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Exercise 0.0.1. Prove the following theorem of Steinhaus. Suppose A ⊂ R
is Lebesgue measurable and suppose its Lebesgue measure l(A) > 0. Denote
A−A = {x− y | x ∈ A, y ∈ A}. Prove that A−A contains an open interval
around 0. (Hint: Let f(x) = l((x + A) ∩ A). Show that f is a continuous
function of x, and find f(0).)

With the help of Exercise 0.0.1 we can prove a generalization of Example
??. We will show that every subset P ⊆ R of strictly positive measure must
contain a non-measurable set.

Theorem 0.0.1. If P ∈ L(R) and if l(P ) > 0, then there exists a non-
measurable subset of P .

Proof. Let Q denote the set of all rational numbers, as usual. We will define
again an equivalence relation on R by

x ∼ y ⇔ x− y ∈ Q.

By the Axiom of Choice, we can find a cross-section Γ 1 of the quotient space
R/ ∼. Thus we can express the real line as the following disjoint union:

R =
⋃̇

q∈Q
(Γ + q)

since if γ + q = γ′ + q′ then γ − γ′ ∈ Q. This would make γ ∼ γ′ and thus
γ = γ′ since Γ is a cross-section of R/ ∼.

If P ∩ (Γ + q) were not Lebesgue measurable for some q ∈ Q, then we
would be finished because P would have a non-measurable subset. However,
if P ∩ (Γ + q) = Pq ∈ L(R) for each q ∈ Q then we observe that

Pq − Pq ⊆ (Γ + q)− (Γ + q) = Γ− Γ

where Γ− Γ is disjoint from the dense set Q \ {0} for the reasons explained
just above. Thus the difference Pq−Pq of a supposedly Lebesgue measurable
set with itself fails to include any open interval around 0. By Steinhaus’s
theorem (Exercise 0.0.1) Pq must have measure zero. Hence P itself is the
union of countably many disjoint null sets, which contradicts the hypothesis
that l(P ) > 0.

1That is, Γ contains exactly one element of each equivalence class in R.


