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Abstract. Dominic Welsh began writing papers in matroid theory al-
most forty years ago. Since then, he has made numerous important con-
tributions to the subject. His book Matroid Theory provided the first
comprehensive treatment of the subject and has served as an invaluable
reference to many workers in the field. Dominic’s work on matroids has
been characterized by his ability to build bridges between the subject
and other areas of mathematics, by his talent for identifying tantalizing
problems and making interesting conjectures that draw others in, by his
infectious enthusiasm for problem solving that he has passed on to so
many students, and by his writing on the subject that has popularized
it making it both comprehensible and accessible. This paper reviews
Dominic Welsh’s work in and influence on the development of matroid
theory.

1. Introduction

This year marks the seventieth anniversary of Whitney’s founding paper
in matroid theory [114]. The subject is now old enough to review its de-
velopment and, in the present context, to describe the influence of Dominic
Welsh on this development. There seem to be three notable groups of people
that one can distinguish when discussing the development of matroid theory.
First among these are the foundation layers, Whitney, of course, but also
Birkhoff and Mac Lane. Their work and that of the other early contributors
to matroid theory are reviewed in Joseph Kung’s A Source Book in Matroid
Theory [37]. The second group, the trailblazers, proved the major theorems
in the subject. This group was led by Tutte, who was followed by Edmonds,
then Seymour, and, very recently, by Geelen, Gerards, and Whittle. The
third group, the bridge builders, consolidated the subject and developed its
infrastructure by linking it to other areas of mathematics, by writing about
it and thereby making it accessible to a broad audience, by challenging the
workers inside and outside the area with tantalizing problems, and by in-
fusing generations of students with enthusiasm for the subject. Two people
stand out as clear leaders of the third group, the late Gian-Carlo Rota and
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Dominic Welsh. This paper attempts to provide an overview of the many
important contributions that Dominic Welsh has made to matroid theory.

After a brief burst of activity around the time of Whitney’s paper, ma-
troid theory developed slowly until the late 1950s when Tutte published
his important papers characterizing regular matroids [75] and graphic ma-
troids [76]. There was a significant revival in the subject in the 1960s. Jack
Edmonds organized the first conference in matroid theory at the National
Bureau of Standards in 1965 and papers were presented there by, among
others, Crapo, Edmonds himself, Nash-Williams, and Tutte. Henry Crapo
was the first of a number of Ph.D. students of Rota who worked on com-
binatorial geometries (as Rota preferred to call matroids). Together Crapo
and Rota wrote a matroid theory book in 1970 called On the Foundations of
Combinatorial Theory: Combinatorial Geometries [14]. Dominic’s introduc-
tion to matroid theory came in 1966 in a “most stimulating seminar on the
applications of matroid theory” [96, p. v] by Crispin Nash-Williams. Do-
minic’s book Matroid Theory [96] appeared a decade later. Essentially this
survey will proceed chronologically through Dominic’s work distinguishing
certain phases of concentration on particular topics. But there will be some
historical discontinuities in the narrative because some of these topics have
been recurring themes throughout Dominic’s career. A survey such as this
inevitably reflects the bias of the author. An additional difficulty is posed
by the fact that much of Dominic’s work touches on so many topics that it
is difficult to classify as belonging to one area or another. It is hoped that,
in spite of some omissions which particular readers may regret, this survey
will do justice to the importance of Dominic’s work in matroid theory.

While many definitions will be given here, some basic ones will not. The
terminology and notation used here will follow [55]. For a positive integer
n, we shall use [n] to denote the set {1, 2, . . . , n}.

2. Matroids versus graphs

Dominic was drawn into matroid theory through graph theory. The Ox-
ford seminar by Nash-Williams where Dominic met matroids had shown how
the matroid union operation could be used to give quick proofs of some cov-
ering and packing results for graphs whose original graph-theoretical proofs
were quite intricate.

Several of Dominic’s earliest papers in matroid theory dealt with the
links between graphs and matroids. He was a one of a number of authors to
independently discover that Kruskal’s theorem for graphs has a natural ex-
tension to matroids which produces a minimum-weight basis [87]. Curiously,
the first to discover this seems to have been Bor̊uvka [8] in 1926 nearly a
decade before Whitney introduced matroids. In another paper [89], Dominic
showed that the dual relationship that exists between Eulerian and bipar-
tite graphs is a special case of a more general theorem for binary matroids.
Specifically, he proved the following.
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Theorem 2.1. Let M be a binary matroid on a set E. Then every circuit of
M has even cardinality if and only if M has a collection of disjoint cocircuits
whose union is E.

Dominic’s book on matroids was written partially as a result of the urging
of Frank Harary and together the two of them wrote a survey paper [27] in
1969 called “Matroids versus graphs”. Its aim was to demonstrate to graph
theorists “that matroid theory constitutes a natural generalization of graph
theory”[27, p. 155]. This theme of linking matroids and graphs has been an
important and recurrent one in Dominic’s work just as it was in the work
of another of the pioneers of matroid theory, Bill Tutte who, in the entry
in Mathematical Reviews (MR0427112 (55#148)) for Dominic’s book,
wrote: “It has been said that to get a theorem on matroids we should take
a known one on graphs, rewrite it and its proof so as to make no mention
of vertices, and then replace the word “graph” by “matroid”.” Dominic
used this model in the paper with Harary when conjecturing an analogue of
Dirac’s Theorem [18] that a simple n-vertex graph in which every vertex has
degree at least n

2 has a Hamiltonian cycle. The proposed matroid analogue
of this was that a connected rank-r binary matroid in which every cocircuit
has at least 1

2(r + 1) elements has a spanning circuit. Although, much to
Dominic’s perpetual embarrassment, this conjecture fails for F ∗7 , the dual
of the Fano matroid, it does hold, for example, for all regular matroids.
Indeed, Winfried Hochstättler and Bill Jackson [29] proved the following
result. Observe that the hypotheses of the theorem do not require that the
matroid be connected.

Theorem 2.2. If M is a simple binary matroid that is not isomorphic to
F ∗7 and has no F7-minor, then M has a spanning circuit provided that every
cocircuit of M has size at least max{3, 12(r + 1)}.

3. Transversal theory

In the mid- to late 1960s, there were two identifiable centres of research
into matroid theory in Britain: Oxford, where Dominic and Aubrey In-
gleton worked, and Sheffield, where Leon Mirsky, Hazel Perfect, and John
Pym were working. In Sheffield, the focus of the work was on transver-
sal theory, that is, on Hall’s Marriage Theorem and its generalizations. If
(A1, A2, . . . , An) is a family A of subsets of a finite set S, a system of repre-
sentatives for A is a sequence (e1, e2, . . . , en) such that ej ∈ Aj for all j in
[n]. If e1, e2, . . . , en are distinct, then {e1, e2, . . . , en} is a system of distict
representatives or a transversal of A. The partial transversals of A are the
transversals of all the subfamilies of A. Edmonds and Fulkerson [20] proved
that this set of partial transversals forms the set of independent sets of a
matroid on S, the transversal matroid M [A] of A. This result was proved
independently by Mirsky and Perfect [53], who also extended the result to
infinite sets. In the same paper, Mirsky and Perfect drew attention to the
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following result of Rado [61] whose significance had been previously over-
looked. It is common in this work to denote a family of sets by (Ai : i ∈ I)
and, for J ⊆ I, to write A(J) for ∪j∈JAj .
Theorem 3.1. Let M be a matroid with rank function r and ground set
S. A finite family (Ai : i ∈ I) of subsets of S has a transversal that is
independent in M if and only if

r(A(J)) ≥ |J | for all J ⊆ I.
Dominic wrote a sequence of papers [88, 91, 92, 95] that presented various

applications of this theorem of Rado. The highlight of this work appeared in
a 1971 paper [95]. In that paper, Dominic proved an elegant theorem which,
by using submodular functions, unified Hall’s Marriage Theorem [25], Rado’s
Theorem stated above, and the defect versions of these theorems due to Ore
[54] and Perfect (in [51]). The theorem was also powerful enough to imply a
theorem of Hall on the existence of a system of common representatives for
two families of sets [25], and a theorem of Rado (in [52]) giving necesssary
and sufficient conditions for a family of sets to have a system of representa-
tives in which no element occurs more than k times. Dominic’s theorem was
obtained by extracting the essential features from a proof of Hall’s Theorem
due to Rado [62].

Theorem 3.2. Let A be a finite family (Ai : i ∈ I) of subsets of a finite set
S and let f be a non-negative, integer-valued function on 2S such that

(i) if X ⊆ Y ⊆ E, then f(X) ≤ f(Y ); and
(ii) if X1, X2 ⊆ E, then f(X1) + f(X2) ≥ f(X1 ∪X2) + f(X1 ∩X2).

Then A has a system of representatives (ei : i ∈ I) such that

f({ej : j ∈ J}) ≥ |J | for all J ⊆ I
if and only if

f(A(J)) ≥ |J | for all J ⊆ I.

Clearly Hall’s Marriage Theorem and Rado’s Theorem follow from the
last result by taking f to be, respectively, the cardinality function on 2S

and the rank function r of M . Now let d be a non-negative integer not
exceeding |I|. Then we obtain the following extension of Rado’s Theorem,
due to Perfect (in [51]), by letting f(X) = r(X)− d for all X ⊆ S.

Corollary 3.3. Let A be a finite family (Ai : i ∈ I) of subsets of a finite
set S and let M be a matroid on S having rank function r. Then A has a
partial transversal that has size |I| − d and is independent in M if and only
if, for all subsets J of I,

r(A(J)) ≥ |J | − d.
Dominic wrote two more papers on transversal matroids, one with his first

student, Adrian Bondy, the other with his second student, Joan de Sousa.
The paper with Bondy [6] included the following attractive theorem on pre-
sentations of transversal matroids.
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Theorem 3.4. Let A be a family (A1, A2, . . . , An) of subsets of a fi-
nite set S and let M be the corresponding transversal matroid M [A]. If
r(M) = r, then there is a subset {j1, j2, . . . , jr} of {1, 2, . . . , n} and a collec-
tion C∗1 , C

∗
2 , . . . , C

∗
r of distinct cocircuits of M such that C∗i ⊆ Aji for all i

in {1, 2, . . . , r} and M is the transversal matroid corresponding to the family
(C∗1 , C

∗
2 , . . . , C

∗
r ).

The paper with Joan de Sousa [17] proves that a binary matroid is
transversal if and only if it is graphic. When combined with a theorem
of Bondy [5] and Las Vergnas [41], this yields the following result.

Theorem 3.5. A binary matroid is transversal if and only if it has no minor
isomorphic to M(K4).

4. Enumerative problems

In 1969, Dominic organized a conference in Oxford called “Combinatorial
Mathematics and its Applications”. This conference is now recognized as
the first British Combinatorial Conference. Dominic also organized what is
now regarded as the third British Combinatorial Conference in 1972. These
conferences continue today with the twentieth being held at Durham in July,
2005. The same theme that is so apparent in Dominic’s research of build-
ing bridges between combinatorics and other areas of mathematics is also
apparent in his conference organization. The 1969 Oxford conference be-
gan with talks by Graham Higman on “Simple groups and combinatorial
theory” and Mark Kac on “Some problems in statistical physics.” The con-
ference included a talk by Roger Penrose entitled “Applications of negative
dimensional tensors,” which, although it was opaque to many at the time,
contained a wealth of interesting ideas that were subsequently generalized
by various people including François Jaeger. This work was surveyed in 2001
by Martin Aigner [1].

Dominic’s presentation at that meeting [94] was called “Combinatorial
problems in matroid theory”. It was a typical mixture of his problems. Some
were solved by conference participants in time to appear in the conference
proceedings, others were solved after a longer period including some quite
recently, and still others remain unsolved acting as stimuli for current and
future researchers. In two lectures given in Oxford in April and May, 2005,
Dominic surveyed some of his favorites among these problems and we now
consider several of these that are enumerative, beginning with three that
remain unsolved. A sequence a1, a2, . . . , an is unimodal if there is a member
m of [n] such that a1 ≤ a2 ≤ · · · ≤ am and am ≥ am+1 ≥ · · · ≥ an. Let fk(n)
be the number of rank-k non-isomorphic matroids on [n]. The following is
Dominic’s Problem P19.

Problem 4.1. Is the sequence (fk(n) : 0 ≤ k ≤ n) unimodal for all positive
integers n?
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Dominic’s P20 was stated for even integers n. The next conjecture is the
natural extension of this problem to all positive integers n.

Conjecture 4.2. For all positive integers n, the maximum value of fk(n)
occurs at k = bn2 c.

For a non-negative integer k and a matroid M , let ik(M) be the number
of k-element independent sets of M . The following is Dominic’s Problem
P13.

Conjecture 4.3. For all matroids M , the sequence (ik : 0 ≤ k ≤ r(M)) is
unimodal.

Three successive strengthenings of this conjecture were proposed by Ma-
son [50]:

Conjecture 4.4. If M is a matroid, then, for all k in {1, 2, . . . , r(M)− 1}:
(i) i2k ≥ ik−1ik+1;

(ii) i2k ≥ (k+1
k )ik−1ik+1;

(iii) i2k ≥
(
k+1
k

) (
i1−k+1
i1−k

)
ik−1ik+1.

Progress on these conjectures has been very limited. Dowling [19] proved
(i) for k ≤ 7 and proposed a further extension of it; Hamidoune and Salaün
[26] proved (iii) for k = 3 and conjectured another variant of it; Seymour [65]
proved (iii) for those k such that M has no circuits of cardinality 3, 4, . . . ,
or k − 1; and Mahoney [49] proved (i) when M is the cycle matroid of an
outerplanar graph.

Two other enumerative problems from Dominic’s list were solved quite
recently after remaining open for over thirty years. Let f(n) be the number
of non-isomorphic matroids on an n-element set. The following theorem,
which was proved independently by Lemos [47] and by Crapo and Schmitt
[13], solves Dominic’s Problem P22, which reproduced an earlier conjecture
of his [90].

Theorem 4.5. For all positive integers m and n,

f(m+ n) ≥ f(m)f(n).

Proof. Crapo and Schmitt’s proof of this result is based on a new matroid
operation that they introduce. For matroids M and N on disjoint sets, the
free product M�N of M and N is the matroid on E(M)∪E(N) whose bases
consist of those subsets of E(M)∪E(N) of size r(M) + r(N) that consist of
the union of an independent set in M and a spanning set in N . The theorem
follows by showing that if M�N ∼= P�Q, then M and N are isomorphic to
P and Q, respectively. The reader is referred to Crapo and Schmitt’s paper
for the details. �

Let N2(n) be the number of non-isomorphic binary matroids on an n-
element set. Dominic’s Problem P21 asked for the asymptotic behaviour of
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N2(n). This problem has recently been solved by Marcel Wild although, as
pointed out by Lax [46], Wild’s first paper on this topic [119] contained an
error. A correction to that paper which proves a stronger result than the
original paper is given in [120]. There is an interesting link here between
matroid theory and linear codes.

A (linear) code of length n over GF (q) is a subspace W of V (n, q), the
n-dimensional vector space over GF (q). If W has dimension 0, then W
consists of the zero vector of length n. If W has positive dimension r, then
there is an r × n generator matrix D whose rows are linearly independent
such that W equals the row space of D, the subspace of V (n, q) that is
spanned by the rows of D. Two codes W1 and W2 of length n over GF (q)
are (monomially) equivalent if there are a permutation σ of {1, 2, . . . , n} and
non-zero elements α1, α2, . . . , αn of GF (q) such that (v1, v2, . . . , vn) ∈W1 if
and only if (α1vσ(1), α2vσ(2), . . . , αnvσ(n)) ∈ W2. Evidently, W1 and W2 are
equivalent if and only if one can obtain a generator matrix D2 for W2 from
a generator matrix D1 for W1 by permuting the columns of the latter and
then multiplying each column of the resulting matrix by a non-zero field
element. Thus, if W1 and W2 are equivalent, then the matroids M [D1] and
M [D2] are isomorphic. Although the converse of this is not true in general,
it follows from the unique representability of binary and ternary matroids
that the converse does hold when q ∈ {2, 3} (see, for example, [55, Theorem
10.1.1]). Thus, for these two values of q, the number of inequivalent codes of
length n over GF (q) equals the number of non-isomorphic n-element GF (q)-
representable matroids.

For a prime power q and integers m and k with 0 ≤ k ≤ m, the Gaussian
coefficient

[
m
k

]
q

equals the number of k-dimensional subspaces of V (m, q).

It is well known that[
m

k

]
q

=
(qm − 1)(qm − q) · · · (qm − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

.

Evidently,
∑n

k=0

[
n
k

]
2

is the total number of subspaces of V (n, 2). The fol-
lowing result was proved by Wild [120].

Theorem 4.6. For all sufficiently large positive integers n,

(1 + 2−
n
2 +2 log2 n+0.2499)

1

n!

n∑
k=0

[
n
k

]
2
≤ N2(n)

≤ (1 + 2−
n
2 +2 log2 n+0.2501)

1

n!

n∑
k=0

[
n
k

]
2
.

Hence

N2(n) ∼ 1

n!

n∑
k=0

[
n
k

]
2
.
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Another proof of the asymptotic behaviour of N2(n) was given by Xiang-
Dong Hou [31]. In a separate paper, Hou [30] verified a conjecture of Lax
[46] by proving the following result.

Theorem 4.7. The number of monomially inequivalent linear codes of
length n over GF (q) is asymptotic to 1

n!(q−1)n−1

∑n
k=0 [ nk ]q .

Combining this theorem with the observations above about unique repre-
sentability of ternary matroids, we immediately obtain the following result.

Corollary 4.8. The number of non-isomorphic ternary matroids on an n-
element set is asymptotic to 1

n!2n−1

∑n
k=0 [ nk ]3 .

The number f(n) of non-isomorphic matroids on an n-element set oc-
cupied the attention of a number of researchers for about a decade from
the mid-1960s. Crapo [11] proved that f(n) ≥ 2n. In one of his earliest
papers, Dominic [90] considered the class of rank-r transversal matroids
on [n] having a nested presentation, that is, a presentation of the form
([i1], [i2], . . . , [ir]) where 1 ≤ i1 < i2 < · · · < ir ≤ n. Dominic proved that
there are exactly

(
n
r

)
non-isomorphic such transversal matroids. Summing

this over all r in {0, 1, . . . , n} gives that there are exactly 2n non-isomorphic
transversal matroids on [n] having a nested presentation. It has only re-
cently been noted (see Bonin, de Mier, Noy [7]) that this class of nested
transversal matroids coincides with the class of matroids that Crapo used
to obtain his lower bound. This lower bound was sharpened by Bollobás [4]
in his only matroid paper to date. A significant improvement on these ear-
lier bounds was obtained by Dominic [60] in a joint paper with his student,
Mike Piff, where the following result was proved.

Theorem 4.9. Let g(n) be the number of non-isomorphic simple matroids
on an n-element set. Then

log2 log2 g(n) ≥ n− 5
2 log2 n+O(log log n).

Subsequently, Knuth [36] improved this lower bound, replacing 5
2 by 3

2 ,
and Piff [58] proved what is still the best-known upper bound on f(n):

log2 log2 f(n) ≤ n− log2 n+O(log log n).

5. The Tutte polynomial and generalizations of it

Probably the most important polynomial in graph theory or matroid the-
ory is the Tutte polynomial, and work on this and related polynomials has
been one of the most dominant themes in Dominic’s research since the early
1970s. For a graph G, let b(G) denote the number of spanning trees of G.
In a joint paper with Brooks, Smith, and Stone, Tutte [9] noted a formula
that implies that, for all non-loop edges e of G,

(1) b(G) = b(G\e) + b(G/e).
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Tutte wrote [81, p.53]: “When I was doing my Ph.D. research I began to
collect other functions of graphs that satisfied similar recursions.” For a
graph G and a positive integer λ, let P (G;λ) be the number of colorings of
the vertices of G using {1, 2, . . . , λ} such that if two vertices are joined by an
edge, they receive different colors. George D. Birkhoff [3] introduced P (G;λ)
in 1912–13 and R.M. Foster (in [113]) made the elementary observation that
if e is an edge of G, then

(2) P (G;λ) = P (G\e;λ)− P (G/e;λ).

Using this, it is easily shown that the function P is a polynomial in λ; it is
called the chromatic polynomial of G.

Now orient the edges of G arbitrarily and let H be an abelian group.
An H-flow on G is an assignment of non-zero members of H to the edges
of G such that, at every vertex, the total flow into the vertex equals the
total flow out from the vertex, where all calculations are done in H. Tutte
showed that the number of such H-flows depends not on the specific group
H but only on the order of H. In particular, if |H| = m, then the number
of H-flows equals the number of Zm-flows. We call the latter flows m-flows
and let F (G;m) be the number of such flows. Tutte showed that

(3) F (G;m) = F (G/e;m)− F (G\e;m).

The polynomial F is called the flow polynomial of G.
These observations led Tutte to discuss a function f on graphs that is

invariant under isomorphism:

(4) f(G1) = f(G2) if G1
∼= G2;

and satisfies the rule,

(5) f(G) = f(G\e) + f(G/e) for all non-loop edges e of G.

He also considered functions satisfying the additional condition that

(6) f(H +K) = f(H)f(K)

where H+K is the graph that is the union of the disjoint graphs H and K.
Tutte proved that a graph function satisfying (4)–(6) is uniquely determined
once its value is known, for all k, on the graphs consisting of a single vertex
and k loops.

Tutte also introduced a 2-variable polynomial, which he called the dichro-
mate and which is now known as the Tutte polynomial. This polynomial
satisfies (5) provided e is not a bridge of G. It also satisfies (4) and (6) and,
indeed, it is the universal graph invariant satisfying these three conditions
in a sense that will shortly be made precise. The dichromate is frequently
confused with the dichromatic polynomial, a different polynomial also in-
troduced by Tutte. The precise relationship between these polynomials is
discussed by Farr [21, Section 3] elsewhere in this volume.

Much of the theory described above extends to matroids and was devel-
oped by Tutte for representable matroids in his 1948 Cambridge Ph.D. thesis
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[73]. However, Tutte never published his work for matroids and it was not
until 1969 that Crapo [12] published a fully general matroid form of this
theory. For a matroid M on a set E, the Tutte polynomial T (M ;x, y) of M
is ∑

A⊆E
(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

This polynomial has the attactive property that

T (M ;x, y) = T (M∗; y, x),

where M∗ is the dual of the matroid M . Moreover, for a graph G with k(G)
components,

P (G;λ) = λk(G)(−1)|V (G)|−k(G)T (M(G); 1− λ, 0)

and

F (G;m) = (−1)|E(G)|−|V (G)|+k(G)T (M(G); 0, 1−m).

The Tutte polynomial has the properties that

(7) f(M1) = f(M2) if M1
∼= M2;

(8) f(M) = f(M\e) + f(M/e) if e is not a loop in M or M∗;

and

(9) f(M) = f(M\e)f(M\(E(M)− {e})) if e is a loop of M or M∗.

In his thesis [73], Tutte showed that the Tutte polynomial is a universal
matroid invariant satisfying (7)–(9) in that if the value of f on the two
one-element matroids, U1,1 and U0,1, are x and y, respectively, then f(M) =
T (M ;x, y) for all matroids M . Tutte never published this result for matroids
although, for graphs, it is implicit in one of his papers [78]. The result for
matroids was rediscovered by Brylawski [10] and published in 1972. In a joint
paper with the author [56], Dominic extended this result to prove what he
calls a “recipe theorem” for invariants of this type.

Theorem 5.1. Let M be a class of matroids that is closed under isomor-
phisms, direct sums, and taking minors, and contains both U1,1 and U0,1.
Let g be an isomorphism invariant that maps the members of M into a field
F and has the following properties for some fixed σ and τ in F:

(i) if M ∈ M and e is an element of M that is neither a loop nor a
coloop of M , then g(M) = σg(M\e) + τg(M/e); and

(ii) if M1 and M2 are members of M having disjoint ground sets, then
g(M1 ⊕M2) = g(M1)g(M2).

Then, for all matroids M ,

g(M) = σ|E|−r(E)τ r(E)T (M ; x0τ ,
y0
σ )

where x0 and y0 are the values that g takes on U1,1 and U0,1, respectively.
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As an example of an application of this theorem [56], suppose that every
element of a matroid M on a set E has, independently of all other elements,
a probability 1−p of being deleted from M . The resulting restriction ω(M)
of M is a random submatroid of M corresponding in the obvious way to
a random graph on n vertices when M is the cycle matroid of Kn. If we
let Pr(M) be the probability that ω(M) has the same rank as M , then,
evidently, Pr(U1,1) = p and Pr(U0,1) = 1. Moreover, if e is neither a
loop nor a coloop of M , then Pr(M) = (1 − p)Pr(M\e) + pPr(M/e) and
Pr(M1 ⊕M2) = Pr(M1)Pr(M2). Hence

Pr(M) = (1− p)|E|−r(E)pr(E)T (M ; 1, 1
1−p).

Thus, for instance, if p = 1
2 , then

Pr(M) =
T (M ; 1, 2)

2|E|
.

But T (M ; 1, 2) is easily seen to be the number of spanning sets of M . Hence,
as one would expect, Pr(M) is the probability that a randomly chosen subset
of E spans M .

This recipe theorem has numerous other applications and it has served as
a model for similar theorems describing more general matroid invariants. If
bk(G;λ) is the number of vertex colourings of a graph G with λ colours in
which exactly k edges have ends the same colour, then

bk(G;λ) = bk(G\e;λ)− bk−1(G/e;λ) + bk−1(G/e;λ).

Dominic and Geoff Whittle [108] developed a theory of functions obeying
such a 3-term recurrence and proved a recipe theorem for them. This the-
ory has applications to channel assignments, subspace arrangements, hyper-
graph colourings, and counting lattice points.

In a joint paper with Koko Kayibi [107], Dominic introduced a 4-variable
polynomial Q(M,N ;x, y, u, v) that is defined for matroids M and N with a
common ground set E and rank functions r and s by∑

X⊆E
(x− 1)r(E)−r(X)(y − 1)|X|−r(X)(u− 1)s(E)−s(X)(v − 1)|X|−s(X).

Thus, for example, Q(M,N ;x, y, 2, 2) = T (M ;x, y). Michel Las Vergnas
has noted [45] that the 4-variable polynomial Q is actually equivalent to a
3-variable polynomial introduced by Las Vergnas himself [42, 43, 44] and
defined for a matroid perspective (M1,M2), that is, a pair of matroids, M1

and M2, on a common ground set E such that the identity map on E is a
strong map, taking every circuit of M1 to a union of circuits of M2.

Evidently, Q has as evaluations all of the well-known evaluations of the
Tutte polynomial of M such as the numbers of bases, independent sets,
and spanning sets of M . In addition, as Dominic and Koko observe,
Q(M,N ; 1, 1, 1, 1) and Q(M,N ; 2, 1, 2, 1) equal, respectively, the number of
common bases of M and N and the number of common independent sets of
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M and N ; and the specializations of Q include not only the Tutte polyno-
mials of M and N , but also Oxley and Whittle’s rank generating function
[57] of a 2-polymatroid f in the case when f is r + s.

The polynomial Q shares many of the properties of the Tutte polynomial.
In particular, Q(M∗, N∗;x, y, u, v) = Q(M,N ; y, x, v, u). Moreover, Q satis-
fies nine different deletion-contraction formulae depending on whether the
element e is a loop, a coloop, or neither in M , and a loop, a coloop, or nei-
ther in N . The main result of [107] extends the recipe theorem for the Tutte
polynomial to Q. In particular, it is proved that if ψ(M,N) is a function
satisfying weighted versions of the nine deletion-contraction formulae, then,
provided ψ(U1,1, U1,1)ψ(U0,1, U0,1) 6= ψ(U1,1, U0,1)ψ(U0,1, U1,1), the function
ψ is a weighted evaluation of the polynomial Q.

6. Colourings, flows, and the critical problem

In the late 1970s and early 1980s, Dominic became very interested in “the
use of matroids to relate problems about colourings and flows in graphs
with problems in projective geometry” [97]. In 1954, Tutte [74] made two
interesting conjectures for flows. The first, which was settled by Jaeger
[32] in 1976, asserted that there is a fixed integer n such that every graph
without a bridge has an n-flow. Jaeger proved that every such graph has an
8-flow and, subsequently, Seymour [67] proved that it has a 6-flow. Tutte’s
second conjecture, the 5-Flow Conjecture, is that every bridgeless graph
has a 5-flow. The Petersen graph P10, which can be obtained from the
dodecahedron by identifying antipodal vertices and then replacing each pair
of parallel edges by a single edge, has no 4-flow, so 5 is best-possible in
Tutte’s conjecture.

In his 1966 paper “On the algebraic theory of graph colorings” [77] fol-
lowing a suggestion of O. Veblen, Tutte developed a “geometrical version of
the Four Color Problem” [79]. These ideas were further developed by Crapo
and Rota [14] as part of their “critical problem” for matroids, a framework
which encompasses a large family of extremal problems, including the 5-Flow
Conjecture and the Four Colour Problem. Rota [64] defined the characteris-
tic polynomial for a family of partially ordered sets that includes geometric
lattices. Since the latter coincide with the lattices of flats of matroids, this
leads to the following definition of the characteristic polynomial P (M ;λ) of
a matroid M on a set E:

P (M ;λ) =
∑
X⊆E

(−1)|A|λr(E)−r(A).

Dominic calls P (M ;λ) the chromatic polynomial of M since if M =
M(G) for a loopless graph G having k(G) components, then P (G;λ) =

λk(G)P (M(G);λ) and F (G;λ) = P (M∗(G);λ). In general, P (M ;λ) =

(−1)r(M)T (M ; 1− λ, 0).
Crapo and Rota [14] proved the following attractive result.
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Theorem 6.1. Let M be a loopless GF (q)-representable matroid of rank
r and ϕ be a rank-preserving mapping from E(M) into E(PG(r − 1, q)).
Then the rank of the largest subspace of PG(r − 1, q) avoiding ϕ(E(M)) is
r−c(M ; q) for some fixed integer c(M ; q) that is independent of ϕ. Moreover,
c(M ; q) is the least positive integer j such that P (M ; qj) > 0.

The number c(M ; q) is called the critical exponent of M over GF (q). In
particular, c(PG(r − 1, q); q) = r, so c(F7; 2) = 3. Moreover, the critical
exponent can be thought of as an analogue of the chromatic number χ(G)
of a graph G for, if M = M(G), then

qc(M ;q)−1 < χ(G) ≤ qc(M ;q).

In particular, c(M(K5); 2) = 3.
Hadwiger’s famous conjecture [24] for graphs can be stated as follows.

Conjecture 6.2. For all positive integers m, the unique graph with chro-
matic number m for which every loopless proper minor has chromatic number
less than m is Km.

Tutte’s geometrical version of the Four Colour Problem is the following.

Conjecture 6.3. The only binary matroids with critical exponent 3 for
which every proper loopless minor has critical exponent less than 3 are
M(K5), F7, and M∗(P10).

This conjecture is known as Tutte’s Tangential 2-Block Conjecture as
a matroid M that is representable over GF (q) and has critical exponent
exceeding k is a tangential k-block over GF (q) if every loopless non-empty
proper minor of M has critical exponent at most k. From above, it is
straighforward to deduce that each of M(K5) and F7 is a tangential 2-block
over GF (2) and that c(M∗(P10); 2) = 3. Tutte proved his conjecture [77]
for tangential 2-blocks of rank at most 6, and B. T. Datta [15, 16] proved
that there are no binary tangential 2-blocks of rank 7 or 8. The most
significant advance towards the resolution of this conjecture was made in
1981 by Seymour [68], who proved the following result.

Theorem 6.4. A binary tangential 2-block is either M(K5) or F7, or it is
the dual of a graphic matroid.

The proof of this result uses some very difficult results including what
had then become the Four Colour Theorem of Appel and Haken [2] and
Seymour’s own decomposition theorem for regular matroids [66]. A con-
sequence of Theorem 6.4 is that Tutte’s Tangential 2-Block Conjecture is
equivalent to the following extension of the 5-Flow Conjecture known as the
4-Flow Conjecture.

Conjecture 6.5. Suppose that a graph G without bridges has no 4-flow.
Then G has a subgraph contractible to P10.
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Although this conjecture remains open in general, Robertson, Sanders,
Seymour, and Thomas (in [71]) settled it in the important special case when
G is a cubic graph.

In joint work with his student Paul Walton [85], Dominic proved the
following result.

Theorem 6.6. The only tangential 1-blocks over GF (3) are M(K4) and
U2,4.

Dominic gave a plenary lecture at the 1979 Dutch Mathematical Con-
gress and the survey paper published in connection with that lecture [98]
contained a number of conjectures on tangential k-blocks which, at the time,
seemed very scarce. In a sequence of four papers [115, 116, 117, 118], Geoff
Whittle presented a family of examples showing that this is not the case.
Indeed, a consequence of [116] is that there are rank-r tangential blocks over
GF (q) for all r such that k + 1 ≤ r ≤ qk. Whittle used the complete prin-
cipal truncation [115] and then the more general quotient operation [116]
to construct new tangential k-blocks from existing ones. He also showed
how jointless Dowling geometries can be tangential k-blocks [118]. Perhaps
the simplest of his constructions is that of a q-lift [117]. Suppose that M
is a simple rank-r matroid that is representable over GF (q). Then there is
a subset X of PG(r, q) such that PG(r, q)|X ∼= M . Evidently X spans a
hyperplane H of PG(r, q). Take a point p of PG(r, q) that is not in H. Let
M ′ be the restriction of PG(r, q) to the union of all lines of the latter that
contain p and some point of X. The matroid M ′ is called a q-lift of M and
Whittle [117] proved the following result.

Theorem 6.7. If M is a tangential k-block over GF (q) and M ′ is a q-lift
of M , then M ′ is a tangential (k + 1)-block over GF (q).

The constructions presented by Whittle show that tangential blocks are
very geometrical in nature and the intuition that one gets about them from
graphs can be very misleading. An interesting survey of critical problems for
matroids by Kung [40] includes a comprehensive treatment of known results
on tangential blocks. That paper includes the following attractive result.

Theorem 6.8. Let M be a simple rank-r matroid that is representable over
GF (q) and M ′ be a q-lift of M . Then

P (M ′;λ) = (λ− 1)qrP (M ; λq ).

Kung’s paper concludes with the following interesting conjecture, which
is very much in the spirit of a number of problems that are of central interest
in matroid theory at present.

Conjecture 6.9. For all prime powers q and all positive integers k, there
are only finitely many tangential k-blocks over GF (q).

The chromatic number of a loopless graph G is the first positive integer j
for which P (G; j) is positive. Of course, this coincides with the first positive



THE CONTRIBUTIONS OF DOMINIC WELSH TO MATROID THEORY 15

integer k for which P (G;m) is positive for all integers m with m ≥ k.
For matroids the situation is more complicated. For example, P (F7;λ) =
(λ − 1)(λ − 2)(λ − 4) so P (F7 ⊕ F7;λ) = (λ − 1)2(λ − 2)2(λ − 4)2. Hence
P (F7 ⊕ F7;λ) is positive for λ equal to three, zero for λ equal to four, and
positive for each larger integer. For a loopless matroid M , let π(M) be the
least positive integer k for which P (M ;m) is positive for all integers m ≥ k.
By a theorem of Lindström [48], if M is regular, then

π(M) = min{j ∈ Z+ : P (M ; j) > 0}.
But, for matroids in general, the left-hand side here can exceed the right-
hand side by an arbitrarily large number.

In another paper with Walton [84], Dominic considered bounding π(M)
for loopless binary matroids having certain excluded minors. For a collec-
tion M1,M2, . . . ,Mk of matroids, let EX(M1,M2, . . . ,Mk) be the class of
matroids having no minor isomorphic to any of M1,M2, . . . ,Mk. For a class
M of matroids, let π(M) = max{π(M) : M ∈ M} if this maximum exists,
and let π(M) be ∞ otherwise. The Four Colour Theorem can be restated
as

π(EX(U2,4, F7, F
∗
7 ,M(K5),M

∗(K5),M(K3,3),M
∗(K3,3)) = 4.

Wagner’s theorem [86] establishing the equivalence of Hadwiger’s conjecture
for n = 5 and the Four Colour Theorem means that the last equation can
be strengthened to

π(EX(U2,4, F7, F
∗
7 ,M(K5),M

∗(K5),M
∗(K3,3)) = 4.

The next two theorems are from [84].

Theorem 6.10. (a) π(EX(U2,4, F7,M(K5),M
∗(K3,3)) = 4.

(b) π(EX(U2,4, F
∗
7 ,M(K5),M

∗(K3,3)) = 5.
(c) π(EX(U2,4, F7,M(K3,3),M

∗(K3,3)) = 5.
(d) π(EX(U2,4, F

∗
7 ,M(K3,3),M

∗(K3,3)) = 5.

Theorem 6.11. Tutte’s 5-Flow Conjecture is equivalent to each of the fol-
lowing statements.

(a) π(EX(U2,4, F7,M(K5)) = 5.
(b) π(EX(U2,4, F

∗
7 ,M(K5)) = 5.

(c) π(EX(U2,4, F7,M(K3,3)) = 5.
(d) π(EX(U2,4, F

∗
7 ,M(K3,3)) = 5.

That paper also shows, using Jaeger’s 8-Flow Theorem that, for
example, π(EX(U2,4, F7,M(K5)) ≤ 8. The proof technique used
there, when combined with Seymour’s 6-Flow Theorem implies that
π(EX(U2,4, F7,M(K5)) ≤ 6, and (b)–(d) from the last theorem can be simi-
larly modified to give true statements. It is also noted in that paper that no
example is known to contradict the statement that π(EX(U2,4,M(K5)) ≤ 8.
Indeed, Dominic made the following interesting conjecture [98]:

π(EX(U2,4,M(K5))) ≤ 5.
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Using an intricate argument, Kung [38] proved in 1987 that

π(EX(U2,4,M(K5))) ≤ 28,

but there seems to have been no further progress on this problem.

7. The book and other expository writing

Dominic’s book Matroid Theory [96] appeared in 1976 with the stated
aim of showing “the unifying and central role which matroids have played
in combinatorial theory over the past decade” [96, p. v]. That decade is
probably the most active that had ever occurred in the subject. There had
been earlier books, by Crapo and Rota [14] in 1970 and by Tutte [80] in 1971,
but neither of these was as comprehensive in its treatment of the subject,
and the first only ever appeared in a preliminary edition. The three-volume
series edited by Neil White [110, 111, 112], a former student of Rota, was
conceived partially as a final version of the Crapo and Rota book. Dominic’s
book became the standard reference in the area. It succeeded in its goals of
showing how “many parts of graph theory, transversal theory, block designs
and combinatorial lattice theory can be more clearly understood by the use
of matroids” [96, p. v]. It also indicated well how matroids “serve as a link
between combinatorics and the more mainstream areas of mathematics” [96,
p. v]. When I wrote my own book on matroids [55] in 1992, I did so only
after Dominic had declined an offer from Oxford University Press to update
his book. Indeed, when I was writing my book, Dominic’s book was an
invaluable organizational template for me.

Dominic has gone on to write books in a number of other areas of combi-
natorics and probability [23, 100, 102, 69] and he has also edited conference
proceedings [93, 109]. In matroid theory, he has continued to make very im-
portant contributions through a series of survey papers, several of which have
already been mentioned [27, 94, 97, 98, 99, 101, 103, 104, 105, 106]. These
papers have become a hallmark of Dominic’s career. He identifies interest-
ing problems, frequently linking apparently disparate areas of mathematics,
and then presents very readable accounts of the problems that entice others
into considering them. He is very skilled at stripping away the technicalities
to expose the core of a problem; and he is not embarrassed to make bold
conjectures recognizing that the inherent challenge raised by a conjecture
makes it more compelling than a problem. By posing conjectures, Dominic
draws people into an area knowing that the failure of a plausible conjec-
ture does much to reveal the complexities of the landscape surrounding a
problem.

8. The Tutte polynomial and complexity

In an important paper [34] with his student Dirk Vertigan and Jaeger,
Dominic considered the complexity of evaluating the Tutte polynomial at
particular points of the (x, y)-plane. This paper marks the beginning of
an intensive study by Dominic of complexity issues relating to the Tutte
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polynomial, which has occupied much of his attention for the last fifteen
years. The original motivation for the paper with Jaeger and Vertigan was
to determine whether or not calculating the Jones polynomial of a link [35]
is a feasible computation. At the time, it was known that the Alexander-
Conway polynomial of a link, being an evaluation of a determinant, could
be determined in polynomial time. But Jaeger [33] and Thistlethwaite [70],
respectively, had shown that computing the HOMFLY and Kauffman poly-
nomials of a link are NP -hard. Since the Jones polynomial is a 1-variable
specialization of each of the last two polynomials, the issue of determining
its complexity was a natural one. Further, since the Jones polynomial of an
alternating link, one whose crossings alternate between under and over, is,
up to an easily derived factor, a specialization of the Tutte polynomial of
an associated planar graph, it was also natural to consider the complexity
of evaluating T (M ;x, y). The main result of [34] is that, except when (x, y)
is one of a small number of special points or lies on a special hyperbola,
calculation of T (M ;x, y) for a matroid M is #P -hard.

A formal description of the class #P can be found in Garey and Johnson
[22]. Informally, Jaeger, Vertigan, and Welsh [34] described #P as the
class of enumeration problems in which the structures being counted are
recognizable in polynomial time, that is, there is an algorithm that, in time
polynomial in the size of the problem instance, will verify whether a given
structure has the correct form to be included in the count. A problem A in
#P is #P -complete if, for every B in #P , the problem B is polynomial-time
reducible to A. An example of such a problem is counting the number of
Hamiltonian paths in a graph. A problem is #P -hard if some #P -complete
problem is polynomial-time reducible to it.

Because the number of matroids on an n-element set is so large, to spec-
ify such a matroid, the natural input size is O(2n). But, using the usual
deletion-contraction formula for the Tutte polynomial enables it to be cal-
culated in O(2n). The results in [34] concern matroids that have relatively
compact descriptions using, say, a graph or a matrix. Formally, a class M
of matroids is succinct if there is an encoding of the members of M into
strings from some finite alphabet such that there is a polynomial p so that
the length of the encoding of an n-element member of M is at most p(n).
Three particular problems are considered in [34]. In the standard format of
complexity theory, the first is:

π1[M]: M-TUTTE POLYNOMIAL
Instance: matroid M belonging to a succinct class M.
Output: the Tutte polynomial of M .

The question is also considered of evaluating the Tutte polynomial at a
particular point or along particular curves in the (x, y) plane. Here one runs
into issues about the field F in which the calculations are done, with this
field needing to be countable. Assume that F is a finite-dimensional algebraic
extension of the rationals and that F contains the complex numbers i and
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j where j = e2πi/3. The problem of evaluating the Tutte polynomial at a
point (a, b) where both a and b are in F can now be precisely formulated:

π2[M, a, b]: M-TUTTE POLYNOMIAL EVALUATION at (a, b)
Instance: matroid M belonging to a succinct class M.
Output: T (M ; a, b).

For the problem of evaluating the Tutte polynomial along a curve L in the
(x, y)-plane, attention is restricted to the case when L is a rational curve,
that is, the set of points parameterized in standard form by

x(s) =
u(s)

v(s)
, y(s) =

w(s)

z(s)
,

where u, v, w, z are given polynomials in F(s); a rational function is in stan-
dard form if the numerator and denominator are relatively prime and the
denominator has leading coefficient one. Euclid’s algorithm can be used
to put a rational function in standard form in polynomial time. Along L,
the Tutte polynomial of M is a rational function of s. Thus the following
computational problem is well-posed.

π3[M, L]: M, L-TUTTE POLYNOMIAL
Instance: matroid M belonging to a succinct class M.
Output: T (M ;x(s), y(s)) as a rational function of s in standard form.

Evidently π3[M, L] is polynomial-time reducible to π1[M] and, for any
(a, b) in L, the problem π2[M, a, b] is polynomial-time reducible to π3[M, L].

The main theorems of [34] concern succinct expansion-closed classes of
matroids where a class M of matroids is expansion-closed if, for all M in
M and all positive integers k, the two matroids that are obtained from
M by replacing each element by k elements in parallel and by replacing
each element by k elements in series are both in M; and, from a succinct
representation of M , one can construct succinct representations of these two
expanded matroids in time that is polynomial in k and |E(M)|. Certain
hyperbolae feature in the next two theorems, which are the main results of
[34]. A curve L = {(x(s), y(s) : s ∈ F} is special if (x(s) − 1)(y(s) − 1) is
constant. The first theorem asserts that determining the Tutte polynomial
completely along a non-special curve is, to within a polynomial factor, no
easier than determining it in the whole plane.

Theorem 8.1. Let M be a succinct expansion-closed class of matroids and
L be a rational curve in F2. Then the problem π1[M] of determining the
Tutte polynomial on the plane for members of M is polynomial-time re-
ducible to the problem π3[M, L] of evaluating the Tutte polynomial for mem-
bers of M on the curve L, provided that L is not a special curve.

The second theorem shows that, apart from nine special points, evalu-
ating the Tutte polynomial at a point on a special curve is no easier than
evaluating it along the whole special curve.
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Theorem 8.2. Let M be a succinct expansion-closed class of matroids and
L be a special curve in F2. Then the problem π3[M, L] of evaluating the
Tutte polynomial for members of M along L is polynomial-time reducible to
the problem π2[M, a, b] for any (a, b) on L provided (a, b) is not one of the
nine points (1, 1), (0, 0), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i), (j, j2), and

(j2, j) where i2 = −1 and j = e2πi/3.

The next two results are consequences of the last two theorems. The first
resolves the complexity status of the Jones polynomial. Before stating it,
we describe the graph that one associates with an alternating link diagram
D. The faces in such a link diagram can be coloured black and white so
that adjacent faces receive different colours and the infinite face is coloured
white. Let S(D) be the simple graph whose vertices correspond to the black
faces, with two such vertices being adjacent when the corresponding faces
occur opposite each other at a crossing. If L is an alternating link and D a
corresponding link diagram, Thistlethwaite [70] showed that, up to an easily
derived factor, the Jones polynomial of L is given by an evaluation of the
Tutte polynomial of S(D) along the hyperbola xy = 1. The next corollary
comes from combining this result with the last two theorems.

Corollary 8.3. The problem of determining the Jones polynomial of an
alternating link is #P -hard.

When the last two theorems are specialized to graphs, one obtains the
following result.

Corollary 8.4. The problem of evaluating the Tutte polynomial of a
graph at a point (a, b) is #P -hard except when (a, b) is on the hyper-
bola (x − 1)(y − 1) = 1 or when (a, b) is one of the special points
(1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i), (j, j2), and (j2, j) where i2 =

−1 and j = e2πi/3. In each of these exceptional cases, the evaluation can be
done in polynomial time.

The last theorem was extended for planar graphs by Dirk Vertigan [82]
and then for bipartite planar graphs by Dirk and Dominic [83].

Theorem 8.5. The problem of evaluating the Tutte polynomial of a bipartite
planar graph at a point (a, b) is #P -hard except when (a, b) is on one of the
hyperbolae (x − 1)(y − 1) = 1 and (x − 1)(y − 1) = 2, or when (a, b) is
one of the special points (1, 1), (−1,−1), (j, j2), and (j2, j). In each of these
exceptional cases, the evaluation can be done in polynomial time.

A much more detailed discussion of the complexity issues considered above
can be found in Dominic’s book Complexity: Knots, Colourings and Count-
ing and in Dominic’s survey papers [105, 106]. Although it does not concern
the Tutte polynomial specifically, it is appropriate to mention here a 1980
paper of Dominic with Gordon Robinson [63] on the complexity of matroid
properties. That paper considers various different ways in which matroids
could be presented via an oracle and then compares them.
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9. Conclusion

Throughout his career, Dominic has actively promoted combinatorics in
Britain. In addition to organizing numerous conferences, he served as Chair
of the British Combinatorial Committee. In that role, he spoke at a recep-
tion dinner for participants at the 1985 British Combinatorial Conference
hosted by the Lord Mayor of Glasgow. In his speech, Dominic indicated
that, like so many other mathematicians, he worked in the subject because
of its beauty. In G. H. Hardy’s eloquent words on the links between math-
ematics and beauty, one thing stands out in relation to Dominic’s work in
matroid theory: “The best mathematics is serious as well as beautiful” [28,
p. 29]. Dominic Welsh has had an enormous influence on the last forty years
of the development of matroid theory. He has proved theorems showing that
it is a serious area of study with important links to other more mainstream
areas of mathematics. He has popularized the subject through his writing
and his conjectures, and he has very generously and unselfishly shared both
his time and his ideas with all in the pursuit of beautiful mathematics.
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Grenoble, 1998), Ann. Inst. Fourier (Grenoble) 49 (1999), 973–1015.

[45] Michel Las Vergnas, The Tutte polynomial of a morphism of matroids. 5. Computa-
tional complexity, Portugal. Math (2006), to appear.

[46] R. F. Lax, On the character of Sn acting on subspaces of Fn
q , Finite Fields Appl. 10

(2004), 315–322.
[47] Manoel Lemos, On the number of non-isomorphic matroids, Adv. in Appl. Math. 33

(2004), 733–746.
[48] Bernt Lindström, On the chromatic number of regular matroids, J. Combin. Theory

Ser. B 24 (1978), 367–369.
[49] Carolyn Mahoney, On the unimodality of the independent set numbers of a class of

matroids, J. Combin. Theory Ser. B 39 (1985), 77–85.
[50] J. H. Mason, Matroids: unimodal conjectures and Motzkin’s theorem, Combinatorics

(eds. D. J. A. Welsh and D. R. Woodall), pp. 207–220, Institute of Math. and its
Applications, Southend-on-Sea, 1972.

[51] L. Mirsky, Transversal Theory, Academic Press, New York, London, 1971.
[52] L. Mirsky and Hazel Perfect, Systems of representatives, J. Math. Anal. Appl. 15

(1966), 520–568.
[53] L. Mirsky and Hazel Perfect, Applications of the notion of independence to problems

of combinatorial analysis, J. Combinatorial Theory 2 (1967), 327–357.
[54] Oystein Ore, Graphs and matching theorems, Duke Math. J. 22 (1955), 625–639.
[55] James G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[56] J. G. Oxley and D. J. A. Welsh, The Tutte polynomial and percolation, Graph Theory

and Related Topics (eds. J. A. Bondy and U. S. R. Murty), pp. 329–339, Academic
Press, London, 1979.

[57] James Oxley and Geoff Whittle, A characterization of Tutte invariants of 2-
polymatroids, J. Combin. Theory Ser. B 59 (1993), 210–244.

[58] M. J. Piff, An upper bound for the number of matroids, J. Combinatorial Theory
Ser. B 14 (1973), 241–245.

[59] M. J. Piff and D. J. A. Welsh, On the vector representation of matroids. J. London
Math. Soc. (2) 2 (1970), 284–288.

[60] M. J. Piff and D. J. A. Welsh, The number of combinatorial geometries, Bull. London
Math. Soc. 3 (1971), 55–56.

[61] R. Rado, A theorem on independence relations, Quart. J. Math., Oxford Ser. 13
(1942), 83–89.

[62] R. Rado, On the number of systems of distinct representatives of sets, J. London
Math. Soc. 42 (1967), 107–109.

[63] G. C. Robinson and D. J. A. Welsh, The computational complexity of matroid prop-
erties, Math. Proc. Cambridge Philos. Soc. 87 (1980), 29–45.



THE CONTRIBUTIONS OF DOMINIC WELSH TO MATROID THEORY 23

[64] G.-C. Rota, On the foundations of combinatorial theory I, Z. Wahrsch. 2 (1964),
340–368.

[65] P. D. Seymour, Matroids, Hypergraphs and the Max-Flow Min-Cut Theorem, D.Phil.
thesis, University of Oxford, 1975.

[66] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28
(1980), 305–359.

[67] P. D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981), 130–135.
[68] P. D. Seymour, On Tutte’s extension of the four-colour problem, J. Combin. Theory

Ser. B 31 (1981), 82–94.
[69] John Talbot and Dominic Welsh, Cryptography and Complexity, Cambridge Univer-

sity Press, Cambridge, 2005.
[70] M. B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology

26 (1987), 297–309.
[71] R. Thomas, Recent excluded minor theorems for graphs, Surveys in Combinatorics,

1999 (eds. J. D. Lamb and D. A. Preece), pp. 201–222, Cambridge University Press,
Cambridge, 1999.

[72] W. T. Tutte, A ring in graph theory, Proc. Camb. Phil. Soc. 43 (1947), 26–40.
[73] W. T. Tutte, An Algebraic Theory of Graphs, Ph.D. thesis, Cambridge University,

1948.
[74] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math.

6 (1954), 80–91.
[75] W. T. Tutte, A homotopy theorem for matroids. I, II, Trans. Amer. Math. Soc. 88

(1958), 144–160, 161–174.
[76] W. T. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527–552.
[77] W. T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory Ser. B

1 (1966), 15–50.
[78] W. T. Tutte, On dichromatic polynomials, J. Combin. Theory 2 (1967), 301–320.
[79] W. T. Tutte, A geometrical version of the four color problem, Combinatorial Math-

ematics and its Applications (eds. R. C. Bose and T. A. Dowling), pp. 553–561,
University of North Carolina Press, Chapel Hill, 1969.

[80] W. T. Tutte, Introduction to the Theory of Matroids, American Elsevier, New York,
1971.

[81] W. T. Tutte, Graph Theory as I Have Known It, Oxford University Press, Oxford,
1998.

[82] Dirk Vertigan, On the Computational Complexity of Tutte, Jones, Homfly and Kauff-
man Invariants, D. Phil. thesis, University of Oxford, 1991.

[83] D. L. Vertigan and D. J. A. Welsh, The computational complexity of the Tutte plane:
the bipartite case, Combin. Probab. Comput. 1 (1992), 181–187.

[84] P. N. Walton and D. J. A. Welsh, On the chromatic number of binary matroids,
Mathematika 27 (1980), 1–9.

[85] P. N. Walton and D. J. A. Welsh, Tangential 1-blocks over GF(3), Discrete Math. 40
(1982), 319–320.
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