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Abstract. Let N be a restriction of a 3-connected matroid M and let M’ be a 3-connected
minor of M that is minimal having N as a restriction. This paper gives a best-possible upper
bound on |E(M') — E(N)|.

1. Introduction

If X is a subset of the ground set of a 3-connected matroid M, what can be said
about the size of a minimal 3-connected minor M’ of M that not only includes X
in its ground set but also maintains the matroid structure on X? For instance, if X
is a circuit, a basis, or an independent set of M, then X is a circuit, a basis, or an
independent set, respectively, of M’. The purpose of this paper is to answer this
question. More specifically, we solve the following:

1.1. Problem. Let N be a restriction of a 3-connected matroid M and let M' be a 3-
connected minor of M that is minimal having N as a restriction. Give a sharp upper
bound on |[E(M') — E(N)].

The natural modification of this problem in which “restriction” is replaced by
“minor” seems much more difficult, although we do hope to return to it in future
work. For this modified problem, Truemper [12] proved, under the additional
constraints that N is 3-connected but different from M’, that |E(M') — E(N)| < 3.
In certain natural cases, including those raised above, when N is a circuit, a basis,
or an independent set of M, the modified and original problems coincide.
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Let M be a matroid and A4 be a subset of E(M). We define 1;(A4, M) to be the
number of connected components of M|A. Now M|A can be constructed from a
collection A,(A4, M) of 3-connected matroids by using the operations of direct sum
and 2-sum. It follows from results of Cunningham and Edmonds (see Cunning-
ham [3]) that 4,(A4, M) is unique up to isomorphism. We denote by 1,(4, M) the
number of matroids in A,(A4, M) that are not isomorphic to Uj 3, the three-
element cocircuit.

The next theorem, the main result of [6], solves Problem 1.1 in the case when N
spans M.

1.2. Theorem. Let M be a 3-connected matroid other than U\ 3 and let A be a non-
empty spanning subset of E(M). If M has no proper 3-connected minor M' such that
M'|A = M|A, then

|[E(M)| < |A|+ 4(A, M) + J2(4, M) — 2,
unless A is a circuit of M of size at least four, in which case,
|E(M)| < 2|4| — 2.

It is also shown in [6] that the bounds in Theorem 1.2 are sharp. Indeed,
examples are given that attain the bounds for all 4 such that M|A4 is simple but
not free.

In this paper, we shall prove several results. We solve Problem 1.1 when N is a
free matroid by proving the following result.

1.3. Theorem. Let M be a 3-connected matroid and let A be an independent set of
M. If M has no proper 3-connected minor M' in which A is independent, then
|E(M)| <3|4| - 1.

Note that the bound in this theorem is sharp. To see this, suppose that n > 3
and let K, be the graph obtained from K3, by joining a degree-n vertex v of the
latter to the two vertices to which it is non-adjacent. Then it is not difficult to
check that equality is attained in the theorem if we take M to be M*(Ky',) and A
to be any set consisting of all but one of the edges meeting v;. When A4 is both
independent and spanning, it is shown in [7] that the bound in Theorem 1.3 can be
improved by 3.

If A4 is a subset of the ground set of a 3-connected matroid M, then (M, A4) is a
minimal pair if M has no proper 3-connected minor M’ such that M'|4 = M|A.
Thus, in both Theorems 1.2 and 1.3, (M, A) is a minimal pair. Our second theo-
rem shows that the bound in Theorem 1.2 also holds when we omit the hypothesis
that A is spanning, provided 4 has no small cocircuits. More specifically:

1.4. Theorem. Let (M, A) be a minimal pair such that M|A has no coloops, every
series class of M|A has rank at most two, and M % U, 3. Then
|[E(M)| < |A| + A (A4, M) + Jo(A, M) — 2.

The bound in the last result is sharp since, as noted above, the bounds in
Theorem 1.2 are sharp. We shall show in Section 3 that if there no restriction on
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the rank of the series classes of M|A4, then |E(M)| can exceed the bound in the last
result by an arbitrarily large number. These examples prompt the introduction of
another function, 13(A4, M), which is defined by

S

where the sum is taken over all series classes S of M|A with at least four elements.
The following theorem is one of the two main results of the paper.

1.5. Theorem. If (M, A) is a minimal pair, then
|E(M)| < |A| +il(A7M) +/12(A7M) +/‘L3(A7M) - O((A,M),
where

0, when A is a circuit of M
a(d, M) =
1, when A is not a circuit
Note that Theorem 1.3 will follow immediately from the last theorem for,
when A is independent, A;(A4, M)=A (A4, M)=|A|,23(4, M)=0, and (4, M) =
1. Although the function A3(A4, M) may look strange, it is indispensable, even for
cographic matroids. For example, for n > 3, let M be M*(K3',) and let 4 be the

set of edges meeting the degree-(n + 2) vertex of Ky',. Then M|4 is a circuit and it

is straightforward to check that equality is attained in Theorem 1.5. In Section 3,
we shall present a family of extremal examples for Theorem 1.5 in each member M
of which, M|A4 can be chosen to have many series classes of large rank. Prior to
that, Section 2 introduces notation, terminology, and some important known
results that will be needed. Section 4 develops the properties of minimal pairs that
will be used in the proofs of the main results, and these proofs will be given in
Section 5.

The essential difference between the bounds in Theorems 1.2 and 1.5 is the
presence of A3(A4, M) in the latter. But the former assumes that 4 spans M. Indeed,
if 4 is non-spanning and (M, 4) is a minimal pair, then, for a basis X of M /A,
clearly (M, AU X) is a minimal pair in which 4 U X is spanning. Hence Theorem
1.2 can be applied to this minimal pair. This crude technique yields the bound

[E(M)| < |A|+ (A4, M) + (A, M) =2+ 3(r(M) —r(A)).
In the next theorem, our second main result, we shall show that this bound can be
sharpened.
1.6. Theorem. If (M, A) is a minimal pair, then
[E(M)| < |A|+ AM(A4, M) + 75(4A, M) + r(M) —r(A) —a(A4, M),
where

o(d, M) =

) 0, when A is a circuit of M
1, when A is not a circuit
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If M is an n-spoked wheel with n > 4 and A is its rim, then (M, 4) is a minimal
pair for which equality is attained in the last theorem. However, for this example,
the difference between the bound in Theorem 1.5 and |E(M)| is n — 4.

2. Preliminaries

In this section, we note a number of results that will be used in the proofs of the
main theorems. We shall follow Oxley [9] for basic notation and terminology. We
shall require some additional terminology and results relating to 3-connected
matroids. Tutte [13] calls an element e of a 3-connected matroid M essential if
neither the deletion M\e nor the contraction M /e remains 3-connected. Tutte
showed that every essential element in a 3-connected matroid is in a triangle or a
triad. Indeed, triangles and triads appear constantly in the study of 3-connected
matroids, and a very useful concept in this study is that of a chain of triangles and
triads. Let Ty, T, ..., Ty be a non-empty sequence of sets each of which is a tri-
angle or a triad of a matroid M such that, for all 7 in {1,2,...,k — 1},

(i) {Ti, Tiy1} contains exactly one triangle and exactly one triad;
(11) ‘Tl N T[+]| = 2, and
(iii) (Tip1 — T;)N(THUTLU --- UT;) is empty.

Then we call Ty, T5 ..., Ty a chain of M of length k with links T\, T,, ..., Ty. By
extending the proof of Tutte’s Wheels and Whirls Theorem [13], Oxley and Wu
[11] showed that if such a chain is maximal, then the elements at both ends are
non-essential. In particular, they proved the following.

2.1. Lemma. Let T, T>, ..., T; be a chain in a 3-connected matroid M. Then M has
k + 2 distinct elements ey, ey, ..., exo such that T; = {e;,ei1, €112} for all i. Sup-
pose that |E(M)| > 4 and M is not a wheel or a whirl. If the chain Ty, T, ..., T is
maximal, then the elements can be labelled so that neither e; nor ey, is essential.

Let {e1,ez,e3}, {ea,e3,e4}, ..., {ek,ers1, e} be a chain for some k > 3. Par-
tition {ej,ez,...,er 2} into X,, those e; for which i is even, and Xj, those ¢; for
which i is odd. If {e, ez, e3} is a triad, then Xj is the rim of the chain and X, is its
set of spokes. If {ej,es,e3} is a triangle, then X, is its rim and Xj is its set of
spokes.

In a 3-connected matroid other than a wheel or whirl, a maximal chain is
called a fan. A fan has type-1, type-2, or type-3 if its first and last links consist of|
respectively, two triangles, two triads, or one triangle and one triad. Oxley and
Wu [11] proved the following result, which will be very useful here.

2.2. Theorem. Let M be a 3-connected matroid that is neither a wheel nor a whirl.
Suppose that e is an essential element of M. Then e is in a fan. Moreover, this fan is
unique unless

(a) every fan containing e consists of a single triangle and any two such triangles
meet in {e};
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(b) every fan containing e consists of a single triad and any two such triads meet in
{e}; or

(c) e is in exactly three fans; these three fans are of the same type, each has five
elements, together they contain a total of six elements, and, depending on
whether these fans are of type-1 or type-2, the restriction or contraction, re-
spectively, of M to this set of six elements is isomorphic to M (Ky).

The following two basic results will be used repeatedly throughout the paper.
The first is due to Bixby [1]. The second is Tutte’s triangle lemma [13] (see also [9,
Lemma 8.4.9]).

2.3. Lemma. Let e be an element of a 3-connected matroid M. Then either M\e or
M /e has no non-minimal 2-separations. Moreover, in the first case, the cosimplifi-
cation of M\e is 3-connected, while in the second case, the simplification of M /e is
3-connected.

24. Lemma. Let M be a 3-connected matroid having at least four elements and
suppose that {e, f,g} is a triangle of M such that neither M\e nor M\f is 3-
connected. Then M has a triad that contains e and exactly one of f and g.

The elementary proof of the next lemma is omitted.
2.5. Lemma. If {Z, W} is a k-separation of a matroid M and r(Z) = |Z|, then every
k-element subset of Z contains a cocircuit of M.

The next lemma is a straightforward consequence of orthogonality, the prop-
erty of a matroid that a circuit and a cocircuit cannot have exactly one common
element.

2.6. Lemma. If D is a cocircuit of a matroid M such that DN (cl(4) — A) # &, then
DNA # . In particular, |[DNcl(A4)| = 2.

The following lemma is proved in [5, (2.12)].
2.7. Lemma. Let e and f be distinct elements of a 3-connected matroid M such that

M\e is not 3-connected. If M has triangles T and T’ containing e and f, respectively,
such that \|TNT'| =1 and T U f is a cocircuit of M, then e is in a triad of M.

The last lemma was used in the proof of the following theorem, the main result
of [5].

2.8. Theorem. Let C* be a cocircuit of a 3-connected matroid M and suppose that,
for every element e of C*, the contraction M /e is not 3-connected. Then M has tri-
angles Ty and T, such that T N C* and T, N C* are distinct and non-empty.

Next we note a useful property of chains of triangles and triads [11, Lemma
3.4].

2.9. Lemma. Let ey, ey, e3,eq4,e5 be distinct elements of a 3-connected matroid M
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that is not isomorphic to M(Ky4). Suppose that {e1,ey,es} and {es,eas,es} are tri-
angles and { ey, e3, es} is a triad of M. Then these two triangles and this one triad are
the only triangles and triads of M containing e;.

3. Extremal Examples

It was noted in the introduction that all the bounds in the theorems there are
sharp. In this section, we describe infinite families of examples that attain equality
in Theorems 1.5 and 1.3.

The examples given here will use the operation of generalized parallel connec-
tion [2]. Suppose that the intersection of the ground sets of the matroids M and
M(Ky) is 4 and that 4 is a triangle in both matroids. The generalized parallel
connection of M(Ky) and M across A is the matroid P4(M(K4), M) whose ground
set is the union of the ground set of the two matroids and whose flats are the
subsets X of the ground set so that XNE(M(Ky)) is a flat of M(Ky) and
XNE(M) is a flat of M. If the elements of 4 are deleted from P,(M(K4), M), we
obtain the same matroid that we would get by performing a 4 — Y -exchange on
M across 4.

Let n be an integer exceeding one. An n-raft [4] is a matroid of rank 2n — 2
whose ground set is the union of n disjoint triangles such that, for all m < n, the
union of every set of m of these triangles has rank 2m. One example of an n-raft is
the matroid M *(K3 ,). Another is the matroid that is obtained from the direct sum
of two m-element circuits {x;,x,...,x,} and {zy,z3,...,2,} by, for each i in
{1,2,...,n}, freely adding a new element y, on the line joining x; and z;.

We construct our family of examples by beginning with an r-raft N for some
n>3. Let the distinguished triangles of the raft be 7y,7,,...,7, where
T; = {x;, y;,zi} for all i, and assume that the raft has the additional property that
{z1,22,...,2zn} 1s a circuit. Let k be a positive integer. By repeated generalized
parallel connections, attach exactly k distinct copies of M(Ky) across each T; in N.
Let the resulting matroid be M. Now, for each i, delete z; from M. Take M to be
the dual of the resulting matroid. In each copy of M (K,) that was attached across
some T3, pick the opposite element to z;, that is, the element of the M (K4) that is
not in a triangle with z;. Do this for all i and let 4 consist of these nk elements
together with the 2n elements of N that remain in M.

We assert that (M, 4) is a minimal pair. First note that N is certainly con-
nected. Moreover, if {X, Y} is a 2-separation of N, then neither X nor Y spans N.
It is easy to see that each of X and Y may be assumed to be a union of dis-
tinguished triangles and from this we obtain a contradiction to the fact that
{X, Y} is a 2-separation. Thus N is 3-connected. As M (Ky) is also 3-connected, so
too is M [10]. Moreover, it is clear that M, /z; does not simplify to a 3-connected
matroid. Thus the cosimplification of M\z; is 3-connected. This cosimplification
is equal to M;\z; since z; is in no triads of M. By a similar argument, we obtain
that M,\zy,z, is 3-connected and, repeating this argument, we eventually obtain
that M \zy,z2,...,z, is 3-connected. But the last matroid is M*, hence M is 3-
connected. Let M’ be a minimal 3-connected minor of M such that M|4 = M’|A.
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Now, for each element e of M* that is not in A4, there is another element f of
E(M) — A such that e and f are both in the same attached M(K4) in M. More-
over, e is in a triangle of M * with two elements of 4 so M* /e has two elements of
A in parallel. Thus no 3-connected minor of M */e contains all the elements of A.
Since M *\e has a 2-cocircuit that contains f'and some element of 4, a 3-connected
minor of M*\e using all the elements of 4 must be a 3-connected minor of
M*\e/f. Since f'is also in a triangle of M* with two elements of 4, we conclude
no 3-connected minor of M*\e contains all the elements of 4. Thus (M, A4) is
indeed a minimal pair.

Now |E(M)| = 3nk + 2n and |A| = nk 4+ 2n. To find M|A, observe that this
matroid is the dual of M*. A. In the last matroid, there is a parallel class that
contains 7; — z; together with all the elements of A4 that are opposite z; in the
copies of M(K4) which were attached across 7;. Moreover, by considering the
n-raft N, it is not difficult to check that the simplification of M*. 4 is a circuit.
Thus M|A is the cycle matroid of the graph obtained by joining two vertices
by n internally disjoint paths each of length k + 2. Therefore A;(4, M) =1,
2(A4, M) = (k+ 1)n, 23(4, M) = (k — 1)n, and a(4, M) = 1. It follows easily that
equality holds in Theorem 1.5. One can easily check that the bound in Theorem
1.6 exceeds |E(M)| by exactly one in this case. Moreover, |E(M)| exceeds the
bound in Theorem 1.4 by (kK — 1)n — 3, which can be arbitrarily large.

To close this section, we observe that U, ¢ is a 2-raft. If we perform the above
construction beginning with this matroid, we obtain a matroid M for which M|4
is independent and equality is attained in Theorem 1.3.

4. Minimal Pairs

The purpose of this section is to prove numerous properties of minimal pairs that
will be used in the proofs of the main results. The latter will be given in Section 5.
We begin with a lemma that gathers together eleven such properties.

€3
€
€

Fig. 1

4.1. Lemma. A minimal pair (M, A) has the following properties:

(i)  Suppose e € E(M) — cl(A). Then M\e has no non-minimal 2-separations and
the cosimplification of this matroid is 3-connected. Moreover, the simplifica-
tion of M /e is not 3-connected.

(i) Ifee E(M)—cl(A), then e is essential and belongs to a triad of M.
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(iii) If A is not a spanning set of M, then |E(M)| > 6 and |A| = 3.

(iv) If Tis a triangle and T* is a triad of M such that T # T* and TNT* # &,
then T* — T = {a} for some a in cl(A4).

(v)  Every triad of M meets A.

(vi) Let Ty and T, be distinct subsets of E(M) such that both are triangles or both
are triads of M. If (T\UT,) —cl(A) # &, then |T\ N T5| < 1.

(vii) If T is a triangle of M such that {f,, f,} = T — cl(A), then, for each i in
{1,2}, there is a triad of M that meets {f, f>,} in {f;}.

(viil) If {e1,e2,e3} is a triangle T of M and T <= E(M) — cl(A), then, for each i
in {1,2,3}, there is a unique triad T; of M such that T! NT =T —e;.
Moreover,

(a) for each i, the unique element a; of T;* — T is in A, and {ay,az,as} is a
triad of M;

(b) M* = Ps(M(Ky), M*\T) where A{a1,az,a3} and M (Ky) is labelled as
in Figure 1, and M /T is 3-connected,

(c) {ai,a2,a3} is contained in a series class of (M/T)|A, and (M/]T)
(A —a) = M|(A - a).

(ix) Let T be the set of triangles of M that meet both cl(A) and E(M) — cl(A).
For every T in 7, there is a unique element ar of T Ncl(A) and there is a
chain Tiy, T, TS whose rim Ar is contained in cl(A). Moreover, if T and T’
are different elements of 7, then
(a) AT #* ATf and ar # arv,

(b) |(ArUAr)NA| = 3 with equality only when (1) AxU Ar: is contained
in a series class of M|cl(A); and (2) T;y = T for some i and j in {1,2},
OI’AT—T:AT/—T/.

(x) Ifr(A) < 3 and A is not spanning, then M is isomorphic to the rank-four wheel
having cl(A) as its rim.

(xi) Ifee E(M)—cl(A) such that M has no triangle that contains e and avoids
cl(A4), then e belongs to a triad that meets cl(A) in two elements.

Proof. (i) By Lemma 2.3, the required result follows if we can show that the sim-
plification M” of M /e is not 3-connected. Since e is a coloop of M|(AUe), we
have (M /e)|A = M|A. Therefore M" can be labelled so that its ground set con-
tains A. Thus M” cannot be 3-connected, otherwise (M"”, A) contradicts the min-
imality of (M, A).

(i) If M\e or M/e is 3-connected, then, since (M\e)|4 = M|4A = (M/e)|A,
either (M\e, A) or (M /e, A) contradicts the choice of (M, 4). Thus neither M\e
nor M /e is 3-connected, so e is essential. Furthermore, by (i), the cosimplification
of M\e is 3-connected. Thus e must belong to a triad of M.

(iif) When |4| = 1, we have that E(M) = A4; and when |A4| = 2, we have that
E(M) is a circuit of M having at most three elements. In both cases, 4 is spanning.
Thus we may suppose that |[4| > 3. If [4| = 3 and 4 is dependent, then 4 is either
a circuit or a set of parallel elements, so 4 is spanning; a contradiction. Thus if
|4| = 3, then A is independent. As A is non-spanning, it follows that r(M) > 4.
Hence, since M is 3-connected, either r*(M) >3 and so |E(M)|>6, or
r*(M) = 2. In the latter case, M is uniform and so, if e € E(M) — cl(4), then M /e
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is also uniform of corank two, so M /e is 3-connected; a contradiction to (i). It
remains to consider the case when |A4| > 4. In that case, since 4 is non-spanning,
there is a cocircuit contained in E(M) — cl(A4) and this cocircuit has at least three
elements, so |E(M)| > 6.

(iv) Since T and T* meet but are distinct, orthogonality implies that
|T* — T| =1. Let a be the unique element of 7" — 7. Suppose that a ¢ cl(4).
Then A is non-spanning and so, by (iii), |[E(M)| > 6. Now M\a has TN T* as a 2-
element cocircuit. Thus {TNT*, E(M\a) — (TN T*)} is a 2-separation of M\a.
But TN T* spans T'so {T, E(M\a) — T} is a non-minimal 2-separation of M\a; a
contradiction to (i). We conclude that a € cl(4).

(v) Assume that M has a triad T* that avoids A. Then |T*Ncl(4)| < 1. Let
T* = {ey, es,e3} and suppose that neither e nor e, is in cl(4). If a3 € cl(4), then
as € T*N(cl(4) — 4). Hence, by Lemma 2.6, T*N A # &; a contradiction. We
may now assume that a3 ¢ cl(4). Then T* < E(M) — cl(A4). By the dual of Tutte’s
triangle lemma (2.4), there is a triangle 7 of M that meets the triad 7* in exactly
two elements. Thus, by (iv), the unique element of 7" — T is in cl(4). This is a
contradiction since 7" Ncl(4) = J.

(vi) Choose N to be M or M* so that both 7 and 7, are triangles of N. As-
sume that |7; N T>| = 2. Then N|(T) U T5) is isomorphic to U, 4. Now take e in
(T1UTy) —cly(A4). Then it is straightforward to check that N\e is 3-connected.
Thus M\e or M*\e is 3-connected, so either M\e or M /e is 3-connected; a con-
tradiction to (ii).

(vil) Suppose that T = {f], f5, b} for some element b and that, for some i, say
i =1, there is no triad meeting {f, >} in {f;}. By Tutte’s triangle lemma (2.4),
there is a triad 7' that contains f; and exactly one of b and f,. Hence b ¢ T* and
f>,€T*. By (vi), T* must be the only triad of M that contains f;. By (i), the
cosimplification M’ of M\ f; is 3-connected. As the only triad that contains f;
is T*, it follows that M' = M\ f;/f,. But, as |[E(M)| = 7, the matroid M’ is 3-
connected having at least four elements and so is simple. Hence M’ equals the
simplification M" of M/ f,. Therefore M" is 3-connected, which is contrary to (i).

(viii) Let i and j be distinct elements of {1,2,3}. Taking f; = ¢; and f, =¢; in
(vii), we deduce that M has a triad T;* such that 77 N{e;e;} = {¢;}. Thus
T*NT =T —e;. By (vi), T/ is the unique such triad. Moreover, by (v), 7;" meets
A in a single element, a; say.

To finish the proof of (viii)(a), we need to check that {a;,a,as} is a triad
of M. Observe that there is a cocircuit D of M such that a e D <
(TyUTy) —e3 ={ai,ar,er,er}. As M is 3-connected, it follows that |[D| > 3 and
hence ¢; € D for some i. By orthogonality, ¢; and e, must both belong to D, oth-
erwise DNT = {e;}. As T is the unique triad such that 75 N T = {ey, >}, if fol-
lows that D = {aj,as,e;,e;}. Thus there is a cocircuit D’ of M such that
aie D' = (DUTS) —e, ={a1,a2,a3,e1}. As |[D'NT| # 1 and |D'| > 3, it follows
that e; ¢ D’ and that D’ = {a;, 4y, a3}, that is, {a;, @z, a3} is a triad of M.

Part (b) is an immediate consequence of [11, Theorem 1.11]. Now we shall
prove (c). Let Z = {ay,as,as, e1, e;}. We start by proving the following.

4.1.1. Every circuit of M|(AU{ey,e2}) that meets Z must contain Z.
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Let C be such a circuit. Since each g; is a coloop of M|A4, the circuit C must
meet {ej,e;}. Moreover, as neither e¢; nor e; is spanned by 4, it follows that
|C — A| = 2 and hence {e;,e;} = C. As |[T;*N C| # 1 for each i in {1, 2}, it follows
that g; € C for each such i. To prove that Z = C, it remains to show that a3 € C.
Suppose that this is not the case. Then there is a circuit C’ of M such that
e3e C' = (CUT) —ey. As C'NT5 = {e}, it follows that e; ¢ C'. Hence ez €
C’ = AUe;. This is a contradiction because A does not span e3. Thus Z = C. We
conclude that (4.1.1) holds.

By (viii)(b), M /T, which is isomorphic to M\e3/e;,es, is 3-connected. Since
(M, A) is a minimal pair, M|A4 # (M\es/e1,e2)|A. Thus M does indeed have a
circuit contained in 4 U {e, e;} and meeting {e,e,}. By (4.1.1), it follows that Z
is contained in a series class of M|(A4U{e;,e>}). Hence {a;,a,, a3} is contained in
a series class of [M|(AU{e;,es})]/{e1,e2}, which equals (M/T)|A. Finally, for
each i in {1,2,3}, each member of Z — a; is a coloop of [M]|(AU{er,er})]\a
so M|(A — @) = [M|(4 U {er,e2})]/{er,e2P\a; = (M/{er,exP\es)l(A — a) =
(M/T)|(4 - a).

(ix) If T € 7, then, as T meets both cl(4) and E(M) — cl(A4), it follows by
(vii) that there are triads T} and T, of M such that T}, T, T, is a chain of M
having both its spokes in E(M) — cl(4). By (iv), it follows that the set A7 of rim
elements of this chain is contained in cl(4). Observe that Ar is contained in a
series class or is a set of coloops of M|cl(4). In both cases, |47 N A| > 2.

Let ar be the unique element of T Ncl(A4). Let T’ be an element of 7 — {T}.
By Lemma 2.9, ar ¢ T' and so ar # ar.

We shall show next that

4.1.2. If ar € T\ U Ty, then Ar # Ar, and Tjp = Tz for some i and jin {1,2}.

Assume, without loss of generality, that ar € T,;,. Then, by Lemma 2.9,
TS7, = T} for some i, say i = 1. Hence T}7.,, T, T57, T is a chain. Moreover,
either 7%, T', T)7,, T, T;7 is a chain, or Ty — T < T/ U T’ U T4 In the first
case, Ar # A, as required. Now consider the second case, letting X = TUT'U
Aq:. By (iil), [E(M)| =7, so |[E(M) — X| > 1. Thus, as X — {ar,ar} and Ar
span X in M and M*, respectively, we have

l<r(X)+rX)—|X|<4+3-6=1.

Since M is 3-connected, it follows that |[E(M)| =7 and r(X) =4. But r(TUT’) =
3and |E(M)— (TUT'")| =2, so M has a cocircuit of size at most two; a contra-
diction. We conclude that (4.1.2) holds.

It follows immediately from (4.1.2) that (ix)(a) holds. If A7 N Ay = &, then

(A7UA7)NA| = |ArNA|+ |Ap N A] > 4.

Hence (ix)(b) holds in this case, so we may suppose that ArNAp # &. Let
S = ArUAr. Then, in M|cl(A4), the set S is contained in a series class or is a set
of coloops. Thus, by orthogonality and (a), |4 N S| > |S| — 1 > 3. To complete the
proof of (b), we now suppose that |SN A| = 3. Then |S| =4, and S must be con-
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tained in a series class of M|cl(A4) otherwise the unique element of S — A4 is a
coloop of M|cl(A) contained in cl(4) — A; a contradiction. Thus |[Ar N Ar/| = 2.
But, by applying (4.1.2) to both ar and ar, we have that either 7,7 = 7,7, for
some i and j, or ar ¢ A7 and arp ¢ Ar. In the latter case, Ay — {ar} =
Ar —{ar:}, that is, A7 — T = Ay — T’ and we have established that (ix)(b)
holds.

(x) Let 7' be the set of triangles 7 of M such that T — cl(4) # &. As 4 does
not span M, there is a cocircuit of M that avoids cl(4). By Theorem 2.8, for each
such cocircuit D, there are distinct triangles 7] and 7, of M such that
T/ND # &. Hence |7 > 2.

Suppose that 7' has a member T such that TNcl(4d) = @. Let T =
{e1,e2,e3}. By (viii), for each i in {1, 2, 3}, there is a triad T;* of M and an element
a; of A such that T = (T —e¢;)Ua;. Thus a; is a coloop of M|A4 and hence,
|4| = 3 because r(A4) < 3 by hypothesis. Therefore 4 = {a;,a2,a3}. If f ecl(4)—
A, then there is a circuit C of M such that f € C = AU f. Thus g; € C for some i,
so CNT; = {a;}, which is contrary to orthogonality. Hence cl(4) = 4. Let 7' be
in 7' — {T}. Next we shall prove that 7N 4 # @. Assume the contrary. Then
T' avoids T otherwise |T'N T;| = 1 for some i. Now, applying (viii)(c) to the tri-
angle T, it follows that A is contained in a series class of (M /T’)|4 and hence, as
|4| =3, we deduce that A4 is a circuit of M/T'. But T} is a triad of M/T’, a
contradiction since |4 N T}*| = 1. We conclude that 7' does indeed meet A. Thus
we may assume that a; € T'. By orthogonality, e, or e3, say e, belongs to T".
By (vi), TNT' = {ex}. As T'NT5 # {es}, it follows that a3e T’ and T' =
{ai,e2,a3}. This is a contradiction because it implies that e; € cl(4), yet
cl(4) = A.

We may now assume that every T in 7' meets cl(4). Thus, in the notation of
(ix), 7' =7 .Let T € 7. Then Ar U T is the union of two triads of M. Thus, in
M]cl(A), either (a) Ar is contained in a series class, or (b) A7 is a set of coloops.
But, in the latter case, A7 is an independent set of size three. Since A7 < cl(4), we
deduce that A7 spans cl(4). Thus A7 = cl(4) = 4. But |7'| > 2, so there is a T’
in 7 —T. As Ar: is a 3-element subset of the 3-element set cl(4), we have
Ar = A = Ar; a contradiction to (ix)(a). Hence we may assume that (a) holds.
Then, as |A7| = 3, either A7 is a basis of A, or A7 is a triangle. In the second case,
letting X = ArUT, we have r(X) +r*(X) — |X| < 1. This contradicts the fact
that M is 3-connected since |X| = 5 and, by (iii), |E(M)| > 7. We conclude that
Ar is a basis of 4 and it is not difficult to see that cl(4) is a 4-circuit of M.

Now let T and T’ be distinct triangles in 7 and let Z = cl(4) U T U T". Since
each of cl(4), T, and T" is a circuit and cl(4) — (T'U T’) is non-empty, we deduce
that r(Z) < |Z| — 3. Moreover, each element of 77U 7" is in a triad with two ele-
ments of cl(4). Thus r*(Z) < |cl(4)| = 4. Hence

HZ)+r(Z) - |Z) < (12| - 3) +4—|Z| = 1.

Since {Z, E(M) — z} is not a 2-separation of M, it follows that |E(M) — Z] < 1
and so |[E(M)| < 9. But Ay and A7 are distinct 3-element subsets of the 4-element
set cl(A4), so cl(4) = A7 U Ar.. Hence every element of cl(4) is in a triad of M.
But, by (ii), every element of E(M) — cl(A4) is also in a triad of M. Hence M is
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minimally 3-connected. Moreover, »(M) >4, so |E(M) —cl(4)| = 4, otherwise
E(M) —cl(A) is a triad avoiding A4 contradicting (v). Thus |E(M)| > 8.

Suppose that r(M) = 4. Then, by Oxley [8], since M is minimally 3-connected,
|E(M)| < 8 with equality only if M is a wheel or a whirl. Therefore |E(M)| = 8.
In a rank-four wheel or a rank-four whirl, the only 4-circuit that is a flat of the
matroid is the rim of the rank-four wheel. Thus the result holds when r(M) = 4.

We may now assume that r(M) > 5. Since every cocircuit avoiding the 4-
circuit cl(A) has size at least four and |E(M)| <9, it follows that r(M) =5 and
|[E(M) =09. Thus E(M) — cl(A4) contains at least two cocircuits of M. By elimi-
nation, it follows that every 4-element subset of E(M) — cl(A4) is a cocircuit. But T
meets E(M) — cl(A4) in exactly two elements, so E(M) — cl(A4) contains a cocircuit
meeting 7 in a single element; a contradiction.

(xi) From (ii), there is a triad 7" of M such that e € T*. Moreover, we may
assume that |7*Ncl(A4)| < 1, otherwise the result holds. Thus |T* —cl(4)| > 2.
Hence, by Tutte’s triangle lemma (2.4), M has a triangle T that meets 7* in
exactly two elements, one of which is e. Let T = {e, f,¢9}. We may assume
that f ¢ cl(A4). Therefore, by hypothesis, g € cl(4). By (vii), M has a triad 7," that
meets {e, f} in {e}. Orthogonality implies that g € 7, and (iv) implies that
T;—T <=cl(4). Thus |T; Ncl(4)] = 2, as desired. O

4.2. Lemma. Let (M, A) be a minimal pair and T be a triangle of M that avoids
cl(A). If a is a member of A that belongs to a triad meeting T, then (M /T, A — a) is
a minimal pair.

Proof. Let T = {ey,ez,e3}. Then, by (viii) of Lemma 4.1, for each i in {1,2,3},
there is a unique triad 7} of M such that ;" = (T — ¢;) U a; for some a; in A. Thus
a = a; for some i and, by symmetry, we may assume that i = 3. Let M' = M /T
and A’ = A — a3. By Lemma 4.1(viii)(b), M’ is 3-connected. We may suppose that
(M’, A" is not a minimal pair. Then there is a proper 3-connected minor N’ of M’
such that N'|4’ = M'|4" and (N’, 4’) is a minimal pair. Clearly N' = M'\X/Y
for some disjoint subsets X and Y of E(M) — (4’UT) such that XU Y is non-
empty. Observe that a; ¢ Y because Lemma 4.1(viii)(b) implies that a3 is spanned
by A" in M.

We may now assume that a3 € X U E(N’). Then, since {a;, ay,a3} is a triad of
M’ either

(a) a3 € E(N') and {ay,as, a3} is a triad of N'; or
(b) {a1,as,a3} properly contains a cocircuit of N'.

In case (b), since N is 3-connected and {a,, a,} has rank two in it, we deduce that
N' must be a triangle. As a; and a, are coloops of M'|4’ and M'|4’ = N'|4’, it
follows that 4’ = {a;,a,} and |4| = 3. This cannot happen by (x) of Lemma 4.1
since the rank-four wheel has no triangle avoiding the closure of its rim. Hence (a)
must hold. Now, by Lemma 4.1(viii)(b), M* = P,(M(K4), M*\T) where 4 =
{ai,ay,a;} and M(Ky) is labelled as in Figure 1; and (N')" = (M*\T)/X\Y.
Since 4 is a triangle of (N')”, it follows that

M*/X\Y = P4 (M(Ky), M\T/X\Y) = P4 (M(Ky), (N')").
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Let N* = M*/X\Y. Since (N')" and M (Ky) are 3-connected having at least there
common elements, by [10], N* is 3-connected. Hence N is 3-connected.
We shall show next that

42.1.N|A' = M|A'.

To see this, first note that M'|4’ = M|A’ by Lemma 4.1(viii)(c). Moreover, by
assumption, N'|4" = M'|4’. Thus

VM(AI) = VM/(A/) = VN/(A,).
But, since N’ is a minor of N, and N is a minor of M, we have
VM(AI) > }’N(A/) > VN/(AI).

Therefore equality holds throughout the last line, so ry(A4’) = ry(A’). As Nis a
minor of M, it is now easy to check that N|4’ = M|A’. Hence (4.2.1) holds.
Since a3 is a coloop of both N|4 and M|A4, it follows from (4.2.1) that
N|A = M|A. Therefore, as (M, A) is a minimal pair, N =M and so XUY is
empty and N’ = M'. Thus (M’, A’) is a minimal pair. O

4.3. Lemma. Suppose that (M, A) is a minimal pair in which A is non-spanning such
that

(@) M\cl(A) has no triangles; and
(b) every triad with at least two elements in cl(A) contains at least two elements of
A.

Let a be an element of A that is in no triangles of M, and N be a minimal 3-

connected minor of M /a for which N|(A — a) = (M /a)|(A — a). Then

(i) N=M/a;or

(i) N = M/a\e for some element e of E(M) — A such that {a, e} is contained in a
triad of M whose third element is in A; or

(iii) N = M/{a,e}\e' for some elements e and e’ of E(M) —cl(A) such that
{e,ai,e'} is a triangle of M and {a,e,a\},{e,a1,e¢'},{a1,¢',ar} is a fan of M
for some elements a, and a, of A.

Proof. Suppose that N = (M/a)\X/Y for some disjoint subsets X and Y of
E(M) — a. We show first that

43.1. YNcl(4) = @.

Assume that (4.3.1) fails and let y be an element of Y Ncl(4). As
N|(A —a) = (M/a)|(A — a) and N is a minor of M /{a, y}, it follows that

rM/a(A_a) :rN(A _a) S"'M/{a,y}(A _a) :rM/a((A _a)Uy) _VM/a(y)'

Thus y ¢ cly/u(A4 — a) so y ¢ cly(A4); a contradiction. Hence (4.3.1) holds.
Now choose X and Y such that | X]| is as large as possible. Note that

4.3.2. Y Ua is independent in M.
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If not, there is a circuit C of M such that C < Y Ua. Take y € C —a. They y is
a loop of M/[(Y — y)Ua]. Hence N = (M /a)\(X U y)\(Y — y), which is con-
trary to the choice of X and Y.

We show next that we may also suppose that

4.33. |E(N)| = 4.
Suppose not. Then |E(N)| < 3 and so, as N is 3-connected, r(N) < 2. Thus
ru(A) =rya(Ad—a)+1=ry(Ad—a)+1<r(N)+1<3

where the second equality holds since N|(4 —a) = (M /a)|(A — a). But now, by
(x) of Lemma 4.1, we conclude that M is isomorphic to a rank-four wheel having
cl(A4) as its rim. Hence « is in a triangle of M; a contradiction.

Next we prove the following.

4.34. Let H= M\X,/Y, where X1 € X and Y, € YUa. Then H cannot have a
cocircuit D such that |D| < 2 and D = cl(4) — a.

Suppose that such a cocircuit D does exist. We shall first prove that DN A #
@. Assume that DN 4 = & and let d be an element of D. As d € cl(A4) — A4, there
is a circuit C of M such thatd € C = AUd. Observe that, since A — a = E(H) and
a ¢ X1, the set C contains a circuit C’ of H such that d e C' = AUd. Hence
C’'N D = {d}, which is contrary to orthogonality. Thus DN A # &. Let a’ be an
element of DN A. Observe that @’ must belong to a cocircuit D’ of N such that
D' = D. Thus |D’| < |D| <2, which contradicts (4.3.3) since N is 3-connected.
Hence (4.3.4) holds.

The second result that we need about a minor H of M having N as a minor is
the following.

4.3.5. If H is not 3-connected, then there is a k-separation {Z, W} of H with k in
{1,2} such that |ZNE(N)| < 1 and Z is closed in both H and H*.

As H is not 3-connected, it has a k-separation {Z, W} for some k in {1,2}. But
N is a 3-connected matroid and is a minor of H, so

min{|ZNE(N)|,|WNE(N)|} < 1.
In particular, we may assume that
[ZNE(N)| < 1. (1)

Now choose such a k-separation satisfying (1) so that |Z| is as large as possible.
Note that, since |[E(N)| > 4, we must have that

|[WNE(N)| > 3. 2)

If Z is closed in both H and H*, then (4.3.5) follows. Thus, we may assume that
there is an element w of W such that w is spanned by Z in H or H*. Hence
ra(Z) =rg(ZUw) or ry-(Z) = rg-(ZUw), and so

ra(Z) +rg(Z) = |Z| =2 ru(ZUw) +rg-(ZUw) — |ZUw|.
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Thus {ZUw, W — w} is a j-separation of H for some jin {1,2}. Again, since N is
3-connected, we have min{|ZUw) N E(N)|,|(W —w)NE(N)|} < L. It follows by
(2) that [(ZUw) N E(N)| < 1. Therefore {ZUw, W — w} contradicts the choice of
{Z, W} and we conclude that (4.3.5) holds.

4.3.6. If T is a triad of M such that e T* —cl(A) and T* —e = cl(A4), then
T —ec A.

To see this, note that T*Ncl(A) = T* — e. Hence |T*Ncl(A)| = 2 and (4.3.6)
follows by hypothesis (b).

4.3.7. If T is a triangle of M such that T — cl(A) is non-empty, then T Ncl(A) con-
tains exactly one element, ar, and ar € A.

As T — cl(A) is non-empty but M\cl(4) has no triangles, it follows that 1 <
|T — cl(A)| < 2. But cl(A4) does not span T, so |T —cl(4)| = 2. Let e be an ele-
ment of T — cl(A). By (xi) of Lemma 4.1, there is a triad 7* of M such thatee T*
and T* —e =cl(4). By (4.3.6), T* —e = A. By orthogonality, T*NT # {e}.
Thus the unique element ay of TN (7" — e) must belong to 4, and (4.3.7) holds.

Recall that N = (M /a)\X/Y. To establish Lemma 4.3, we shall show that
both X and Y must be small. We begin by considering X.

4.4. Lemma. (i) If x € X, then there is a triad T of M such that T = {x,a,b} for
some b e A.
(i) |X] < 1.

Proof. The proof of Lemma 4.4(i) is long and will be divided into a number of
steps. We shall argue by contradiction. Thus suppose that (i) fails, that is, 7 does
not exist for some x in X. Let H = M\x and observe that H is not 3-connected
since (M, A) is a minimal pair. Therefore H has a 2-separation {Z, W} satisfying
(4.3.5). Hence ZN E(N) has at most one element. Moreover, when this element
exists, we shall denote it by n. It is not difficult to see that

4.4.1. ZN A < {a,n}, where n may not exist.

Next we show that

4.4.2. WU A is a spanning set of M.

Suppose that W U A4 does not span M. Then there is a cocircuit D of M that
avoids cl(W U A4). Since D must also avoid cl(4), Lemma 4.1(ii) implies that every
element of D is essential. Thus, by Theorem 2.8, M has two distinct triangles 7T
and 7> meeting D. By (4.3.7), each T; contains a unique element ar, of cl(A4) and
ar, € A. Moreover, by Lemma 4.1(ix), ar, # ar,. But, for each i, we have
T; —ar, = D. Moreover, D = Z since D avoids cl(W). Since, by (4.3.5), Z is
closed in M\x, it follows that ar, € Z for each i. Hence, by (4.4.1), {ar,,ar,} <
ZN A < {a,n}. Therefore a = ar, for some j, so a is in a triangle; a contradiction
to the hypothesis.
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4.4.3.2 < r(Z) < 3. Moreover, if r(Z) = 3, then n exists and is in A, and both a and
n belong to Z and are coloops of M|(W U {a,n}); and if a € W, then r(Z) = 2, and
n exists, is in A, and is a coloop of M|(W Un).

By (4.4.1), WUA < WU{a,n} where n may not exist. As {Z, W} is a 2-
separation of M\x, we have min{|Z|, |W|} > 2 and »(Z) + r(W) = r(M) + 1. But
M\ x is simple, so

2<r(Z)=rM)—r(W)+1. (3)
Moreover, by (4.4.2),
r(M)=r(WUA)=r(WUA-W))<r(W)+|4—- W]|.
Hence
W UA) = (W) = r(M) = (W) < | = W|. (4)
Substituting for »(M) — r(W) into (3), we get
2<r(Z)<|A—-W|+1. (5)

Since 4 — W < {a,n}, where n may not exist, we deduce that 2 < r(Z) < 3.
Moreover, if r(Z) = 3, then |4 — W| = 2 and equality holds in (4). Hence n exists,
both @ and n are in Z, and both are coloops of M|(W U|{a,n}). On the other
hand, if a € W, then |4 — W| = 1, so n exists and equality holds throughout both
(5) and (4). Thus r(Z) = 2, and n is a coloop of M|(W Un).

4.4.4.If |Z| = r(Z) + 1, then (Z — A) N cl(A) is empty, and n exists and is in A.

Suppose first that 7(Z) = 2. Then M|Z is isomorphic to U, 7. As a does not
belong to a triangle, it follows that « € W. Hence, by (4.4.3), n exists and is in 4.
Thus, by (4.4.1), Z— A =Z —n. Now suppose that 4 spans an element z of
Z —n. Then {n,z} =cl(4) and A4 spans Z because {n,z} is a basis for Z. As
c(A)NY = Dby (43.1),ZNY = &.But Z —navoids E(N). Hence Z —n = X.
Thus N is a minor of M\ (Z — n) which equals M|(W Un). But n is a coloop of the
last matroid by (4.4.3), so n is a coloop of the 3-connected matroid N; a con-
tradiction. We conclude that A4 cannot span any element of Z — A, and so
(Z—-A4)Ncl(4) = @ when r(Z) = 2.

We may now assume that r(Z) > 3. Then, by (4.4.3), r(Z) = 3, n exists, and a
and n both belong to ZN A. Thus, by (4.4.1), Z — A = Z — {a,n}. Suppose that 4
spans an element z of Z — {a,n}. Then {a,n,z} = cl(4) and 4 spans Z because
{a,n,z} is a basis for Z, since, by hypothesis, ¢ does not belong to a triangle of M.
Ascl(A)NY =@ by (4.3.1), ZNY = &. But Z — {a,n} avoids E(N) so Z —
{a,n} = X. Thus N is a minor of M\(Z — {a,n}), which equals M|(W U{a,n}).
Since # is a coloop in the last matroid by (4.4.3), n is a coloop of N; a contradic-
tion. Hence A cannot span any element of Z — 4 and so (Z — A) N cl(4) = &.

4.45.1(2) = |Z|.
Suppose that |Z| > r(Z)+ 1. Then M|Z has a circuit, C. Observe that C— 4 =
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C —{a,n} since, by (4.4.4), n exists and belongs to 4 and by (4.4.1), ZN
A = {a,n}. Now |C — {a,n}| =2, otherwise {a,n} = C and |C| =3 which is
contrary to the fact that a does not belong to a triangle. Let z; and z, be distinct
elements of C — A, and suppose that z € {z1,2z;}. Then z € Z — A4, so, by (4.4.4),
z ¢ cl(A4). Moreover, by (xi) of Lemma 4.1, M has a triad T* that contains z and
meets cl(4) in two elements. By (4.3.6), 7" must meet 4 in two elements. By
orthogonality, |7*N C| > 2. Hence |T* — C| < 1 and so T* = Z by (4.3.5). Thus
T*NA<=ZNA < {a,n} by (4.4.1). Hence T* = {z,a,n}. In particular, the triads
{z1,a,n} and {z2,a,n} contradict (vi) of Lemma 4.1.

Next we complete the proof of the first part of Lemma 4.4 by showing that T
exists, thereby obtaining a contradiction since we have assumed that 7'} does not
exist.

4.4.6. T exists.

Suppose first that x € X — cl(4). Then, by hypothesis (a), M has no triangle
that contains x and avoids cl(A4). Therefore, by (xi) of Lemma 4.1, there is a triad
T* of M such that T* — x = cl(4) and hence, by (4.3.6), T* —x <= A. If ae T*,
we can take 7* = T and (4.4.6) holds. Thus we may assume that a ¢ 7*. Then
T*—x is a 2-cocircuit of M\x/a. As N is a minor of M\x/a and T*—
x S cl(A4) — a, the cocircuit T* — x contradicts (4.3.4). We conclude that, for every
element x of X — cl(A4), the triad T exists.

Now suppose that x e cl(4) — A. By (4.4.5), n(Z) =1|Z|. As {Z, W} is a 2-
separation for M\x, we have, by Lemma 2.5, that if z and z’ are distinct elements
of Z, then {x,z,z'} is a cocircuit of M. But x € {x,z,z'} N(cl(4) — 4), so, by
Lemma 2.6, [{x,z,z'} Ncl(4)| > 2. Hence, by hypothesis (b), [{x,z,z'} N 4| > 2.
As x ¢ A, it follows that both z and z’ belong to 4. Since these two elements were
arbitrarily chosen in Z, it follows that Z < 4. Thus ZNA = Z. By (4.4.1),
ZNA < {a,n} and hence Z = {a,n} since |Z| = 2. In this case, we can take
T} = {x,a,n} thereby completing the proof of (4.4.6) and hence that of Lemma
4.4(1).

To prove the second part of the lemma, we shall argue by contradiction.
Suppose that x and x’ are different elements of X. By (i), the triads 7'} and T,
both exist. Let T = {a,x,b} and T} = {a,x’,b'} be as in Lemma 4.4. Thus
{b,b'} = A.

We prove next that b # b’. Assume the contrary. Then, by (vi) of Lemma 4.1,
both x and x’ belong to cl(4). Moreover, M *|{a,x,x’, b} is isomorphic to U, 4.
Hence {x, x’,b} is a triad of M containing two elements of cl(4) but just one ele-
ment of 4; a contradiction to hypothesis (b). Thus b # b’

Observe that {b,b’,a} is contained in a series class or is a set of coloops of
M\{x,x'}. Thus {b,b’} contains a cocircuit of (M /a)\{x, x'} which is contrary to
(4.3.4). O

Recall that N = (M/a)\X/Y. We have just shown that |X| < 1. Next we
consider | Y.

4.5. Lemma. If y € Y, then y belongs to a triangle of M.
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Proof. Suppose that y is in no triangles of M. By (4.3.1), y ¢ cl(4). Thus, if
H = M)y, then H has a 2-separation {Z, W}. By (4.3.5), we may assume that
{Z, W} is chosen such that [ZNE(N)| < 1 and Z is closed in both H and H*. As
before, if ZN E(N) is non-empty, its unique element will be denoted by n. Thus

ZNA < {a,n}. (6)
As M is 3-connected and {Z, W} is a 2-separation for M/ y, it follows that
yec(Z)Ncl(W) (7)

We shall prove next that

4.5.1. Z — X is independent in M/ y\ X .

We argue by contradiction. Thus assume that M/y has a circuit C that is
contained in Z — X. By (4.3.2), it follows that C — (Y Ua) # &. Hence

o #C—(YUa)SZ—(XUYUa) < ZNE(N) < {n}.

Thus #n exists and is in C, and C — (Y Ua) = {n}. Hence n is a loop of (M/y)/
(C—n)and yU(C —n) < YUa so N is a minor of (M/y)/(C — n). Therefore n
is a loop of N; a contradiction. We conclude that (4.5.1) holds.

Now, we shall prove that

4.5.2. |Z| = 3 and X contains a unique element x. Moreover, x € Z and, for every 2-
element subset Zy of Z — X, the set Zy U x is a triad of M.

The fact that |Z] > 3 follows because Z spans y in M by (7), and y does not
belong to a triangle. Now, by Lemma 4.4, | X| < 1. Moreover, since |[ZN E(N)| <
1 and |E(N) > 4, we have

\W|> |E(N) — Z| > |[E(N)| — 1 > 3.

Thus |W — X| > 2 and, since |Z| >3, we also have that |Z — X| > 2. Hence
{Z - X, W — X} is a 2-separation for M/y\X. Therefore, by (4.5.1) and Lemma
2.5, if Zy is a 2-element subset of Z — X, then Z; contains a cocircuit of M /y\X.
Thus Zy U X contains a cocircuit of M/y and hence of M. But every cocircuit of
M has at least three elements, so Zy U X is a cocircuit of M and |X| = 1 since, by
Lemma 4.4, | X| < 1. Moreover, X < Z since Z is closed in H*.

Now, we shall show that

453. (7| =3.

Suppose that |Z| > 4. By (4.5.2), there is a unique element x in X, and M*|Z is
isomorphic to U, 7. If x ¢ cl(A4), it follows that M has two triads that contradict
(vi) of Lemma 4.1. Thus x € cl(4). Now let Z, be a 2-element subset of Z — x. By
(4.5.2), xUZy is a triad of M. Since x € cl(4) — 4, it follows by Lemma 2.6 that
|(xUZp)Ncl(4)| = 2. Thus, by hypothesis (b), |(xUZy)NA|>2. As x¢ 4, it
follows that Zy = A. As Z, was chosen arbitrarily, we deduce that Z — x = A4.
Thus Z —x=ZNA.But, by (6), ZNA4 = {a,n}. Thus3 < |Z — x| =|ZNA4| < 2;
a contradiction. Hence (4.5.3) holds.
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Next we prove the following.

4.5.4. Z U y is a circuit of M, the element n exists and is in A, and Z equals {x,a,n}
and is a triad of M.

As Z spans y by (7), it follows that ZU y is a circuit of M, since y does
not belong to a triangle and |Z| = 3. By Lemma 4.4, there is a triad 7" of M such
that xe T} and T} —x < A. By orthogonality, since x € Z, we have that
|T5N (ZU »)|=2. As v ¢ A, it follows that T'F is a triad of H, which equals M/ y.
Since Z is closed in H*, we deduce that T* € Z because 1 > [T} — (ZU y)| =
|7 —Z|. Hence T} =Z. Thus T} — x = T*ﬂA ZNA < {a,n}, by (6). Hence
n exists and is in A, and T ={a,n,x}. We conclude that (4.5.4) holds.

Now y ¢ cl(A4) by (4.3. 1) Thus, by (xi) of Lemma 4.1, there is a triad T* of M
such that ye T* and T* — y = cl(4). By (4.5.4), Z is also atriad of Mand ZU y
is a circuit of M. By (vi) of Lemma 4.1, |[ZN T*| = 1. If x € cl(4), then all but one
element of the circuit ZU y is in cl(4); a contradiction. Thus x ¢ cl(4) so, by
Lemma 4.1(i), M /x is not 3-connected. Thus we may apply the dual of Lemma 2.7
to M to deduce that x is in some triangle 7" of M. By orthogonality, |[TNZ| > 2
and hence |T—Z| < 1. As Z is closed in M/y, it follows that 7' < Z. Hence
T = Z and Z is both a triangle and a triad of the 3-connected matroid M. This
contradiction implies that Lemma 4.5 holds. ]

4.6. Lemma. |Y| < 1 and if |Y| =1, then |X| = 1. Moreover, if Y = {y} and X =
{x}, then there is an element a' of A — a such that {x,a’,a} is a triad of M and
{x, y,a'} is a triangle of M.

Proof. Suppose that y € Y. By Lemma 4.5, M has a triangle 7, containing y.
Now, by (4.3.1), y ¢ cl(4). Thus, by (4.3.7), T, contains a unique element a’ of A.
Moreover, a’ # a since, by hypothesis, a is in no triangles. Hence a’' € E(N). Let
T, ={y,a’,d} where d is some element of E(M). Then a’ and d are parallel in
M /y. But N is a 3-connected minor of M /y and has no circuits of size less than
three. Hence d ¢ E(N). Now d ¢ Y, otherwise a’ is a loop of N. Therefore d € X.
Thus, by Lemma 4.4, d is the unique element x of X, and M has a triad 7'} where
T! ={x,a,b} for some b in A. Since xe T} NT,, orthogonality implies that
a’ = b as a is in no triangles. Thus 7}, = {y, x, b}. But y was arbitrarily chosen in
Y. Hence if y' € Y — y, then M|{y,y’,x,b} = U, 4 and so {y, y’,x} is a triangle
of M meeting the triad {x,a,b} in a single element, x; a contradiction. We con-
clude that ¥ — y is empty. Hence | Y| < 1. Moreover, if |Y| =1, say Y = {y},
then X = {x} and the required triangle and triad of M exist. O

We are now ready to finish the proof of Lemma 4.3. We have N = (M /a)\ X/
Y. By Lemma 4.4, | X| < 1, and, by Lemma 4.6, | Y| < 1 with equality in the latter
implying equality in the former. Hence we have three possibilities:

(i) [Y]=0=[X]
(i) |Y|=0and |X|=1;and
(iif) |Y|=1=|X|.

The first possibility means that (i) of Lemma 4.3 holds. Moreover, by Lemma
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4.4, the second possibility implies that (ii) of Lemma 4.3 holds. Thus it remains
only to consider when the third possibility holds. Hence let Y = {y} and X = {x}.
By Lemma 4.6, for some a' in 4 — a, the matroid M has a triad 7} and a triangle
T such that T} = {a,x,a’} and T = {x, y,a’}. Since y ¢cl(4), the triangle T
implies that x ¢ cl(4). Moreover, by (xi) of Lemma 4.1 and (4.3.6), there is a triad
T; of M containing y such that 7 — y = A. Thus, by orthogonality with the tri-
angle {x, y,a'}, it follows that 7 = {a’, y,a"} for some a” in A. Hence either
T}, T,T; is a fan of M and (iii) of Lemma 4.3 holds, or 7}, T, T5 is not a fan of
M. We may therefore assume that the latter possibility holds. Then, as |[E(N)| > 4
and so |E(M)| =7, there is a triangle T’ of M such that 7', T}, T,T; or
T}, T,Ty,T" is a chain of M. The first case implies that ¢ € T’ and the second
that ¢” € T'. But M has no triangle containing a so a” € T'. Hence T'N
(TyUTUTy) ={y,a"}. But N = M/a, y\x and so N has a circuit of size at most
two containing ¢”; a contradiction. This completes the proof of Lemma 4.3. [

4.7. Lemma. Suppose that (M, A) is a minimal pair in which |A| = 7. Let e be an
element of E(M) — cl(A) that is in exactly h triads, T|', T, ..., T/, for some h > 2.
Suppose that T; N A = {a;,b;} for all i. Then (M',A") is a minimal pair where
M'= M\e/{ai,az,...,ap} and A’ = A —{ay,ay, ... ,an}.

Proof. We note first that, by (vi) of Lemma 4.1, if i # j, then T/ N7} = {e}.
Moreover, by (i) of Lemma 4.1, M’ is 3-connected. Now M’ has a 3-connected
minor N’ such that (N, A’) is a minimal pair and N'|4’ = M'|A’. Then N’ =
M'\X/Y for some independent set ¥ and coindependent set X. Clearly
4.7.1. X Ue is coindependent in M.

We shall complete the proof of the lemma by showing that both X and Y are
empty. First we show that
47.2.r(A)+r(Y)=r(4UY).

By orthogonality, {a;, as,...,a,} is independent in M \e and hence in M. As Y
is independent in M /{a;,a,...,a;}, it follows that {a;,a,,...,a,} U Y is inde-
pendent in M. Thus, as N'|4’ = M'|A’, we have

"M /{arareayy) ¥ (A =@, a2, an}) = 1y jianas,ay (A —{ar, a2, - an}).
Therefore
r(AUY) —r({ar,az,...,an}UY) =r(4) —r({a,az,...,a1}),
sor(AUY)—h—|Y|=r(A) —h, and (4.7.2) follows.
Next we observe that
4.7.3. |[E(N")| = 4.
To see this, we note that, since |4| > 7 and

E(N') 24— {ay,a,...,a5} 2 {b1,bs,... by},
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it follows that |4| — & > h. Thus, if & < 3, then |4| — & > 4, and (4.7.3) holds; and
if # > 4, then |[E(N')| > h > 4, and again (4.7.3) holds.

Now M\(X Ue)/Y is obtained from the 3-connected matroid N’ by adding «;
in series with b; for all i. Hence M\(X Ue)/Y is connected. Moreover, the fol-
lowing is an easy consequence of the fact that |[E(N')| > 4.

4.7.4. Every 2-separation of M\(X Ue)/Y has some {a;,b;} as a part.
We show next that

4.7.5. T} is a triad of M\X /Y for every i.

Suppose that this fails for some i. Then, since 7} is a triad of M and T;* — e is
a cocircuit of (M\X/Y)\e, it follows that either (i) 7" is contained in a series class
of M\X/Y; or (ii) e is a coloop of M\X /Y. But, since X Ue is coindependent in
M, (ii) cannot occur. Likewise, (i) cannot occur, otherwise {b;, e} is a cocircuit of
M\X/Y, so b; is a coloop of (M\X/Y)\e and hence of N'; a contradiction. We
conclude that (4.7.5) holds.

Next we shall prove that

4.7.6. M\X Y is 3-connected.

Since (M\X/Y)\e is connected and e is in a triad of M\ X /Y, the last matroid
is certainly connected. Assume that (4.7.6) fails and let {Z, W} be a partition of
E((M\X/Y)\e) such that {ZUe, W} is a 2-separation of M\X /Y. Then {Z, W}
is a 2-separation of (M\X/Y)\e unless |Z| = 1. But, in the exceptional case, Z U e
is either (i) a 2-element cocircuit, or (ii) a 2-element circuit of M\X /Y. The first
case implies the contradiction that Z is a l-element cocircuit of the connected
matroid (M\X/Y)\e. In the second case, orthogonality and (4.7.5) imply that Z
meets the / disjoint sets of the form 7 — e. This is a contradiction since |Z| =1
and & > 2. We conclude that {Z, W} is indeed a 2-separation of (M\X/Y)\e.

By (4.7.4), one of Z and Wis {a;, b;} for some i. Suppose first that Z = {a;, b;}.
Then ZUe = T/ and, in M\X /Y, we have

l=r(ZUe)+r(W)—r(M\X/Y)=r(ZUe)+r*(ZUe) — |ZU¢|
=r(ZUe)+2—-3.

Hence r(ZUe) # 2. But r(Z) =r({a;,b;}) =2 since a; and b; are in series in
(M\X/Y)\e. Thus e is in a circuit C of M\ X /Y contained in T}*. This contradicts
orthogonality since, for j # i, the triad 7" of M \X/Y meets Cin a single element.
We conclude that Z # {a;, b;}.

We may now assume that W = {a;, b;}. Since {ZUe, W} is a 2-separation of
M\X/Y, it follows that {a;, b;} is a circuit or a cocircuit of M\X /Y. But {a;, b;}
is a proper subset of the triad 7;* of M\X /Y, so {a;, b;} is certainly not a cocircuit
of M\X/Y. Moreover, if {a;,b;} is a circuit of M\X/Y, then b; is a loop of
(M\X/Y)\e/{a1,az,... a3}, that is, of N’. This contradiction completes the
proof of (4.7.6).
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By (4.7.2), (AU Y) =r(A4) +r(Y),s0 (M\X/Y)|A = M|A. Since (M, A) isa
minimal pair, it follows that X = Y = &. Hence N' = M’ and so (M’,4’) is a
minimal pair. U

5. Proofs of the Main Theorems
Theorems 1.5 and 1.6 can be combined into the following result.

5.1. Theorem. If (M, A) is a minimal pair, then
[E(M)| < |A|+ i (A, M) + 22(A, M) + min{A3(4, M), r(M) —ry(A)} — (A4, M),
where

0, when A is a circuit of M
O‘(Av M) =

1, when A is not a circuit

This theorem will be derived from two propositions. The first of these, which is
stated and proved below, gives the structure of a minimal counterexample to the
theorem; the second, which was proved in an earlier paper [6], will be stated fol-
lowing the proof of the first.

5.2. Proposition. Let (M, A) be a minimal pair that is a counterexample to Theorem
5.1 and is chosen so that

(IE(M)|, —|4])

is lexicographically minimal among such counterexamples. Then every element of
E(M) — cl(A) belongs to some type-2 fan of length three in which the rim is con-
tained in a 4-circuit of M|A and the spokes are contained in E(M) — cl(A4).

Proof. Suppose that (M, A) does not satisfy the proposition. Then, clearly,
E(M)—cl(4) # D. (8)
Moreover, by (iii) of Lemma 4.1,
|4] = 3. 9)

The rest of the proof of the proposition will be broken up into a sequence of
lemmas, the first of which is as follows.

5.3. Lemma. M is neither a wheel having rim cl(A) nor a whirl having rim A.

Proof. Suppose that M is the rank-n whirl having rim 4. Then A is independent
and

|A| +/11(A7M) +/12(A7M)
+ min{As(4, M), r(M) — rys(A)} — a(4d, M) =3|4| =1 =3n— 1.
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But (M, A) is a counterexample to Theorem 5.1 and |E(M)| = 2n, so 2n > 3n — 1;
a contradiction.

Next suppose that M is the rank-n wheel having rim cl(4) but 4 # cl(a). Then
A = cl(A) — a for some element a, so 4 is independent. Again, we have that

|A|+/11(A,M)+/12(A,M)
+ min{As(4, M), r(M) —ry(A)} — (4, M) =3|4] — 1 =3n—4.

But |[E(M)| =2n and (M, A) is a counterexample to Theorem 5.1. Thus 2n >
3n—4son < 3. Hence |4| =n — 1 < 2; a contradiction to (9).

Finally, suppose that M is the rank-n wheel and A is its rim. In this case, n > 4,
otherwise n =3 and A4 is a 3-element circuit so (M|4, A) is a minimal pair; a
contradiction. Now (4, M) =1, (A, M)=n—-2,23(4,M) =n—3,r(M)—
r(4) =1, and a(A4, M) = 0. Thus

2n=|EM)|>n+1+(n—-2)+1-0.
This contradiction completes the proof of Lemma 5.3. O

In several of the lemmas below, we shall replace the minimal pair (M, 4) by
another minimal pair (M’, A") such that (|E(M’)|,—|A’|) is lexicographically less
than (JE(M)|, —|A|). Thus (M’, A") must satisfy the conclusion of Theorem 5.1
although (M, A) does not. Hence

|| + A (4, M) + A2(A4, M)
 min{ (4, M), 1(M) = ras(A)} = (A, M) — |E(M)| <0
and
|4+ M(A", M) + 2p(A', M)
+min{A3(4’, M"),r(M") = ry (A"} — (4, M") — |[E(M")| > 0.

On taking the difference of these two inequalities, we get

04401 +02+0, —0y —0p <0, (10)
where
da = |A] = 14|,
01 = M4, M) — (4", M"),
02 = Mo(A, M) = Jr(4', M),
O =min {A3(A4, M), r(M) — ry(A)} —min{Az(A4', M"),r(M") — rp(A")},

Oy =o(A, M) —a(A',M")
or = |[E(M)| — |E(M')].

Hence we shall arrive at a contradiction whenever (10) is not satisfied. To deal
with ,,, we define two other differences:
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03 = J3(A, M) — J5(4A", M),
O = [r(M) = ras(A)] = [(M") = rar (A")].

The elementary proof of the next lemma is omitted.

5.4. Lemma. (i) If 0, or ds is zero, then 6, > min{d,,d3}.
(11) Uél = 53, then 5m = 5), = 53_

5.5. Lemma. Every triangle of M that meets E(M) — cl(A) contains an element of
cl(4).
Proof. Suppose that T is a triangle of M that avoids cl(4). By (viii) of Lemma 4.1,
there is a triad that meets 7 in exactly two elements and contains some element a
of A. Then, by Lemma 4.2, if M' = M/T and A’ = A —a, then (M';A") is a
minimal pair and

(M/T)|(A—a) = M|(4—a).
As |[E(M')| < |E(M)|, the minimal pair (M’, A") satisfies Theorem 5.1. Hence (10)
holds. We shall now consider each individual difference in (10). Clearly

(5,421 and (SE:3.

Next we note that, since (M/T)|(4 —a) = M|(4 —a) and a is a coloop of
M| A, we have
51 252 =1 and 53 =0.
Now r(M')=r(M)—2 and ry(A") =ry(A —a) =ry(4) — 1. Tt follows that
0, = 1 and hence, by Lemma 5.4,
Om = 0.

Finally, (viii) of Lemma 4.1 implies that M|A4 has at least three coloops including
a, and therefore

0, = 0.
On combining the above differences, we have
04+01+0+0, —0,—0g=>14+14+14+40—-0-3=0.

This contradiction to (10) completes the proof of the lemma. O

5.6. Lemma. If T* is a triad of M such that |T* Ncl(A)| = 2, then |[T*NA| = 2.

Proof. Suppose that [T*N A| < 1. By Lemma 2.6, T*N A = {a} for some a in 4.
Choose e in (T*Ncl(A4)) — A. Let M' = M and A’ = AUe. Clearly (M', A') is a
minimal pair. Observe that the connected component N, of M|(4Ue) that con-
tains e must also contain a. Moreover, a is a coloop of N,\e. Let / be the number
of coloops of N,\e that are not coloops of N,. Then / > 1. By Lemma 2.9(i) of 6],
we have that

O01+0d =1
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Observe also that
o04=-1, 0g=0, and o,=0,

where the last of these holds because 4 spans e.

Now consider a series class S of M|A4. Its contribution to A3(A, M) is
max{0,|S| — 3}. In M|(A4Ue), there is a partition {S}, S>,...,S;} of S such that
each S; is a series class of M|(A4 U e). The total contribution of these series classes
to A3(4Ue, M) is

k
ZmaX{O, |Si| — 3},
i1

which clearly does not exceed max{0, |S| — 3}. The only non-trivial series class of
M]|(AUe) that is not contained in a non-trivial series class of M|A4 is the one that
contains e and the set of / elements that are coloops of N,\e but not of N,. Its
contribution to 13(4 Ue, M) is max{0,/ — 2}. We conclude that

03 > —max{0,/ — 2} = min{0,2 — /}
and, since J, = 0, Lemma 5.4 implies that
Opm = min{0,2 — [}.
Thus
04+ (01+02)+6y—0g=—14+1+min{0,2 -1} —0.
By (10), we must have that d, >/ — 1 + min{0,2 — /}. Hence
0y >min{/ — 1, 1}.

Butd, <land/>1,s0d,=1and/— 1= 0. The first of these implies that A Ue
is a circuit of M. Hence N, = M|(AUe) and A equals the set of coloops of N,\e
that are not coloops of N,. Thus / = |4| > 3, by (9); a contradiction. O

The proof of Lemma 5.8 will use the following result of Oxley and Wu [11,
Lemma 2.4].

5.7. Lemma. For some n > 2, let {ej,eas,...,e,} and {f}, f5,..., [,} be disjoint
subsets of the ground set of a 3-connected matroid N. Suppose that, for all i in
{1,2,...,n—1} and all j in {1,2,...,n},{e;, f;,eir1} is a triangle and {f;, ej1,
Jiw1} is a triad, where all subscripts are read modulo n. Then N is isomorphic to a
wheel or whirl of rank n.

5.8. Lemma. Let f be an element of E(M) — cl(A). Suppose that either

(i) fisin a chain with at least three links such that all the spokes of this chain are in
E(M) — cl(A) and the rim of this chain is contained in cl(A); or
(i) f'is in a unique triad of M but is in no triangles.

Then fis in a type-2 fan of length three in which the rim is a series class of M|A and
the spokes are contained in E(M) — cl(A).
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Proof. We shall show first that, in each case, there are elements ¢ of 4 and e of
E(M) —cl(A) such that M /a\e has a minimal 3-connected minor M’ for which
M'|A" = (M /a)|A’ where A’ = A — a and either

(a) M’ = M /a\e where {a,e} is contained in a triad of M; or

(b) M' = M/a\e/e' for some element ¢’ of E(M) — cl(A) such that f € {e,e’}.
Moreover, for some element a; and a, of A4, the set {e, a;, e’} is a triangle, and
{a,e,a1},{e,a1,e'}, {a1,e’,ay} is a type-2 fan of M.

Suppose that (ii) occurs and let 7* be the unique triad containing f. Then
T* — f meets 4, otherwise, by Lemma 4.1(v), |T* — cl(4)] < 1 in which case, by
Lemma 5.6, |T*N A| > 2; a contradiction. Let T* — f = {a, g} where a € A. Now
suppose that « is in a triangle of M. Then, since this triangle cannot contain f, it
must contain g. But, in that case, the cosimplification of M\ f is not 3-connected,
contradicting Lemma 4.1(i). We conclude that a is in no triangles of M.

We are aiming to apply Lemma 4.3 to M. We know, by Lemmas 5.5 and 5.6,
that hypotheses (a) and (b) of that lemma hold and that « is in no triangles of M.
Now consider M /a. It must be 3-connected otherwise neither M /a nor M/ f is 3-
connected and the dual of Tutte’s triangle lemma (2.4) implies that a is in a trian-
gle; a contradiction. Next consider M\ 1. Since f'is in no triangles, the simplifica-
tion of M/f equals M/ f and so is not 3-connected. Thus the cosimplification of
M\ f is 3-connected. Since 7 is the unique triad of M containing f, this cosimpli-
fication is M\ f/a. Thus M /a\f is 3-connected. Therefore there is a minimal 3-
connected minor M’ of M /a for which M'|(4 —a) = (M /a)|(A — a) such that
M’ is a minor of M /a\f. Then Lemma 4.3 and the fact that f'is in no triangles
imply that M’ = (M /a)\f. We conclude that if (ii) occurs, then (a) holds with
e=f.

Next suppose that (i) holds, and take a maximal such chain 7, 75, ..., T} of
M. Then k > 3. Assume that there is a set Ty, such that 75, 75,..., Ty is a
chain. Let T; = {e;, eiy1,¢e42} for all i in {1,2,...,k+ 1}. Suppose first that
Ty, T, ..., Ty is a chain. By the choice of T, 75, ..., T}, we deduce that either
ext+3 18 a spoke of T, T, ..., Tis that is in cl(A4), or ex3 is a rim element of
T1,T5,..., Tk that is not in cl(A). In the first case, T is a triangle containing
two elements of cl(A4), so exy1 €cl(A); a contradiction. In the second case, by
Lemmas 5.5 and 4.1(xi), ex4» belongs to a triad 7;; that meets cl(4) in two ele-
ments. By orthogonality with Ty, we must have that e, € T}, so, by Lemma 2.9,
Ty = Tk41; a contradiction. We conclude that Ti,75,..., T4 is not a chain.
Then e;y3€ Ty UT, U ... UTy and it follows, by orthogonality, that ¢;, 3 = e; and
that 71 and Ty, are either both triangles or are both triads. Then, by Lemma 5.7,
it follows that M is isomorphic to a wheel or whirl of rank k + 2. Moreover,
clearly this wheel or whirl has rim cl(4) and so we have a contradiction to Lemma

5.3. We conclude that there is no set Ty, such that 75, T3,..., Tk, is a chain.
Similarly, there is no set T such that Ty, T1, ..., T;_; is a chain. We conclude that
T\, T,,..., Ty is a fan F. Moreover, since e; and e, are non-essential, it follows

by Lemma 4.1(ix) that both 7' and T are triads of M.
Let {a,e,a;} be the first link 7* of F where « is the rim element of 7* that is in
no triangles, and e is the spoke of T* the first spoke of F. By Lemma 5.6,



On the 3-Connected Matroids That are Minimal Having a Fixed Restriction 311

{a,a1} = A. By Lemma 4.1(i), the cosimplification of M\e is 3-connected. Sup-
pose that this cosimplification is isomorphic to M\e/a, and let M’ be a minimal 3-
connected minor of M\e/a for which M'|(4 — a) = (M /a)|(A — a). Then Lemma
4.3 implies that (a) or (b) holds provided that, as we now show, f € {e,e’}. Clearly
e is in both the fan F and the fan {a, e, a1}, {e,a;,e'}, {ai,e’, a,} whose existence is
asserted in Lemma 4.3(iii). By Theorem 2.2, if these fans are distinct, then F has
five elements and has e as a rim element; a contradiction. Hence these two fans are
the same, so f € {e,e’}. We conclude that if the cosimplification of M\e is iso-
morphic to M\e/a, then (a) or (b) holds.

Now assume that the cosimplification of M\e is not isomorphic to M\e/a.
Then M has a triad T} that contains e and is different from 7*. It follows, using
orthogonality, that 7} must contain the first two spokes, e and e’, of F. More-
over, by Lemma 4.1(v), the other element a’ of 7" is in 4. By orthogonality again,
F cannot have a third spoke. Hence e and ¢’ are the only two spokes of F, so
f e{e,e’}. Moreover, T* and T} are the only triads of M containing e, and the
cosimplification of M\e is isomorphic to M\e/a/e’. We show next that

(M\e/a/e')|(4 - a) = (M/a)|(4 - a).

This follows if (M /a)|[(4 — a)Ue'] has e’ as a coloop. Assume the contrary. Then
¢’ is in the closure of 4 —a in M /a, so ¢’ is in the closure of A4 in M; a contra-
diction. Clearly M\e/a/e’ has a minimal 3-connected minor M’ for which
M'|(A—a)=(M/a)|(A — a). Thus, by Lemma 4.3, we have that (a) or (b), and
hence (b), holds.

We now know that (a) or (b) holds, and we examine the minimal pair (M, 4").
Since |E(M'")| < E(M)|, Theorem 5.1 holds for (M’, 4’). Clearly

o4 =1
Moreover,
{0, when M’ = M /a\e; and

1, when M’ = M/a\e/e'.
The rest of the argument will be broken into the following cases.

(I) ais a coloop of M|4;
(I) ais in a series class of M|A4.

In case (I), since M'|4" = (M /a)|A’,
or=1, o6,=1, and 0J5=0.
Thus, by Lemma 5.4, §,, > 0. Hence, by (10),
1+414+140<04+01 4+ +0m <y +0E.

Thus, as d, < 1 and Jg < 3, we deduce that 6, = 1 and dg = 3. The first of these
implies that 4 is not a circuit of M but 4 — a is a circuit of M’; and the second
implies that (b) holds. By (b), M\e has {a,a;} as a cocircuit. Thus M|A has
{a,a,} as a union of cocircuits. But a is a coloop of M|A. Hence so is a;. This
contradicts the fact that 4 — a is a circuit of (M|A4)/a. Thus (I) cannot occur.
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Now consider (II). In this case, M|A4 is obtained from M’|4’ by adding « in
series to some element of 4’. Thus M|A is isomorphic to the 2-sum of M’|4’ and a
copy of U, 3. Hence

51:0, 5221, and 5“20

Moreover, if S, is the series class of M|A containing a, then

0, when |S,| <3;

03 =

1, when |S,| > 4.

Since J, € {0, 1}, it follows, by Lemma 5.4, that
Om = 0.

Thus, by (10),

140+14+0-0<14+04+1+0,,—0=04+01+02 4+, —0, <OE.

Since dp <3, we deduce that dp =3 and J,, =0. Hence (b) holds, that is,
M' = M/a\e/e', so 6, = 1. Thus, by Lemma 5.4, 03 # 1 otherwise J,, = 1. Hence
03 =0 so |S,| < 3. Therefore, by (b), S, ={a,a1,a:} and the fan {a,e,a;},
{e,ay,e'},{a1,e',a,} satisfies all the conditions asserted in the lemma. O

5.9. Lemma. [4] > 7.

Proof. As E(M) —cl(A) # &, there is a cocircuit D of M that avoids cl(4).
Moreover, since (M, A) is a minimal pair, for all elements e of D, the matroid
M /e is not 3-connected. Thus, by Theorem 2.8, M has two triangles 7 and T,
meeting D in distinct subsets. By Lemma 5.5, each 7; meets cl(4). Hence, by
Lemma 4.1(ix), there is a unique element ar, in 7;Ncl(A4) and there is a chain
T, T;, T5;, whose rim Az, is contained in cl(4). Take an element f; of
(I — T») —cl(A4). By Lemma 5.8, f| is in a 5-element fan F] whose rim is a series
class of M|A4 and all of whose spokes are in E(M) — cl(A). Clearly T, — cl(A4) has
an element f, that is not in F{ and, by Lemma 5.8 again, f, is in a 5-element fan
F; whose rim is a series class of M|A.

The rims R, and R, of F| and F, are both series classes of M|4 and, by The-
orem 2.2, these rims are not equal. Hence R; and R, are disjoint and so |4| > 6.
We may now assume that |[4| = 6 otherwise the lemma holds. But, in that case,
M| A is the union of the two series classes R; and R,. Hence each R; is a triangle of
M|A. This is a contradiction as F/ is a fan. O

5.10. Lemma. An element e of E(M) — cl(A) that does not belong to a triangle of M
belongs to exactly one triad.

Proof. The element e certainly belongs to at least one triad, otherwise, by Lemma
2.3, either M\e or M /e is 3-connected; a contradiction to the fact that (M, 4) isa
minimal pair. Now let 77, T),..., T, be the triads of M that contain e and sup-
pose that n > 2. For all i, we must have that |7} — cl(4)| < 2, otherwise Tutte’s
triangle lemma (2.4) implies that e is in a triangle. Hence |77 Ncl(4)| > 2 for all i
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and it follows, by Lemma 5.6, that |T*N 4| =2. Let TN 4 = {a;, b;} for all i.

Then since, by the previous lemma, |4| > 7, Lemma 4.7 implies that (M', A") isa

minimal pair where M’ = M\e/{a,az,...,a,} and A’ = A —{ay,aa,...,a,}.
Clearly

04y=n and Jgp=n-+1.

Moreover, for each i, either g; is in series with b; in M|A, or a; is a coloop of M |A.
Without loss of generality, assume that the set of coloops of M|A4 in
{ai,a2,...,a,} is {aj,az,...,ar}. Then a matroid isomorphic to M|A4 can be
obtained from M’'|A’ in two stages: first take the direct sum of M'|4” with the k
coloops ay,a, ..., ar; and then take the 2-sum of the resulting matroid with n — k
copies of U, 3 using by, brya, ..., b, as basepoints. Thus

01=k>0 and o, =n.

As each series class of M’|4’ is contained in a series class of M|A4, we have
03 = 0. Moreover, as J, is clearly zero, Lemma 5.4 implies that

Om = 0.
Therefore, by (10), we obtain a contradiction unless

n+04+n+0<04+0+0+0m<dg+0d,=(n+1)+7,
Thus 1 <n—1 < J, < 1; a contradiction. O

On combining Lemmas 5.8 and 5.10, we obtain the following.

5.11. Corollary. If f € E(M) — cl(A), then fis in a type-2 fan of length three in
which the rim is a series class of M|A and the spokes are contained in E(M)— cl(A4).
Moreover, two distinct such fans are disjoint.

Proof. Either fis in a triangle of M or not. In the first case, by Lemma 5.10, f'is in
a unique triad but no triangle and the first part of the corollary follows by Lemma
5.8. In the second case, by Lemma 5.5, f'is in a triangle with some element of
cl(A). Then, by Lemma 4.1(ix), f'satisfies (i) of Lemma 5.8 and again the first part
of the corollary follows by that lemma.

Now observe that the intersection of two distinct fans F| and F; satisfying the
specified conditions is a subset of the intersection of their rims or the intersection
of their sets of spokes. But each rim is a series class of M|A so the rims are either
equal or disjoint. Thus if | meets F,, then F} and F, have a common element that
is essential in M. But this violates Theorem 2.2.

Now let Ty, T1,T> be a type-2 fan F of M where Ty = {ag,e1,a1}, T1 =
{61 ,ap, 6’2}, and Tz = {a1 , €2, az} where {a()7 ap, az} o= Cl(A) and {61 s 6’2} N CI(A) =
&. A chord of Fis an element y such that RU y is a circuit of M where R is the rim
{ap, a1, ay} of F. In view of the last corollary, to complete the proof of Proposition
5.2, it suffices to show that F has a chord that is contained in 4.

5.12. Lemma. If y is a chord of F, then y is unique and y € A.
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Proof. If {y,ap,a1,a;} and {y',ap,a,a,} are circuits of M, then {y,y’ ap,a,}
contains a circuit, which, by orthogonality, must be {y, y'}; a contradiction. Thus
y is unique. Now assume that y ¢ 4. Then M\ y is not 3-connected. Let {X, Y} be
a 2-separation of M\ y and suppose, without loss of generality, that | X N T}| > 2.
Subject to this restriction, choose the 2-separation {X, Y} such that |[X N F| is
maximum.

We now show that | Y| > 3. Assume that | Y| = 2. As M is simple, ¥ must be a
cocircuit of M\ y, and so Y U yis a triad T* of M. By orthogonality, T*N R # &.
By Lemma 2.9, a; ¢ T*. Hence we may assume that ap € 7*. Because R is a series
class of M|A, the unique element, z say, of T* — {y,ap} must belong to A other-
wise ag is a coloop of M|A. Thus z and a, are in series in M|A4 so z = ap, and
T* = {y,a0,a}. By elimination and orthogonality, {ao, e, e, @} is a cocircuit of
M. Hence ({ag, e1,ex,a2} U{y,ap,a2}) — ay contains a cocircuit D of M. But M|4
has a circuit containing {ay,a1,a»} so, by orthogonality, D = {e;, ez, y}. Thisis a
contradiction since |D N (RU y)| = 1. We conclude that | Y| > 3.

Next we observe that, since X spans 77, it follows that {XUT,,Y — T} isa 2-
separation of M\y. By the choice of {X, Y}, we deduce that XUT; = X, so
Ty = X. Thus X spans Ty in M*, so {XUTy, Y — Ty} is a 2-separation of M\ y,
which, as above, must equal {X, Y}. Thus 7y € X and, by symmetry, 7> = X.
We conclude that F = X, so X spans y. This contradiction completes the proof
that y € 4. O

We may now assume that F has no chord, otherwise Proposition 5.2 follows.

5.13. Lemma. M /{ay,a,} is 3-connected.

Proof- Asaye Ty — T and Ty, Ty, T, is a type-2 fan, Lemma 2.1 implies that ay is
non-essential. Thus M /qy is 3-connected. We show next that M /ay has no triangle
containing a,. Assume that such a triangle 7" exists.

Suppose first that e; € T'. Then T’ = {as,ez,e3} for some e; in E(M)—
{a0, a2, e2}. Since e; ¢ cl(A), it follows that e3 ¢ cl(A4). Thus either 7’ or T'Uqy is
a circuit of M. The first possibility contradicts the fact that Ty, T}, 7> is a fan; the
second contradicts orthogonality with the triad Ty since e; # e; otherwise M /ag
has a line containing {a;, a, e, ea}.

We may now assume that e, ¢ T'. Then, by orthogonality with T, we have
T' = {ay,a;,g} for some element g. By Lemma 2.9, 7" is not a triangle of M so
T'Uay is a circuit of M and hence g is a chord of M; a contradiction.

We conclude that there is indeed no triangle of M /ay containing a,. But the
cosimplification of M /ay\a; is not 3-connected, so the simplification of M /ay/az,
which equals M /{ay,a,}, is 3-connected. O

Now let A"’ = A4 —{ap,ax} and let M’ be a 3-connected matroid such that
M'|A" = (M /{ap,a2})|A" and (M',A’) is a minimal pair. Then M’ =
(M /{ap,a,})\X/Y for some disjoint subsets X and Y of E(M) — {ay,a»}.

5.14. Lemma. Y U (X —cl(4)) = {e}, e2}.



On the 3-Connected Matroids That are Minimal Having a Fixed Restriction 315

Proof. Suppose that there is an element z in [Y U (X — cl(4))] — {e1, e2}. We shall
first show that z ¢ cl(A4). If not, then z € Y Ncl(A4) and

r(M'|A") < r((M/{a,a2,2})|4") = r((M/{ao, a2})|4") — 1;

a contradiction. We conclude that we do indeed have that z ¢ cl(4). Thus
ze E(M) — (cl(A) UF). Then, by Corollary 5.11, z is in a type-2 fan F’ of M of
length three whose rim is a series class of M|A4 and such that F' < E(M) — F.
Since z ¢ cl(A4), it follows that z is a spoke of F'. Therefore M\z has a 2-cocircuit
contained in 4 — {ay, a>} that remains a 2-cocircuit of M /{ay,a;}\X /Y. Now the
last matroid is 3-connected of size at least five since |4| > 7. Hence z ¢ X. On the
other hand, if z € Y, then M/z has a 2-circuit containing a spoke z’ of F’. Thus
M’ is a minor of M /z\z' and hence of M\z’'. Again we obtain a contradiction.

O

5.15. Lemma. X Ncl(4) = &.

Proof. Suppose that X Ncl(4) # &. Let H = M\(X Ncl(A4)). Then H|A = M|A.
As (M, A) is a minimal pair, it follows that A is not 3-connected. For some k in
{1,2,}, let {Z, W} be a k-separation of H for which |[ZNT)| >2 and |[ZNF]| is
maximum subject to this condition.

5151. F £ Z.

Assume the contrary. Then |Z| > 5. But, by Lemma 5.14, E(H) — E(M’)
< {ap,ar,e1,e2} <€ F. Thus ZNE(M')2Z —{ap,ar,e1,e2t 2 {a;}. Since
{ZNE(M'), W} is not a 2-separation of M’, it follows that |ZNE(M')| < 1.
Hence Z — {ay,az,e1,e2} = {a1}, 30 Z=F.

Now ay,a;, and a, are in series on M\{ej,e;} because F is a fan. These ele-
ments are also in series in M|A4. Thus they are also in series in M|cl(4). Hence
cl(A4) is spanned by 4 — ay, so cl(A4) — ay is spanned by 4 — ay. But a; and a, are
coloops of M|(cl(4) — ap). Thus A — R spans cl(4) — R. Since F = Z, it follows
that A — R < W. Hence W spans cl(4) — R. But cl(4) —R=2cl(4)NX, so W
spans cl(4) N X and hence {Z, WU (X Ncl(4))} is a k-separation of M, a con-
tradiction. Thus (5.15.1) holds.

5.15.2. |W| =2 and W is a cocircuit of H.

Suppose that || > 3. Then a minor modification of the argument given in the
last paragraph of the proof of Lemma 5.12 establishes that ¥ = Z. This contra-
diction to (5.15.1) implies that || < 2. Then W consists of either one or two
coloops of H, or a 2-cocircuit of H.

Suppose that ¥ is a set of coloops of H. Then W < cl(A) since every element
in E(M) — cl(A4) belongs to a triangle of H by Corollary 5.11. Orthogonality now
implies that W = A. As W is a set of coloops of H, it is a set of coloops of M|A4, so
W NR= <. Hence Wis a set of coloops of M'. This contradiction completes the
proof of (5.15.2).
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5153. W = {ao, az}.

Since W is a cocircuit of M\ (X Ncl(A4)), it follows that M has a cocircuit
D that contains W and is contained in WU (X Ncl(4)). Hence D < WU
(cl(4) — A). As |D| = 3, there is certainly an element of cl(4) — 4 in D.

Now W does not contain a cocircuit of M’, so WN (Y U{ap,ar}) # &. Sup-
pose that YN W # &. Then, by Lemma 5.14, we may assume that {e;} <
Y = {e1,ez2}. But Y # {e1, e2} otherwise a; is a loop of M/Y and hence of M’.
Thus Y = {e;}. Now, by orthogonality, since D meets cl(4) — A, it must also
meet 4. But the only element of D that can be in A4 is the unique element of
W — Y. Then, by orthogonality with T), this element must be ;. Thus
|W N T| =2; a contradiction. We conclude that YN W = &.

We may now assume that ape W. As DN A< DNW and DN A contains a
cocircuit of M|A, we deduce, since R is a series class of M|A, that DN W =
{ap,a,} and so (5.15.3) holds.

5.15.4. {e1,ex} is a cocircuit of H.

Since F is a fan of the 3-connected matroid M, the set {ag,e;, ez, a2} is a
cocircuit of M. Therefore this set is a union of cocircuits of H. By (5.15.2) and
(5.15.3), {aop, a2} is a cocircuit of H. Moreover, {ej,a;,e,} is a triangle of H.
Assume that {ej, e2} is not a cocircuit of H. Then, by orthogonality, {ao, e1,e>} or
{aa,e1,e2} is a cocircuit of H. Thus H|A4, which equals M|A4, has {ap} or {a»} as a
cocircuit. This contradiction finishes the proof of (5.15.4).

By (5.15.4), {{ei,ex}, E(H) — {e1,e2}} is a 2-separation of H. Thus, as
{e1,e2} N T1| = 2, the triangle T} implies that {{e;, ez, a1}, E(H) — {e;,ez,a1}} is
a 2-separation of H. Moreover, for each i in {0,2}, the triad 7; of M implies
that {{e1,es,a1,a;}, E(H) — {e1,ez,a1,a;}} is also a 2-separation of H unless
E(H) = F. Assume that E(H) # F. Then H has a 2-separation {Z, W} such that
Z 2 {ey,ez,a1,a0} and |[Z N F| is maximum subject to this. Then (5.15.3) implies
that W = {ay, a»}; a contradiction. We conclude that E(H) = F. Then, since 7} is
a triangle of H, and {ag,a>} and {e;,e;} are cocircuits of H, we deduce that
{ap,a1,a>} is a triangle of H; a contradiction. We conclude that Lemma 5.15
holds. O

Now, for the minimal pair (M’, 4), since XU Y < {e;, ez}, we have dp < 4.
Clearly 04 =2. As M'|A' = (M /{ay,a2})|A" and {ag,a;,a>} is a series class of
M|A, we can obtain M|A by taking the 2-sum of M|A’ and a 4-circuit. Thus
01 =0,0, =2,03 =0, and J,, = 0. Finally, it is clear that , > 0. Thus, by Lemma
5.4, 9,, = 0. Hence, by (10),

24+04+2+0<04+01+02+0y <y +0p <0+4.
This contradiction completes the proof of Proposition 5.2. O

Theorem 5.1 is quite straightforward to prove by combining Proposition 5.2
and the following technical proposition that we proved in [6].
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5.16. Proposition. Let (M, A) be a minimal pair such that

(i) M is not isomorphic to U, 3; and

(ii) every element of E(M) — cl(A) belongs to some type-2 fan of length three in
which the rim is contained in a 4-circuit of M|A and the spokes are contained in
E(M) —cl(4).

Then
where
1, when A is a circuit of M or r(A) # r(M);
B(A, M) = , o
2, when A is not a circuit of M and r(A4) = r(M).

Proof of Theorem 5.1. Assume that the theorem fails and choose a minimal pair
(M, A) that is a counterexample and is chosen so that (|E(M)|, —|A4]) is lexico-
graphically minimal. Suppose first that M =~ U, 3. Then |A4| = 3 and it is straight-
forward to check that (M, A4) is not a counterexample to the theorem. Thus we
may assume that M % U, ;. Moreover, by Proposition 5.2, (M, A) satisfies hy-
pothesis (ii) of Proposition 5.16. Thus the latter proposition implies that

|[E(M)| < |A|+ (A4, M) + 22(4, M) — (A4, M).

As —a(A, M) > — p(A, M) and min{A3(4, M), r(M) —ry(A)} =0, it follows
that |E(M)|<|A|+A1(A, M)+22(A, M)+min{A3(4, M), r(M)—ry(A)} —a(A, M).
But this is a contradiction since (M, A) was chosen to be a counterexample to
Theorem 5.1. O

To conclude the paper, we now prove Theorem 1.4.

Proof of Theorem 1.4. We shall prove that A4 is spanning. The theorem will then
follow from [6, Theorem 1.1]. Suppose that E(M) — cl(A4) is non-empty. Then it
contains a cocircuit D of M. By Theorem 2.8, D must meet a triangle 7 of M. If
T Ncl(A) is empty, then, by Lemma 4.1(viii), M has a triad that contains two
elements of 7 and one of 4, so M|A has a coloop; a contradiction. Thus T meets
cl(A4) so, by Lemma 4.1(ix), there is a chain 77, T, T, whose rim is contained in
cl(A4). Since M|A has no coloops, this rim is contained in a series class S of M|A.
Since r(S) < 2, it follows that S is a triangle of M. Thus if X = T/, UT U T,
then

FX) 4+ (X) —|X]| <3+3-5=1.

But M is 3-connected so |E(M) — X| < 1 and it follows without difficulty that M
is a rank-3 wheel having cl(A4) as a triangle. Thus (M, 4) is not a minimal pair; a
contradiction. O
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