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Notes on Chapter 6: Division with Remainder

Theorem (Division with Remainder). Let n ∈ N and m ∈ Z. There exist unique integers q, r ∈ Z such that

m = nq + r and 0 ≤ r < n. (∗)

Proof. The proof is two parts: (1) existence of q and r such that (∗) is true, and (2) uniqueness of q and r.
We’ll start with existence. Consider the set

S = {m + an : a ∈ Z} ∩ Z≥0.

Step 1a. S 6= ∅.
Proof of Step 1a. We’ll consider two cases: m ≥ 0 and m < 0. If m ≥ 0, let’s take a = 1. Then, since

n > 0, we have m + an = m + n ≥ 0, so m + an is an element of S. This shows that S 6= ∅.
If m < 0, then let’s take a = −m. In this case, we have m + an = m−mn = m(1− n). Since n ≥ 1, we

know that 1− n ≤ 0. We also have m < 0 by assumption, so it follows that m(1− n) ≥ 0. This shows that
m + an ∈ S, so again, S 6= ∅. �

Note that for all c ∈ S, we have 0 ≤ c. Therefore, applying Proposition 2.33 (a variant of the Well-
Ordering Principle) to the set S and the integer 0, we learn that S has a smallest element. Let

r = the smallest element of S.

Since r ∈ S, there is some a ∈ Z such that r = m + an. Let

q = −a.

From these definitions, it follows that m = nq + r. To complete the existence part of the proof, we must
show that the second condition in (∗) holds.

Step 1b. 0 ≤ r < n.
Proof of Step 1b. The fact that r ≥ 0 is obvious, since r ∈ S, and every element of S lies in Z≥0 by the

very definition of S. It remains to prove that r < n. We will do this by contradiction. Assume that r ≥ n.
Then, it follows that r− n ≥ 0. We also have r− n = (m− nq)− n = m + (−q− 1)n. Let b = −q− 1. Since
r− n ≥ 0 and r− n = m + bn, we have shown that r− n ∈ S. We also have r− n < r, since n ∈ N. That is,
r − n is an element of S that is smaller than r. But that’s a contradiction: r was defined to be the smallest
element of S. Therefore, r < n. �

The existence part of the proof is done. To prove uniqueness, suppose we have q, r, q′, r′ ∈ Z such that

m = nq + r, 0 ≤ r < n,

m = nq′ + r′, 0 ≤ r′ < n.

We must prove that q = q′ and r = r′.
Step 2a. r = r′.
Proof of Step 2a. We will prove this by contradiction. Assume that r 6= r′. Then either r < r′ or

r > r′. Assume without loss of generality1 that r > r′. Then r − r′ > 0, i.e., r − r′ ∈ N. Next, note that
r − r′ = (m− nq)− (m− nq′) = n(q′ − q). This shows that r − r′ is a natural number divisible by n, so by
Proposition 2.23, we have r − r′ ≥ n. But on the other hand, since r′ ≥ 0, we have r − r′ ≤ r, and since
r < n, it follows that r − r′ < n, a contradiction. Therefore, r = r′. �

Step 2b. q = q′.
Proof of Step 2b. We have m = nq + r = nq′ + r′, and since r = r′, it follows that nq = nq′. Finally,

since n 6= 0, we have q = q′ by Axiom 1.5. �

1This means: the reasoning will be exactly the same in the case r < r′, so we will skip writing it down.


