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Abstract. An edge e of a simple 3-connected graph G is essential if neither the deletion Gne
nor the contraction G=e is both simple and 3-connected. Tutte’s Wheels Theorem proves
that the only simple 3-connected graphs with no non-essential edges are the wheels. In
earlier work, as a corollary of a matroid result, the authors determined all simple
3-connected graphs with at most two non-essential edges. This paper specifies all such
graphs with exactly three non-essential edges. As a consequence, with the exception of the
members of 10 classes of graphs, all 3-connected graphs have at least four non-essential
edges.

1. Introduction

Let G be a simple 3-connected graph. An edge e is deletable if the deletion Gne is
3-connected; e is simple-contractible if G=e is both simple and 3-connected. Tut-
te [7] called an edge essential if it is neither deletable nor simple-contractible. This
paper determines all simple 3-connected graphs with exactly three non-essential
edges.

The graph terminology used here that is otherwise unexplained will follow
Bondy and Murty [1]. A triangle in a graph is the edge set of a 3-cycle. A triad is
the set of edges meeting a degree-3 vertex. An edge e of a graph G is subdivided if e
is replaced by a path P that has length at least one, connects the ends of e, and has
none of its internal vertices in G. This subdivision is non-trivial if P has length at
least two.

The next result, Tutte’s Wheels Theorem [7, (4.1)], characterizes all simple
3-connected graphs in which every edge is essential.

1.1. Theorem. Let G be a simple 3-connected graph. Then every edge is essential if
and only if G is a wheel.

*1991 Mathematics Subject Classification: 05C40

Graphs and Combinatorics (2004) 20:233–246
Digital Object Identifier (DOI) 10.1007/s00373-004-0552-5 Graphs and

Combinatorics
� Springer-Verlag 2004



The Wheels Theorem is of fundamental importance in the study of 3-con-
nected graphs. It implies that all simple 3-connected graphs can be constructed
starting from wheels by repeatedly adding edges or splitting vertices. The theorem
ensures the existence of at least one non-essential edge in every simple 3-connected
graph that is not a wheel. The existence of such edges has been a useful induction
tool. In studying 3-connected graphs, it is sometimes important to know not only
that non-essential edges exist but also to know the distribution of such edges. In
[5], it is shown that each longest cycle in a minimally 3-connected graph contains
at least two non-essential edges.

In this paper, we show that all simple 3-connected graphs with exactly three
non-essential edges belong to one of seven infinite classes of graphs. It follows
immediately that every edge in such a graph is in a triangle or an edge cut of size
three. The problem of determining all simple 3-connected graphs with exactly k
non-essential edges for some fixed k exceeding three seems more complex.
However, we have completely determined all minimally 3-connected graphs with
at most four non-essential edges. Reid and Wu [6] extended this by determining
all minimally 3-connected graphs with at most five non-essential edges. This paper
is structured as follows. In the next section, we introduce seven infinite classes of
simple 3-connected graphs each with exactly three non-essential edges and state
the main result of the paper, that these are the only such graphs. The proof of this
theorem relies heavily on the main result of [3]. This is stated in Section 3 along
with several preliminary lemmas. The main theorem is proved in Section 4 and
that section also determines all minimally 3-connected graphs with exactly four
non-essential edges.

2. The Main Result

In this section, we state the main result of the paper, a characterization of all
simple 3-connected graphs with exactly three non-essential edges. We begin by
describing all simple 3-connected graphs in which the set of non-essential edges
consists of exactly two edges or exactly three edges that form a triangle. Three
classes of graphs arise in this case. These are constructed from wheels in a way
that we now describe. For all k � 2, a triangle-sum of k wheels (see Fig. 1(a)) is the
graph that can be obtained from k disjoint wheels and a single triangle with edge
set fx; y; zg by identifying fx; y; zg with a triangle in each of the k wheels. For all
k � 3, a k-dimensional wheel (see Fig. 1(b)) is constructed as follows: begin with a
clique with vertex set fv1; v2; v3g; replace the edge v1v3 by k internally disjoint
paths each having length at least two and avoiding v2; and join each internal
vertex of each of these paths to v2. A twisted wheel (see Fig. 1(c)) is a graph that
can be obtained from a clique with vertex set fv1; v2; v3; v4g by subdividing each of
the edges v1v2 and v3v4 non-trivially and then joining each of the new vertices
obtained by subdividing v1v2 and v3v4 to v3 and v1, respectively. The following
theorem [3, Corollary 5.4] was obtained as a consequence of a result for 3-con-
nected matroids.
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2.1. Theorem. Let G be a simple 3-connected graph other than a wheel. Then the set
of non-essential edges contains at least two members. Moreover, this set contains
either exactly two members or exactly three members forming a triangle if and only
if G is a triangle-sum of n wheels for some n � 2, a k-dimensional wheel for some
k � 3, or a twisted wheel.

One of the families of simple 3-connected graphs with exactly three non-
essential edges is the class of triangle-sums of wheels. The remaining six classes are
constructed from a wheel with 3 or 4 spokes or from a prism graph, ðK5 � eÞ�, in a
way that we now describe. The first of these classes is constructed as follows from
K4 labelled as in Fig. 2(a). Add m, n, and p edges parallel to a, b, and c, respec-
tively, such that m � n � 1 and p � 0. If p > 0, we non-trivially subdivide every
edge in each non-trivial parallel class and then join each newly created vertex to
the hub h. We follow the same procedure if p ¼ 0 except that we might or might
not subdivide the edge c. The class of graphs constructed in this way is denoted by
A.

The members of the second and third classes are constructed from the prism
graph labelled as in Fig. 2(b) or 2(c) by subdividing each of a and b non-trivially
and joining each newly created vertex to the vertices h and k, respectively. We
denote by B and C, respectively, the classes of graphs formed in this way and call
the members of B and C split-wheels and crossed split-wheels.

The graphs in the fourth class D are constructed from the graph K4 labelled as
in Fig. 2(d). First we subdivide the edge b non-trivially and then join each newly
created vertex to the vertex k. Next we add some non-empty set of new edges
parallel to a. We non-trivially subdivide each edge in the resulting parallel class
and join each newly created vertex to the vertex h.

The graphs in the fifth class E are constructed from the wheel W4 drawn as in
Fig. 2(e). First, for some m � 0, we add m new edges parallel to a. If m � 1, we
non-trivially subdivide each edge in the parallel class containing a and join each
newly created vertex to the vertex h. Then we subdivide the edge b non-trivially
and join each newly created vertex to the vertex k. Finally, we subdivide the edge
c, possibly trivially, and, when there are newly created vertices, join each to the
vertex j. If m ¼ 0, we subdivide both b and c non-trivially and then join each
newly created vertex to the vertices k and j, respectively. Then we either leave a

(a) (b) (c)

Fig. 1. The three classes of graphs in Theorem 2.1
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alone or subdivide it non-trivially and join each newly created vertex to the vertex
h.

The graphs in the sixth class F are again constructed from the wheel W4, this
time labelled as in Fig. 2(f). First, we non-trivially subdivide each of the edges b
and c and join each newly created vertex to the vertex k. Next, for each of a and d,
we either leave the edge unchanged, or we subdivide it non-trivially and join each
newly created vertex to the vertex h.

Fig. 3(a)–(f) show some examples of graphs in the classesA–F. The following
is the main result of the paper.

2.2. Theorem. Let G be a simple 3-connected graph other than a wheel. Then G has
exactly three non-essential edges if and only if G is a triangle-sum of n wheels for
some n � 2 or G is a graph in one of the six classes A–F.

On combining this theorem with Theorems 1.1 and 2.1, we obtain the fol-
lowing description of all simple 3-connected graphs with at most three non-
essential edges.

2.3. Corollary. Let G be a 3-connected graph with at most three non-essential edges.
Then G is a wheel, a twisted wheel, a triangle-sum of n wheels for some n � 2, a
k-dimensional wheel for some k � 2, or one of a graphs in the classes A–F.

A consequence of Theorem 2.1 is that a minimally 3-connected graph other
than a wheel has at least three non-essential edges. The next corollary identifies
the graphs that attain equality here.

2.4. Corollary. Let G be a minimally 3-connected graph other than a wheel. Then G
has at least three non-essential edges. Moreover, G has exactly three non-essential
edges if and only if G is a split-wheel or a crossed split-wheel.
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(d) (e) (f)
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Fig. 2. The starting graphs for the classes A–F

236 J. Oxley and H. Wu



Theorem 2.2 will be proved in Section 4, where we will also determine all mini-
mally 3-connected graphs with exactly four non-essential edges.

3. Preliminaries

Let G be a simple 3-connected graph other than a wheel and F be a subset of EðGÞ
containing k þ 2 elements for some k � 1. Then F is a fan if F is a maximal subset
of EðGÞ for which the edges can be ordered a1; a2; . . . ; akþ2 such that, for all i in
f1; 2; . . . ; kg, either

(a) fai; aiþ1; aiþ2g is a triangle when i is odd and a triad when i is even; or
(b) fai; aiþ1; aiþ2g is a triad when i is odd and a triangle when i is even.

A fan is trivial if k < 3. If F is a non-trivial fan, then it follows from [3, Lem-
ma 3.4] that the ordering of F for which (a) or (b) holds is unique up to a
complete reversal that interchanges aj and aðkþ2Þ�j for all j. We call this ordering
the canonical ordering of F . Its existence implies that the ends a1 and akþ2 of F are
well-defined. Moreover, the canonical ordering of F satisfies exactly one of the
following:

(i) k is odd and fa1; a2; a3g is a triangle;
(ii) k is odd and fa1; a2; a3g is a triad; or
(iii) k is even and fa1; a2; a3g is a triangle.

A trivial fan can be ordered in more than one way so that (a) or (b) holds, but
each of these orderings satisfies the same one of (i)–(iii). We say that F is of type-1,
type-2, or type-3 depending on which of (i), (ii), or (iii), respectively, holds.

(d)
(f)

(e)

(b) (c)
(a)

Fig. 3. Some graphs in the classes A–F
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Figure 4 illustrates the three types of fans, where each circled vertex has degree 3
in G. In each case, the vertex v in the hub of the fan while the vertices u, w, and z in
Fig. 4(b)–(c) are called vertex-ends of the fan. We observe that, when jF j � 4, the
choice of the hub and the vertex-ends depends on the ordering of F so we arbi-
trarily fix such an ordering that obeys (a) or (b). We also use this ordering to
determine the ends of F as the first and last elements on the ordering. The set of
vertices incident with some edge of a fan F will be denoted by V ðF Þ. A fan with
ends x and y will be called an xy-fan.

Fans were originally defined in [3] for matroids using the definition above.
However, in a matroid, a ‘‘triad’’ is a 3-element cocircuit. Thus a triad in the cycle
matroid MðGÞ of a graph G is a minimal edge cut of G of size three. Now let G be
simple and 3-connected and let T be a triad in MðGÞ that meets a triangle. Then T
must consist of the three edges meeting a degree-3 vertex. Hence every triad in the
matroid MðGÞ that is involved in a non-trivial fan in MðGÞ must be a triad of the
graph G. However, a minimal edge cut in G of size three that does not consist of
the three edges meeting a degree-3 vertex is a fan in MðGÞ but not in G. Although
a crucial tool here will be the next theorem, a specialization to graphs of a
matroid result [3], this minor difference between fans in MðGÞ and fans in G will
not create any difficulties. This is because Tutte [7] proved that every essential
edge of G is in a triangle or a triad of G and hence is in a fan of G. It is easy to see
that every edge that is in both a triangle and a triad of G is essential. The next
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theorem, which will be used frequently in the paper, shows that the essential
edges in a simple
3-connected graph other than a wheel can be partitioned into subsets so that two
edges are in the same subset if and only if there is a fan containing them both. We
remark that, except where otherwise indicated, all fans and triads from now on
will be fans and triads in graphs rather than in their cycle matroids.

3.1. Theorem. Let G be a simple 3-connected graph other than a wheel. Suppose
that e is an essential edge of G. Then e is in a fan, both ends of which are non-
essential. Moreover, this fan is unique unless

(i) every fan containing e consists of a single triangle and any two such triangles
meet in feg;

(ii) e is in exactly two triads and each such triad has exactly two non-essential
edges;

(iii) e is in exactly three fans; these three fans are of the same type, each has five
edges, together they contain a total of six edges; and, depending on whether
these fans are of type-1 or type-2, the restriction or contraction, respectively, of
G to this set of six edges is isomorphic to K4.

The rest of this section presents five lemmas that will be used in the proof of
the main result. The first of these was proved in [6, Lemma 7].

3.2. Lemma. Let G be a simple 3-connected graph other than a wheel and F be a
non-trivial type-2 fan with two ends x and y. Then x and y are not adjacent.

3.3. Lemma. Let G be a simple 3-connected graph other than a wheel. Suppose G
has two type-2 fans N1 and N2 with the same ends, x and y. Then G is a split-wheel.

Proof. The maximality of N1 and N2 implies that the hubs, v1 and v2, respectively,
of these two fans are distinct. Moreover fv1; v2g is not a vertex cut of G, so
V ðGÞ ¼ V ðN1Þ [ V ðN2Þ. As fx; yg is not an edge cut of G, it follows that
v1v2 2 EðGÞ and so G is indeed a split-wheel. (

3.4. Lemma. Let G be a simple 3-connected graph. Suppose that G has two type-3
fans, F1 and F2, with the same ends, x and y. Then G is a twisted wheel.

Proof. Without loss of generality, we may assume that that x is deletable and y is
simple-contractible. Let x ¼ uv. Clearly the subgraph of G induced by
V ðF1Þ [ V ðF2Þ is either a wheel or a twisted wheel. But y is simple-contractible, so
it is not in any triangle. Thus neither of the fans is trivial and V ðF1Þ [ V ðF2Þ
induces a twisted wheel as a subgraph of G. Next we show that
V ðGÞ ¼ V ðF1Þ [ V ðF2Þ. Assume that G has an edge f that is not in F1 or F2 but is
adjacent to exactly one vertex in V ðF1Þ [ V ðF2Þ. Since both F1 and F2 are type-3
fans, f must be adjacent to u or v. Therefore, fu; vg is a vertex cut of G; a
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contradiction. Hence V ðGÞ ¼ V ðF1Þ [ V ðF2Þ and it follows that G is a twisted
wheel. (

3.5. Lemma. Let G be a simple 3-connected graph other than a wheel. Suppose that
G has a fan F . Then G has at least two edges not in the fan.

Proof. Since G is simple and 3-connected, jEðGÞj � 6, we may assume that F is
non-trivial having ends x and y. Now F 6¼ EðGÞ otherwise G is a wheel. Suppose
that G has a unique edge z not in F . If F is of type-1, then fx; y; zg is a triangle and
G is a wheel; a contradiction. If F is of type-2, then, since each vertex has degree at
least three, x, y, and z must meet at a common vertex; a contradiction to Lem-
ma 3.2. If F is type-3, then G must have a vertex of degree at most two. This
contradiction completes the proof of the lemma. (

3.6. Lemma. Let G be a simple 3-connected graph with exactly three non-essential
edges x, y, and z. Then none of these three edges is both deletable and simple-
contractible.

Proof. Suppose that x is both deletable and simple-contractible. Since G has
exactly three non-essential edges, by Theorem 3.1, every edge not in fx; y; zg must
be in a fan with two non-essential edges as its ends. Since x is both deletable and
simple-contractible, it is not in any triangle or triad. Thus x is not in any fan.
Therefore every essential edge e is in a yz-fan F . Now it is not difficult to see that
none of (i)–(iii) in Theorem 3.1 could hold for e. Thus every essential edge is in a
unique fan. Let F1; F2; . . . ; Fk be all the fans of G. If k ¼ 1, then EðGÞ ¼ F1 [ x; a
contradiction to Lemma 3.5. Hence k � 2. All of F1; F2; . . . ; Fk must be of the
same type as each has y and z as its ends. Thus Gnx can be constructed by sticking
together some yz-fans of the same type. If these fans are of type-1, then Gnx can be
constructed by sticking the fans F1; F2; . . . ; Fk together along y and z. Clearly, x can
only be adjacent to the end-vertices of y and z. It follows that fx; y; zg must be a
triangle in G. This is a contradiction as x is simple-contractible. Now suppose all
of F1; F2; . . . ; Fk are of type-2. By Lemma 3.3, G is a split-wheel; a contradiction as
x is not deletable. Finally, assume that all of the fans are of type-3. Since k � 2, by
Lemma 3.4, G must be a twisted wheel and so G has exactly two non-essential
edges. This contradiction completes the proof of the lemma. (

4. A Proof of The Main Theorem

Proof of Theorem 2.2. If G is a triangle-sum of n wheels for some n � 2 or a graph
in one of the six classes A–F, then it is straightforward to check that G has
exactly three non-essential edges.

Now suppose that G is a simple 3-connected graph with exactly three non-
essential edges x, y, and z. By Lemma 3.6, none of these three edges is both
deletable and simple-contractible. Therefore exactly one of the following cases
occurs:
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(a) all of x; y, and z are deletable but not simple-contractible;
(b) all of x; y, and z are simple-contractible but not deletable;
(c) one edge is simple-contractible but not deletable, and the other two edges are

deletable but not simple-contractible; and
(d) two edges are simple-contractible but not deletable, and the other edge is

deletable but not simple-contractible.

In case (a), if fx; y; zg forms a triangle, then it follows by Theorem 2.1 that G is a
triangle-sum of n wheels for some n � 2. Therefore we may assume that fx; y; zg is
not a triangle. Since none of the edges in G is simple-contractible, G has only type-
1 fans. If G has only trivial fans, then, as G is simple, for each 2-subset fj; kg of
fx; y; zg, there is at most one jk-fan. As each essential edge is in a fan, G has at
most six edges. As G is 3-connected, G ffi K4; a contradiction. Thus we may
assume that G has a fan, say an xy-fan N , having at least five edges.

Next assume that every edge except z is in some xy-fan. Then, by Theorem 3.1,
any two distinct xy-fans have fx; yg as their intersection. Thus Gnz can be con-
structed by sticking type-1 fans together along the edges x and y. Hence z can only
be adjacent to the end-vertices of x or y. As G is simple, it follows that fx; y; zg is a
triangle; a contradiction.

We may now suppose that G has an edge e that is not in fx; y; zg and is not in
any xy-fan. Then, without loss of generality, e is in a yz-fan. Next we show that x,
y, and z must meet a common vertex. Suppose not. Since x and y are adjacent and
y and z are adjacent but fx; y; zg is not a triangle, it follows that x and z are not
adjacent. Therefore there is no xz-fan, so every edge is in some xy- or yz-fan. Since
any xy-fan and any yz-fan will have the end-vertices of y as their only common
vertices, it follows that these end-vertices form a vertex cut; a contradiction. We
conclude that x; y, and z do indeed meet a common vertex. We also know that G
has both an xy-fan and a yz-fan. Moreover, G must also have an xz-fan, otherwise
the end-vertices of y will again form a vertex cut. Since G is not a wheel and has
exactly three non-essential edges, it is not difficult to see now that G is in A.

In case (b), since none of the edges of G is deletable, G is a minimally
3-connected graph. By Theorem 3.1, every essential edge is in a type-2 fan. If G
has at least two fans with identical ends, then, by Lemma 3.3, G is a split-wheel
and is in B. Thus we may assume that G has at most one xy-fan, at most one
yz-fan, and at most one xz-fan. Without loss of generality, suppose that G has an
xy-fan F0. By Lemma 3.5, there is at least one essential edge e1 not in F0. By
Theorem 3.1, G has a type-2 fan F1 containing e1. Without loss of generality, we
may assume that F1 is an xz-fan.

Suppose next that there is an edge e2 that is not in F0 or F1. Then e2 is in a
yz-fan F2, which must be of type-2. Since G has at most one xy-fan, at most one
yz-fan, and at most one xz-fan, every edge of G is in one of F0; F1, and F2. Since
G is 3-connected, we conclude that the hubs of these three fans are equal. Thus
G is a wheel. This contradiction implies that every edge in G is in F0 or F1.
Since G is 3-connected, we conclude that y meets the hub of the xz-fan F1 and z
meets the hub of the xy-fan F0. Moreover, as G is 3-connected but not a wheel,
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neither fan is trivial. Thus G is a crossed split-wheel and is in C. This finishes
case (b).

The next lemma will be used in cases (c) and (d).

4.1. Lemma. Let G be a simple 3-connected graph having exactly three non-
essential edges and suppose these edges satisfy (c) or (d). Then every essential edge
is in a unique fan. Moreover, every simple-contractible edge is in at most two fans.

Proof. Suppose that some essential edge e is in more than one fan. Then, as G has
only three non-essential edges, we deduce that Theorem 3.1(iii) occurs. Thus all
three non-essential edges are deletable or all three are simple-contractible; a
contradiction to the assumption that (c) or (d) holds. Hence every essential edge is
in a unique fan. Since G has at most two simple-contractible edges, it follows by
Theorem 3.1 that no essential edge of G is in more than one fan. As every edge of
G meets at at most two degree-3 vertices, we deduce that every simple-contractible
edge is in at most two fans. h

In case (c), let x and y be the deletable edges of G and z be the simple-
contractible edge.

4.2. Lemma. There is at least one xy-fan.

Proof. Suppose that G has no xy-fans. Then, by Lemma 4.1, every essential edge
is in an xz- or yz-fan. Since z is simple-contractible and x and y are deletable, these
fans must all be of type-3. Without loss of generality, we may suppose that G has
an xz-fan. If there is more than one xz-fan, then, by Lemma 3.4, G is a twisted
wheel and has exactly two non-essential edges; a contradiction. Thus G has ex-
actly one xz-fan N1. By Lemma 3.5, G has at least one essential edge not in N1.
Thus G has a yz-fan N2. By Lemma 3.4 again, we deduce that G has exactly one
yz-fan. Since G has no xy-fans, it follows that EðGÞ ¼ N1 [ N2. Moreover, by
Lemma 4.1, N1 \ N2 ¼ fzg. Since G is simple and 3-connected, we conclude that
x ¼ y and G is either a wheel or a twisted wheel. This contradiction completes the
proof of the lemma. h

We now know that G has an xy-fan F . If every essential edge is in an xy-fan,
then Gnz can be constructed by sticking some type-1 fans together along x and y.
It follows that fx; y; zg is a triangle, contradicting the fact that z is simple-con-
tractible. Thus there is an xz-fan or a yz-fan. By Lemma 4.1, z is in at most two
type-3 fans.

Suppose that z is in exactly one type-3 fan, say an xz-fan N . If every edge is in
F [ N , then, as G is 3-connected, y and z must be adjacent and so G is either a
wheel or a twisted wheel; a contradiction. Hence EðGÞ � ðF [ NÞ is non-empty.
Since z is in only one type-3 fan N , each edge in EðGÞ � ðF [ NÞ must be in an xy-
fan. As x; y, and z are the only non-essential edges of G, each of these xy-fans is
non-trivial. We now know that G has at least two xy-fans, exactly one xz-fan N ,
and no yz-fans. Let y ¼ uv where v is the common hub of the xy-fans. Clearly, z
can be only incident to u or v. Since G is 3-connected, z must be incident to u. If N
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is trivial, then z is in a triangle; a contradiction as it is simple-contractible. The
hub of N cannot be v otherwise z is again in a triangle. We conclude that G is inD.

We may now assume that z is in exactly two type-3 fans. By Lemma 3.4,
these two fans cannot have identical ends. Thus one of these fans is the xz-fan N
and the other is a yz-fan, say T . If there is an edge in none of the fans F ;N , and
T , then it must be in some xy-fan. Thus there is an integer t � 1 such that G has
t xy-fans, one xz-fan, and one yz-fan. Note that if t ¼ 1, then neither N nor T is
trivial, otherwise G is a wheel or a twisted wheel; a contradiction. Thus, when
t ¼ 1, the graph G is in E. Suppose t > 1. Then none of the xy-fans is trivial
otherwise the three edges of this fan are all non-essential. If both the xz-fan N
and the yz-fan T are trivial, then z is in a triangle; a contradiction as z is simple-
contractible. We conclude that N or T is non-trivial and so, when t > 1, the
graph G is again in E.

In case (d), let x be the deletable edge of G and y and z be its simple-con-
tractible edges. Then G has no type-1 fans. Thus, by Lemma 4.1, every essential
edge of G is in a unique type-2 or type-3 fan. Suppose first that G has no type-3
fans. Then every essential edge is in a type-2 fan, which must have ends y and z. By
Lemma 3.5 and Theorem 3.1, G has at least two such fans. By Lemma 3.3, G is a
split-wheel so x is not deletable; a contradiction.

We may now assume that G has a type-3 fan P1 and, without loss of generality,
we may assume that P1 is an xy-fan. By Lemma 3.4, P1 is the unique xy-fan
otherwise G is a twisted wheel; a contradiction. We show next that G has an xz-
fan. Suppose not. By Lemma 3.5 and Theorem 3.1, G has a fan P0 different from
P1. From above, P0 is not an xy-fan and, by assumption, P0 is not an xz-fan. Thus
P0 is a yz-fan. Since y is in both P1 and P0, Lemma 4.1 implies that G has no other
fans. Thus EðGÞ ¼ P1 [ P0. Let x ¼ h1k1 where h1 is the hub of P1. Let h0 be the
hub of P0. Then h0 6¼ h1 since y is not in any triangles. As G is 3-connected, we
deduce that h0 ¼ k1 and z meets h1. Hence z is in a triangle, contradicting the fact
that z is simple-contractible.

We now know that G has an xz-fan P2. Moreover, by Lemma 3.4, it is the
unique such fan. If P1 and P2 are the only fans of G, then EðGÞ ¼ P1 [ P2 and it is
not difficult to see that G cannot be 3-connected. Hence G has a third fan P3, which
must be a yz-fan. By Lemma 4.1, since P1 and P3 contain y, there are no other yz-
fans in G. Therefore EðGÞ ¼ P1 [ P2 [ P3. Let h3 be the hub of P3 and recall that
x ¼ h1k1 where h1 is the hub of P1. As G is 3-connected, h3 ¼ h1 or h3 ¼ k1. If h1 is
not the hub of P2, then k1 is the hub of P2 and it is not difficult to check that y or z
must be in a triangle, contradicting the fact that both edges are simple-contractible.
Therefore h1 is the hub of both P2 and P1. Since G is not a wheel, it follows that
h3 6¼ h1, so h3 ¼ k1. Moreover, neither P1 nor P2 is trivial, otherwise y or z,
respectively, is in a triangle. We conclude that G is inF. Note that P3 can be trivial.
This completes case (d) and thereby finishes the proof of the theorem. (

Proof of Corollary 2.4. Let G be a minimally 3-connected graph other than a
wheel. By Theorem 2.1, G has at least two non-essential edges. Moreover, G has
exactly two such edges if and only if G is a twisted wheel or a k-dimensional wheel
for some k � 3. But neither a twisted wheel nor a k-dimensional wheel with k � 3

The 3-Connected Graphs with Exactly Three Non-Essential Edges 243



is minimally 3-connected. Thus G has at least three non-essential edges. If G has
exactly three non-essential edges, then G is in one of the seven classes of graphs
specified in Theorem 2.2. But, among these graphs, only split-wheels and crossed
split-wheels are minimally 3-connected. Hence G is a split-wheel or a crossed split-
wheel. h

Next we determine all minimally 3-connected graphs with exactly four non-
essential edges. We begin by constructing two such families of graphs. Take a
cycle C and partition its vertex set into four non-empty subsets V1; V2; V3; and V4

such that vertices in each of these sets, as well as those in each of
V1 [ V2; V2 [ V3; V3 [ V4; and V4 [ V1, induce paths in C. Now add two new vertices
v13 and v24 joining the first to each vertex in V1 [ V3 and the second to each vertex
in V2 [ V4. Let the resulting graph be G. When jVij � 2 for all i, the graph G is a
doubly interlocked wheel (see Fig. 5(b)). Now suppose that jV2j; jV4j � 2 and
V1 ¼ fu1g. The graph G=u1v13 is a three-fan (see Fig. 5(a)).

4.3. Theorem. A graph G is minimally 3-connected having exactly four non-essential
edges if and only if G is a three-fan or a doubly interlocked wheel.

Proof. IfG is a three-fan or a doubly interlocked wheel, then it is straightforward to
check thatG is aminimally 3-connected graphwith exactly four non-essential edges.

Now suppose that G is a minimally 3-connected graph with exactly four non-
essential edges a; b; c, and d. Then G has no deletable edges. Hence, by Theo-
rem 3.1, every essential edge of G is in a type-2 fan with two non-essential edges as
its ends. Moreover, there is a partition of the essential edges such that two are in
the same class if and only if there is a fan that contains both or, equivalently, the
two edges belong to precisely the same fans. Let k denote the number of such
equivalence classes. Since G is 3-connected, it is straightforward to check that
k � 2. Next we bound k above.

4.4. Lemma. k � 4. Moreover, k ¼ 4 if and only if G is a doubly interlocked wheel.

Proof. Consider the number of pairs ðX ; f Þ such that X is an equivalence class
and f is a non-essential edge for which X [ f is contained in a fan. For each non-

(a) (b)

Fig. 5. (a) A three-fan, (b) A doubly interlocked wheel
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essential edge f , there are at most two such pairs as f meets at most two degree-3
vertices. Hence the total number of these pairs is at most 4 � 2. As each fan has two
ends, the number of such pairs is at least 2k. Thus 2k � 8, so k � 4. Furthermore,
k ¼ 4 if and only if each non-essential edge is an end of exactly two fans and each
equivalence class is contained in a unique fan.

Suppose that k ¼ 4. For each 2-subset fx; yg of fa; b; c; dg, let Fxy be the unique
fan with ends x and y, and let vxy be its hub. As none of a; b; c, or d is in a triangle,
fvab; vcdg \ fvbc; vadg ¼ ;. Since G is 3-connected, it follows that vab ¼ vcd and
vbc ¼ vad . Now both vab and vbc have degree at least three. Thus at most one
member of each of fFab; Fcdg and fFbc; Fadg is trivial. If one of Fab; Fbc; Fcd , or Fad is
trivial, then it is straightforward to check that G has at least five non-essential
edges; a contradiction. We conclude that all of Fab; Fbc; Fcd , and Fad are non-trivial.
Hence G is a doubly interlocked wheel. h

By the last lemma, we may assume that 2 � k � 3. First suppose that k ¼ 2.
Let F1 and F2 be two fans, one containing each of the classes of essential edges. Let
the hubs of F1 and F2 be v1 and v2, respectively. Without loss of generality, assume
that F1 has a and b as it ends. Next we show that one of a and b is an end of F2.
Assume the contrary. Then c and d are the ends of F2. Suppose that b and d meet
in a common vertex v. Then clearly v 6¼ v1; v2. By Lemma 3.2, a and b are not
adjacent and c and d are also not adjacent. Thus the vertex v has degree two in G;
a contradiction. Hence b and d are not adjacent. By symmetry and Lemma 3.2, no
two edges in the set fa; b; c; dg are adjacent. Let a ¼ st and b ¼ uv where t and v
are the vertex-ends of F1. As t has degree at least three, it follows that t ¼ v2. We
conclude that v has degree one; a contradiction.

We may now assume that a or b, say b, is an end of F2. Then, as b is not in a
triangle, v1 6¼ v2. Moreover, by Lemma 3.3, a is not an end of F2. Without loss of
generality, assume the other end of F2 is c. Now EðGÞ ¼ F1 [ F2 [ fa; b; c; dg.
Suppose that a and c are not adjacent. Then, as every vertex has degree at least
three, it follows that a is incident to v2, and c is incident to v1. Moreover, d ¼ v1v2.
Thus G is a crossed split-wheel and has exactly three non-essential edges; a
contradiction. We may now assume that a and c meet in a common vertex v3.
Then v3 6¼ v1; v2. As v3 has degree at least three, d is also incident with v3. The
other end-vertex of d is either v1 or v2 and, in either case, d is in a triangle. This
contradiction implies that k 6¼ 2.

It remains to consider the case when k ¼ 3. Let F1, F2, and F3 be three fans, one
containing each class of essential edges, and let vi be the hub of Fi for all i. As G
has only four non-essential edges and each fan has two ends, at least one non-
essential edge is an end of two fans. By Lemma 3.3, no two fans have the same set
of ends. Therefore, without loss of generality, we may assume that F1 has a and b
as its ends, and F2 has b and c as its ends. Suppose that F3 has ends a and c. Then
v1; v2, and v3 are distinct as none of a, b, and c is in a triangle. It follows that
d 2 fv1v2; v2v3; v1v3g and hence that G is not 3-connected; a contradiction. We
conclude that either a or c is not an end of F3. Note that b is also not an end of F3

as it is already an end of the two fans F1 and F2. Therefore, without loss of
generality, c and d are the ends of F3. Suppose that v1 6¼ v3. Then v1; v2, and v3 are
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distinct as neither b nor c is in any triangle. As each vertex has degree at least
three, a is incident to v3 or v2, and d is incident to v1 or v2. In each case, there are
two non-essential edges that form an edge cut of G; a contradiction. We conclude
that v1 ¼ v3. As each vertex has degree at least three, both a and d are incident to
v2. Since a is not in a triangle, F1 is non-trivial. Similarly, F3 is non-trivial. By
contrast, the fan F2 can be trivial. We conclude that G is a three-fan. This com-
pletes the proof of the theorem. h

On combining the last theorem with Corollary 2.4, we immediately obtain the
following result.

4.5. Corollary. Let G be a minimally 3-connected with at most four non-essential
edges. Then G is a wheel, a split-wheel, a crossed split-wheel, a three-fan, or a doubly
interlocked wheel.

To conclude, we note an immediate consequence of the main theorem that
emphasizes the importance of fans.

4.6. Corollary. Let G be a simple 3-connected graph having at most three non-
essential edges. Then G has at most one edge that is not in a fan. Moreover, G has
exactly one such edge if and only if G is a split-wheel.

Observe that, when G is a split-wheel, the edge that is in neither a triangle nor a
triad of G is in a triad and hence in a fan of the matroid MðGÞ.
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