Math 2020 Spring 2011
Solving Discrete Problems P. Achar
Notes on Chapter 6: Division with Remainder

Theorem (Division with Remainder). Let n € N and m € Z. There exist unique integers q,v € Z such that
m=nq+r and 0<r<n. (*)

Proof. The proof is two parts: (1) existence of ¢ and r such that (x) is true, and (2) uniqueness of ¢ and r.
We'll start with existence. Consider the set

S={m+an:aecZ}NZs.

Step la. S # @.

Proof of Step 1a. We’ll consider two cases: m > 0 and m < 0. If m > 0, let’s take a = 1. Then, since
n > 0, we have m + an = m +n > 0, so m + an is an element of S. This shows that S # @.

If m < 0, then let’s take @ = —m. In this case, we have m 4+ an = m —mn = m(1 —n). Since n > 1, we
know that 1 —n < 0. We also have m < 0 by assumption, so it follows that m(1 — n) > 0. This shows that
m+an € S, so again, S # &. 0

Note that for all ¢ € S, we have 0 < ¢. Therefore, applying Proposition 2.33 (a variant of the Well-
Ordering Principle) to the set S and the integer 0, we learn that S has a smallest element. Let

r = the smallest element of S.
Since r € S, there is some a € Z such that r = m + an. Let
q= —a.

From these definitions, it follows that m = ng + r. To complete the existence part of the proof, we must
show that the second condition in () holds.

Step 1b. 0 < r < n.

Proof of Step 1b. The fact that » > 0 is obvious, since r € S, and every element of S lies in Zx>( by the
very definition of S. It remains to prove that r < n. We will do this by contradiction. Assume that r > n.
Then, it follows that r —n > 0. We also have r —n = (m —ng) —n=m+ (—g—1)n. Let b= —g — 1. Since
r—n > 0and r —n = m+ bn, we have shown that r —n € S. We also have r —n < r, since n € N. That is,
r —n is an element of S that is smaller than r. But that’s a contradiction: r was defined to be the smallest
element of S. Therefore, r < n. o

The existence part of the proof is done. To prove uniqueness, suppose we have ¢,7,¢’, 7’ € Z such that

m=nq+r, 0<r<n,
m=nqg +1r, 0<7 <n.

We must prove that ¢ = ¢/ and r = 7.

Step 2a. r =1,

Proof of Step 2a. We will prove this by contradiction. Assume that r # 7/. Then either r < 7’ or
r > r’. Assume without loss of generality' that » > /. Then r — ' > 0, i.e., r — ' € N. Next, note that
r—r' = (m—nq) — (m—ng) =n(q¢ —q). This shows that » — 7’ is a natural number divisible by n, so by
Proposition 2.23, we have r — r’ > n. But on the other hand, since ' > 0, we have r — 1’ < r, and since
r < n, it follows that r — r’ < n, a contradiction. Therefore, r = r'. o

Step 2b. q=¢'.
Proof of Step 2b. We have m = ng+r = ng’ + r’, and since r = 1/, it follows that ng = n¢’. Finally,
since n # 0, we have ¢ = ¢’ by Axiom 1.5. o O

1This means: the reasoning will be exactly the same in the case r < r/, so we will skip writing it down.



