Exercise 0.0.1. Prove the following theorem of Steinhaus. Suppose A C R
is Lebesgue measurable and suppose its Lebesgue measure [(A) > 0. Denote
A—A={z—y|z e Aye A}. Prove that A— A contains an open interval
around 0. (Hint: Let f(x) = I((z + A) N A). Show that f is a continuous
function of z, and find f(0).)

With the help of Exercise [0.0.1| we can prove a generalization of Example
??7. We will show that every subset P C R of strictly positive measure must
contain a non-measurable set.

Theorem 0.0.1. If P € L(R) and if [(P) > 0, then there exists a non-
measurable subset of P.

Proof. Let Q denote the set of all rational numbers, as usual. We will define
again an equivalence relation on R by

r~ysr—yeQ.

By the Axiom of Choice, we can find a cross-section I E| of the quotient space
R/ ~. Thus we can express the real line as the following disjoint union:

R= UqGQ(F + q)

since if v+ q =+ + ¢’ then v — " € Q. This would make v ~ ~" and thus
v =~/ since I is a cross-section of R/ ~.

If PN (I + q) were not Lebesgue measurable for some ¢ € Q, then we
would be finished because P would have a non-measurable subset. However,
if PN (T +q) = P, € L(R) for each g € Q then we observe that

P,—FP,C(I'+¢q—-T+¢q=0I-T

where I' — I is disjoint from the dense set Q \ {0} for the reasons explained
just above. Thus the difference P, — P, of a supposedly Lebesgue measurable
set with itself fails to include any open interval around 0. By Steinhaus’s
theorem (Exercise P, must have measure zero. Hence P itself is the
union of countably many disjoint null sets, which contradicts the hypothesis
that [(P) > 0. O

!That is, I' contains exactly one element of each equivalence class in R.



