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Abstract

Let N be a minor of a 3-connected matroid M and let M ′ be a 3-connected minor of M that
is minimal having N as a minor. This paper commences the study of the problem of �nding a
best-possible upper bound on |E(M ′)− E(N )|. The main result solves this problem in the case
that N and M have the same rank. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let C be a circuit of a 3-connected matroid M . What can be said about the size
of a minimal 3-connected minor of M that maintains C as a circuit? Alternatively, if
I is an independent set of M , can we give a sharp bound on the size of a minimal
3-connected minor of M that maintains I as an independent set? Both these questions
are special cases of the following:

Problem 1.1. Let N be a restriction of a 3-connected matroid M and let M ′ be a
3-connected minor of M that is minimal having N as a restriction. Give a sharp
upper bound on |E(M ′)− E(N )|.

This paper solves this problem in the case that E(N ) spans M . By building on the
results in this paper and using some additional results, we solve the problem in general
in [7]. We note here that, in our problem, M ′ must have N itself as a restriction, that
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is, M ′|E(N ) = N ; it does not su�ce for M ′ to have an isomorphic copy of N as a
restriction. An obvious, and perhaps more natural, variant of the original problem is
the following:

Problem 1.2. Let N be a minor of a 3-connected matroid M and M ′ be a 3-connected
minor of M that is minimal having N as a minor. Give a sharp upper bound on
|E(M ′)− E(N )|.

If N is 3-connected and we also insist that M ′ 6= N , then Truemper [12] showed that
|E(M ′)−E(N )|63. Moreover, again when N is 3-connected, if M ′ is also required to
contain some �xed element e of E(M ′)− E(N ), Bixby and Coullard [2] showed that
|E(M ′)−E(N )|64. If ‘3-connected’ is replaced by ‘2-connected’ throughout Problem
1:2, the resulting problem was solved by Lemos and Oxley [5]. They proved that if N
has k components, then |E(M ′)−E(N )|62k−2 unless N or its dual is free, in which
case, |E(M ′)− E(N )|6k − 1.
In general, Problem 1:2 seems to be much more di�cult than Problem 1:1 and we

hope to return to the former in future work. We remark, however, that in certain special
cases, such as when N is a circuit or a free matroid, or when N has the same rank as
M , the problems coincide. Hence the solution to the special case of Problem 1:1 given
here is also a solution to the corresponding case of Problem 1:2.
Let M be a matroid and A be a subset of E(M). We de�ne �1(A;M) to be the number

of connected components of M |A. Now M |A can be constructed from a collection
�2(A;M) of 3-connected matroids by using the operations of direct sum and 2-sum. It
follows from results of Cunningham and Edmonds (see Cunningham [4]) that �2(A;M)
is unique up to isomorphism. We denote by �2(A;M) the number of matroids in
�2(A;M) that are not isomorphic to U1;3, the three-element cocircuit.
The following theorem, the main result of the paper, solves both Problems 1:1

and 1:2 in the case that N and M have the same rank.

Theorem 1.3. Let M be a 3-connected matroid other than U1;3 and let A be a
non-empty spanning subset of E(M). If M has no proper 3-connected minor M ′

such that M ′|A=M |A; then
|E(M)|6|A|+ �1(A;M) + �2(A;M)− 2;

unless A is a circuit of M of size at least four; in which case;

|E(M)|62|A| − 2:

The cases when A spans M that are not covered by this theorem are easily solved:
if A is empty and spanning, then M is the empty matroid; and if M ∼=U1;3, then
E(M)=A. It is natural to question the sharpness of the bounds in Theorem 1.3. When
A is an n-circuit, if n63, then E(M) = A and the appropriate bound holds; if n¿4,
then the bound in the theorem is attained by taking M to be a whirl of rank n− 1 and
A to be any circuit containing the rim. When A is an independent set of size at least
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two, we shall show in [6] that the bound in Theorem 1.3 can be sharpened slightly;
otherwise Theorem 1.3 is best-possible in the following strong sense.

Theorem 1.4. Let N be a simple matroid other than a circuit or an independent set
and let E(N )=A. Then there is a 3-connected matroid M that is spanned by A such
that M |A= N;

|E(M)|= |A|+ �1(A;M) + �2(A;M)− 2;
and M has no proper 3-connected minor M ′ such that M ′|A= N .

Theorems 1.3 and 1.4 will be proved in Sections 3 and 4, respectively. Whereas
the proof of the latter is relatively straightforward, that of the former is long and
complicated. Indeed, Theorem 1.3 will be deduced as a consequence of a more tech-
nical result, Proposition 3.1. This proposition actually proves more than is needed to
obtain Theorem 1.3. The extra strength of the proposition will be used in [7] where
Theorem 1.3 will be extended to the case in which the set A need not be spanning.
The proof of Proposition 3.1 will require a number of preliminaries. These will be
proved in Section 2.

2. Preliminaries

In this section, we note a number of results that will be used in the proofs of the
main theorems. We shall follow Oxley [8] for notation and terminology. Although we
will not repeat here most of the basic connectivity results from [8] that we will use, we
do note the following important result of Bixby [1] (see also [8, Proposition 8:4:6]).

Lemma 2.1. Let e be an element of a 3-connected matroid M. Then either M\e or
M=e has no non-minimal 2-separations. Moreover; in the �rst case; this cosimpli�-
cation of M\e is 3-connected; while; in the second case; the simpli�cation of M=e is
3-connected.

For a matroid M , we shall use �2(M), �2(M), and �1(M) as abbreviations for
�2(E(M); M), �2(E(M); M), and �1(E(M); M), respectively. It was noted in the in-
troduction that Cunningham and Edmonds established that �2(M) is unique up to
isomorphism. More explicitly, Cunningham and Edmonds [4] proved the following
result.

Theorem 2.2. Let M be a connected matroid. Then; for some positive integer k;
there is a collection M1; M2; : : : ; Mk of 3-connected matroids and a k-vertex tree T
with edges labelled e1; e2; : : : ; ek−1 and vertices labelled M1; M2; : : : ; Mk such that

(i) each Mi is 3-connected or is a circuit or cocircuit;
(ii) E(M1) ∪ E(M2) ∪ · · · ∪ E(Mk) = E(M) ∪ {e1; e2; : : : ; ek};
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(iii) if the edge ei joins the vertices Mj1 and Mj2 ; then E(Mj1 ) ∩ E(Mj2 ) is {ei};
(iv) if no edge joins the vertices Mj1 and Mj2 ; then E(Mj1 ) ∩ E(Mj2 ) is empty;
(v) T does not have two adjacent vertices that are both labelled by circuits or that

are both labelled by cocircuits.

Moreover; M is the matroid that labels the single vertex of the tree T=e1; e2; : : : ; ek−1
at the conclusion of the following process: contract the edges e1; e2; : : : ; ek−1 of T
one by one in order; when ei is contracted; its ends are identi�ed and the vertex
formed by this identi�cation is labelled by the 2-sum of the matroids that previously
labelled the ends of ei. Furthermore; the tree T is unique to within relabelling of its
edges.

We construct �2(M) as follows. First let �2(M) consist of all of the connected
components of M . Then, for each such component, M ′, �nd the unique tree T ′ whose
existence is guaranteed by the last theorem, and replace M ′ in �2(M) by the matroids
that label the vertices of T ′. Finally, observe that if a vertex M ′′ of T ′ corresponds
to a circuit or cocircuit with n elements for some n¿4, then M ′′ can be obtained by
a sequence of n − 3 2-sums from n − 2 copies of either U2;3 or U1;3, respectively.
The �nal step in the construction of �2(M) is, for each n¿4, to replace each M ′′ that
is an n-circuit or n-cocircuit by the n − 2 triangles or triads from which M ′′ can be
constructed by 2-sums.
The construction of �2(M) just described means that not only do we know the

distribution of isomorphism types in this set, but we also know the isomorphism type
of the matroid M ′

e containing an element e of M together with, if |E(M ′
e)|¿4, the

isomorphism types of the matroids that share elements with M ′
e .

The proof of Proposition 3.1 will be an induction argument. In particular, we shall
require detailed information about the behaviour of the functions �1 and �2 under
single-element deletions and contractions. Much of this section will be devoted to
obtaining such results. We begin with an elementary lemma on small values of �2
whose straightforward proof is omitted.

Lemma 2.3. (i) If �2(N )= 0; then every connected component of N is isomorphic to
a rank-one uniform matroid with at least three elements.
(ii) If �2(N )61 and N has no parallel elements; then N is 3-connected.

Lemma 2.4. Let M be a connected matroid that is not isomorphic to U1;3 and suppose
that M=f is disconnected. Then; up to isomorphism; �2(M) can be obtained from
�2(M\f) by adjoining a copy of U1;3 whose ground set contains f. In particular;

�2(M) = �2(M\f):

Proof. Let {X; Y} be a 1-separation for M=f. Suppose �rst that min{|X |; |Y |}¿2.
Then M can be decomposed as the 2-sum of matroids N0, N1, and N2 such that
E(N1) =X ∪ {e1}, E(N2) = Y ∪ {e2}, and N0 is isomorphic to U1;3 and has ground set



M. Lemos, J. Oxley /Discrete Mathematics 218 (2000) 131–165 135

{e1; e2; f}. But M\f is the 2-sum of matroids isomorphic to N1 and N2, and, since
N0 is not counted in �2(M), the result follows in this case.
We may now suppose that |X |=1, say X ={x}. Note that we may also suppose that

|Y |¿2, otherwise M is isomorphic to U1;3. Evidently f and x are parallel in M so
M is the 2-sum of a copy of U1;3 having ground set containing {f; x} and a matroid
isomorphic to M\f. Again we conclude that the result holds.

The next lemma follows immediately from the last lemma by duality.

Lemma 2.5. Let M be a connected matroid M that is not a triangle and f be an
element of M such that M\f is disconnected. Then

�2(M=f) = �2(M)− 1:

Two 2-separations {X ′; Y ′} and {X ′′; Y ′′} of a connected matroid cross if all four
of the sets X ′ ∩ X ′′, X ′ ∩ Y ′′, Y ′ ∩ X ′′, and Y ′ ∩ Y ′′ are non-empty. The next lemma
describes the structure of a matroid that has such a pair of 2-separations.

Lemma 2.6. Let {X ′; Y ′} and {X ′′; Y ′′} be crossing 2-separations of a connected
matroid K and let F(K) = {X ′ ∩ X ′′; X ′ ∩ Y ′′; X ′′ ∩ Y ′; Y ′ ∩ Y ′′}: Then; for each
Z in F(K) with at least two elements; {Z; E(K) − Z} is a 2-separation of K; and
K is the 2-sum with basepoint eZ of two matroids; one of which; KZ ; has ground
set Z ∪ eZ . Moreover; there is a 4-element circuit or cocircuit J (K) with ground set
{eZ : Z ∈ F(K)}; where Z = {ez} when |Z | = 1; and K can be obtained from J (K)
by attaching; via 2-sums; all the matroids KZ for which Z is a member of F(K) with
more than one element.

Proof. As K is connected, we must have that

r(X ′) + r(Y ′)− r(K)− 1 = 0 and r(X ′′) + r(Y ′′)− r(K)− 1 = 0:
Adding these equations and using submodularity, we get that

[r(X ′ ∩ X ′′) + r(Y ′ ∪ Y ′′)− r(K)− 1] + [r(X ′ ∪ X ′′)

+ r(Y ′ ∩ Y ′′)− r(K)− 1]60:
Therefore

r(X ′ ∩ X ′′) + r(Y ′ ∪ Y ′′)− r(K)− 1 = r(X ′ ∪ X ′′)

+ r(Y ′ ∩ Y ′′)− r(K)− 1 = 0;
since K does not have a 1-separation and both X ′ ∩ X ′′ and Y ′ ∩ Y ′′ are non-empty.
Thus if Z ∈ {X ′∩X ′′; Y ′∩Y ′′} and |Z |¿ 1, then {Z; E(K)−Z} is a 2-separation of K .
By interchanging the roles of X ′ and Y ′ in the above, we conclude that {Z; E(K)−Z}
is a 2-separation for K for all Z in F(K) with |Z |¿ 1.
To prove the second part of the lemma, we argue by induction on the number n of

members of F(K) that contain more than one element. If n = 0, then K has exactly
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four elements and {X ′; Y ′} and {X ′′; Y ′′} are distinct 2-separations of it. It follows
that K is a 4-circuit or a 4-cocircuit, so the desired conclusion holds when n= 0. We
may now assume that the result holds when n¡k and let n = k¿1. Then, for some
X ∈ F(K), we have |X |¿ 1. Then K is the 2-sum of KX and another matroid K1 with
ground set (E(K)− X )∪ eX . For all W in {X ′; Y ′; X ′′; Y ′′}, let W1 = (W − X )∪ eX if
X ⊆W , and W1 =W otherwise. Then it is straightforward to check that both {X ′

1 ; Y
′
1}

and {X ′′
1 ; Y

′′
1 } are 2-separations of K1. Moreover, if F(K1) = {X ′

1 ∩ X ′′
1 ; X

′
1 ∩ Y ′′

1 ; X
′′
1 ∩

Y ′
1 ; X

′′
1 ∩ Y ′′

1 }, then F(K1)= (F(K)−{X })∪{eX } and so F(K1) has fewer members
of size exceeding one than F(K). It follows, by the induction assumption, that K1
is the 2-sum of a 4-element circuit or cocircuit and all the matroids KX1 for which
X1 is a member of F(K1) with more than one element. But K is the 2-sum of K1
and KX , and F(K1)= (F(K)−{X })∪{eX }. The required result now follows without
di�culty.

The next lemma deals with a connected matroid having an element whose deletion
disconnects it.

Lemma 2.7. Let H be a connected matroid without parallel elements and suppose
that H\e is not connected. Then H has at most one triangle containing e. Moreover;
when such a triangle T exists;

(i) the elements of T − e are in di�erent components of H\e; and
(ii) if |E(H)| 6= 3; then there is an element x of T − e such that H\x is connected.

Proof. Since H\e is not connected, H is the series connection, with basepoint e, of
two connected matroids, H1 and H2. A set T is a triangle of H containing e if and only
if, for each i in {1; 2}, there is a 2-circuit of Hi containing e. It follows easily from
the fact that H has no parallel elements that H has at most one triangle containing e.
When such a triangle T exists, clearly (i) holds. Moreover, if |E(H)| 6= 3, at least one
of H1 and H2, say H1, has at least three elements. Let {x; e} be a circuit of H1. Then
H1\x is connected having at least two elements and so H\x, the series connection of
H1\x and H2, is also connected.

Lemma 2.8. Suppose that N and N\e are connected matroids; that {X ′; Y ′} and
{X ′′; Y ′′} are crossing 2-separations of N\e; and that J (N\e) is a four-element circuit.
Assume that N has no parallel elements and that N=e has (N=e)|X ′ and (N=e)|Y ′ as
its connected components. Then

�2(N ) = �2(N\e):
Moreover; either N has a 2-cocircuit whose union with e is a triangle; or �2(N\e) =
�2(N=e) + 2 and e is in at most two triangles of N .

Proof. By Lemma 2.4, since N=e is disconnected and N 6∼=U1;3, we have that �2(N )=
�2(N\e). Moreover, N is the parallel connection, with basepoint e, of the connected
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matroids N |(X ′∪e) and N |(Y ′∪e). The deletion of e from each of the last two matroids
produces matroids for which {X ′ ∩X ′′; X ′ ∩ Y ′′} and {Y ′ ∩X ′′; Y ′ ∩ Y ′′}, respectively,
are 1-separations. Hence, both deletions are disconnected. It follows, since N has no
parallel elements by Lemma 2.7, that each of N |(X ′ ∪ e) and N |(Y ′ ∪ e) has at most
one triangle containing e, so N has at most two triangles containing e.
Suppose that |X ′| = 2. Then (N=e)|X ′ ∼=U1;2. It follows that X ′ is a 2-cocircuit of

N=e and hence of N , and X ′∪e is a triangle of N . Thus, in this case, the required result
holds. By symmetry, it follows that we may assume that both |X ′| and |Y ′| exceed
two.
By Lemma 2.5,

�2((N=e)|X ′) = �2(N |(X ′ ∪ e))− 1
and

�2((N=e)|Y ′) = �2(N |(Y ′ ∪ e))− 1:
Clearly, �2(N=e) = �2((N=e)|X ′) + �2((N=e)|Y ′): Thus, on combining the last three
equations, we deduce that

�2(N=e) = �2(N |(X ′ ∪ e)) + �2(N |(Y ′ ∪ e))− 2:
As N\e is the 2-sum of N |(X ′ ∪ e) and N |(Y ′ ∪ e), we have

�2(N\e) = �2(N |(X ′ ∪ e)) + �2(N |(Y ′ ∪ e)):
Finally, the combination of the last two equations gives �2(N=e) = �2(N\e) − 2, as
required.

Let e be an element of a connected matroid H such that H\e is connected. We say
that e destroys a 2-separation {X; Y} of H\e if neither X nor Y spans e.

Lemma 2.9. Let e be an element of a connected matroid N such that N\e is con-
nected. Then

(i) �2(N )6�2(N\e); and
(ii) if e destroys some 2-separation of N\e and equality holds in (i); then either

(a) there is a matroid H in �2(N ) that is isomorphic to U1;3 such that e is in
E(H) and N 6= H ; or

(b) there are matroids H1 and H2 in �2(N ) that are isomorphic to U2;4 and
U2;3; respectively; such that e ∈ E(H1); and E(H1) ∩ E(H2) is non-empty.

Proof. We prove (i) and (ii) simultaneously, arguing by induction on |E(N )|. We begin
by showing that both parts of the lemma hold when N is 3-connected. In this case,
either (a) �2(N )=1, or (b) N ∼=U1;3 and �2(N )=0. In the �rst case, either �2(N\e)¿1,
or �2(N\e)=0. But the latter implies that N\e∼=U1;m for some m¿3, so N ∼=U1;m+1,
contradicting the fact that N is 3-connected. Thus �2(N\e)¿1. It follows that, in case
(a), part (i) holds, and part (ii) must also hold vacuously since if �2(N\e)=�2(N )=1,
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then N\e has no 2-separations. In case (b), N\e∼=U1;2, so �2(N\e)=1¿�2(N ). Hence
(i) holds and again (ii) holds vacuously.
We may now assume that N is not 3-connected. Then there is a partition {X ′′; Y ′′}

of E(N\e) such that {X ′′ ∪ e; Y ′′} is a 2-separation of N . If |X ′′|= 1, say X ′′ = {x},
then, since N\e is connected, e must be parallel to x. In that case, N is the 2-sum of
two matroids, one isomorphic to U1;3 and the other to N\e. Thus �2(N ) = �2(N\e)
but, since e is parallel to x, it cannot destroy any 2-separations of N\e.
We may now suppose that |X ′′|¿2. Thus {X ′′; Y ′′} is a 2-separation of N\e. The

2-separation {X ′′ ∪ e; Y ′′} of N implies that N =N1 ⊕2 N2 where E(N1) = X ′′ ∪ {e; g}
and E(N2) = Y ′′ ∪ g for some new element g. Since |X ′′|¿2, it follows that N\e =
(N1\e)⊕2 N2. Part (i) of the lemma will follow immediately from the following:

2.9.1. If N is the 2-sum of matroids N3 and N4 where e ∈ E(N3) and |E(N3)|¿4;
then �2(N )6�2(N\e). Moreover; if �2(N ) = �2(N\e); then �2(N3) = �2(N3\e).

To see this, �rst note that

�2(N ) = �2(N3) + �2(N4)

and that N\e is the 2-sum of N3\e and N4. Thus
�2(N\e) = �2(N3\e) + �2(N4):

But, as N\e is connected, so too is N3\e. Therefore, by the induction assumption,
�2(N3)6�2(N3\e) so �2(N )6�2(N\e). Moreover, if equality holds in the �rst of these,
it holds in the second. We conclude that 2.9.1 holds.
To prove (ii), suppose that �2(N ) = �2(N\e) and let {X ′; Y ′} be a 2-separation of

N\e that is destroyed by e. Suppose that N=e is not connected. Then, by Lemma 2.4,
(ii)(a) holds.
We may now assume that N=e is connected. Next we establish the following:

2.9.2. If N has a 2-separation {Z;W} such that Z is a proper subset of X ′ or Y ′;
then the lemma holds.

Suppose that such a 2-separation {Z;W} exists. Without loss of generality, we may
assume that Z is properly contained in X ′. Then, since e 6∈ X ′, we deduce that e ∈ W ,
and W−e properly contains Y ′. Thus {Z;W−e} is a 2-separation of N\e. Clearly N is
the 2-sum of two connected matroids NZ and NW having ground sets Z∪f and W ∪f,
for some new element f. Thus N\e=NZ⊕2 (NW\e) and, since N\e is connected, so is
NW\e. Moreover, since |W − e|¿ |Y ′|¿2, we have |E(NW )|¿4. Therefore, by 2.9.1,
since �2(N )=�2(N\e), we have that �2(NW )=�2(NW\e). Since NW\e is isomorphic to
a minor of N\e, it is not di�cult to see that {[(W−e)∩X ′]∪f; Y ′} is a 2-separation of
NW\e. Moreover, we may assume that this 2-separation is not destroyed by e, otherwise,
by the induction assumption, (ii)(a) or (ii)(b) holds for NW and hence for N . As e is
not spanned by Y ′ in NW , we must have that e is spanned by [(W − e) ∩ X ′] ∪ f in
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NW . But f is spanned by Z in NZ . Hence e is spanned by Z ∪ [(W − e) ∩ X ′] in N .
Since Z ∪ [(W − e) ∩ X ′] = X ′, we have a contradiction. Hence 2.9.2 holds.
Recall that {X ′′; Y ′′} and {X ′; Y ′} are 2-separations of N\e, that {X ′′ ∪ e; Y ′′} is a

2-separation of N , and that {X ′; Y ′} is destroyed by e. We show next that {X ′′; Y ′′}
and {X ′; Y ′} cross, that is, all of X ′′∩X ′; X ′′∩Y ′; Y ′′∩X ′, and Y ′′∩Y ′ are non-empty.
To see this, note that, as neither X ′ nor Y ′ spans e, neither X ′ nor Y ′ contains X ′′,
that is, both Y ′ ∩ X ′′ and X ′ ∩ X ′′ are non-empty. Moreover, by 2.9.2 neither X ′ nor
Y ′ contains Y ′′, so both Y ′ ∩ Y ′′ and X ′ ∩ Y ′′ are non-empty.
Recall that N\e is the 2-sum, with basepoint g, of N1\e and N2. Suppose next that

both |X ′′ ∩ X ′| and |X ′′ ∩ Y ′| are one. Then |X ′′| = 2. Thus N1\e has exactly three
elements and so is isomorphic to U1;3 or U2;3. But, since N=e is connected, it follows
that N1\e∼=U2;3 and N1∼=U2;4. Moreover, by Lemma 2.6, the matroid J (N\e) is a
4-element circuit, two of its elements being the elements of X ′′. It follows that N2 is
the 2-sum of a triangle, whose ground set contains g, and two other matroids. Since
N is the 2-sum, with basepoint g, of N1 and N2, it follows that (ii)(b) holds.
We may now assume that |X ′′ ∩ X ′|¿2 or |X ′′ ∩ Y ′|¿2. Without loss of general-

ity, assume the former. Then, by Lemma 2.6, {X ′′ ∩ X ′; E(N\e) − (X ′′ ∩ X ′)} is a
2-separation of N\e. It follows that {X ′′∩X ′; (X ′′∩Y ′)∪g} is a 2-separation of N1\e.
Since, by 2.9.1, �2(N1) = �2(N1\e), if e destroys the last 2-separation, then the result
follows by induction. Hence e does not destroy this 2-separation, so (X ′′ ∩ Y ′) ∪ g
spans e in N1. Thus {X ′′ ∩ X ′; (X ′′ ∩ Y ′) ∪ {g; e}} is a 2-separation of N1. Hence
{X ′′ ∩X ′; E(N )− (X ′′ ∩X ′)} is a 2-separation of N . Since X ′′ ∩X ′ is a proper subset
of X ′, it follows by 2.9.2 that the lemma holds.

The next lemma bounds �2(N ) when N is a connected matroid having an element
e for which N\e is disconnected. In the subsequent lemma, we compare the values of
�1 + �2 for N; N\e, and N=e.

Lemma 2.10. Let e be an element of a connected matroid N and suppose that;
for some s¿2; the connected components of N\e are N1; N2; : : : ; Ns. For all i in
{1; 2; : : : ; s}; if |E(Ni)|¿ 1; let N ′

i be obtained from N=[E(N )− (E(Ni) ∪ e)] by rela-
belling e as ei; if |E(Ni)|=1; let E(Ni)={ei} and N ′

i =Ni. Let N0 be an (s+1)-element
circuit with ground set {e; e1; : : : ; es}. Then N can be obtained from N0 by sequen-
tially attaching; via 2-sums; all the matroids N ′

i for which |E(Ni)| has more than one
element. Moreover; if N is simple; then

�2(N )6s− 1− l+
s∑
i=1

�2(Ni);

where l equals the number of coloops of N\e.

Proof. The fact that N is a 2-sum as described follows by a straightforward induction
argument on s, the details of which are omitted. For the second part, note �rst that,
for each i such that Ni is not a coloop of N\e, both N ′

i and Ni are connected, so,
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by Lemma 2.9, �2(N ′
i )6�2(Ni). Now an (s+ 1)-element circuit can be obtained from

s − 1 copies of U2;3 by a sequence of 2-sums. Thus �2(N0) = s − 1. Moreover, if Nj
is a coloop, then N ′

j = Nj and so �2(N
′
j ) = 1. Hence

�2(N ) = s− 1 +
∑

{�2(N ′
i ) : |E(N ′

i )|¿ 1}

= s− 1 +
s∑
i=1

�2(N ′
i )− l

6 s− 1− l+
s∑
i=1

�2(Ni):

Lemma 2.11. Let N be a simple matroid such that �1(N )¡�1(N\e) for some e. If
l is the number of the coloops of N\e that are not coloops of N; then
(i) �1(N\e)− �1(N ) + �2(N\e)− �2(N )¿l.
(ii) Moreover; when the connected component of N containing e is not a triangle;

�1(N\e)− �1(N=e) + �2(N\e)− �2(N=e)¿l+ 1:

Proof. (i) Let N1; N2; : : : ; Nk be the connected components of N . Suppose that e∈E(N1).
As �1(N )¡�1(N\e), it follows that N1\e is not a connected matroid. Let H1; H2; : : : ; Hs
be the connected components of N1\e. Then the connected components of N\e are
H1; H2; : : : ; Hs; N2; N3; : : : ; Nk . Hence

�1(N\e)− �1(N ) = (s+ k − 1)− k = s− 1: (1)

Observe that

�2(N\e)− �2(N ) =
(

s∑
i=1

�2(Hi) +
k∑
i=2

�2(Ni)

)
−

k∑
i=1

�2(Ni):

Thus

�2(N\e)− �2(N ) =
s∑
i=1

�2(Hi)− �2(N1): (2)

By Lemma 2.10, since the number of coloops of N1\e equals the number of coloops
of N\e that are not coloops of N ,

�2(N1)6s− 1− l+
s∑
i=1

�2(Hi): (3)

On combining (2) and (3), we get that

�2(N\e)− �2(N )¿l+ 1− s;
and (i) follows by combining this inequality with (1). To prove (ii), suppose that N1
is not a triangle. Then, by Lemma 2.5,

�2(N1=e) = �2(N1)− 1: (4)
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Moreover, since N1\e is disconnected, N1=e is connected and so the connected com-
ponents of N=e are N1=e; N2; : : : ; Nk . Therefore

�1(N=e) = �1(N ) and �2(N=e) = �2(N )− 1; (5)

where the second equation follows by (4). On substituting (5) into (i), we immediately
obtain (ii).

The next lemma deals with a 3-connected matroid having an element whose deletion
reduces the connectivity.

Lemma 2.12. Suppose that M is a 3-connected matroid and that M\e is not
3-connected. If N is a connected restriction of M such that e ∈ E(N ); then N=e
has at most two connected components.

Proof. Let {X; Y} be a 2-separation of M\e. Suppose that N=e has t components for
some t¿3. Then N is the parallel connection of t matroids across a common basepoint
e [3]. Thus N has circuits C1∪e; C2∪e, and C3∪e such that C1; C2; and C3 are disjoint
circuits of N=e. For each i in {1; 2; 3}, let Xi = Ci ∩ X and Yi = Ci ∩ Y . Then, since
neither X nor Y spans e in M , both Xi and Yi are non-empty. Thus both X1 ∪ X2 ∪ X3
and Y1 ∪ Y2 ∪ Y3 are independent in N=e and hence in M . Therefore X and Y have
bases BX and BY that contain X1 ∪ X2 ∪ X3 and Y1 ∪ Y2 ∪ Y3, respectively. Thus

r(X ) + r(Y ) = r(BX ) + r(BY ) = |BX |+ |BY |= |BX ∪ BY |:
But BX ∪ BY contains C1 ∪ C2 and C1 ∪ C3, each of which is a circuit of M . Since
BX ∪BY spans M , it follows that (BX ∪BY )−{a2; a3} spans M , where ai is an arbitrary
element of Ci for each i. Hence

|BX ∪ BY | − 2¿r(BX ∪ BY ) = r(M\e);
so r(X ) + r(Y )¿r(M\e) + 2, contradicting the fact that {X; Y} is a 2-separation
of M\e.

We conclude this section by introducing a construction to assist in deciding when
a certain matroid is 3-connected. This will be used at the very end of the proof of
Proposition 3.1. For a matroid M and a subset A of E(M), we de�ne a graph G(A;M)
to have vertex set A and edge set a subset of cl(A)− A de�ned as follows: arbitrarily
order the elements of A; if f is an element of E(M)−A that is in a triangle with two
elements of A that are in series in M |A, we let f label the edge ab of G(A;M) for
which (a; b) is lexicographically minimal among such pairs. Although G(A;M) strictly
depends on the ordering imposed on A, this ordering will not be important to the
properties of the graph that we shall need and so will not be mentioned further.

Lemma 2.13. Suppose that A is a circuit of a simple matroid M such that |A|¿4
and every element of E(M) − A is in a triangle with two elements in A. Then; for
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X ⊆E(M)−A; the matroid M |(A∪X ) is 3-connected if and only if G(A;M |(A∪X ))
has either a single component or two components one of which consists of an isolated
vertex.

Proof. We abbreviate G(A;M |(A ∪ X )) to G. The lemma will be proved by showing
that the following assertions are equivalent:

(i) M |(A ∪ X ) is not 3-connected;
(ii) there is a partition {Y1; Y2} of A ∪ X such that min{|Y1|; |Y2|}|¿2 and

r(Y1) + r(Y2) = r(M) + 1;

(iii) there are partitions {A1; A2} of A and {X1; X2} of X such that min{|A1|; |A2|}¿2
and Xi⊆E(G[Ai]) for each i.

It is immediate that (i) and (ii) are equivalent. Moreover, by the de�nition of G, (iii)
implies (ii). We now show that (ii) implies (iii) thereby establishing the equivalence
of the three statements and �nishing the proof of the lemma. Thus assume that (ii)
holds. For each i in {1; 2}, let Ai=A∩Yi. If Ai is empty for some i, then A⊆Yj where
{i; j}={1; 2} and, since A spans M , it follows that r(Yj)= r(M). Hence r(Yi)=1. But
|Yi|¿2, and we have a contradiction to the fact that M is simple. We conclude that
Ai is non-empty for each i. Thus, as A1 ∪ A2 is A, a spanning circuit of M , we have

r(M) + 1 = r(Y1) + r(Y2)¿r(A1) + r(A2) = |A1|+ |A2|= |A|= r(M) + 1:
Hence A1 and A2 span Y1 and Y2, respectively, and min{|A1|; |A2|}¿2.
Now suppose that G has an edge x joining a vertex a1 in A1 to a vertex a2 in A2.

Then {x; a1; a2} is a triangle of M . Without loss of generality, we may suppose that
x ∈ cl(A1). Then M has a circuit C such that x ∈ C ⊆A1 ∪ x. Using the circuits C and
{x; a1; a2}, we deduce that (C − x) ∪ {a1; a2} contains a circuit of M . But this set is
contained in and therefore equals the circuit A. Thus A2 = {a2}; a contradiction since
min{|A1|; |A2|}¿2. We conclude that no edge in G joins a vertex in A1 to a vertex
in A2. By letting Xi be the elements of X that join two vertices of Ai, we obtain that
(iii) holds.

3. The core of the proof

In this section, we prove a technical proposition from which we shall deduce
Theorem 1.3 without di�culty. We shall say that (M;A) is a minimal pair when
A is a subset of the ground set of a 3-connected matroid M and M has no proper
3-connected minor M ′ for which M ′|A=M |A.
In the next proposition, we use the notion of a fan. Such objects were de�ned

in general in [11]. In this paper, we shall only consider certain very special fans.
Speci�cally, if a1; a2; a3; a4; a5 are distinct elements of a 3-connected matroid, then
{a1; a2; a3}; {a2; a3; a4}; {a3; a4; a5} is a type-2 fan of length three if {a1; a2; a3} and
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{a3; a4; a5} are triads, and {a2; a3; a4} is a triangle, indeed the unique triangle meeting
{a1; a2; a3; a4; a5}. Such a fan, like all fans, can be viewed as a partial wheel. The
spokes of this type-2 fan are a2 and a4, and its rim is {a1; a3; a5}.

Proposition 3.1. Let (M;A) be a minimal pair such that

(i) M is not isomorphic to U1;3; and
(ii) every element of E(M) − cl(A) belongs to some type-2 fan of length three in

which the rim is contained in a 4-circuit of M |A and the spokes are contained
in E(M)− cl(A).

Then

|E(M)|6|A|+ �1(A;M) + �2(A;M)− �(A;M);
where

�(A;M) =
{
1 when A is a circuit of M or r(A) 6= r(M);
2 when A is not a circuit of M and r(A) = r(M):

Because the proof of Proposition 3.1 is quite long, we now give a brief outline
of the strategy of the proof. The two values of �(A;M), while they enable one to
obtain a best-possible bound in every case, do add technical problems to the proof.
We shall ignore these in this brief discussion by describing only how to prove the
slightly weaker bound

|E(M)|6|A|+ �1(A;M) + �2(A;M)− 1:
Moreover, we focus on the case when A spans M for the fans that arise when
E(M)− cl(A) is non-empty are not relevant to the main part of the argument. Indeed,
Lemma 3.4 shows that the structure of these fans is preserved in every 3-connected
minor of M that contains the rims of all these fans. This means that these fans only
need to be considered at the very end of the proof, in Lemma 3.16, and so the core
of the argument can be described assuming that A spans M .
The proof of Proposition 3.1 is by contradiction. We begin with a minimal coun-

terexample M chosen so that |A| is maximal. Then
|E(M)|¿ |A|+ �1(A;M) + �2(A;M)− 1:

Now, for each e in cl(A)− A, since (M;A ∪ e) is not a minimal pair,
|E(M)|6|A ∪ e|+ �1(A ∪ e;M) + �2(A ∪ e;M)− 1:

To obtain a contradiction, we aim to show that

�1(A ∪ e;M) + �2(A ∪ e;M)6�1(A;M) + �2(A;M)− 1:
Certainly �1(A∪e;M)6�1(A;M): Hence we shall obtain the desired contradiction unless
�2(A ∪ e;M)6�2(A;M):
Attention now turns to the minimal set Se of connected components of M |A whose

union spans e and we distinguish the cases (i) when |Se|¿2, and (ii) when |Se|=1.
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In case (i), the subcase in which Se includes a coloop is quite straightforward and is
handled in Lemma 3.7 using Lemma 2.11(i). For the remaining subcase of (i) and for
(ii), we turn to consideration of the simpli�cation of M=e. This matroid is shown to be
3-connected in Lemma 3.4, and the structure of this simpli�cation, M=e\(A − Ae), is
considered in Lemma 3.10 where it is shown that (M=e\(A−Ae); Ae) is a minimal pair.
By focussing on this minimal pair and using Lemma 2.11(ii), the remaining subcase
of case (i) is completed in Lemma 3.11. Lemmas 3.12 and 3.13 use Lemmas 2.6–2.9
to complete the argument in case (ii) unless e is in a triangle with two elements of A
that are in series in M |A. But, in that case, we are able to assume that every element
of cl(A) − A obeys this exceptional condition. Then Lemma 3.14 shows that A is a
circuit. Finally, Lemma 3.15, using Lemma 2.13, shows that A is non-spanning and
this contradiction completes the proof.

Proof of Proposition 3.1. Suppose that the proposition fails and choose a minimal
counterexample M for which |E(M)|−|A| is minimal. Equivalently, the counterexample
(M;A) is chosen so that the pair (|E(M)|;−|A|) is lexicographically minimal.
We show �rst that M |A is not 3-connected. Assume the contrary. Then E(M) = A

and �1(A;M) = 1. Since M is a counterexample to the proposition, it follows that
�2(A;M) = �2(M) = 0. Thus, by Lemma 2.3(i), M must be isomorphic to U1;3; a
contradiction to (i). We conclude that, as asserted, M |A is not 3-connected. An easy
consequence of this is that M must be simple.

Lemma 3.2. r(A)¿3.

Proof. Since M |A is not 3-connected but is simple, r(A)¿2. Suppose that r(A) = 2.
Then, as M |A is simple but not 3-connected, M |A∼=U2;2. Thus M has a circuit C that
properly contains A. Choose an element e of C −A and let M ′= (M |C):(A∪ e). Then
M ′ is a triangle and so is 3-connected. Moreover, M ′|A = M |A. By the minimality
of M , it follows that M = M ′ and we arrive at a contradiction because �1(A;M) =
�2(A;M) = �(A;M) = 2.

Let F1; F2; : : : ; Fn be the fans of M that satisfy condition (ii) of the proposition. We
shall use Fi to denote both the fan itself and its ground set. Observe that if A is a
spanning set of M , then n=0. For each i in {1; 2; : : : ; n}, let Ri and Qi be, respectively,
the rim {ai0; ai1; ai2} of Fi and a 4-circuit of M |A containing Ri. It is straightforward to
show, using circuit elimination and orthogonality, that Qi is unique. Suppose that the
triads of Fi are Ti0 = {ai0; fi0; ai1} and Ti2 = {ai1; fi2; ai2}, and let Ti1 be the triangle
{fi0; ai1; fi2} of Fi.
Next we observe that

n 6= 1: (6)

To see this, note, from the last paragraph, that (6) certainly holds if A is spanning.
Now suppose that A is not spanning. Then E(M)− cl(A) contains a cocircuit D of M .
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Since M is 3-connected of rank at least three, |D|¿3. Thus |E(M) − cl(A)|¿3 and
(6) follows by (ii).
By Oxley and Wu [11], if i 6= j, then Fi and Fj have no common spokes. We now

show that Fi and Fj are disjoint by proving that their rims are disjoint.

Lemma 3.3. If i 6= j; then Ri ∩ Rj = ∅.

Proof. Suppose that Ri ∩ Rj 6= ∅. Then there is an element of Ri in Qj. It follows, by
orthogonality with the triads of Fi, that Qj contains two, and hence all three, elements of
Ri. Similarly, Rj ⊆Qi. Then, since {fi0; fi2} and {fj0; fj2} are disjoint, orthogonality
implies that ai1 6∈ Rj and aj1 6∈ Ri. Thus Qi = Ri ∪ aj1 and Qj = Rj ∪ ai1. Moreover,
Qi=Ri∪Rj=Qj: Without loss of generality, we may assume that aj0=ai0 and aj2=ai2.
Then M∗ has {ai0; fi0; ai1}, {ai1; fi2; ai2}, {ai2; fj2; aj1}, and {aj1; fj0; ai0} as triangles.
Let X = Fi ∪ Fj. Then |X | = 8. Moreover, Ri ∪ {fi0; fj0} spans X in M , and Qi

spans X in M∗. Hence

r(X ) + r∗(X )− |X |61:

As M is 3-connected, it follows that either X = E(M), or E(M)− X = {e} for some
element e. By orthogonality, Qi is a series class of M |cl(A). Suppose that e exists.
Then r(M)=5 and e 6∈ cl(A)−A. Moreover, e is either a coloop of M |A, or a member
of E(M)− cl(A). In the latter case, e is a spoke of a type-2 fan whose set of spokes
is disjoint from Fi ∪Fj; a contradiction to the fact that |E(M)|=9: In the former case,
�1(A;M) = 2, �2(A;M) = 3, and �(A;M) = 1. Hence (M;A) is not a counterexample
to Proposition 3.1; a contradiction. We conclude that e does not exist and so Qi = A
and E(M) − cl(A) = {fi0; fi2; fj0; fj2}. Moreover, X = E(M) and A spans M∗. The
cocircuits {fi0; ai1; fi2} and {fj0; aj1; fj2} of M∗ imply that A does not contain a
circuit of M∗. Thus A is a basis of M∗. Hence {ai1; ai2; aj1} spans a hyperplane of
M∗, the complement of which is {fj0; ai0; fi0}. The last set is a triangle of M meeting
Fi that is di�erent from Ti1, a contradiction to the de�nition of a type-2 fan of length
three.

The proof of Proposition 3.1 will involve constructing minimal pairs in minors of
M . The next result will be helpful in dealing with such minimal pairs.

Lemma 3.4. If (M\X=Y; A − (X ∪ Y )) is a minimal pair such that (X ∪ Y ) ∩
(R1 ∪ R2 ∪ · · · ∪ Rn) = ∅; then F1 ∪ F2 ∪ · · · ∪ Fn⊆E(M\X=Y ). Moreover; if each
element of X ∩ A is parallel with some element of A − (X ∪ Y ) in M=Y; then Ri is
contained in a 4-circuit of (M\X=Y )|[A− (X ∪ Y )].

Proof. Lemma 3.4 is trivial when n = 0. Thus, by (6), we may suppose that n¿2.
By Lemma 3.3, R1 ∩ R2 = ∅. Thus |E(M\X=Y )|¿6 since, by hypothesis, (R1 ∪ R2) ∩
(X ∪ Y ) = ∅. It follows, since M\X=Y is 3-connected, that it is simple and cosimple.
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We now prove that X ∩ (F1 ∪ F2 ∪ · · · ∪ Fn) = ∅. If not, then X ∩ Fi 6= ∅ for some
i, say i = 1. Then, as X avoids R1, we may assume that f10 ∈ X . Hence a10 and
a11 are in series in M\f10 and hence are coloops or are in series in M\X=Y because
(X ∪ Y ) ∩ R1 = ∅. This contradiction to the fact that M\X=Y is cosimple implies that
X ∩ (F1 ∪ F2 ∪ · · · ∪ Fn) = ∅.
Next suppose that Y ∩ Fi 6= ∅ for some i, say i = 1. Then we may assume that f10

belongs to Y ∩ Fi. In M=f10, the elements f12 and a11 are in parallel. But M\X=Y is
simple and has a11 as an element. Thus f12 ∈ X ∪ Y . As f12 6∈ X , by the previous
paragraph, it follows that f12 ∈ Y . Hence a11 is a loop of M\X=Y ; a contradiction.
To prove the last part of the lemma, we show �rst that each Qi is a circuit of M=Y .

Assume that some Qi, say Q1, is not a circuit of M=Y . Since M\X=Y is 3-connected and
both T10 and T12 contain cocircuits of this matroid, both T10 and T12 are cocircuits of
M\X=Y . As these sets are also cocircuits of M , they must be cocircuits of M=Y . Since
M=Y has a circuit properly contained in Q1 and meeting R1, it follows by orthogonality
that this circuit must be R1. Therefore, in M\X=Y , the set R1 is a triangle. It follows
that M\X=Y must be isomorphic to a rank-3 wheel or whirl. This is a contradiction
since n 6= 1. We conclude that each Qi is indeed a circuit of M=Y . Now either Qi
avoids X , or Qi contains exactly one element of X . In the �rst case, Qi is a 4-circuit
of (M\X=Y )|[A − (X ∪ Y )] containing Ri. In the second case, if Qi ∩ X = {x}, then
{x; ai} is a circuit of M=Y for some ai in A− (X ∪Y ). Thus (Qi− x)∪ ai is a 4-circuit
of (M\X=Y )|[A− (X ∪ Y )] containing Ri.

The proof of Proposition 3.1 will have several steps. In each step, we shall replace
the minimal pair (M;A) by a minimal pair (M ′; A′) that satis�es the hypotheses of the
proposition but for which (|E(M ′)|;−|A′|) is lexicographically less than (|E(M)|;−|A|).
Then Proposition 3.1 fails for (M;A) but holds for (M ′; A′). Therefore,

|A|+ �1(A;M) + �2(A;M)− �(A;M)− |E(M)|¡ 0

and

|A′|+ �1(A′; M ′) + �2(A′; M ′)− �(A′; M ′)− |E(M ′)|¿0:

On taking the di�erence of the last two inequalities, we get

�A + �1 + �2 − �� − �E ¡ 0;

where

�E = |E(M)| − |E(M ′)|;
�� = �(A;M)− �(A′; M ′);

�A = |A| − |A′|;
�1 = �1(A;M)− �1(A′; M ′);

�2 = �2(A;M)− �2(A′; M ′):
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Hence, we shall get a contradiction whenever we can show that

�E + ��6�A + �1 + �2: (7)

The elementary proof of the next lemma is omitted.

Lemma 3.5. Suppose ��¿1. Then �� =1. Moreover; if r(M)− r(A) = r(M ′)− r(A′);
then A′ is a circuit of M ′ but A is not a circuit of M .

Next we introduce some more notation. For every element e of cl(A)−A, let Ne be
the connected component of M |(A∪ e) that contains e. Let Se be the set of connected
components of Ne\e. The minimal pair (M ′; A′) that will replace (M;A) will depend
on some properties of Se. In particular, the proof will use the following lemma whose
proof is straightforward.

Lemma 3.6. If e ∈ cl(A) − A; then Proposition 3:1 holds for the minimal pair
(M;A ∪ e).

Lemma 3.7. If e ∈ cl(A)− A; then Se does not contain a coloop of M |A and hence
M |(A ∪ e) has no 2-cocircuits containing e.

Proof. If M |(A∪ e) has a 2-cocircuit, say {a; e}, containing e, then {a; e} is contained
in the component, Ne, of M |(A ∪ e) containing e and therefore {a} is in Se. Hence
it su�ces to show that Se contains no coloops of M |A. Assume the contrary. Let
(M ′; A′)=(M;A∪e). By Lemma 3.6, Proposition 3.1 holds for the minimal pair (M ′; A′).
Let l be the number of coloops of M |A that are not coloops of M |(A∪ e). Clearly all
these coloops must belong to Se. Applying Lemma 2.11(i) for N =M |(A∪ e), we get
that

�1 + �2¿l:

Thus, as �A =−1 and �E = 0, we have
�A + �1 + �2¿�E + (l− 1):

By (7), when ��6l−1, we arrive at a contradiction. Thus we may assume that ��¿l.
But l¿1, and so, by Lemma 3.5, �� = 1 and so 16l6�� = 1. Therefore

l= 1: (8)

Moreover, since r(A ∪ e) = r(A), we have r(M) − r(A ∪ e) = r(M) − r(A), and
Lemma 3.5 implies that A ∪ e is a circuit of M . Therefore all the connected com-
ponents of M |A are coloops and belong to Se. Thus l= r(A) and so, by Lemma 3.2,
l¿3; a contradiction to (8).

The next part of the argument uses Bixby’s result, Lemma 2.1. In particular, if
e ∈ cl(A)−A and the simpli�cation of M=e is not 3-connected, then the cosimpli�cation
of M\e is 3-connected. Lemma 3.9 uses a minimal pair (M ′; A′), where M ′ is this
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cosimpli�cation, to give the contradiction that Proposition 3.1 holds for (M;A). The
proof of this lemma relies on having |A| su�ciently large, and the next lemma ensures
that this condition is met.

Lemma 3.8. |A|¿5.

Proof. Suppose that |A|64. By Lemma 3.2, |A|¿r(A)¿3. Thus |A| ∈ {3; 4}. It fol-
lows, by (6) and Lemma 3.3, that A is a spanning set of M . Moreover, if M |A has
a coloop, a say, then cl(A − a) is a hyperplane of M . Hence if e ∈ cl(A) − A, then
{a; e} is a cocircuit of M |(A ∪ e). This contradiction to Lemma 3.7 implies that M |A
has no coloops. It follows from this, since M is simple and |A|64, that M |A is
connected. Moreover, since M |A is not 3-connected, M |A must be a 4-circuit. Thus
�1(A;M) + �2(A;M) − �(A;M) = 2. Therefore, as (M;A) is a counterexample to the
proposition, |E(M)|¿ |A|+2=6. Hence M is a rank-3 matroid that has at least seven
elements and has A as a spanning circuit. For all e in E(M) − A, the matroid M\e
is not 3-connected and so its ground set is the union of two lines. If one of these
lines has more than three points, then it contains a point f not in A, and M\f is
3-connected; a contradiction. Thus both lines have exactly three points and, since
|E(M)|¿7, they are disjoint. Hence each must contain two points of A and one
point of E(M) − A. For a point g of the latter type, M\g is not the union of two
3-point lines; a contradiction.

Lemma 3.9. Suppose that e ∈ cl(A)−A. Then every 2-separation of M=e is minimal.

Proof. We begin by showing that

|E(M)|¿7: (9)

Suppose that (9) fails. Then, since |A|¿5 by Lemma 3.8, it follows that |A|=5 and
E(M) = A ∪ e. Thus |A| − |E(M)|=−1 and so, as

|A|+ �1(A;M) + �2(A;M)− �(A;M)− |E(M)|¡ 0;

we have �1(A;M)+ �2(A;M)6�(A;M)62. Since, by Lemma 2.3(i), �2(A;M)¿1, we
deduce that �1(A;M) = �2(A;M) = 1. Thus M |A is 3-connected. This contradiction
completes the proof of (9).
Assume that M=e has a non-minimal 2-separation. Then, by Lemma 2.1, every

2-separation of M\e is minimal and the cosimpli�cation of M\e is 3-connected. It
follows, since |E(M)|¿7, that if T ∗

1 ; T
∗
2 ; : : : ; T

∗
m are the triads of M that contain e and

T ∗
i = {e; ai; bi}, then a1; a2; : : : ; am; b1; b2; : : : ; bm are distinct.
Next, we shall prove the following:

3.9.1. {ai; bi} is a 2-cocircuit of M |A for all i in {1; 2; : : : m}.

As e ∈ cl(A) − A, orthogonality implies that {ai; bi} meets the component Ne of
M |(A ∪ e) containing e. Clearly {ai; bi} ∩ E(Ne\e) is a union of cocircuits of M |A.
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Thus 3:9:1 holds, otherwise ai and bi are coloops of M |A so Se contains a coloop of
M |A and we have a contradiction to Lemma 3.7.
We shall prove next that

3.9.2. |T ∗
i ∩ (R1∪R2∪· · ·∪Rn)|61 for all i. Moreover; if T ∗

i meets R1∪R2∪· · ·∪Rn;
then we may assume that bi ∈ R1 ∪ R2 ∪ · · · ∪ Rn.

Assume that this assertion fails. Then we may suppose that bi ∈ Rj and that i=j=1.
Then, by orthogonality, a1 ∈ Q1. Hence a1 ∈ R1. Thus T ∗

1 = (R1 − a1k)∪ e for some k
in {0; 1; 2}. But, by orthogonality with the triangle T11, it follows that a11 6∈ T ∗

1 . Thus
T ∗
1 = {e; a10; a12}.
Let D be a cocircuit of M such that

f10 ∈ D⊆(T10 ∪ T12)− {a11}= {f10; f12; a10; a12}:
Observe that f12 ∈ D, by orthogonality with T11, and that |D ∩ {a10; a12}| 6= 1, by
orthogonality with Q1. As |D|¿3, it follows that D = {f10; f12; a10; a12}. Since
T ∗
1 = {e; a10; a12}, there is a cocircuit D′ of M such that

e ∈ D′ ⊆(D ∪ T ∗
1 )− a10 = {e; f10; f12; a12}:

By orthogonality with Q1, it follows that a12 6∈ D′. But |D′|¿3, so D′ = {e; f10; f12}.
Hence D′ is a triad of M containing e, so D′=T ∗

i for some i. But D
′∩A=∅ contradicting

3.9.1. We conclude that |T ∗
i ∩ (R1 ∪ R2 ∪ · · · ∪ Rn)|61 for all i. Finally, if T ∗

i meets
R1∪R2∪· · ·∪Rn, then we may relabel if necessary to ensure that bi ∈ R1∪R2∪· · ·∪Rn.
Thus 3.9.2 holds.
Now let M ′ = M\e={a1; a2; : : : ; am} and let A′ = A − {a1; a2; : : : ; am}. Then M ′ is

the cosimpli�cation of M\e and so is 3-connected. Thus there is a minor N ′ of M ′

such that N ′|A′ =M ′|A′ and (N ′; A′) is a minimal pair. Let N ′ =M ′\X=Y . By 3.9.2,
R1∪R2∪· · ·∪Rn⊆E(M ′)∩A=E(N ′)∩A. Thus, by Lemma 3.4, F1∪F2∪· · ·∪Fn⊆E(N ′).
Hence, by (ii) of the proposition, X ∪ Y ⊆ cl(A) − A. As rM ′(A′) = rN ′(A′), we must
have that Y = ∅. Hence, for some set X ,

N ′ =M ′\X:
Next we observe that

3.9.3. |E(N ′)|¿3 with equality only if E(N ′)= {b1; b2; b} where b= b3; or m=2 and
b ∈ A.

Clearly E(N ′)⊇A′ ⊇{b1; b2; : : : ; bm} and |A|= |A′|+m62|A′|. But, by Lemma 3.8,
|A|¿5, so |E(N ′)|¿|A′|¿3: Moreover, if |E(N ′)|=3, then A′=E(N ′). Thus 56|A|=
3 + m, so m¿2 and E(N ′) = {b1; b2; b} where b= b3, or m= 2 and b ∈ A.
We show next that

3.9.4. |E(N ′)|¿4:
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Assume that this fails. Then, by 3.9.3, |E(N ′)|= 3, so N ′ is isomorphic to U1;3 or
U2;3. Moreover, A′ spans N ′ and so spans M ′. Thus A spans M . First, suppose that N ′

is isomorphic to U1;3. Now M |A is obtained from N ′ by inserting at most one element
in series with each element of the latter. Thus the only 2-separations of M |A are those
of the form {{ai; bi}; A−{ai; bi}} for some i. Hence, as e ∈ cl(A) and M is simple and
3-connected, M |(A ∪ e) is 3-connected unless, for some i, either (i) e ∈ cl({ai; bi}),
or (ii) e ∈ cl(A − {ai; bi}). But, in the �rst case, {e; ai; bi} is both a triangle and a
triad of M ; a contradiction. The second case contradicts orthogonality since {e; ai; bi}
is a triad of M . Hence M |(A ∪ e) is indeed 3-connected. Thus E(M) = A ∪ e and we
have a contradiction to the fact that M is a counterexample to the proposition since
�1(A;M) = 1, �2(A;M)¿2, and �(A;M) = 2.
We may now suppose that N ′ is isomorphic to U2;3. In this case, since A′ is a

spanning circuit of N ′, it follows that A is a 5- or 6-circuit spanning M . Therefore
�2(A;M)= |A|− 2 and �1(A;M)=�(A;M)=1. Thus, as M is a counterexample to the
proposition,

|E(M)|¿2|A| − 1: (10)

For all g in E(M) − (A ∪ e), the matroid [M |(A ∪ g)]∗ has rank 2 and has {g} as a
parallel class. Let Pg be the partition of A induced by the other parallel classes of this
matroid. Then the series classes of M |(A ∪ g) are {g} and the members of Pg. Thus,
for all i, the set {ai; bi} is contained in some member of Pg. When every member
of Pg has at most two elements, it follows that each member must be equal to some
{ai; bi} or to {b}. In this case, the only 2-separations of M |(A ∪ g) are those of the
form {{ai; bi}; (A∪g)−{ai; bi}} for some i, and we argue as in the preceding paragraph
to deduce that M |(A∪{e; g}) is 3-connected. This contradicts (10). Therefore, we may
assume that, for every g, there is a set in Pg with at least three elements. Then either
(i) b= b3, |A|=6, and, for all g, the partition Pg is {{ai; bi; aj; bj}; {ak ; bk}} for some
choice of {i; j; k}= {1; 2; 3} depending on g; or (ii) b 6= b3, |A|=5, and, for all g, the
partition Pg is {{ai; bi; b}; {ak ; bk}} for some choice of {i; k}= {1; 2} depending on g.
In each case, since, by (10), |E(M)−(A∪e)|¿|A|−2, we deduce that Pg=Pg′ for some
distinct g and g′. Thus, for some k, both {g; ak ; bk} and {g′; ak ; bk} are circuits of M .
Hence {g; g′; ak} contains a circuit of M which, by orthogonality, must be contained
in {g; g′}. This contradiction to the fact that M is simple completes the proof of
3.9.4.
Recall that M ′ = M\e={a1; a2; : : : ; am}, that A′ = A − {a1; a2; : : : ; an}, and that

N ′ =M ′\X . We shall prove next that X = ∅ and hence establish the following.

3.9.5. (M\e={a1; a2; : : : ; am}; A − {a1; a2; : : : ; an}) is a minimal pair for which
Proposition 3:1 holds.

Recall that N ′ is 3-connected, |E(N ′)|¿4, and M\(X ∪ e) is obtained from N ′ by
adding ai in series with bi for each i. Thus the only 2-separations of M\(X ∪ e) are
those of the form {{ai; bi}; E(M) − (X ∪ {ai; bi})} for some i. Hence, as e ∈ cl(A)



M. Lemos, J. Oxley /Discrete Mathematics 218 (2000) 131–165 151

and M is simple, M\X is 3-connected unless, for some i, either e ∈ cl({ai; bi}), or
e ∈ cl(E(M)− (X ∪ {ai; bi})). But each of these possibilities contradicts the fact that
{ai; bi; e} is a triad of the simple 3-connected matroid M . Thus M\X is 3-connected so
X = ∅. Hence (M ′; A′) is a minimal pair. Moreover, by Lemma 3.4, (M ′; A′) satis�es
the hypotheses, and hence the conclusion, of Proposition 3.1.
We shall now complete the proof of Lemma 3.9 by proving (7). Certainly �E=m+1

and �A = m. Now

M ′|A′ = [(M\e)={a1; a2; : : : ; am}]|[A− {a1; a2; : : : ; am}]
= (M |A)={a1; a2; : : : ; am}:

But, in M |A, for each i, the set {ai; bi} is a cocircuit by 3:9:1. Thus an isomorphic
copy of M |A can be obtained from M ′|A′ by 2-summing on a copy of U2;3 at each
bi. Hence �2 =m and �1 = 0. Hence, by (7), we may assume that ��¿m. Since m¿1,
it follows by Lemma 3.5 that M ′|A′ is a circuit but M |A is not. This contradicts the
construction of M |A from M ′|A′, and thereby completes the proof of Lemma 3.9.

By Lemma 3.9 and Bixby’s lemma (2:1), if e ∈ cl(A)−A, then the simpli�cation of
M=e is 3-connected. We now seek to construct a minimal pair (M ′; A′) in which M ′

is this simpli�cation.

Lemma 3.10. Suppose that e ∈ cl(A)− A and let Ae be a maximal subset of A such
that (M=e)|Ae has no parallel elements. Suppose also that
(i) A= Ae; or
(ii) |A− Ae|= 1 and |Se|¿2; or
(iii) M |Ae has a circuit that spans e.
Then (M=e\(A− Ae); Ae) is a minimal pair for which Proposition 3:1 holds.

Proof. By Lemma 3.9, the simpli�cation M ′ of M=e is 3-connected. Let the ground
set of this simpli�cation be chosen to contain Ae. Then M ′ =M=e\(X̃ ∪ (A− Ae)) for
some subset X̃ of cl(A)− A. Let N ′ be a minimal 3-connected minor of M ′ such that
N ′|Ae =M ′|Ae.
We show next that

3.10.1. R1 ∪ R2 ∪ · · · ∪ Rn⊆E(N ′).

Assume the contrary. Then A−Ae contains an element a that is in Ri for some i. We
arrive at a contradiction because a belongs to a triangle that is contained in cl(A) but
must be di�erent from Ti1, yet Fi is a type-2 fan of length three. Hence 3.10.1 holds.
By 3.10.1 and Lemma 3.4, F1∪F2∪· · ·∪Fn⊆E(N ′). Hence, by (ii) of the proposition,

if N ′ =M ′\X=Y , then Y ⊆ cl(A)− A. As rN ′(Ae) = rM ′(Ae) = rM=e(A), it is not di�cult
to check that Y = ∅. Hence

N ′ =M ′\X:
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Let H = M\(X ∪ X̃ ). Then one easily checks that E(H)⊇A. Moreover, by the
hypotheses, we have

(i) Ae = A and N ′ = H=e; or
(ii) |Se|¿2, the set Ae = A− a for some element a of A, and N ′ = H=e\a; or
(iii) M |Ae has a circuit that spans e, and N ′ = H=e\(A− Ae).
We shall prove next that, in all cases,

3.10.2. H is 3-connected.

First, suppose that Ae = A and H=e= N ′. Assume that H is not 3-connected. As N ′

is 3-connected, it follows that e is a coloop or an element in series in H . Thus e is
a coloop or an element in series in H |(A ∪ e), which equals M |(A ∪ e). It cannot be
a coloop because A spans e, and it cannot be in series by Lemma 3.7. Hence 3.10.2
holds in case (i).
Now suppose that (ii) holds. Since H is a restriction of M , if H\a is 3-connected,

then so is H unless it has a as a coloop. But a is in a triangle of H with e and
some other element of A, so a is certainly not a coloop of H . Thus we may assume
that H\a is not 3-connected. But H\a=e is 3-connected, so either e is a coloop of
H\a, or e is in series with some element b of H\a. In the �rst case, e is a coloop of
H |[(A − a) ∪ e]. Since this matroid equals M |[(A − a) ∪ e] and A spans e, it follows
that {a; e} is a cocircuit of M |(A ∪ e) and we have a contradiction to Lemma 3.7.
Thus we may assume that {e; b} is a cocircuit of H\a. Moreover {e; b} is a cocircuit
of H |[(A − a) ∪ e], otherwise e would be a coloop of H |[(A − a) ∪ e], that is, of
M |[(A − a) ∪ e], and we arrive at a contradiction as before. Thus b and e are in
series in M |[(A − a) ∪ e]. By Lemma 3.7, b and e cannot be in series in M |(A ∪ e).
Therefore {e; a; b} is a triad of M |(A ∪ e), that is, of H |(A ∪ e). Since {e; b} is a
cocircuit of H\a, it follows that {e; a; b} is a triad of H . As {a; b} is a cocircuit
of M |A, it follows that a and b are in the same connected component of M |A. The
matroid H\a=e is 3-connected and, by Lemma 3.8, |E(H\a=e)|¿|A− a|¿4, it follows
that the only 2-separation of H\a is {{e; b}; E(H)−{e; b; a}}. Now {e; b} cannot span
a, otherwise {e; b; a} is a triangle of M |(A ∪ e) in which a and b are in the same
connected component of M |A. This is contrary to Lemma 2.7 since, by assumption,
|Se|¿2. Moreover, E(H) − {e; b; a} cannot span a because {e; b; a} is a triad of H .
As a is spanned by E(H)− a, it follows that H is 3-connected. Thus 3.10.2 holds in
case (ii).
It remains to consider case (iii). In that case, since H=e\(A − Ae) is 3-connected,

H\(A− Ae) is also 3-connected unless e is a coloop or in series in H\(A− Ae). But
the exceptional cases cannot arise because H |Ae =M |Ae and this matroid has a circuit
spanning e. We conclude that H\(A−Ae) is indeed 3-connected. As Ae∪e spans A−Ae
in H , it follows that H is 3-connected. Thus 3.10.2 holds in case (iii).
By 3.10.2 and the choice of M , it follows that X ∪ X̃ = ∅. Thus N ′ = M ′ so

M ′=M=e\(A−Ae) and we deduce that, (M=e\(A−Ae); Ae) is a minimal pair. Moreover,
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by Lemmas 3.8 and 3.4, this minimal pair satis�es the hypotheses, and hence the
conclusion, of Proposition 3.1.

With a view to using the minimal pair (M;A ∪ e), the next result establishes that
�1(A;M) = �1(A ∪ e;M) for all e ∈ cl(A) − A. Recall that Ne is the component of
M |(A ∪ e) that contains e, and Se is the set of components of Ne\e.

Lemma 3.11. If e ∈ cl(A)− A; then |Se|= 1; that is; Ne\e is connected.

Proof. Assume that |Se|¿2. Then Ne\e is disconnected. Thus, by Lemma 2.7, Ne has
at most one triangle containing e. If there is no such triangle, then Ae = A. If there is
one such triangle {a; a′; e}, then {a; a′}⊆A and we may assume that Ae=A−a. Thus,
by Lemma 3.10, either (M=e; A) or (M=e\a; A−a) is a minimal pair (M ′; A′) satisfying
Proposition 3.1.
Clearly �A = k for some k in {0; 1} and �E = k + 1. Consider Ne again. Since

|Se|¿2, we have �1(M |(A ∪ e))¡�1(M |A). By Lemma 3.7, Ne is not a triangle.
Hence r(Ne=e)¿2. Thus, by Lemma 2.11(ii),

�1(M |A)− �1([M |(A ∪ e)]=e) + �2(M |A)− �2([M |(A ∪ e)]=e)¿1: (11)

But M ′|A′ is either (M=e)|A or (M=e)|(A−a), that is, [M |(A∪e)]=e or [M |(A∪e)]=e\a.
In the �rst case, we have, by (11), that

�1 + �2¿1: (12)

In the second case, [M |(A∪e)]=e is obtained from [M |(A∪e)]=e\a by adding a in par-
allel to a′. As r(Ne=e)¿2, it follows by Lemma 2.4 that �2([M |(A∪e)]=e)=�2([M |(A∪
e)]=e\a). Thus

�1([M |(A ∪ e)]=e) + �2([M |(A ∪ e)]=e) = �1([M |(A ∪ e)]=e\a)
+ �2([M |(A ∪ e)]=e\a)

and so (12) holds when M ′|A′=[M |(A∪ e)]=e\a. It now follows that ��¿1 otherwise
we obtain a contradiction by (7). Thus Lemma 3.5 implies that ��=1. From the same
lemma, since r(M)− r(A) = r(M ′)− r(A′), we deduce that A′ is a circuit of M ′, but
A is not a circuit of M . Thus one of A − a, (A − a) ∪ e, or A ∪ e is a circuit of M .
The last possibility leads to a contradiction to Lemma 3.7. If A − a is a circuit of
M , then it follows, since |Se|¿2, that {a; e} is a cocircuit of M |(A ∪ e) and again
we have a contradiction to Lemma 3.7. We may now assume that (A − a) ∪ e is
a circuit of M and M |(A ∪ e) has no 2-cocircuit containing e. Then [M |(A ∪ e)]∗
has rank two and has {e} as a parallel class. Therefore this matroid has A as a
cocircuit, so A is a circuit of M . This contradiction completes the proof of Lemma
3.11.

Lemma 3.12. For each e in cl(A)− A;
�2(A;M) = �2(A ∪ e;M):
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Moreover; either

(i) there is a matroid H in �2(Ne) that is isomorphic to U1;3 such that e ∈ E(H)
and Ne 6= H ; or

(ii) there are matroids H1 and H2 in �2(Ne) that are isomorphic to U2;4 and U2;3;
respectively; such that e ∈ E(H1) and E(H1) ∩ E(H2) is non-empty.

Proof. Let (M ′; A′) = (M;A ∪ e). Then, by Lemma 3.6, the proposition holds for the
minimal pair (M ′; A′). Let M1; M2; : : : ; Mk be the components of M |(A ∪ e) where
Mk = Ne. Then the components of M |A are M1; M2; : : : ; Mk−1; Mk\e since, by Lemma
3.11, Ne\e is connected. Hence �1 = 0. Moreover, it is not di�cult to see that

�2 = �2(A;M)− �2(A ∪ e;M) = �2(Ne\e)− �2(Ne):
Now suppose that �2(A;M)¿�2(A ∪ e;M). Then �2¿1. We also have that �E = 0

and �A =−1. It follows by (7) that �� = 1 otherwise we get a contradiction. Thus, by
Lemma 3.5, A ∪ e is a circuit of M and so M |(A ∪ e) has a 2-cocircuit containing e;
a contradiction to Lemma 3.7. We conclude that �2(A;M)6�2(A ∪ e;M) and so

�2(Ne\e)6�2(Ne):
Lemma 2.9(i) now implies that �2(Ne) = �2(Ne\e). Hence �2(A;M) = �2(A ∪ e;M).

Furthermore, it follows by Lemma 2.9(ii) that to complete the proof that (i) or (ii)
holds, it su�ces to show that e destroys some 2-separation of Ne\e. Since (M;A) is a
minimal pair, M\e has a 2-separation {X; Y}, say, and this 2-separation is destroyed
by e. Thus {X ∩E(Ne\e); Y ∩E(Ne\e)} is a 2-separation of Ne\e that is destroyed by e
provided that both |X∩E(Ne\e)| and |Y∩E(Ne\e)| exceed one. But if |X∩E(Ne\e)|61,
then Y ∩E(Ne\e) spans e, so Y spans e in M ; a contradiction. Hence |X ∩E(Ne\e)|¿2
and, similarly, |Y ∩ E(Ne\e)|¿2. We conclude that {X ∩ E(Ne\e), Y ∩ E(Ne\e)} is a
2-separation of Ne\e that is destroyed by e, and the lemma follows.

In the last part of the argument proving Proposition 3.1, we shall use Lemma 2.13,
which constructs an auxiliary graph to determine when a certain restriction of M is
3-connected. The next lemma veri�es that a crucial hypothesis of Lemma 2.13 holds.

Lemma 3.13. Every element e of cl(A)− A belongs to a triangle Te of M such that
Te − e is contained in a series class of M |A.

Proof. Suppose that Lemma 3.13 fails for the element e. By Lemma 3.12, we have
the following two cases to deal with.

(I) There is a matroid H in �2(Ne) that is isomorphic to U1;3 such that e ∈ E(H).
(II) There are matroids H1 and H2 in �2(Ne) that are isomorphic to U2;4 and U2;3,

respectively, such that e ∈ E(H1) and E(H1) ∩ E(H2) is non-empty.
In both cases, we shall prove that if Ae is a maximal subset of A for which

(M=e)|Ae has no parallel elements, then Ae can be chosen so that it contains a circuit C
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spanning e. Thus, in both cases, by Lemma 3.10, (M=e\(A−Ae); Ae) is a minimal pair
for which Proposition 3.1 holds. Since �E = �A+1, it follows by (7) that it su�ces to
prove, in both cases, that

�1 + �2¿1 (13)

and

��60: (14)

Assume that (I) occurs. Then Ne=e is disconnected and, by Lemma 2.12, it follows
that Ne=e has exactly two connected components, say (Ne=e)|X and (Ne=e)|Y . Moreover,
Ne is the parallel connection, with basepoint e of Ne|(X ∪e) and Ne|(Y ∪e). Let {V;W}
be a 2-separation of M\e. As X and Y span e, but neither V nor W spans e, it follows
that both V and W meet both X and Y . Let X ′=V ∩E(Ne) and Y ′=W ∩E(Ne). Then
|X ′|= |V ∩ X |+ |V ∩ Y |¿2, and, similarly, |Y ′|¿2. Hence {X ′; Y ′} is a 2-separation
of Ne\e. Moreover, {X; Y} is also a 2-separation of Ne\e. Let

F(Ne\e) = {X ∩ X ′; X ∩ Y ′; Y ∩ X ′; Y ∩ Y ′}:
Clearly |F(Ne\e)|= 4. Next we observe that min{|X |; |Y |}¿3. To see this, note that
if, say, |X |= 2, then X ∪ {e} is a triangle of M , and X is contained in a series class
of M |A; a contradiction to the assumption that Lemma 3.13 fails for e.
Next we shall make our choice for Ae so that M |Ae contains a circuit that spans e.

For each Z in {X; Y}, let NZ =Ne|(Z ∪ e). Now |F(Ne\e)|=4. Since Ne=e has exactly
two components, it follows, by Lemma 2.6, that J (Ne\e) is a 4-circuit. Therefore, NZ\e
is disconnected for each Z . Since NZ is connected, Lemma 2.7 implies that each NZ
has at most one triangle TZ such that e ∈ TZ , and TZ − e⊆Z ∩ A. As |Z |¿3, at least
one of Z ∩X ′ and Z ∩Y ′ has more than one element. By Lemma 2.7, when TZ exists,
it has an element aZ such that NZ\aZ is connected. When TZ does not exist, let aZ =e.
Now let Ae = A− {aX ; aY }. Then Ae is a maximal subset of A such that (M=e)|Ae has
no parallel elements. Moreover, Ne|[(Ae ∩ E(Ne)) ∪ e] is the parallel connection, with
basepoint e, of NX |[(Ae ∩ E(NX )) ∪ e] and NY |[(Ae ∩ E(NY )) ∪ e]. Since each of the
last two matroids is connected, it follows that Ne|[Ae ∩ E(Ne)] has a circuit spanning
e. Hence, by Lemma 3.10, (M=e\(A − Ae); Ae) is a minimal pair, (M ′; A′), for which
Proposition 3.1 holds.
Observe that the sets of connected components of M |A and M ′|Ae coincide except

for those meeting E(Ne). Thus �1 = −1 since Ne is a component of M |A whereas
Ne=e\(A−Ae) has exactly two connected components. Next we note that, since Lemma
3.13 fails for e, Lemma 2.8 implies that

�2(Ne\e) = �2(Ne=e) + 2:
But the elements of A−Ae are parallel to elements of Ae in Ne=e. Since each component
of Ne=e has at least three elements including at most one parallel pair, it follows that
�2(Ne=e) = �2(Ne=e\(A− Ae)). Thus �2(Ne\e) = �2(Ne=e\(A− Ae)) + 2, so �2 = 2 and
(13) holds. Assume that (14) fails, that is, ��¿1. Then, by Lemma 3.5, Ae is a circuit
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of M ′. But this is a contradiction since M ′|Ae has at least two connected components.
Hence both (14) and (13) hold in case (I).
Now consider case (II). First, we shall make our choice of Ae. Let f be the element

in both H1 and H2. Then f is in no other member of �2(Ne), and Ne is the 2-sum, with
basepoint f, of two matroids K1 and K2, where Hi ∈ �2(Ki) for each i. Moreover, K1
and K2 are both simple, since H1 and H2 are the only members of �2(Ne) containing
f, and both H1 and H2 are simple. To determine Ae, we need to locate the non-trivial
parallel classes of Ne=e. The last matroid is the 2-sum, with basepoint f, of K1=e and
K2. Since K2 is simple, Ne=e has no non-trivial parallel classes meeting K2. Consider
K1\f. Since H1 is a 4-point line containing e and f, we see that H1\f is connected
and H1\f\e is disconnected. But K1 can be obtained from H1 by attaching matroids at
one or both of the elements in E(H1)− {e; f} using 2-sums. Thus K1\f is connected
and K1\f\e is disconnected. Hence, by Lemma 2.7, K1\f has at most one triangle
containing e. Thus Ne=e has at most one non-trivial parallel class meeting E(K1\f) and
this class has at most two elements. Therefore, either (i) we can choose Ae=A, or (ii)
K1\f has a triangle T containing e and T − e⊆A. Consider the second case. We may
assume that K1 6= H1 otherwise E(H1)−f is a triangle containing e, and E(H1)−{f; e}
is contained in a series class of M |A; a contradiction. Thus |E(K1\f)| 6= 3. Therefore,
by Lemma 2.7, T−e contains an element a of A such that K1\f\a is connected. Since
K1\e\a is isomorphic to K1\f\a under the map that takes f to e and �xes every other
element, K1\e\a is connected. Therefore Ne\{e; a} is connected since it is the 2-sum,
with basepoint f, of K1\e\a and K2. Thus, in case (ii), we can choose Ae=A−a and
check that Ne|(Ae ∩ E(Ne)) has a circuit spanning e. We deduce that either
(i) Ae = A; or
(ii) Ae = A− a and {a; e; a′} is a triangle of M for some a′ in A.

In both cases, by Lemma 3.10, (M=e\(A−Ae); Ae) is a minimal pair, (M ′; A′), satisfying
Proposition 3.1.
Now Ne=e is connected. Thus M |A and M ′|A′ have the same number of connected

components. Hence

�1 = 0:

Next consider �2. Let M1; M2; : : : ; Mk be the connected components of M |(A ∪ e)
where Ne =Mk . As e ∈ E(H1) and both H1\e and H1=e are 3-connected,

�2(Ne\e) = (�2(Ne)− {H1}) ∪ {H1\e} (15)

and

�2(Ne=e) = (�2(Ne)− {H1}) ∪ {H1=e}: (16)

Now the elements of A−Ae are parallel to elements of Ae in Ne=e and this matroid is
connected of rank at least two. Thus �2(Ne=e)=�2(Ne=e\(A−Ae)). As M1; M2; : : : ; Mk−1
are connected components of both M |A and M ′|A′, it follows that

�2 = �2(A;M)− �2(Ae;M ′) = �2(Ne\e)− �2(Ne=e):
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Thus,

�2 = 1;

by (15) and (16), because H1\e is isomorphic to U2;3, and therefore contributes one
to �2(Ne\e), and H1=e is isomorphic to U1;3 and so does not contribute to �2(Ne=e).
We now know that �1 + �2 = 1, that is, (13) holds. Assume that (14) fails, that is,

��¿1. Then, by Lemma 3.5, Ae is a circuit of M ′ but A is not a circuit of M . Thus
one of A− a; (A− a) ∪ e, or A ∪ e is a circuit of M . The third possibility contradicts
Lemma 3.7. In the other two cases, {a; a′; e} is a triangle of M . If (A − a) ∪ e is a
circuit of M , then, from considering [M |(A ∪ e)]∗, it is not di�cult to see that {a′; e}
is a cocircuit of M |(A∪e), again contradicting Lemma 3.7. Hence we may assume that
A− a is a circuit of M . Since it is also a circuit of M=e, it follows that e is a coloop
of M |[(A − a) ∪ e]. But the circuit {a; a′; e} now implies that {a; e} is a cocircuit of
M |(A ∪ e). This contradiction to Lemma 3.7 completes the proof that (14) holds in
case (II) and thereby �nishes the proof of Lemma 3.13.

We shall use the last lemma to show, in Lemma 3.15, that A is non-spanning. The
next lemma proves a preliminary step towards this goal,

Lemma 3.14. If cl(A) = E(M); then A is a circuit.

Proof. As E(M) − A 6= ∅, it follows from Lemma 3.13 that M |A has a non-trivial
series class S. If S = A, then the result is immediate. Hence we may suppose that
S 6= A. Thus {S; A − S} is a 1- or 2-separation of M |A. Note that every element
of M is spanned by S or A − S, because every series class of M |A is contained
in one of these sets. Thus {cl(S); E(M) − cl(S)} is a 1- or 2-separation of M ; a
contradiction.

Lemma 3.15. E(M)− cl(A) 6= ∅.

Proof. Suppose that A is spanning. Then, by Lemma 3.14, A is a circuit of M . Now
consider the graph G(A;M) with edge set E(M)−A and vertex set A, which is de�ned
just before Lemma 2.13. As M is 3-connected, Lemmas 3.13 and 2.13 imply that, for
the graph G(A;M), either (i) it is connected, or (ii) it is disconnected having exactly
two components, one an isolated vertex. But (M;A) is a minimal pair. Hence, for all
elements e of E(M) − A, the matroid M\e is not 3-connected, so G(A;M\e), which
equals G(A;M)\e, satis�es neither (i) nor (ii). We conclude that G has no cycles and
has exactly two components. Thus the number of edges of G is two less than the
number of vertices. Hence |E(M)− A|= |A| − 2. Now M |A is a circuit, so

�1(A;M) + �2(A;M)− �(A;M) = 1 + (|A| − 2)− 1 = |A| − 2;
and we obtain a contradiction since it follows that (M;A) does satisfy the
proposition.
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Let S1; S2; : : : ; Sm be the non-trivial series classes of M |A. The following lemma,
whose proof is heavily based on Lemma 2.13, will quickly yield a �nal contradiction,
namely that (M;A) is not a counterexample to the proposition.

Lemma 3.16. There is a partition P1; P2; : : : ; Pm of E(M)− A such that

|Pi|6
{ |Si| − 2 when Si is a circuit of M |A;
|Si| − 1 when Si is not a circuit of M |A:

Proof. For each non-trivial series class Si that contains Rj for some j, we can take
Pi = Fj − Rj = {fj0; fj2}. Then either Si = Rj, or Si =Qj. In each case, the bound on
|Pi| holds. Since every element of E(M)− cl(A) is contained in one of the fans, Ft , it
only remains to partition cl(A)− A.
By Lemma 3.13, each element of cl(A) − A is in a triangle Te such that Te − e

is contained in a series class of M |A. Thus, the graph G(A;M) de�ned prior to
Lemma 2.13 has vertex set A and edge set cl(A) − A. Let G1; G2; : : : ; Gk be the con-
nected components of G(A;M) having at least one edge. By the de�nition of G(A;M),
it follows that each V (Gj) is contained in a series class Si of M |A. By orthogo-
nality, such an Si avoids Rt for all t. We de�ne Pi to be the union of the sets
E(Gj) for which V (Gj)⊆ Si. We now abbreviate V (Gj) and E(Gj) as Vj and Ej,
respectively.
First we show the following:

3.16.1. For all j; the set Vj is not a circuit of M |A.

Suppose that Vj is a circuit of M |A for some j. Then |Vj|¿3. Assume that |Vj|=3.
Then Vj is a triangle of M and so, if e ∈ Ej, then M |(Vj ∪ e) is a 4-element simple
rank-2 matroid and so is isomorphic to U2;4. Hence M\e is 3-connected; a contradiction
to the fact that (M;A) is a minimal pair. We may now assume that |Vj|¿4. Consider
the matroid Mj=M |(Vj∪Ej). The graph G(Vj;Mj) coincides with the connected graph
Gj and so, by Lemma 2.13, Mj is 3-connected. Furthermore, either Gj is a tree or not.
In each case, we show that Mj has an element e such that Mj\e is 3-connected. In the
�rst case, we choose e to be an edge of Gj meeting a degree-one vertex. Then Gj\e
has two components, one an isolated vertex. Since Gj\e = G(Vj;Mj\e), Lemma 2.13
implies that Mj\e is indeed 3-connected. Now suppose that Gj is not a tree. Then Gj
has an edge e such that Gj\e is connected and Lemma 2.13 again implies that Mj\e
is 3-connected.
Consider M\e. It has a 2-separation {X; Y}. Since {X ∩ E(Mj); Y ∩ E(Mj)} is not

a 2-separation of Mj, we may assume that |X ∩ E(Mj)|61. Now Te − e must meet
both X and Y since neither X nor Y spans e. Thus Te − e meets both X ∩ E(Mj) and
Y ∩E(Mj). Thus X ∩E(Mj)={a} for some a in Te−e. Hence Vj ∩Y ∩E(Mj)=Vj−a
so this set spans a and hence spans e. Thus Y spans e. This contradiction completes
the proof of 3.16.1.
Most of the rest of the proof of Lemma 3.16 will be devoted to proving the following:
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3.16.2. For all j; the graph Gj is a tree.

If |Ej| = 1, then 3.16.2 certainly holds. Thus we may assume that |Ej|¿2.
Let C be a circuit of M |A that contains Vj. By 3.16.1, C 6= Vj. As a step towards
3.16.2, we now prove that

3.16.3. C − Vj is contained in a series class of M |(C ∪ Ej).

To see this, note �rst that M |(C ∪ Ej) is connected since it has C as a spanning
circuit. Hence r(M |(C∪Ej))=|C|−1. Consider the partition {Vj; C−Vj} of C. Certainly
|Vj|¿2. Moreover, we may assume that |C − Vj|¿2 otherwise 3.16.3 is immediate.
Since Vj spans Ej, and both Vj and C − Vj are independent, we have

1 + r(M |(C ∪ Ej)) = |C|= |Vj|+ |C − Vj|
= r(Vj) + r(C − Vj) = r(Vj ∪ Ej) + r(C − Vj):

Thus {Vj ∪ Ej; C − Vj} is a 2-separation of M |(C ∪ Ej) so
r(C − Vj) + r∗(C − Vj)− |C − Vj|= 1:

As r(C−Vj)= |C−Vj|, it follows that r∗(C−Vj)=1. Since M |(C ∪Ej) is connected,
we conclude that 3.16.3 holds.
Now, for each c in C − Vj, de�ne

Hc = [M |(C ∪ Ej)]=[C − (c ∪ Vj)];
noting that 3.16.3 implies that, up to isomorphism, Hc is independent of the choice
of c. More speci�cally, if c and d are distinct elements of C − Vj, then there is an
isomorphism from Hc to Hd that maps c to d and �xes every other element.
We show next that

3.16.4. Hc is 3-connected.

Consider G(Vj ∪ c; Hc). It is not di�cult to see that this graph is the subgraph
of G(A;M) induced by the set Vj ∪ c of vertices. As |Ej|¿2, we have |Vj|¿3, so
|Vj ∪ c|¿4. We show next that Hc is simple. This follows by 3.16.3 provided we can
show that Hc has no 2-circuit containing c. Hence suppose that {c; z} is a 2-circuit of
Hc. Then (C−Vj)∪ z is a circuit of M . Since this circuit cannot properly be contained
in C, it follows that z ∈ Ej. Let a and b be the end-vertices of z in G(Vj∪c; Hc). Then
{a; b; z} is a circuit of M . Hence, by circuit elimination, {a; b} ∪ (C − Vj) contains a
circuit of M that, since |Vj|¿3, is properly contained in C. This contradiction completes
the proof that Hc is simple. But G(Vj∪c; Hc) has two components, one of which consists
of the isolated vertex c. We may now apply Lemma 2.13 to deduce that 3.16.4 holds.
We now show that, for all e in Ej,

3.16.5. Hc\e is not 3-connected.
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Suppose that Hc\e is 3-connected for some e. Then, as M\e has a 2-separation
{X; Y} but {X ∩E(Hc); Y ∩E(Hc)} cannot be a 2-separation of Hc\e, we may assume
that |X∩E(Hc)|61. Then, as Te−e meets both X and Y , it follows that X∩E(Hc)={a}
for some a in Te − e.
We observe next that

C − Vj * Y;

for, if C − Vj ⊆Y , then, as X ∩ E(Hc) = {a}, it follows that C − a⊆Y . Hence Y
spans C and so spans e; a contradiction. We conclude that (C − Vj) ∩ X contains an
element d. Then, as X ∩ E(Hc) = {a}, we deduce that X ∩ E(Hd) = {d; a}. Hence
min{|X ∩ E(Hd)|; |Y ∩ E(Hd)|}¿2 and so {X ∩ E(Hd); Y ∩ E(Hd)} is a 2-separation
of Hd\e. The isomorphism between Hd\e and Hc\e that maps d to c and �xes every
other element implies that Hc\e is not 3-connected. Hence 3.16.5 holds.
The graph G(Vj ∪ c; Hc) is the disjoint union of Gj and the isolated vertex c. More-

over, since, by 3.16.5, Hc\e is not 3-connected, Lemma 2.13 implies that G(Vj∪c; Hc\e)
which equals G(Vj∪c; Hc)\e, must have more than two components. Thus Gj\e is dis-
connected for all e in Ej, and 3.16.2 follows.
To complete the proof of Lemma 3.16, we need to verify that the speci�ed inequality

holds for a series class Si that contains no Rt . In this case, recall that Pi equals the
union of the sets Ej for all Gj such that Vj ⊆ Si. Thus

|Pi|=
∑
Vj ⊆ Si

|Ej|:

But

|Si|=
∑
Vj ⊆ Si

|Vj|+ |S ′i |

where S ′i is the set of isolated vertices of G(A;M) that are in Si. Since each Gj is a
tree, |Ej|= |Vj| − 1 for all j. Thus, if p is the number of components Gj of G(A;M)
such that Vj ⊆ Si, then

|Pi|=
∑
Vj ⊆ Si

(|Vj| − 1) = |Si| − p− |S ′i |:

The inequality in Lemma 3.16 certainly holds if p+|S ′i |¿2, so assume that p+|S ′i |61.
Then |S ′i | = 0 and Si = Vj for some j. But, in this case, by 3.16.1, Si is not a circuit
of M |A and again the desired inequality holds.

We are now able to complete the proof of Proposition 3.1 and hence that of
Theorem 1.3.
Clearly we may adjust the labelling so that S1; S2; : : : ; St are circuits and

St+1; St+2; : : : ; Sm are not. Then M |A is the direct sum of M |S1; M |S2; : : : ; M |St ,
and M |[A − (S1 ∪ S2 ∪ · · · ∪ St)] where the last matroid is the 2-sum of a certain
matroid M ′ with m − t circuits of sizes |St+1| + 1; |St+2| + 1; : : : ; |Sm| + 1. Thus, by



M. Lemos, J. Oxley /Discrete Mathematics 218 (2000) 131–165 161

Lemma 3.16, there is a partition P1; P2; : : : ; Pm of E(M)− A such that

|Pi|6
{ |Si| − 2 when 16i6t;
|Si| − 1 when t + 16i6m:

Since, for every circuit C with at least three elements, we have �2(C) = |C| − 2, it
follows that

�1(A;M) + �2(A;M) =
t∑
i=1

�1(Si;M) +
t∑
i=1

�2(Si;M) + �1

(
A−

t⋃
i=1

Si;M

)

+ �2

(
A−

t⋃
i=1

Si;M

)

¿ t +
t∑
i=1

(|Si| − 2) + 1 +
m∑

i=t+1

(|Si| − 1)

¿ t + 1 +
m∑
i=1

|Pi|

= t + 1 + |E(M)− A|:
But, by Lemma 3.15, �(A;M) = 1. Since t¿0, we obtain the contradiction that
(M;A) is not a counterexample to the proposition thereby completing the proof of
Proposition 3.1.

Proof of Theorem 1.3. Observe that (M;A) is a minimal pair where M 6∼=U1;3 and A
is non-empty and spanning. Then (M;A) satis�es the hypotheses of Proposition 3.1.
Hence if A is not a circuit, then

|E(M)|6|A|+ �1(A;M) + �2(A;M)− 2;
while, if A is a circuit, then

|E(M)|6|A|+ �1(A;M) + �2(A;M)− 1:
But, in the latter case, �1(A;M)= 1 and either |A|¿4 and �2(A;M)= |A| − 2, or |A| ∈
{1; 2; 3}. The �rst possibility implies that |E(M)|62|A| − 2 as required. The second
possibility implies that M =M |A so |E(M)|6|A|+ �1(A;M) + �2(A;M)− 2.

4. Proof of Theorem 1:4

In this section, we show that Theorem 1.3 is best-possible by proving Theorem 1.4.

Proof of Theorem 1.4. Our proof will actually establish that the theorem holds as
long as N is simple but not free, that is, we allow N to be a circuit. We shall assume
that N is not 3-connected otherwise we take M = N and the result holds. Now N is
constructed from the collection of matroids in �2(N ) by a certain sequence of direct
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sums and 2-sums of pairs of matroids. It will be more convenient to deal with a
matroid that is constructed by a sequence of direct sums and parallel connections, and
we �rst describe how to obtain this matroid. Each 2-sum can be obtained by taking
the parallel connection of two matroids across some basepoint and then deleting the
basepoint. Let N1 be the matroid that is constructed from �2(N ) by replacing each
2-sum operation by the corresponding parallel connection. Thus all the basepoints are
retained rather than being deleted. Since �2(N ) may include copies of U1;3, there may
be some non-trivial parallel classes in N1. Each such parallel class P contains at most
one member of E(N ). Moreover, P contains more than one member of some H in
�2(N ) if and only if H ∼=U1;3. Let P1; P2; : : : ; Pn be the non-trivial parallel classes of
N1. For each i, let the element pi be chosen as follows: if E(N ) ∩ Pi is non-empty,
pick pi to be the unique member of this set; otherwise choose pi arbitrarily in Pi.
If H ∈ �2(N ) but H 6∼=U1;3, then, for each i such that E(H) ∩ Pi is non-empty, we
relabel the unique element of E(H) ∩ Pi by pi. Let the resulting matroid be H ′ and
let �′

2 = {H ′ : H ∈ �2(N ) and H 6∼=U1;3}.
Let N ′ = N1\(

⋃n
i=1(Pi − pi)): Then N ′ is simple and can be constructed from the

members of �′
2 by a sequence of direct sums and parallel connections, the basepoints of

which are p1; p2; : : : ; pn. We remark that the operation of parallel connection [3] allows
arbitrarily many matroids to be simultaneously joined across a common basepoint.
Clearly N can be obtained from N ′ by deleting those pi that are not in E(N ).
The next step in the construction of a matroid M for which (M;A) is a minimal pair

uses a simple auxiliary graph G(N ) that we now describe. The vertices of G(N ) are
the elements of �′

2, and two di�erent such vertices H1 and H2 are joined by an edge
in G(N ) when E(H1) ∩ E(H2) 6= ∅. If we label such an edge by the unique element
of E(H1) ∩ E(H2), then we observe that all the edges with a common label induce a
complete graph, which is a block of G(N ). Now the graph constructed so far need not
be connected. Let G1; G2; : : : ; Gk be its connected components where we may assume,
since N is not a free matroid, that G1 has a vertex H1 such that |E(H1)|¿3. Let L1
be a vertex of an endblock of G1 where L1 is not a cut-vertex of G1. We complete
the construction of G(N ) by adding, for each i in {2; 3; : : : ; k}, a new edge fi which
joins L1 to a vertex Li of an endblock of Gi, where Li is not a cut-vertex of Gi.
We observe that each block of G(N ) is a complete graph in which all edges have a
common label.
The structure of G(N ) means that we can choose a spanning tree T of this graph

such that, for each endblock Z of G(N )\{f1; f2; : : : ; fk}, the edges of T in Z form
a path P(Z) for which (i) one end is the vertex of Z that is a cut-vertex of G(N ),
and (ii) when Li is a vertex of Z , the other end of P(Z) is Li. Observe that T must
contain all of the edges f2; f3; : : : ; fk . We extend the matroid N ′ as follows, noting
that each added element is canonically associated with an edge of T .

(i) For each edge x of E(T )−{f2; f3; : : : ; fk}, if x has endpoints H1 and H2, choose
aH1 and aH2 in E(H1)−E(H2) and E(H2)−E(H1), respectively, and add ex freely
on the line spanned by {aH1 ; aH2}.
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(ii) For each i in {1; 2; : : : ; k}, let xi and yi be elements of E(Li), neither of which is
a basepoint of any of the parallel connections that formed N ′. Choose xi and yi
to be distinct subject to these conditions unless Li is the unique vertex of Gi and
|E(Li)|= 1: In the exceptional case, let xi = yi. Add elements x1; i and y1; i freely
on the lines {x1; xi} and {y1; yi}, respectively.

Let M1 be the matroid that is obtained after all these elements have been added.

Lemma 4.1. M1 is 3-connected.

Proof. We argue by induction on |E(T )|. If |E(T )|=0, then G(N ) has just one vertex,
so N is 3-connected and M1 = N . Thus the lemma holds when |E(T )|= 0. Assume it
holds when |E(T )|¡n and suppose that |E(T )|= n¿1. We show next that

4.1.1. E(T ) = {f2; f3; : : : ; fn}.

Assume that T has an edge other than f2; f3; : : : ; fn. Choose such an edge x that
is incident with a degree-one vertex of T but is not incident with any Li. This can
be done unless each Gi consists of either a single vertex or a single edge. In the
exceptional case, choose x to be the unique edge of some Gi.
Suppose that x joins the vertices H1 and H2 of G(N ). Let H=M1|(E(H1)∪E(H2)∪ex).

Then H\ex is the parallel connection of two simple 3-connected matroids H1 and H2,
and ex is freely added on the line spanned by {aH1 ; aH2} where aH1 and aH2 are elements
of E(H1)− E(H2) and E(H2)− E(H1), respectively. Thus H is certainly connected.
Next we prove that

4.1.2. H is 3-connected.

To see this, let {X; Y} be a 2-separation of H . Then min{|X ∩E(Hi)|; |Y∩E(Hi)|}61
for each i because Hi is 3-connected. As min{|E(H1)|; |E(H2)|}¿3, we may assume
that |X ∩E(H2)|61 and |Y ∩E(H1)|61. Then X and Y span H1 and H2, respectively.
Thus

r(H) + 1¿r(X ) + r(Y )¿r(H1) + r(H2) = r(H) + 1

and so equality holds throughout. Since neither E(H1) nor E(H2) spans ex, we deduce
that neither X nor Y contains ex. This contradiction completes the proof of 4.1.2.
Let N ′′ =M1|(E(N ′)∪ ex): Then �′

2(N
′′) = (�′

2(N
′)−{H1; H2})∪ {H}, and G(N ′′)

can be obtained from G(N ) by contracting the edge x and simplifying the resulting
graph. Moreover, T=x is a spanning tree of G(N ′′). Thus M1 can be obtained from
N ′′ using T=x in just the same way that M1 was obtained from N ′ using T . Since T=x
has fewer edges than T , the induction assumption implies that M1 is 3-connected. We
conclude that 4.1.1 holds otherwise the lemma holds.
By 4.1.1, every component of N is 3-connected. Then, arguing as in [9, (4:1)], we

get that M1|(E(L1) ∪ E(Li) ∪ {x1; i ; y1; i}) is 3-connected for all i. It follows, by [10],
that M1 is 3-connected.
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We show next that

Lemma 4.2. (M1; E(N ′)) is a minimal pair.

Proof. Consider how N ′ is extended to give M1. First note that E(N ′) spans M1. Thus
it su�ces to prove that, for each element e of E(M1) − E(N ′), the matroid M1\e is
not 3-connected. Now, for such an element e, either (i) e = ex for some edge x of
E(T )−{f2; f3; : : : ; fk}; or (ii) e ∈ {x1; i ; y1; i} for some i in {2; 3; : : : ; k}. In each case,
consider the graph T − x where x = fi in case (ii). Let VX and VY be the vertex sets
of the components of T − x, and let X =⋃H∈VX E(H) and Y =E(N

′)−X . For each Z
in {X; Y}, let Z ′ be obtained from Z by adjoining those elements that are associated
with edges of T having both endpoints in Z . Evidently Z ′ is spanned by Z .
Consider {X ′; Y ′}. In case (ii), it is a 1-separation of M1\{x1; i ; y1; i}. In case (i), the

construction of M1 implies that {X ′ − x; Y ′ − x} is a 1-separation of M1\ex=x since x
is the basepoint of a parallel connection in N ′. Therefore, in each case, M1\e is not
3-connected. We conclude that Lemma 4.2 holds.

To complete the proof of Theorem 1.4, let M be obtained from M1 by deleting
a subset S of E(N ′) − E(N ) such that, for all e in E(N ′) − (E(N ) ∪ S), the matroid
M\e is not 3-connected. Then, since E(N ) spans M , it follows that (M;E(N )) is a
minimal pair. Now, |V (T )| = |V (G(N ))| = �2(N ) and �1(N ) = k. Moreover, by
construction,

|E(M1)| − |E(N ′)|= [|E(T )| − (k − 1)] + 2(k − 1)
= [(|V (T )| − 1)− (k − 1)] + 2(k − 1)
= [(�2(N )− 1)− (�1(N )− 1)] + 2(�1(N )− 1)
= �1(N ) + �2(N )− 2:

But

|E(N ′)| − |E(N )|¿|S|= |E(M1)| − |E(M)|:
Thus

06 (|E(N ′)| − |E(N )|)− (|E(M1)| − |E(M)|)
= (|E(M)| − |E(N )|)− (|E(M1)| − |E(N ′)|):

Hence |E(M)|−|E(N )|¿�1(N )+�2(N )−2: But, by Theorem 1.3, the reverse inequality
also holds. Hence equality holds and the theorem is proved.
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