (QM) by an order O if End(A) ' O.

Fang Ting Tu (NCTS) Generalized Legendre Curves and QM April 7th, 2015 11 / 47
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Introduction (3,6,6)

C [6;4,3,1]
λ with Γ = (3,6,6)

Question. Can we construct abelian surfaces with QM by O6 from the
family

C[6;4,3,1]
λ : y6 = x4(1− x)3(1− λx)?

For λ 6= 0, 1 ∈ Q, the Jacobian variety of the smooth model X [6;4,3,1]
λ of

C[6;4,3,1]
λ is decomposed as

Jac(X [6;4,3,1]
λ ) = E(λ)⊕ A(λ),

where
E(λ) : y3 = x4(1− x)3(1− λx)

is a CM elliptic curve.

Proposition. We have
A(λ) ∼ A′(λ),

and thus A(λ) is an abelian surface with QM by O6.
Fang Ting Tu (NCTS) Generalized Legendre Curves and QM April 7th, 2015 12 / 47
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Introduction Motivation and Main Result

Motivation

Question.
• Can we construct abelian surfaces with QM from the generalized

Legendre family C[N;,i,j,k ].
• Can we construct abelian surface A from C[N;,i,j,k ] with End0(A)

contains a quaternion algebra?

Assume N ≥ 2, 1 ≤ i , j , k < N, λ 6= 0,1 ∈ Q. Let Jλ = J [N;i,j,k ]
λ be the

Jacobian variety of the smooth model X [N;i,j,k ]
λ of C[N;i,j,k ]

λ .
Facts.
• For each n | N, J [n;i,j,k ]

λ is a natural quotient of J [N;i,j,k ]
λ .

• Let Jnew
λ be the primitive part of Jλ so that its intersection with any

abelian subvariety isomorphic to J [n;i,j,k ]
λ for each n | N is zero.
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Introduction Motivation and Main Result

Question:
• Given a hypergeometric differential equation, when does Jnew

λ

contain a subvariety A such that of End0(A) contains a quaternion
algebra?
• If the monodromy group of the hypergeometric differential

equation is an arithmetic triangle group Γ, when does End0(A)
contains the corresponding quaternion algebra HΓ?
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Introduction Motivation and Main Result

Assumption. Assume N ≥ 2, 1 ≤ i , j , k < N, gcd(i , j , k ,N) = 1,
λ 6= 0,1 ∈ Q. Furthermore, suppose N - i + j + k .

Theorem (Deines, Long, Fuselier, Swisher, T.)

Let N = 3,4,6. Then for each λ ∈ Q, the endomorphism algebra of
Jnew
λ contains a quaternion algebra H over Q if and only if

B
(

N − i
N

,
N − j

N

)/
B
(

k
N
,
2N − i − j − k

N

)
∈ Q,

where B(a,b) = Γ(a)Γ(b)
Γ(a+b) is the Beta function, and Γ(·) is the Gamma
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Hypergeometric Abelian Varities

Holomorphic Differential 1-forms on X [N;i ,j ,k ]
λ

Let Xλ = X [N;i,j,k ]
λ be the smooth model of C[N;i,j,k ]

λ . A basis of
H0(Xλ,Ω1) is given by

ω =
xb0(1− x)b1(1− λx)b2dx

yn , 0 ≤ n ≤ N − 1, bi ∈ Z,

satisfying the following conditions

b0 ≥
ni + gcd(N, i)

N
− 1,

b1 ≥
nj + gcd(N, j)

N
− 1,

b2 ≥
nk + gcd(N, k)

N
− 1,

b0 + b1 + b2 ≤
n(i + j + k)− gcd(N, i + j + k)

N
− 1.
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Hypergeometric Abelian Varities

Examples

• For C[3;1,2,1]
λ (Γ = (3,∞,∞)), a basis for the space of holomorphic

1-forms is
dx
y
,

dx
y2 .

• For C[4;1,1,1]
λ (Γ = (2,2,2)), the space of holomorphic 1-forms are

spanned by
dx
y2 ,

dx
y3 ,

xdx
y3 ,

and
(1− x)dx

y3 ,
(1− λx)dx

y3 .
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Hypergeometric Abelian Varities

Let ζN = e2πi/N . For each 0 ≤ n < N, we let Vn denote the isotypical
component of H0(Xλ,Ω1) associated to the character χn : ζN 7→ ζn

N .
Then

H0(X (λ),Ω1) =
N−1⊕
n=0

Vn.

If gcd(n,N) = 1,

• dim Vn =
{ni

N

}
+
{

nj
N

}
+
{nk

N

}
−
{

n(i+j+k)
N

}
, where {x} = x − bxc

denotes the fractional part of x .
• dim Vn + dim VN−n = 2.

The subspace
H0(Xλ,Ω1)new =

⊕
gcd(n,N)=1

Vn

is of dimension ϕ(N).
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Hypergeometric Abelian Varities Period Matrix

The abelian variety Jnew
λ

Assume N < i + j + k < 2N. For gcd(N,n) = 1, we have

Vn = C〈dx/yn〉.

Wolfart. The primitive Jacobian subvariety Jnew
λ is isogenious to

Cφ(N)/Λ(λ), where Λ(λ) can be identified with the Z-module generated
by the 2φ(N) columns(
σn(ζ i

N)

∫ 1

0
ωn

)
i

,

(
σn(ζ i

N)

∫ ∞
1/λ

ωn

)
i

, (n,N) = 1, i = 0..φ(N)− 1

and σn : ζN 7→ ζn
N , ωn = dx/yn.

Remark. These periods are all of first kind. When N = 3, 4, 6, the
abelian variety Jnew

λ is 2-dimensional.
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Hypergeometric Abelian Varities Period Matrix

φ(N) = 2

All the periods are:∫ 1

0
ω1 = B

(
N − i

N
,
N − j

N

)
2F1

[
k
N

N−i
N

2N−i−j
N

;λ

]
,

∫ ∞
1
λ

ω1 = (−1)
k+j
N λ

i+j−N
N B

(
i + j + k − N

N
,
N − k

N

)
2F1

[
j
N

i+j+k−N
N

i+j
N

;λ

]

=α(λ)B
(

i + j + k − N
N

,
N − k

N

)
2F1

[
N−k

N
i
N

i+j
N

;λ

]
,

and∫ 1

0
ωN−1 = B

(
i
N
,

j
N

)
2F1

[
N−k

N
i
N

i+j
N

;λ

]
,

∫ ∞
1
λ

ωN−1 = α(λ)−1B
(

2N − i − j − k
N

,
k
N

)
2F1

[
k
N

N−i
N

2N−i−j
N

;λ

]
,

where α(λ) = (−1)
k+j
N λ

i+j−N
N (1− λ)

N−j−k
N .
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Hypergeometric Abelian Varities Period Matrix

φ(N) = 2

τ1 =

∫ 1

0
ω1 = B

(
N − i

N
,
N − j

N

)
2F1

[
k
N

N−i
N

2N−i−j
N

;λ

]
,

τN−1 =

∫ 1

0
ωN−1 = B

(
i
N
,

j
N

)
2F1

[
N−k

N
i
N

i+j
N

;λ

]
,

τ ′1 =

∫ ∞
1
λ

ω1 = τN−1α(λ)B
(

i + j + k − N
N

,
N − k

N

)
/B
(

i
N
,

j
N

)
,

τ ′N−1 =

∫ ∞
1
λ

ωN−1 = τ1α(λ)−1B
(

2N − i − j − k
N

,
k
N

)
/B
(

N − i
N

,
N − j

N

)
.

γ =
τ ′1τ
′
N−1

τ1τN−1
=

(
sin i

Nπ
) (

sin j
Nπ
)

(
sin k

Nπ
) (

sin 2N−i−j−k
N π

) ∈ Q(ζN + ζ−1
N ).
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Hypergeometric Abelian Varities Period Matrix

Example: X [6;4,3,1]
λ

For the curve [6; 4,3,1], the lattice Λ is generated by(
τ1
τ2

)
,

(
ζ6τ1

ζ−1
6 τ2

)
,

(
β1τ2
β2τ1

)
,

(
ζ6β1τ2

ζ−1
6 β2τ1

)
,

where

τ1 =B (1/3,1/2) 2F1

[
1
6

1
3
5
6

;λ

]
, τ2 = B (2/3,1/2) 2F1

[
5
6

2
3
7
6

;λ

]
,

β1 =−
(
λ1/6(1− λ)1/3 3

√
2
)
, β2 = 2/β1.

The endomorphism algebra End(Jnew
λ ) contains

E =

(
ζ6 0
0 ζ−1

6

)
, J =

(
0 β1
β2 0

)
,

I = 2E − (ζ6 + ζ−1
6 ) =

(√
−3 0
0 −

√
−3

)
.
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Hypergeometric Abelian Varities Period Matrix

Example: X [6;4,3,1]
λ

Note that I2 = −3, J2 = 2, and IJ = −JI. Thus End(Jnew
λ ) contains the

quaternion algebra(
−3,2
Q

)
= Q + QI + QJ + QEJ, I2 = −3, J2 = 2, IJ = −JI,

which is isomorphic to H(3,6,6).
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Hypergeometric Abelian Varities Period Matrix

End(Jnew
λ ) with φ(N) = 2

When N = 3,4,6, a period matrix of Jnew
λ is(

τ1 ζNτ1 α(λ)βτN−1 ζNα(λ)βτN−1

τN−1 ζ−1
N τN−1 γτ1/βα(λ) ζ−1

N γτ1/βα(λ)

)
,

where

β = B
(

i + j + k − N
N

,
N − k

N

)
/B
(

i
N
,

j
N

)
,

and

γ/β = B
(

N − i
N

,
N − j

N

)
/B
(

k
N
,
2N − i − j − k

N

)
.

If β ∈ Q (γ/β ∈ Q), then End0(Jnew
λ ) contains the endomorphisms

E =

(
ζN 0
0 ζ−1

N

)
, J =

(
0 α(λ)β
γ

α(λ)β 0

)
.
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Hypergeometric Abelian Varities Period Matrix

End(Jnew
λ ) with φ(N) = 2

When N = 3,4,6, if

β = B
(

N − i
N

,
N − j

N

)
/B
(

k
N
,
2N − i − j − k

N

)
∈ Q,

the algebra End0(Jnew
λ ) contains the quaternion algebra defined over

Q generated by

I = 2E − (ζN + ζ−1
N ) =

(
ζN − ζ−1

N 0
0 ζ−1

N − ζN

)
, J =

(
0 α(λ)β
γ

α(λ)β 0

)
which satisfy

I2 =
(
ζN − ζ−1

N

)2
, J2 = γ ∈ Q, IJ + JI = 0.
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Hypergeometric Abelian Varities Criterion

End(Jnew
λ ) with φ(N) = 2

Claim. When N = 3,4,6, if End0(Jnew
λ ) contains a quaternion algebra

over Q, then

β = B
(

i + j + k − N
N

,
N − k

N

)
/B
(

i
N
,

j
N

)
∈ Q.

Idea.
2F1 −Gaussian hypergeometric function

↓
Lp(Jnew

λ , s)
↑

Galois representations

"Computing" the Galois representation of C[N;,i,j,k ]
λ via Gaussian

hypergeometric functions.
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Hypergeometric Abelian Varities Criterion

Hypergeometric functions over Fq

Let p be a prime, and q = ps.

Definition.
• Let F̂×q denote the group of multiplicative characters on F×q .

• Extend χ ∈ F̂×q to Fq by setting χ(0) = 0.

• (Greene, 1984) Let λ ∈ Fq, and A, B, C ∈ F̂×q . Define

2F1

(
A B

C
;λ

)
q

= ε(λ)
BC(−1)

q

∑
x∈Fq

B(x)BC(1− x)A(1− λx),

where ε is the trivial character.
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Hypergeometric Abelian Varities Criterion

Jacobi sums and Beta functions

If χ ∈ F̂×q is of order N, we have the following analogy

i
N ⇐⇒ χi

Γ( i
N ) ⇐⇒ g(χi)

B( i
N ,

j
N ) ⇐⇒ J(χi , χj)

C[N;i,j,k ]
λ ⇐⇒ C̃[N;i,j,k ]

λ /Fq

2F1

[
k
N

N−i
N

2N−i−j
N

;λ

]
2F1

(
χ−k χi

χi+j ;λ

)
q

⇐⇒

2F1

[
N−k

N
i
N

i+j
N

;λ

]
2F1

(
χk χi

χi+j ;λ

)
q
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Hypergeometric Abelian Varities Criterion

Jacobi sums and Beta functions

If χ ∈ F̂×q is of order N, we have the following analogy

i
N ⇐⇒ χi

Γ( i
N ) ⇐⇒ g(χi)

B( i
N ,

j
N ) ⇐⇒ J(χi , χj)

C[N;i,j,k ]
λ ⇐⇒ C̃[N;i,j,k ]

λ /Fq

2F1

[
k
N

N−i
N

2N−i−j
N

;λ

]
2F1

(
χ−k χi

χi+j ;λ

)
q

⇐⇒

2F1

[
N−k

N
i
N

i+j
N

;λ

]
2F1

(
χk χi

χi+j ;λ

)
q
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Hypergeometric Abelian Varities Criterion

Counting points on generalized Legendre curves

Theorem.
Let p > 3 be prime and q = ps ≡ 1 (mod N), and let i , j , k be natural
numbers with 1 ≤ i , j , k < N. Further, let ξ ∈ F̂×q be a character of
order N. Then for λ ∈ Fq \ {0,1},

#X [N;i,j,k ]
λ (Fq) = 1 + q + q

N−1∑
m=1

ξmj(−1) 2F1

(
ξ−km ξim

ξm(i+j) ;λ

)
q

+ n0 + n1 + n 1
λ

+ n∞ − 4,

where n0,n1,n 1
λ
,n∞ are the numbers of points on X [N;i,j,k ]

λ from

resolving the singularities 0,1, 1
λ ,∞ respectively of C[N;i,j,k ]

λ
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Hypergeometric Abelian Varities Galois Representations

Galois Representations

Suppose C[N;i,j,k ]
λ has genus g. One can construct a compatible family

of degree-2g representations

ρ`(λ) : GQ := Gal(Q/Q)→ GL2g(Q`)

via the Tate module of the Jacobian J [N;i,j,k ]
λ of X [N;i,j,k ]

λ .

Let ζ ∈ µN , the multiplicative group of Nth roots of unity. The map
Aζ : (x , y) 7→ (x , ζ−1y) induces an action on the ρ`. Consequently,

ρ`(λ)|Gal(Q/Q(ζN )) =
N−1⊕
n=1

σn(λ)

where σn(λ) is 2-dimensional when (n,N) = 1.
Let ρnew be the subrepresentation of ρ that corresponds to Jnew

λ .
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Hypergeometric Abelian Varities Galois Representations

4-dimensional Galois representations with QM

Proposition.

−Trσm(Frobq) and 2F1

(
ξ−km ξim

ξm(i+j) ;λ

)
q
· ξmj(−1)q

agree up to different embeddings of Q(ζN) in C.

Theorem
Let ϕ(N) = 2. If End0(Jnew

λ ) contains a quaternion algebra, then the
corresponding representations σ1 and σN−1 of GQ(ζN ) , which are
assumed to be absolutely irreducible, differ by a character.
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Hypergeometric Abelian Varities Galois Representations

Criterion

Proposition. If A,B,C ∈ F̂×q A,B 6= ε, A,B 6= C, ε, and λ ∈ Fq \ {0,1},

J(A,AC) 2F1

(
A B

C
;λ

)
q

=

AB(−1)C(−λ)CAB(1− λ)J(B,BC) 2F1

(
A B

C
;λ

)
q
.

Theorem. For the curve C[N;i,j,k ] with φ(N) = 2, if End(Jnew ) contains
a quaternion algebra, then, as A = η−k

N ,B = ηi
N ,C = ζ

(i+j)
n ,

2F1

(
η−k

N ηi
N

η
(i+j)
N

;λ

)
q

, 2F1

(
ηk

N η−i
N

η
−(i+j)
N

;λ

)
q

differ by a character. Equivalently,

F (ηN) := J(ηi
N , η

j
N)/J(η−k

N , ηi+j+k
N )

has to be a character of N (2N when N is odd).
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Hypergeometric Abelian Varities Jacobi Sums and Beta Functions

g(χ)g(χ) = p,

Γ(z)Γ(1− z) =
π

sin(zπ)
.

Hasse-Davenport Relation.

g(χ`a) = (−1)`χ(``a−N/2)χ(2N/2)1−`g(χN/2)1−`
`−1∏
j=0

g(χa+(N/`)j)

Γ(`z) = `(`z− 1
2 )2

(1−`)
2 Γ

(
1
2

)1−` `−1∏
j=0

Γ

(
z +

j
`

)
.
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Hypergeometric Abelian Varities Jacobi Sums and Beta Functions

Proposition. Let N ≥ 4 be an even integer such that N divides p − 1
and let η ∈ F̂×p of order N. Let A = ηi ,B = ηj ,C = ηk be characters
such that none of A,B,C,AC,BC are trivial. If J(ηj , ηk−j)/J(ηi , ηk−i) is
a character for each prime p with p ≡ 1 mod N, then
B( j

N ,
k−j
N )/B( i

N ,
k−i
N ) is an algebraic number.

Example

Let p be a prime such that 10 | p − 1 and η ∈ F̂×p of order 10. Then

J(η, η6)/J(η2, η5) = η(−1)J(η, η5)/J(η2, η4) = η8(2).

In comparison,

B
(

1
10
,

6
10

)/
B
(

2
10
,

5
10

)
= 2

4
5 .
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Hypergeometric Abelian Varities Jacobi Sums and Beta Functions

In conclusion, if End(Jnew
λ ) contains a quaternion algebra, then

J(ηi
N , η

j
N)/J(η−k

N , η
(i+j+k)
N )

has to be a character. Hence,

B
(

i
N
,

j
N

)
/B
(

N − k
N

,
(i + j + k)

N

)
∈ Q,

equivalently, B
(

N−i
N , N−j

N

)
/B
(

N−k
N , 2N−i−j−k

N

)
has to be algebraic.
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General Cases Examples

X [N;1,N−1,1]
λ

• A period of X [N;1,N−1,1]
λ is

B
(

1
N
,1− 1

N

)
2F1

[
N−1

N
1
N

1
;λ

]
.

• Using the relation

2F1

(
A A

ε
;λ

)
q

= 2F1

(
A A

ε
;λ

)
q
,

one can deduce that the GQ(λ,ζN ) representation σn(λ) is
isomorphic to σN−n(λ).
• If σn(λ) is absolutely irreducible, it can be descended to a

2-dimensional representation for GQ(λ,ζN +ζ−1
N )

.
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General Cases Examples

X [3;1,2,1]
λ

Example
Let ρ be the 4-dimensional Galois representation of GQ arising from
the genus-2 curve y3 = x(x − 1)2(1− λx). Let ρ′ be the Galois
representation of GQ arising from the elliptic curve y2 + xy + λ

27 = x3.
For any λ ∈ Q such that the elliptic curve does not have complex
multiplication, ρ is isomorphic to ρ′ ⊕ (ρ′ ⊗ χ−3) where χ−3 is the
quadratic character of GQ with kernel GQ(

√
−3).
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General Cases Examples

y5 = x(1− x)4(1− 2x) and Hilbert modular forms

For the curve y5 = x(1− x)4(1− 2x), one can predict that its
L-function is related to two Hilbert modular forms, which differ by
embeddings of Q(

√
5) to C. From numeric data, we identified two

Hilbert modular forms, which are labeled by Hilbert Cusp Form
2.2.5.1-500.1-a in the LMFDB online database.

p Lp(C(λ), T ) over Q(
√

5) Hecke eigenvalues

7 (49T 4 + 10T 2 + 1)(49T 4 − 10T 2 + 1) −10
11 (11T 2 − 2T + 1)4 2, 2
13 (169T 4 + 1)2 0
17 (289T 4 − 20T 2 + 1)(289T 4 + 20T 2 + 1) 20

19

(
19T 2 − 5

(
1+
√

5
2

)
T + 1

) (
19T 2 − 5

(
1−
√

5
2

)
T + 1

)
(

19T 2 + 5
(

1+
√

5
2

)
T + 1

) (
19T 2 + 5

(
1−
√

5
2

)
T + 1

) 5
(

1±
√

5
2

)
31

((
31T 2 +

(
1+5
√

5
2

)
T + 1

) (
31T 2 +

(
1−5
√

5
2

)
T + 1

))2 −1±5
√

5
2

41
((

41T 2 +
(

1+5
√

5
2

)
T + 1

) (
41T 2 +

(
1−5
√

5
2

)
T + 1

))2 −1±5
√

5
2
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General Cases Examples

X [12;9,5,1]
λ

• The arithmetic group Γ = (2,6,6) can be realized as the
monodromy group of a period on J [12;9,5,1]

λ .
• HΓ = B6

The corresponding periods of Jnew
λ are

τ1 =

∫ 1

0
ω1 = B (1/4,7/12) 2F1

[
1

12
1
4
5
6

;λ

]
,

∫ ∞
1/λ

ω1

τ2 =

∫ 1

0
ω11 = B (5/12,3/4) 2F1

[
3
4

11
12
7
6

;λ

]
,

∫ ∞
1/λ

ω11

τ3 =

∫ 1

0
ω5 = B (1/4,4/12) 2F1

[
1
4

5
12
7
6

;λ

]
,

∫ ∞
1/λ

ω5

τ4 =

∫ 1

0
ω7 = B (3/4,1/12) 2F1

[
7

12
3
4
5
6

;λ

]
,

∫ ∞
1/λ

ω7
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General Cases Examples

For the Gaussian hypergeometric functions, we have the identities:

2F1

(
η η3

η−2 ;λ

)
p

= η2(λ)2F1

(
η5 η3

η2 ;λ

)
p

= η
(
−27(1− λ)6

)
2F1

(
η−5 η−3

η−2 ;λ

)
p

= η
(
−27λ2(1− λ)6

)
2F1

(
η−1 η−3

η2 ;λ

)
p
,

where η is a multiplicative character of F×p of order 12.

In this case,

∫ 1

0
ω1/

∫ ∞
1
λ

ω11 = B(1/4,7/12)/B(1/12,3/4) =

√
2
√

3
3
− 1.
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General Cases Examples

For the subvariety Jnew
λ , the lattice Λ(λ) is generated by

τ1, ζτ1, ζ2τ1, iτ1, iλ
1
6ατ2, ζ iλ

1
6ατ2, ζ2iλ

1
6ατ2, −λ

1
6ατ2

τ2, τ2/ζ, τ2/ζ
2, −iτ2, i 2+

√
3

αλ
1
6
τ1, i 2+

√
3

αζλ
1
6
τ1, i 2+

√
3

αζ2λ
1
6
τ1,

2+
√

3

αλ
1
6
τ1

ατ2, ζ5ατ2, ατ2/ζ
2, iατ2, iτ1/λ

1
6 , ζ5iτ1/λ

1
6 , iτ1/ζ

2λ
1
6 , −τ1/λ

1
6

2+
√

3
α τ1,

2+
√

3
αζ5 τ1,

2+
√

3
αζ−2 τ1,

2+
√

3
iα τ1, iλ

1
6 τ2, iλ

1
6 τ2/ζ

5, ζ2iλ
1
6 τ2, λ

1
6 τ2

where

τ1 = B (1/4,7/12) 2F1

[
1

12
1
4
5
6

;λ

]
, τ3 = B (5/12,3/4) 2F1

[
3
4

11
12
7
6

;λ

]
,

α = (1− λ)1/2
√

9 + 6
√

3/3.
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General Cases Examples

End0(Jnew
λ ) is generated by the endomorphisms

A =


ζ 0 0 0
0 1/ζ 0 0
0 0 ζ5 0
0 0 0 1/ζ5

 , B =


0 0 i/λ

1
6 0

0 0 0 iλ
1
6

iλ
1
6 0 0 0

0 i/λ
1
6 0 0

 ,

C =


0 i 2+

√
3

αλ
1
6

0 0

iλ
1
6α 0 0 0

0 0 0 iλ
1
6
α

0 0 i αλ
− 1

6

2+
√

3
0

 .

End0(Jnew
λ ) contains the quaternion algebra

(
−1,3
Q

)
' HΓ, which is

generated by B, and A + A−1.
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General Cases Examples

Theorem (Wüstholz)

Let A be an abelian variety isogenous over Q to the direct product
An1

1 × · · · × Ank
k of simple, pairwise non-isogenous abelian varieties Aµ

defined over Q, µ = 1, . . . , k. Let ΛQ(A) denote the space of all periods
of differentials, defined over Q, of the first kind and the second on A.
Then the vector space V̂A over Q generated by 1, 2πi , and ΛQ(A), has
dimension

dimQ V̂A = 2 + 4
k∑
ν=1

dim A2
ν

dimQ(End0Aν)
.
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General Cases Examples

X [10;2,7,7]
λ

• The arithmetic triangle group Γ is (5,10,10).
• HΓ is quaternion algebra defined over Q(

√
5) with discriminant p2.

The corresponding periods of Jnew
λ are

τ1 =

∫ 1

0
ω1 = B (3/10,4/5) 2F1

[
7

10
4
5
11
10

;λ

]
,

τ2 =

∫ 1

0
ω9 = B (7/10,1/5) 2F1

[
3

10
1
5
9
10

;λ

]
,

τ3 =

∫ 1

0
ω3 = B (9/10,2/5) 2F1

[
1

10
2
5
13
10

;λ

]
,

τ4 =

∫ 1

0
ω7 = B (1/10,3/5) 2F1

[
9

10
3
5
7
10

;λ

]
,
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General Cases Examples

τ ′1 =

∫ ∞
1

ω1 =

√
5− 1

2α1(λ)β1
τ2, τ

′
2 =

∫ ∞
1

ω9 = α1(λ)β1τ1

τ ′3 =

∫ ∞
1

ω3 =
−
√

5− 1
2α1(λ)β2

τ4, τ
′
4 =

∫ ∞
1

ω7 = α2(λ)β2τ3,

where

α1(λ) = (−1)7/5λ1/10(1− λ)2/5, β1 = B (7/10,2/5) /B (3/10,4/5) ,

α2(λ) = (−1)1/5λ3/10(1− λ)−4/5, β2 = B (1/10,1/5) /B (9/10,2/5) .
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General Cases Examples

• By using Gaussian hypergeometric functions, one knows that the
subrepresentations σm and σN−m differ by a character. Thus β1,
β2 are both algebraic.
• σ1 and σ3 do not differ by a character.
• Combining with Wüstholz’s result we know that for a generic
λ ∈ Q, the 4-dimensional abelian variety Jnew

λ is simple, and
ΛQ(Jnew

λ ) is 10-dimensional.
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General Cases Examples

The algebra End0(Jnew
λ ) contains the endomorphisms

A =


ζ 0 0 0
0 ζ−1 0 0
0 0 ζ3 0
0 0 0 ζ−3

 , B =


0 α1(λ)β1 0 0√
5−1

2α1(λ)β1
0 0 0

0 0 0 α2(λ)β2

0 0 −
√

5−1
2α2(λ)β2

0

 ,

The algebra End0(Jnew
λ ) contains the quaternion algebra( √

5−1
2 ,

√
5−1
2

Q(
√

5)

)
' H(5,10,10).
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