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Note

On the non-uniqueness of q-cones of matroids
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Abstract

Let M be a rank-r simple GF(q)-representable matroid. A q-cone of M is a matroid M ′ that
is constructed by embedding M in a hyperplane of PG(r; q), adding a point p of PG(r; q) not
on H , and then adding all the points of PG(r; q) that are on lines joining p to an element of M .
If r(M)¿ 2 and M is uniquely representable over GF(q), then M ′ is unique up to isomorphism.
This note settles a question made explicit by Kung by showing that if r(M) = 2 or if M is not
uniquely representable over GF(q), then M ′ need not be unique. c© 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The matroid terminology used here will follow Oxley [5] with one exception that
will be discussed in detail beginning in the third paragraph. The construction, described
in the abstract, of a q-cone of a simple GF(q)-representable matroid M is a natural
one. It was introduced by Whittle [6], who called the construction a q-lift. He showed
that every q-cone of a tangential k-block over GF(q) is a tangential (k+1)-block. The
operation also appears in [3, p. 36] where it is called framing. Implicit in Whittle’s
paper is the question of whether non-isomorphic matroids can arise as q-cones of the
same matroid M . This problem was made explicit by Kung [4, p. 103]. The purpose
of this note is to solve this problem.
If M is a rank-r simple GF(q)-representable matroid, then M ′ is a q-cone of M with

base E and apex p if the following conditions hold:
(i) E is a set of points of PG(r; q) such that M ∼= PG(r; q)|E;
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(ii) p is a point of PG(r; q) that is not contained in the subspace of PG(r; q) spanned
by E; and

(iii) the elements of M ′ are all of the points of PG(r; q) that lie on lines through p
and some element of E.

Kung [4, p. 102] noted that it is easy to see that, for �xed E, altering the choice
of p subject to (ii) produces a matroid isomorphic to M ′. One can also change E
and still obtain a matroid isomorphic to M ′ but, to state this observation more pre-
cisely, we shall need to discuss equivalent representations of matroids. Our discussion
is somewhat extended since we wish to clarify the relationship between several notions
of equivalence in the literature. Let M be a rank-r matroid on the set {e1; e2; : : : ; en}
where r¿1. Let A1 and A2 be r × n matrices over GF(q) with the columns of each
being labelled, in order, by e1; e2; : : : ; en. Assume that, for each i in {1; 2}, the identity
map on {e1; e2; : : : ; en} is an isomorphism between M and M [Ai], the vector matroid
of Ai. We de�ne A1 and A2 to be algebraically equivalent GF(q)-representations of
M if A2 can be obtained from A1 by a sequence of operations each consisting of an
elementary row operation, a column scaling, or, for some arbitrary automorphism 
of GF(q), the replacement of every matrix entry by its image under . Moreover, we
de�ne A1 and A2 to be geometrically equivalent GF(q)-representations of M if the
map that takes each column of A1 to the corresponding column of A2 is induced by
an automorphism of the matroid corresponding to PG(r− 1; q). Such an automorphism
of PG(r − 1; q) is a permutation of the set of subspaces that preserves dimension and
inclusion. Equivalently, it is a permutation of the set of points of PG(r − 1; q) that
maps lines to lines. The last de�nition accounts for the name collineation for such
maps. It is a consequence of the Fundamental Theorem of Projective Geometry (see,
for example, [1, p. 44] or [2, p. 655]) that, when r 6= 2, the representations A1 and
A2 are algebraically equivalent if and only if they are geometrically equivalent. Thus,
when r 6= 2, these two notions of equivalence coincide and it is conventional to refer to
this common notion as simply equivalence (or sometimes projective equivalence [4]).
However, when r = 2, the situation is less clear. The collineation group of PG(1; q)
is the symmetric group and therefore two representations may be geometrically equiv-
alent without being algebraically equivalent. Although Oxley [5, pp. 185–189] used
‘equivalent’ to mean ‘geometrically equivalent’, we shall use equivalent here to mean
‘algebraically equivalent’. To complete the picture, we note that there is yet another
notion of equivalence: A1 and A2 are strongly equivalent if A2 can be obtained from
A1 by a sequence of the matrix operations described above without applying a �eld
automorphism. Thus A1 and A2 are strongly equivalent if and only if there is a lin-
ear transformation � of V (r; q) and a sequence c1; c2; : : : ; cn of non-zero elements of
GF(q) such that v(2)j = cj�(v

(1)
j ) for all j where v

(i)
j is the jth column of Ai. The last

assertion remains true if we replace ‘strongly equivalent’ and ‘linear transformation’
by ‘equivalent’ and ‘semilinear transformation’ [5, p. 186].
Kung [4, p. 102] noted that the q-cones of two equivalent GF(q)-representations of

a matroid M are isomorphic. The question that he asked is whether two inequivalent
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GF(q)-representations of M must always produce isomorphic q-cones. We answer this
question negatively in the next section. Because, as described above, the rank-2 case
is special, we give two examples, one when M has rank 2, and a second when M has
rank 3.

2. The examples

Let M� be a 4-point line represented over GF(9) by the matrix


0 1 1 1
1 0 1 �
0 0 0 0


 ;

where � is in GF(9)− {0}. Let p= (0; 0; 1)T and let M ′
� be the 9-cone of M� having

base E(M�) and apex p.

Theorem 2.1. If � ∈ GF(9) − GF(3); then M ′
� and M

′
−1 are non-isomorphic 9-cones

of a 4-point line.

Proof. Assume the contrary. Since p is the unique point in each of M ′
� and M

′
−1

lying on four 10-point lines, the isomorphism between M ′
� and M

′
−1 must map p to p.

Clearly M ′
−1 has a restriction that is isomorphic to PG(2; 3) and uses p. Hence, M

′
�

has a restriction N that is isomorphic to PG(2; 3) and uses p.
The 12 points of E(N ) − {p} lie, three to a line, on the four lines L1; L2; L3; and

L4 through p and each of (0; 1; 0)T; (1; 0; 0)T; (1; 1; 0)T; and (1; �; 0)T, respectively. Let
(1; �; a)T be a point of N from L4, and let (0; 1; b1)T; (0; 1; b2)T; and (0; 1; b3)T be the
points of N \p on L1. Then it is not di�cult to check that, for each i in {1; 2; 3}, the
line through (0; 1; bi)T and (1; �; a)T meets L2 and L3 in (1; 0; a−�bi)T and (1; 1; a+bi−
�bi)T, respectively (see Fig. 1). Then, since N ∼= PG(2; 3), without loss of generality,
(0; 1; b1)T, (1; 0; a − �b2)T; and (1; 1; a + b3 − �b3)T are collinear. This implies that
(0; 1; b2)T, (1; 0; a − �b1)T; and (1; 1; a + b3 − �b3)T are collinear. The �rst of these
two lines implies that b3(1 − �) = b2 − �b1, while, by symmetry, the second implies
that b3(1 − �) = b1 − �b2. Combining these two equations gives b2 − �b1 = b1 − �b2,
so (1 + �)b2 = (1 + �)b1. As � ∈ GF(9) − GF(3), we deduce that b2 = b1; a con-
tradiction.

Let N1 and N2 be the rank-3 matroids for which geometric representations are shown
in Fig. 2. For all prime powers q¿4, both N1 and N2 are GF(q)-representable. For
each i in {1; 2}, let Mi=Ni|{a1; a′1; b1; b′1; c1; c′1}. Evidently, M1=M2. For each i, let N ′

i

be the q-cone of Ni with apex p and base E(Ni). For each d in {a; b; c}, let the lines
through p and d1 and through p and d′1 be {d1; d2; : : : ; dq; p} and {d′1; d′2; : : : ; d′q; p},
respectively.
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Fig. 1. The points of N and some of its lines.

Fig. 2. The matroids N1 and N2.

Lemma 2.2. In M ′
1; suppose that both {ai; a′j; bk ; b′l} and {bk ; b′l; cm; c′n} are circuits.

Then so is {ai; a′j; cm; c′n}.

Proof. The plane Pab of N ′
1 spanned by {ai; a′j; bk ; b′l} meets the line spanned by {p; t}

in a single point, t′. Since t′ also lies in the plane Ppb of N ′
1 spanned by {p; bk ; b′l},

we deduce that {t′; bk ; b′l}⊆Pab ∩ Ppb, so t′; bk ; and b′l are collinear. Similarly, t′; ai;
and a′j are collinear, and t

′; cm; and c′n are collinear. We deduce that {ai; a′j; cm; c′n} is
a circuit of M ′

1.

Theorem 2.3. M ′
1 and M

′
2 are non-isomorphic q-cones of M1.
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Proof. It su�ces to show that M ′
2 does not satisfy the condition in the preceding

lemma. In N ′
2, consider the lines through p and tab, through p and tac, and through

p and tbc. Let t′ab; t
′
ac; and t

′
bc be points of these lines di�erent from p. The plane P′

spanned by {t′ab; t′ac; t′bc} meets the plane spanned by {p; a1; a′1} in the line spanned by
t′ab and t

′
ac, and this line contains a unique ai and a unique a

′
j. Likewise, P

′ contains
a unique bk , a unique b′l, a unique cm, and a unique c

′
n.

Let t′′ab be a point on the line spanned by p and tab that is di�erent from both p and
t′ab. Then the plane P

′′ spanned by {t′′ab; t′ac; t′bc} contains {cm; c′n} and {au; a′v} for some
u and v distinct from i and j, respectively, where t′′ab; t

′
ac; au; and a

′
v are collinear. Since

t′ab; t
′
bc; bk ; and b

′
l are collinear, the set {au; a′v; bk ; b′l} spans {t′′ab; t′ab; t′ac; t′bc}. But the last

set has rank 4, so {au; a′v; bk ; b′l} is not a circuit of M ′
2. However, both {au; a′v; cm; c′n}

and {bk ; b′l; cm; c′n} are circuits of M ′
2. We conclude that M

′
2 fails to satisfy the condition

of the last lemma, so M ′
2 6∼= M ′

1.
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