Solving Discrete Problems

P. Achar

Notes on Chapter 6: Division with Remainder

Theorem (Division with Remainder). Let $n \in \mathbb{N}$ and $m \in \mathbb{Z}$. There exist unique integers $q, r \in \mathbb{Z}$ such that

$$m = nq + r$$
 and $0 \le r < n$. (*)

Proof. The proof is two parts: (1) existence of q and r such that (*) is true, and (2) uniqueness of q and r. We'll start with existence. Consider the set

$$S = \{m + an : a \in \mathbb{Z}\} \cap \mathbb{Z}_{>0}.$$

Step 1a. $S \neq \emptyset$.

Proof of Step 1a. We'll consider two cases: $m \ge 0$ and m < 0. If $m \ge 0$, let's take a = 1. Then, since n > 0, we have $m + an = m + n \ge 0$, so m + an is an element of S. This shows that $S \ne \emptyset$.

If m < 0, then let's take a = -m. In this case, we have m + an = m - mn = m(1 - n). Since $n \ge 1$, we know that $1 - n \le 0$. We also have m < 0 by assumption, so it follows that $m(1 - n) \ge 0$. This shows that $m + an \in S$, so again, $S \ne \emptyset$. \square

Note that for all $c \in S$, we have $0 \le c$. Therefore, applying Proposition 2.33 (a variant of the Well-Ordering Principle) to the set S and the integer 0, we learn that S has a smallest element. Let

r =the smallest element of S.

Since $r \in S$, there is some $a \in \mathbb{Z}$ such that r = m + an. Let

$$q = -a$$
.

From these definitions, it follows that m = nq + r. To complete the existence part of the proof, we must show that the second condition in (*) holds.

Step 1b. $0 \le r < n$.

The existence part of the proof is done. To prove uniqueness, suppose we have $q, r, q', r' \in \mathbb{Z}$ such that

$$m = nq + r,$$

$$m = nq' + r',$$

$$0 \le r < n,$$

$$0 \le r' < n.$$

We must prove that q = q' and r = r'.

Step 2a. r = r'.

Proof of Step 2a. We will prove this by contradiction. Assume that $r \neq r'$. Then either r < r' or r > r'. Assume without loss of generality that r > r'. Then r - r' > 0, i.e., $r - r' \in \mathbb{N}$. Next, note that r - r' = (m - nq) - (m - nq') = n(q' - q). This shows that r - r' is a natural number divisible by n, so by Proposition 2.23, we have $r - r' \geq n$. But on the other hand, since $r' \geq 0$, we have $r - r' \leq r$, and since r < n, it follows that r - r' < n, a contradiction. Therefore, r = r'. \square

Step 2b. q = q'.

Proof of Step 2b. We have m = nq + r = nq' + r', and since r = r', it follows that nq = nq'. Finally, since $n \neq 0$, we have q = q' by Axiom 1.5. \square

¹This means: the reasoning will be exactly the same in the case r < r', so we will skip writing it down.