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Abstract. Let N be a restriction of a 3-connected matroid M and let M 0 be a 3-connected
minor of M that is minimal having N as a restriction. This paper gives a best-possible upper
bound on jE�M 0� ÿ E�N�j.

1. Introduction

If X is a subset of the ground set of a 3-connected matroid M, what can be said
about the size of a minimal 3-connected minor M 0 of M that not only includes X

in its ground set but also maintains the matroid structure on X? For instance, if X

is a circuit, a basis, or an independent set of M, then X is a circuit, a basis, or an
independent set, respectively, of M 0. The purpose of this paper is to answer this
question. More speci®cally, we solve the following:

1.1. Problem. Let N be a restriction of a 3-connected matroid M and let M 0 be a 3-
connected minor of M that is minimal having N as a restriction. Give a sharp upper

bound on jE�M 0� ÿ E�N�j.
The natural modi®cation of this problem in which ``restriction'' is replaced by

``minor'' seems much more di½cult, although we do hope to return to it in future
work. For this modi®ed problem, Truemper [12] proved, under the additional
constraints that N is 3-connected but di¨erent from M 0, that jE�M 0� ÿ E�N�jU 3.
In certain natural cases, including those raised above, when N is a circuit, a basis,
or an independent set of M, the modi®ed and original problems coincide.
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Let M be a matroid and A be a subset of E�M�. We de®ne l1�A;M� to be the
number of connected components of MjA. Now MjA can be constructed from a
collection L2�A;M� of 3-connected matroids by using the operations of direct sum
and 2-sum. It follows from results of Cunningham and Edmonds (see Cunning-
ham [3]) that L2�A;M� is unique up to isomorphism. We denote by l2�A;M� the
number of matroids in L2�A;M� that are not isomorphic to U1;3, the three-
element cocircuit.

The next theorem, the main result of [6], solves Problem 1.1 in the case when N

spans M.

1.2. Theorem. Let M be a 3-connected matroid other than U1;3 and let A be a non-

empty spanning subset of E�M�. If M has no proper 3-connected minor M 0 such that

M 0jA �MjA, then

jE�M�jU jAj � l1�A;M� � l2�A;M� ÿ 2;

unless A is a circuit of M of size at least four, in which case,

jE�M�jU 2jAj ÿ 2:

It is also shown in [6] that the bounds in Theorem 1.2 are sharp. Indeed,
examples are given that attain the bounds for all A such that MjA is simple but
not free.

In this paper, we shall prove several results. We solve Problem 1.1 when N is a
free matroid by proving the following result.

1.3. Theorem. Let M be a 3-connected matroid and let A be an independent set of

M. If M has no proper 3-connected minor M 0 in which A is independent, then

jE�M�jU 3jAj ÿ 1.

Note that the bound in this theorem is sharp. To see this, suppose that nV 3
and let K 003;n be the graph obtained from K3;n by joining a degree-n vertex v of the
latter to the two vertices to which it is non-adjacent. Then it is not di½cult to
check that equality is attained in the theorem if we take M to be M ��K 003;n� and A

to be any set consisting of all but one of the edges meeting v1. When A is both
independent and spanning, it is shown in [7] that the bound in Theorem 1.3 can be
improved by 3.

If A is a subset of the ground set of a 3-connected matroid M, then �M;A� is a
minimal pair if M has no proper 3-connected minor M 0 such that M 0jA �MjA.
Thus, in both Theorems 1.2 and 1.3, �M;A� is a minimal pair. Our second theo-
rem shows that the bound in Theorem 1.2 also holds when we omit the hypothesis
that A is spanning, provided A has no small cocircuits. More speci®cally:

1.4. Theorem. Let �M;A� be a minimal pair such that MjA has no coloops, every
series class of MjA has rank at most two, and M l U1;3. Then

jE�M�jU jAj � l1�A;M� � l2�A;M� ÿ 2:

The bound in the last result is sharp since, as noted above, the bounds in
Theorem 1.2 are sharp. We shall show in Section 3 that if there no restriction on
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the rank of the series classes of MjA, then jE�M�j can exceed the bound in the last
result by an arbitrarily large number. These examples prompt the introduction of
another function, l3�A;M�, which is de®ned by

l3�A;M� �
X

S

�jSj ÿ 3�;

where the sum is taken over all series classes S of MjA with at least four elements.
The following theorem is one of the two main results of the paper.

1.5. Theorem. If �M;A� is a minimal pair, then

jE�M�jU jAj � l1�A;M� � l2�A;M� � l3�A;M� ÿ a�A;M�;
where

a�A;M� �
0; when A is a circuit of M

1; when A is not a circuit

(
Note that Theorem 1.3 will follow immediately from the last theorem for,

when A is independent, l1�A;M��l2�A;M��jAj; l3�A;M��0, and a�A;M� �
1. Although the function l3�A;M� may look strange, it is indispensable, even for
cographic matroids. For example, for nV 3, let M be M ��K 003;n� and let A be the

set of edges meeting the degree-�n� 2� vertex of K 003;n. Then MjA is a circuit and it

is straightforward to check that equality is attained in Theorem 1.5. In Section 3,
we shall present a family of extremal examples for Theorem 1.5 in each member M

of which, MjA can be chosen to have many series classes of large rank. Prior to
that, Section 2 introduces notation, terminology, and some important known
results that will be needed. Section 4 develops the properties of minimal pairs that
will be used in the proofs of the main results, and these proofs will be given in
Section 5.

The essential di¨erence between the bounds in Theorems 1.2 and 1.5 is the
presence of l3�A;M� in the latter. But the former assumes that A spans M. Indeed,
if A is non-spanning and �M;A� is a minimal pair, then, for a basis X of M=A,
clearly �M;AUX� is a minimal pair in which AUX is spanning. Hence Theorem
1.2 can be applied to this minimal pair. This crude technique yields the bound

jE�M�jU jAj � l1�A;M� � l2�A;M� ÿ 2� 3�r�M� ÿ r�A��:
In the next theorem, our second main result, we shall show that this bound can be
sharpened.

1.6. Theorem. If �M;A� is a minimal pair, then

jE�M�jU jAj � l1�A;M� � l2�A;M� � r�M� ÿ r�A� ÿ a�A;M�;
where

a�A;M� �
0; when A is a circuit of M

1; when A is not a circuit

(
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If M is an n-spoked wheel with nV 4 and A is its rim, then �M;A� is a minimal
pair for which equality is attained in the last theorem. However, for this example,
the di¨erence between the bound in Theorem 1.5 and jE�M�j is nÿ 4.

2. Preliminaries

In this section, we note a number of results that will be used in the proofs of the
main theorems. We shall follow Oxley [9] for basic notation and terminology. We
shall require some additional terminology and results relating to 3-connected
matroids. Tutte [13] calls an element e of a 3-connected matroid M essential if
neither the deletion Mne nor the contraction M=e remains 3-connected. Tutte
showed that every essential element in a 3-connected matroid is in a triangle or a
triad. Indeed, triangles and triads appear constantly in the study of 3-connected
matroids, and a very useful concept in this study is that of a chain of triangles and
triads. Let T1;T2; . . . ;Tk be a non-empty sequence of sets each of which is a tri-
angle or a triad of a matroid M such that, for all i in f1; 2; . . . ; k ÿ 1g,
(i) fTi;Ti�1g contains exactly one triangle and exactly one triad;
(ii) jTi VTi�1j � 2; and
(iii) �Ti�1 ÿ Ti�V �T1 UT2 U � � � UTi� is empty.

Then we call T1;T2 . . . ;Tk a chain of M of length k with links T1;T2; . . . ;Tk. By
extending the proof of Tutte's Wheels and Whirls Theorem [13], Oxley and Wu
[11] showed that if such a chain is maximal, then the elements at both ends are
non-essential. In particular, they proved the following.

2.1. Lemma. Let T1;T2; . . . ;Tk be a chain in a 3-connected matroid M. Then M has

k � 2 distinct elements e1; e2; . . . ; ek�2 such that Ti � fei; ei�1; ei�2g for all i. Sup-

pose that jE�M�jV 4 and M is not a wheel or a whirl. If the chain T1;T2; . . . ;Tk is

maximal, then the elements can be labelled so that neither e1 nor ek�2 is essential.

Let fe1; e2; e3g; fe2; e3; e4g; . . . ; fek; ek�1; ek�2g be a chain for some k V 3. Par-
tition fe1; e2; . . . ; ek�2g into Xe, those ei for which i is even, and X0, those ei for
which i is odd. If fe1; e2; e3g is a triad, then X0 is the rim of the chain and Xe is its
set of spokes. If fe1; e2; e3g is a triangle, then Xe is its rim and X0 is its set of
spokes.

In a 3-connected matroid other than a wheel or whirl, a maximal chain is
called a fan. A fan has type-1, type-2, or type-3 if its ®rst and last links consist of,
respectively, two triangles, two triads, or one triangle and one triad. Oxley and
Wu [11] proved the following result, which will be very useful here.

2.2. Theorem. Let M be a 3-connected matroid that is neither a wheel nor a whirl.
Suppose that e is an essential element of M. Then e is in a fan. Moreover, this fan is

unique unless

(a) every fan containing e consists of a single triangle and any two such triangles

meet in feg;

288 M. Lemos et al.



(b) every fan containing e consists of a single triad and any two such triads meet in

feg; or
(c) e is in exactly three fans; these three fans are of the same type, each has ®ve

elements, together they contain a total of six elements, and, depending on

whether these fans are of type-1 or type-2, the restriction or contraction, re-

spectively, of M to this set of six elements is isomorphic to M�K4�.
The following two basic results will be used repeatedly throughout the paper.

The ®rst is due to Bixby [1]. The second is Tutte's triangle lemma [13] (see also [9,
Lemma 8.4.9]).

2.3. Lemma. Let e be an element of a 3-connected matroid M. Then either Mne or

M=e has no non-minimal 2-separations. Moreover, in the ®rst case, the cosimpli®-

cation of Mne is 3-connected, while in the second case, the simpli®cation of M=e is
3-connected.

2.4. Lemma. Let M be a 3-connected matroid having at least four elements and

suppose that fe; f ; gg is a triangle of M such that neither Mne nor Mn f is 3-
connected. Then M has a triad that contains e and exactly one of f and g.

The elementary proof of the next lemma is omitted.

2.5. Lemma. If fZ;Wg is a k-separation of a matroid M and r�Z� � jZj, then every

k-element subset of Z contains a cocircuit of M.

The next lemma is a straightforward consequence of orthogonality, the prop-
erty of a matroid that a circuit and a cocircuit cannot have exactly one common
element.

2.6. Lemma. If D is a cocircuit of a matroid M such that DV �cl�A� ÿ A�0h, then

DVA0h. In particular, jDV cl�A�jV 2.

The following lemma is proved in [5, (2.12)].

2.7. Lemma. Let e and f be distinct elements of a 3-connected matroid M such that

Mne is not 3-connected. If M has triangles T and T 0 containing e and f, respectively,
such that jT VT 0j � 1 and T U f is a cocircuit of M, then e is in a triad of M.

The last lemma was used in the proof of the following theorem, the main result
of [5].

2.8. Theorem. Let C � be a cocircuit of a 3-connected matroid M and suppose that,
for every element e of C �, the contraction M=e is not 3-connected. Then M has tri-

angles T1 and T2 such that T1 VC � and T2 VC � are distinct and non-empty.

Next we note a useful property of chains of triangles and triads [11, Lemma
3.4].

2.9. Lemma. Let e1; e2; e3; e4; e5 be distinct elements of a 3-connected matroid M
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that is not isomorphic to M�K4�. Suppose that fe1; e2; e3g and fe3; e4; e5g are tri-

angles and fe2; e3; e4g is a triad of M. Then these two triangles and this one triad are
the only triangles and triads of M containing e3.

3. Extremal Examples

It was noted in the introduction that all the bounds in the theorems there are
sharp. In this section, we describe in®nite families of examples that attain equality
in Theorems 1.5 and 1.3.

The examples given here will use the operation of generalized parallel connec-
tion [2]. Suppose that the intersection of the ground sets of the matroids M and
M�K4� is D and that D is a triangle in both matroids. The generalized parallel

connection of M�K4� and M across D is the matroid PD�M�K4�;M� whose ground
set is the union of the ground set of the two matroids and whose ¯ats are the
subsets X of the ground set so that X VE�M�K4�� is a ¯at of M�K4� and
X VE�M� is a ¯at of M. If the elements of D are deleted from PD�M�K4�;M�, we
obtain the same matroid that we would get by performing a Dÿ Y -exchange on
M across D.

Let n be an integer exceeding one. An n-raft [4] is a matroid of rank 2nÿ 2
whose ground set is the union of n disjoint triangles such that, for all m < n, the
union of every set of m of these triangles has rank 2m. One example of an n-raft is
the matroid M ��K3;n�. Another is the matroid that is obtained from the direct sum
of two n-element circuits fx1; x2; . . . ; xng and fz1; z2; . . . ; zng by, for each i in
f1; 2; . . . ; ng, freely adding a new element yi on the line joining xi and zi.

We construct our family of examples by beginning with an n-raft N for some
nV 3. Let the distinguished triangles of the raft be T1;T2; . . . ;Tn where
Ti � fxi; yi; zig for all i, and assume that the raft has the additional property that
fz1; z2; . . . ; zng is a circuit. Let k be a positive integer. By repeated generalized
parallel connections, attach exactly k distinct copies of M�K4� across each Ti in N.
Let the resulting matroid be M1. Now, for each i, delete zi from M1. Take M to be
the dual of the resulting matroid. In each copy of M�K4� that was attached across
some Ti, pick the opposite element to zi, that is, the element of the M�K4� that is
not in a triangle with zi. Do this for all i and let A consist of these nk elements
together with the 2n elements of N that remain in M.

We assert that �M;A� is a minimal pair. First note that N is certainly con-
nected. Moreover, if fX ;Yg is a 2-separation of N, then neither X nor Y spans N.
It is easy to see that each of X and Y may be assumed to be a union of dis-
tinguished triangles and from this we obtain a contradiction to the fact that
fX ;Yg is a 2-separation. Thus N is 3-connected. As M�K4� is also 3-connected, so
too is M1 [10]. Moreover, it is clear that M1=z1 does not simplify to a 3-connected
matroid. Thus the cosimpli®cation of M1nz1 is 3-connected. This cosimpli®cation
is equal to M1nz1 since z1 is in no triads of M1. By a similar argument, we obtain
that M1nz1; z2 is 3-connected and, repeating this argument, we eventually obtain
that M1nz1; z2; . . . ; zn is 3-connected. But the last matroid is M �, hence M is 3-
connected. Let M 0 be a minimal 3-connected minor of M such that MjA �M 0jA.
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Now, for each element e of M � that is not in A, there is another element f of
E�M� ÿ A such that e and f are both in the same attached M�K4� in M1. More-
over, e is in a triangle of M � with two elements of A so M �=e has two elements of
A in parallel. Thus no 3-connected minor of M �=e contains all the elements of A.
Since M �ne has a 2-cocircuit that contains f and some element of A, a 3-connected
minor of M �ne using all the elements of A must be a 3-connected minor of
M �ne= f . Since f is also in a triangle of M � with two elements of A, we conclude
no 3-connected minor of M �ne contains all the elements of A. Thus �M;A� is
indeed a minimal pair.

Now jE�M�j � 3nk � 2n and jAj � nk � 2n. To ®nd MjA, observe that this
matroid is the dual of M �:A. In the last matroid, there is a parallel class that
contains Ti ÿ zi together with all the elements of A that are opposite zi in the
copies of M�K4� which were attached across Ti. Moreover, by considering the
n-raft N, it is not di½cult to check that the simpli®cation of M �:A is a circuit.
Thus MjA is the cycle matroid of the graph obtained by joining two vertices
by n internally disjoint paths each of length k � 2. Therefore l1�A;M� � 1;
l2�A;M� � �k � 1�n, l3�A;M� � �k ÿ 1�n, and a�A;M� � 1. It follows easily that
equality holds in Theorem 1.5. One can easily check that the bound in Theorem
1.6 exceeds jE�M�j by exactly one in this case. Moreover, jE�M�j exceeds the
bound in Theorem 1.4 by �k ÿ 1�nÿ 3, which can be arbitrarily large.

To close this section, we observe that U2;6 is a 2-raft. If we perform the above
construction beginning with this matroid, we obtain a matroid M for which MjA
is independent and equality is attained in Theorem 1.3.

4. Minimal Pairs

The purpose of this section is to prove numerous properties of minimal pairs that
will be used in the proofs of the main results. The latter will be given in Section 5.
We begin with a lemma that gathers together eleven such properties.

Fig. 1

4.1. Lemma. A minimal pair �M;A� has the following properties:

(i) Suppose e A E�M� ÿ cl�A�. Then Mne has no non-minimal 2-separations and

the cosimpli®cation of this matroid is 3-connected. Moreover, the simpli®ca-

tion of M=e is not 3-connected.
(ii) If e A E�M� ÿ cl�A�, then e is essential and belongs to a triad of M.
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(iii) If A is not a spanning set of M, then jE�M�j > 6 and jAjV 3.
(iv) If T is a triangle and T � is a triad of M such that T 0T � and T VT �0h,

then T � ÿ T � fag for some a in cl�A�.
(v) Every triad of M meets A.
(vi) Let T1 and T2 be distinct subsets of E�M� such that both are triangles or both

are triads of M. If �T1 UT2� ÿ cl�A�0h, then jT1 VT2jU 1.
(vii) If T is a triangle of M such that f f1; f2gJT ÿ cl�A�, then, for each i in

f1; 2g, there is a triad of M that meets f f1; f2g in f fig.
(viii) If fe1; e2; e3g is a triangle T of M and T JE�M� ÿ cl�A�, then, for each i

in f1; 2; 3g, there is a unique triad T �i of M such that T �i VT � T ÿ ei.
Moreover,
(a) for each i, the unique element ai of T �i ÿ T is in A, and fa1; a2; a3g is a

triad of M;
(b) M � � PD�M�K4�;M �nT� where Dfa1; a2; a3g and M�K4� is labelled as

in Figure 1, and M=T is 3-connected;
(c) fa1; a2; a3g is contained in a series class of �M=T�jA, and �M=T�
j�Aÿ ai� �Mj�Aÿ ai�.

(ix) Let T be the set of triangles of M that meet both cl�A� and E�M� ÿ cl�A�.
For every T in T, there is a unique element aT of T V cl�A� and there is a

chain T �1T ;T ;T
�
2T whose rim AT is contained in cl�A�. Moreover, if T and T 0

are di¨erent elements of T, then

(a) AT 0AT 0 and aT 0 aT 0 ;
(b) j�AT UAT 0 �VAjV 3 with equality only when (1) AT UAT 0 is contained

in a series class of Mjcl�A�; and (2) T �jT � T �iT 0 for some i and j in f1; 2g,
or AT ÿ T � AT 0 ÿ T 0.

(x) If r�A�U 3 and A is not spanning, then M is isomorphic to the rank-four wheel
having cl�A� as its rim.

(xi) If e A E�M� ÿ cl�A� such that M has no triangle that contains e and avoids

cl�A�, then e belongs to a triad that meets cl�A� in two elements.

Proof. (i) By Lemma 2.3, the required result follows if we can show that the sim-
pli®cation M 00 of M=e is not 3-connected. Since e is a coloop of Mj�AU e�, we
have �M=e�jA �MjA. Therefore M 00 can be labelled so that its ground set con-
tains A. Thus M 00 cannot be 3-connected, otherwise �M 00;A� contradicts the min-
imality of �M;A�.

(ii) If Mne or M=e is 3-connected, then, since �Mne�jA �MjA � �M=e�jA,
either �Mne;A� or �M=e;A� contradicts the choice of �M;A�. Thus neither Mne
nor M=e is 3-connected, so e is essential. Furthermore, by (i), the cosimpli®cation
of Mne is 3-connected. Thus e must belong to a triad of M.

(iii) When jAj � 1, we have that E�M� � A; and when jAj � 2, we have that
E�M� is a circuit of M having at most three elements. In both cases, A is spanning.
Thus we may suppose that jAjV 3. If jAj � 3 and A is dependent, then A is either
a circuit or a set of parallel elements, so A is spanning; a contradiction. Thus if
jAj � 3, then A is independent. As A is non-spanning, it follows that r�M�V 4.
Hence, since M is 3-connected, either r��M�V 3 and so jE�M�j > 6, or
r��M� � 2. In the latter case, M is uniform and so, if e A E�M� ÿ cl�A�, then M=e
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is also uniform of corank two, so M=e is 3-connected; a contradiction to (i). It
remains to consider the case when jAjV 4. In that case, since A is non-spanning,
there is a cocircuit contained in E�M� ÿ cl�A� and this cocircuit has at least three
elements, so jE�M�j > 6.

(iv) Since T and T � meet but are distinct, orthogonality implies that
jT � ÿ T j � 1. Let a be the unique element of T � ÿ T . Suppose that a B cl�A�.
Then A is non-spanning and so, by (iii), jE�M�j > 6. Now Mna has T VT � as a 2-
element cocircuit. Thus fT VT �;E�Mna� ÿ �T VT ��g is a 2-separation of Mna.
But T VT � spans T so fT ;E�Mna� ÿ Tg is a non-minimal 2-separation of Mna; a
contradiction to (i). We conclude that a A cl�A�.

(v) Assume that M has a triad T � that avoids A. Then jT � V cl�A�jU 1. Let
T � � fe1; e2; e3g and suppose that neither e1 nor e2 is in cl�A�. If a3 A cl�A�, then
a3 A T � V �cl�A� ÿ A�. Hence, by Lemma 2.6, T � VA0h; a contradiction. We
may now assume that a3 B cl�A�. Then T �JE�M� ÿ cl�A�. By the dual of Tutte's
triangle lemma (2.4), there is a triangle T of M that meets the triad T � in exactly
two elements. Thus, by (iv), the unique element of T � ÿ T is in cl�A�. This is a
contradiction since T � V cl�A� �h.

(vi) Choose N to be M or M � so that both T1 and T2 are triangles of N. As-
sume that jT1 VT2j � 2. Then Nj�T1 UT2� is isomorphic to U2;4. Now take e in
�T1 UT2� ÿ clM�A�. Then it is straightforward to check that Nne is 3-connected.
Thus Mne or M �ne is 3-connected, so either Mne or M=e is 3-connected; a con-
tradiction to (ii).

(vii) Suppose that T � f f1; f2; bg for some element b and that, for some i, say
i � 1, there is no triad meeting f f1; f2g in f fig. By Tutte's triangle lemma (2.4),
there is a triad T � that contains f1 and exactly one of b and f2. Hence b B T � and
f2 A T �. By (vi), T � must be the only triad of M that contains f1. By (i), the
cosimpli®cation M 0 of Mn f1 is 3-connected. As the only triad that contains f1

is T �, it follows that M 0 �Mn f1= f2. But, as jE�M�jV 7, the matroid M 0 is 3-
connected having at least four elements and so is simple. Hence M 0 equals the
simpli®cation M 00 of M= f2. Therefore M 00 is 3-connected, which is contrary to (i).

(viii) Let i and j be distinct elements of f1; 2; 3g. Taking f1 � ei and f2 � ej in
(vii), we deduce that M has a triad T �i such that T �i V fei; ejg � fejg. Thus
T �i VT � T ÿ ei. By (vi), T �i is the unique such triad. Moreover, by (v), T �i meets
A in a single element, ai say.

To ®nish the proof of (viii)(a), we need to check that fa1; a2; a3g is a triad
of M. Observe that there is a cocircuit D of M such that a1 A DJ
�T �1 UT �2 � ÿ e3 � fa1; a2; e1; e2g. As M is 3-connected, it follows that jDjV 3 and
hence ei A D for some i. By orthogonality, e1 and e2 must both belong to D, oth-
erwise DVT � feig. As T �3 is the unique triad such that T �3 VT � fe1; e2g, if fol-
lows that D � fa1; a2; e1; e2g. Thus there is a cocircuit D 0 of M such that
a1 A D 0J �DUT �3 � ÿ e2 � fa1; a2; a3; e1g. As jD 0 VT j0 1 and jD 0jV 3, it follows
that e1 B D 0 and that D 0 � fa1; a2; a3g, that is, fa1; a2; a3g is a triad of M.

Part (b) is an immediate consequence of [11, Theorem 1.11]. Now we shall
prove (c). Let Z � fa1; a2; a3; e1; e2g. We start by proving the following.

4.1.1. Every circuit of Mj�AU fe1; e2g� that meets Z must contain Z.
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Let C be such a circuit. Since each ai is a coloop of MjA, the circuit C must
meet fe1; e2g. Moreover, as neither e1 nor e2 is spanned by A, it follows that
jC ÿ AjV 2 and hence fe1; e2gJC. As jT �i VCj0 1 for each i in f1; 2g, it follows
that ai A C for each such i. To prove that Z JC, it remains to show that a3 A C.
Suppose that this is not the case. Then there is a circuit C 0 of M such that
e3 A C 0J �C UT� ÿ e2. As C 0 VT �3 J fe1g, it follows that e1 B C 0. Hence e3 A
C 0JAU e3. This is a contradiction because A does not span e3. Thus Z JC. We
conclude that (4.1.1) holds.

By (viii)(b), M=T , which is isomorphic to Mne3=e1; e2, is 3-connected. Since
�M;A� is a minimal pair, MjA0 �Mne3=e1; e2�jA. Thus M does indeed have a
circuit contained in AU fe1; e2g and meeting fe1; e2g. By (4.1.1), it follows that Z

is contained in a series class of Mj�AU fe1; e2g�. Hence fa1; a2; a3g is contained in
a series class of �Mj�AU fe1; e2g��=fe1; e2g, which equals �M=T�jA. Finally, for
each i in f1; 2; 3g, each member of Z ÿ ai is a coloop of �Mj�AU fe1; e2g��nai

so Mj�A ÿ ai� � �Mj�A U fe1; e2g��=fe1; e2gnai � �M=fe1; e2gne3�j�A ÿ ai� �
�M=T�j�Aÿ ai�.

(ix) If T A T, then, as T meets both cl�A� and E�M� ÿ cl�A�, it follows by
(vii) that there are triads T �1T and T �2T of M such that T �1T ;T ;T

�
2T is a chain of M

having both its spokes in E�M� ÿ cl�A�. By (iv), it follows that the set AT of rim
elements of this chain is contained in cl�A�. Observe that AT is contained in a
series class or is a set of coloops of Mjcl�A�. In both cases, jAT VAjV 2.

Let aT be the unique element of T V cl�A�. Let T 0 be an element of Tÿ fTg.
By Lemma 2.9, aT B T 0 and so aT 0 aT 0 .

We shall show next that

4.1.2. If aT A T �1T 0 UT �2T 0 , then AT 0AT 0 , and T �jT � T �iT 0 for some i and j in f1; 2g.
Assume, without loss of generality, that aT A T �2T 0 . Then, by Lemma 2.9,

T �2T 0 � T �iT for some i, say i � 1. Hence T �1T 0 ;T
0;T �2T 0 , T is a chain. Moreover,

either T �1T 0 ;T
0;T �2T 0 ;T ;T

�
2T is a chain, or T �2T ÿ T JT �1T 0 UT 0 UT �2T 0 . In the ®rst

case, AT 0AT 0 , as required. Now consider the second case, letting X � T UT 0 U
AT 0 . By (iii), jE�M�jV 7, so jE�M� ÿ X jV 1. Thus, as X ÿ faT ; aT 0 g and AT 0

span X in M and M �, respectively, we have

1U r�X� � r��X � ÿ jX jU 4� 3ÿ 6 � 1:

Since M is 3-connected, it follows that jE�M�j � 7 and r�X� � 4. But r�T UT 0� �
3 and jE�M� ÿ �T UT 0�j � 2, so M has a cocircuit of size at most two; a contra-
diction. We conclude that (4.1.2) holds.

It follows immediately from (4.1.2) that (ix)(a) holds. If AT VAT 0 �h, then

j�AT UAT 0 �VAj � jAT VAj � jAT 0 VAjV 4:

Hence (ix)(b) holds in this case, so we may suppose that AT VAT 0 0h. Let
S � AT UAT 0 . Then, in Mjcl�A�, the set S is contained in a series class or is a set
of coloops. Thus, by orthogonality and (a), jAVSjV jSj ÿ 1V 3. To complete the
proof of (b), we now suppose that jS VAj � 3. Then jSj � 4, and S must be con-
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tained in a series class of Mjcl�A� otherwise the unique element of S ÿ A is a
coloop of Mjcl�A� contained in cl�A� ÿ A; a contradiction. Thus jAT VAT 0 j � 2.
But, by applying (4.1.2) to both aT and aT 0 , we have that either T �jT � T �iT 0 for
some i and j, or aT B AT 0 and aT 0 B AT . In the latter case, AT ÿ faTg �
AT 0 ÿ faT 0 g, that is, AT ÿ T � AT 0 ÿ T 0 and we have established that (ix)(b)
holds.

(x) Let T 0 be the set of triangles T of M such that T ÿ cl�A�0h. As A does
not span M, there is a cocircuit of M that avoids cl�A�. By Theorem 2.8, for each
such cocircuit D, there are distinct triangles T 01 and T 02 of M such that
T 0i VD0h. Hence jT 0jV 2.

Suppose that T 0 has a member T such that T V cl�A� �h. Let T �
fe1; e2; e3g. By (viii), for each i in f1; 2; 3g, there is a triad T �i of M and an element
ai of A such that T �i � �T ÿ ei�U ai. Thus ai is a coloop of MjA and hence,
jAj � 3 because r�A�U 3 by hypothesis. Therefore A � fa1; a2; a3g. If f A cl�A�ÿ
A, then there is a circuit C of M such that f A C JAU f . Thus ai A C for some i,
so C VT �i � faig, which is contrary to orthogonality. Hence cl�A� � A. Let T 0 be
in T 0 ÿ fTg. Next we shall prove that T 0 VA0h. Assume the contrary. Then
T 0 avoids T otherwise jT 0 VT �i j � 1 for some i. Now, applying (viii)(c) to the tri-
angle T 0, it follows that A is contained in a series class of �M=T 0�jA and hence, as
jAj � 3, we deduce that A is a circuit of M=T 0. But T �1 is a triad of M=T 0, a
contradiction since jAVT �1 j � 1. We conclude that T 0 does indeed meet A. Thus
we may assume that a1 A T 0. By orthogonality, e2 or e3, say e2, belongs to T 0.
By (vi), T VT 0 � fe2g. As T 0 VT �3 0 fe2g, it follows that a3 A T 0 and T 0 �
fa1; e2; a3g. This is a contradiction because it implies that e2 A cl�A�, yet
cl�A� � A.

We may now assume that every T in T 0 meets cl�A�. Thus, in the notation of
(ix), T 0 �T. Let T A T. Then AT UT is the union of two triads of M. Thus, in
Mjcl�A�, either (a) AT is contained in a series class, or (b) AT is a set of coloops.
But, in the latter case, AT is an independent set of size three. Since AT J cl�A�, we
deduce that AT spans cl�A�. Thus AT � cl�A� � A. But jT 0jV 2, so there is a T 0

in Tÿ T . As AT 0 is a 3-element subset of the 3-element set cl�A�, we have
AT 0 � A � AT ; a contradiction to (ix)(a). Hence we may assume that (a) holds.
Then, as jAT j � 3, either AT is a basis of A, or AT is a triangle. In the second case,
letting X � AT UT , we have r�X � � r��X� ÿ jX jU 1. This contradicts the fact
that M is 3-connected since jX j � 5 and, by (iii), jE�M�jV 7. We conclude that
AT is a basis of A and it is not di½cult to see that cl�A� is a 4-circuit of M.

Now let T and T 0 be distinct triangles in T and let Z � cl�A�UT UT 0. Since
each of cl�A�;T , and T 0 is a circuit and cl�A� ÿ �T UT 0� is non-empty, we deduce
that r�Z�U jZj ÿ 3. Moreover, each element of T UT 0 is in a triad with two ele-
ments of cl�A�. Thus r��Z�U jcl�A�j � 4. Hence

r�Z� � r��Z� ÿ jZjU �jZj ÿ 3� � 4ÿ jZj � 1:

Since fZ;E�M� ÿ zg is not a 2-separation of M, it follows that jE�M� ÿ ZjU 1
and so jE�M�jU 9. But AT and AT 0 are distinct 3-element subsets of the 4-element
set cl�A�, so cl�A� � AT UAT 0 . Hence every element of cl�A� is in a triad of M.
But, by (ii), every element of E�M� ÿ cl�A� is also in a triad of M. Hence M is
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minimally 3-connected. Moreover, r�M�V 4, so jE�M� ÿ cl�A�jV 4, otherwise
E�M� ÿ cl�A� is a triad avoiding A contradicting (v). Thus jE�M�jV 8.

Suppose that r�M� � 4. Then, by Oxley [8], since M is minimally 3-connected,
jE�M�jU 8 with equality only if M is a wheel or a whirl. Therefore jE�M�j � 8.
In a rank-four wheel or a rank-four whirl, the only 4-circuit that is a ¯at of the
matroid is the rim of the rank-four wheel. Thus the result holds when r�M� � 4.

We may now assume that r�M�V 5. Since every cocircuit avoiding the 4-
circuit cl�A� has size at least four and jE�M�jU 9, it follows that r�M� � 5 and
jE�M� � 9. Thus E�M� ÿ cl�A� contains at least two cocircuits of M. By elimi-
nation, it follows that every 4-element subset of E�M� ÿ cl�A� is a cocircuit. But T
meets E�M� ÿ cl�A� in exactly two elements, so E�M� ÿ cl�A� contains a cocircuit
meeting T in a single element; a contradiction.

(xi) From (ii), there is a triad T � of M such that e A T �. Moreover, we may
assume that jT � V cl�A�jU 1, otherwise the result holds. Thus jT � ÿ cl�A�jV 2.
Hence, by Tutte's triangle lemma (2.4), M has a triangle T that meets T � in
exactly two elements, one of which is e. Let T � fe; f ; gg. We may assume
that f B cl�A�. Therefore, by hypothesis, g A cl�A�. By (vii), M has a triad T �e that
meets fe; f g in feg. Orthogonality implies that g A T �e , and (iv) implies that
T �e ÿ T J cl�A�. Thus jT �e V cl�A�j � 2, as desired. r

4.2. Lemma. Let �M;A� be a minimal pair and T be a triangle of M that avoids

cl�A�. If a is a member of A that belongs to a triad meeting T, then �M=T ;Aÿ a� is

a minimal pair.

Proof. Let T � fe1; e2; e3g. Then, by (viii) of Lemma 4.1, for each i in f1; 2; 3g,
there is a unique triad T �i of M such that T �i � �T ÿ ei�U ai for some ai in A. Thus
a � ai for some i and, by symmetry, we may assume that i � 3. Let M 0 �M=T

and A 0 � Aÿ a3. By Lemma 4.1(viii)(b), M 0 is 3-connected. We may suppose that
�M 0;A 0� is not a minimal pair. Then there is a proper 3-connected minor N 0 of M 0

such that N 0jA 0 �M 0jA 0 and �N 0;A 0� is a minimal pair. Clearly N 0 �M 0nX=Y
for some disjoint subsets X and Y of E�M� ÿ �A 0 UT� such that X UY is non-
empty. Observe that a3 B Y because Lemma 4.1(viii)(b) implies that a3 is spanned
by A 0 in M 0.

We may now assume that a3 A X UE�N 0�. Then, since fa1; a2; a3g is a triad of
M 0, either

(a) a3 A E�N 0� and fa1; a2; a3g is a triad of N 0; or
(b) fa1; a2; a3g properly contains a cocircuit of N 0.

In case (b), since N 0 is 3-connected and fa1; a2g has rank two in it, we deduce that
N 0 must be a triangle. As a1 and a2 are coloops of M 0jA 0 and M 0jA 0 � N 0jA 0, it
follows that A 0 � fa1; a2g and jAj � 3. This cannot happen by (x) of Lemma 4.1
since the rank-four wheel has no triangle avoiding the closure of its rim. Hence (a)
must hold. Now, by Lemma 4.1(viii)(b), M � � PD�M�K4�;M �nT� where D �
fa1; a2; a3g and M�K4� is labelled as in Figure 1; and �N 0�� � �M �nT�=XnY .
Since D is a triangle of �N 0��, it follows that

M �=XnY � PD�M�K4�;M �nT=XnY � � PD�M�K4�; �N 0���:
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Let N � �M �=XnY . Since �N 0�� and M�K4� are 3-connected having at least there
common elements, by [10], N � is 3-connected. Hence N is 3-connected.

We shall show next that

4.2.1. NjA 0 �MjA 0.
To see this, ®rst note that M 0jA 0 �MjA 0 by Lemma 4.1(viii)(c). Moreover, by

assumption, N 0jA 0 �M 0jA 0. Thus

rM�A 0� � rM 0 �A 0� � rN 0 �A 0�:
But, since N 0 is a minor of N, and N is a minor of M, we have

rM�A 0�V rN�A 0�V rN 0 �A 0�:
Therefore equality holds throughout the last line, so rN�A 0� � rM�A 0�. As N is a
minor of M, it is now easy to check that NjA 0 �MjA 0. Hence (4.2.1) holds.

Since a3 is a coloop of both NjA and MjA, it follows from (4.2.1) that
NjA �MjA. Therefore, as �M;A� is a minimal pair, N �M and so X UY is
empty and N 0 �M 0. Thus �M 0;A 0� is a minimal pair. r

4.3. Lemma. Suppose that �M;A� is a minimal pair in which A is non-spanning such
that

(a) Mncl�A� has no triangles; and

(b) every triad with at least two elements in cl�A� contains at least two elements of

A.

Let a be an element of A that is in no triangles of M, and N be a minimal 3-
connected minor of M=a for which Nj�Aÿ a� � �M=a�j�Aÿ a�. Then

(i) N �M=a; or

(ii) N �M=ane for some element e of E�M� ÿ A such that fa; eg is contained in a

triad of M whose third element is in A; or

(iii) N �M=fa; egne 0 for some elements e and e 0 of E�M� ÿ cl�A� such that

fe; a1; e
0g is a triangle of M and fa; e; a1g; fe; a1; e

0g; fa1; e
0; a2g is a fan of M

for some elements a1 and a2 of A.

Proof. Suppose that N � �M=a�nX=Y for some disjoint subsets X and Y of
E�M� ÿ a. We show ®rst that

4.3.1. Y V cl�A� �h.

Assume that (4.3.1) fails and let y be an element of Y V cl�A�. As
Nj�Aÿ a� � �M=a�j�Aÿ a� and N is a minor of M=fa; yg, it follows that

rM=a�Aÿ a� � rN�Aÿ a�U rM=fa;yg�Aÿ a� � rM=a��Aÿ a�U y� ÿ rM=a�y�:
Thus y B clM=a�Aÿ a� so y B clM�A�; a contradiction. Hence (4.3.1) holds.

Now choose X and Y such that jX j is as large as possible. Note that

4.3.2. Y U a is independent in M.
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If not, there is a circuit C of M such that C JY U a. Take y A C ÿ a. They y is
a loop of M=��Y ÿ y�U a�. Hence N � �M=a�n�X U y�n�Y ÿ y�, which is con-
trary to the choice of X and Y.

We show next that we may also suppose that

4.3.3. jE�N�jV 4.

Suppose not. Then jE�N�jU 3 and so, as N is 3-connected, r�N�U 2. Thus

rM�A� � rM=a�Aÿ a� � 1 � rN�Aÿ a� � 1U r�N� � 1U 3

where the second equality holds since Nj�Aÿ a� � �M=a�j�Aÿ a�. But now, by
(x) of Lemma 4.1, we conclude that M is isomorphic to a rank-four wheel having
cl�A� as its rim. Hence a is in a triangle of M; a contradiction.

Next we prove the following.

4.3.4. Let H �MnX1=Y1 where X1 JX and Y1 JY U a. Then H cannot have a

cocircuit D such that jDjU 2 and DJ cl�A� ÿ a.

Suppose that such a cocircuit D does exist. We shall ®rst prove that DVA0
h. Assume that DVA �h and let d be an element of D. As d A cl�A� ÿ A, there
is a circuit C of M such that d A C JAU d. Observe that, since Aÿ aJE�H� and
a B X1, the set C contains a circuit C 0 of H such that d A C 0JAU d. Hence
C 0 VD � fdg, which is contrary to orthogonality. Thus DVA0h. Let a 0 be an
element of DVA. Observe that a 0 must belong to a cocircuit D 0 of N such that
D 0JD. Thus jD 0jU jDjU 2, which contradicts (4.3.3) since N is 3-connected.
Hence (4.3.4) holds.

The second result that we need about a minor H of M having N as a minor is
the following.

4.3.5. If H is not 3-connected, then there is a k-separation fZ;Wg of H with k in

f1; 2g such that jZ VE�N�jU 1 and Z is closed in both H and H �.

As H is not 3-connected, it has a k-separation fZ;Wg for some k in f1; 2g. But
N is a 3-connected matroid and is a minor of H, so

minfjZ VE�N�j; jW VE�N�jgU 1:

In particular, we may assume that

jZ VE�N�jU 1: �1�
Now choose such a k-separation satisfying (1) so that jZj is as large as possible.
Note that, since jE�N�jV 4, we must have that

jW VE�N�jV 3: �2�
If Z is closed in both H and H �, then (4.3.5) follows. Thus, we may assume that
there is an element w of W such that w is spanned by Z in H or H �. Hence
rH�Z� � rH�Z Uw� or rH � �Z� � rH � �Z Uw�, and so

rH�Z� � rH � �Z� ÿ jZjV rH�Z Uw� � rH � �Z Uw� ÿ jZ Uwj:
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Thus fZ Uw;W ÿ wg is a j-separation of H for some j in f1; 2g. Again, since N is
3-connected, we have minfjZ Uw�VE�N�j; j�W ÿ w�VE�N�jgU 1. It follows by
(2) that j�Z Uw�VE�N�jU 1. Therefore fZ Uw;W ÿ wg contradicts the choice of
fZ;Wg and we conclude that (4.3.5) holds.

4.3.6. If T � is a triad of M such that e A T � ÿ cl�A� and T � ÿ eJ cl�A�, then

T � ÿ eJA.

To see this, note that T � V cl�A� � T � ÿ e. Hence jT � V cl�A�j � 2 and (4.3.6)
follows by hypothesis (b).

4.3.7. If T is a triangle of M such that T ÿ cl�A� is non-empty, then T V cl�A� con-

tains exactly one element, aT , and aT A A.

As T ÿ cl�A� is non-empty but Mncl�A� has no triangles, it follows that 1U
jT ÿ cl�A�jU 2. But cl�A� does not span T, so jT ÿ cl�A�j � 2. Let e be an ele-
ment of T ÿ cl�A�. By (xi) of Lemma 4.1, there is a triad T � of M such that e A T �

and T � ÿ eJ cl�A�. By (4.3.6), T � ÿ eJA. By orthogonality, T � VT 0 feg.
Thus the unique element aT of T V �T � ÿ e� must belong to A, and (4.3.7) holds.

Recall that N � �M=a�nX=Y . To establish Lemma 4.3, we shall show that
both X and Y must be small. We begin by considering X.

4.4. Lemma. (i) If x A X , then there is a triad T �x of M such that T �x � fx; a; bg for

some b A A.
(ii) jX jU 1.

Proof. The proof of Lemma 4.4(i) is long and will be divided into a number of
steps. We shall argue by contradiction. Thus suppose that (i) fails, that is, T �x does
not exist for some x in X. Let H �Mnx and observe that H is not 3-connected
since �M;A� is a minimal pair. Therefore H has a 2-separation fZ;Wg satisfying
(4.3.5). Hence Z VE�N� has at most one element. Moreover, when this element
exists, we shall denote it by n. It is not di½cult to see that

4.4.1. Z VAJ fa; ng; where n may not exist.

Next we show that

4.4.2. W UA is a spanning set of M.

Suppose that W UA does not span M. Then there is a cocircuit D of M that
avoids cl�W UA�. Since D must also avoid cl�A�, Lemma 4.1(ii) implies that every
element of D is essential. Thus, by Theorem 2.8, M has two distinct triangles T1

and T2 meeting D. By (4.3.7), each Ti contains a unique element aTi
of cl�A� and

aTi
A A. Moreover, by Lemma 4.1(ix), aT1

0 aT2
. But, for each i, we have

Ti ÿ aTi
JD. Moreover, DJZ since D avoids cl�W�. Since, by (4.3.5), Z is

closed in Mnx, it follows that aTi
A Z for each i. Hence, by (4.4.1), faT1

; aT2
gJ

Z VAJ fa; ng. Therefore a � aTj
for some j, so a is in a triangle; a contradiction

to the hypothesis.
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4.4.3. 2U r�Z�U 3. Moreover, if r�Z� � 3, then n exists and is in A, and both a and

n belong to Z and are coloops of Mj�W U fa; ng�; and if a A W , then r�Z� � 2, and
n exists, is in A, and is a coloop of Mj�W U n�.

By (4.4.1), W UAJW U fa; ng where n may not exist. As fZ;Wg is a 2-
separation of Mnx, we have minfjZj; jW jgV 2 and r�Z� � r�W� � r�M� � 1. But
Mnx is simple, so

2U r�Z� � r�M� ÿ r�W� � 1: �3�
Moreover, by (4.4.2),

r�M� � r�W UA� � r�W U �AÿW��U r�W� � jAÿW j:
Hence

r�W UA� ÿ r�W� � r�M� ÿ r�W�U jAÿW j: �4�
Substituting for r�M� ÿ r�W� into (3), we get

2U r�Z�U jAÿW j � 1: �5�
Since AÿW J fa; ng, where n may not exist, we deduce that 2U r�Z�U 3.
Moreover, if r�Z� � 3, then jAÿW j � 2 and equality holds in (4). Hence n exists,
both a and n are in Z, and both are coloops of Mj�W U jfa; ng�. On the other
hand, if a A W , then jAÿW j � 1, so n exists and equality holds throughout both
(5) and (4). Thus r�Z� � 2, and n is a coloop of Mj�W U n�.

4.4.4. If jZjV r�Z� � 1, then �Z ÿ A�V cl�A� is empty, and n exists and is in A.

Suppose ®rst that r�Z� � 2. Then MjZ is isomorphic to U2; jZj. As a does not
belong to a triangle, it follows that a A W . Hence, by (4.4.3), n exists and is in A.
Thus, by (4.4.1), Z ÿ A � Z ÿ n. Now suppose that A spans an element z of
Z ÿ n. Then fn; zgJ cl�A� and A spans Z because fn; zg is a basis for Z. As
cl�A�VY �h by (4.3.1), Z VY �h. But Z ÿ n avoids E�N�. Hence Z ÿ nJX .
Thus N is a minor of Mn�Z ÿ n� which equals Mj�W U n�. But n is a coloop of the
last matroid by (4.4.3), so n is a coloop of the 3-connected matroid N; a con-
tradiction. We conclude that A cannot span any element of Z ÿ A, and so
�Z ÿ A�V cl�A� �h when r�Z� � 2.

We may now assume that r�Z�V 3. Then, by (4.4.3), r�Z� � 3, n exists, and a

and n both belong to Z VA. Thus, by (4.4.1), Z ÿ A � Z ÿ fa; ng. Suppose that A

spans an element z of Z ÿ fa; ng. Then fa; n; zgJ cl�A� and A spans Z because
fa; n; zg is a basis for Z, since, by hypothesis, a does not belong to a triangle of M.
As cl�A�VY �h by (4.3.1), Z VY �h. But Z ÿ fa; ng avoids E�N� so Zÿ
fa; ngJX . Thus N is a minor of Mn�Z ÿ fa; ng�, which equals Mj�W U fa; ng�.
Since n is a coloop in the last matroid by (4.4.3), n is a coloop of N; a contradic-
tion. Hence A cannot span any element of Z ÿ A and so �Z ÿ A�V cl�A� �h.

4.4.5. r�Z� � jZj.
Suppose that jZjV r�Z�� 1. Then MjZ has a circuit, C. Observe that Cÿ A �
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C ÿ fa; ng since, by (4.4.4), n exists and belongs to A and by (4.4.1), Z V
AJ fa; ng. Now jC ÿ fa; ngjV 2, otherwise fa; ngJC and jCj � 3 which is
contrary to the fact that a does not belong to a triangle. Let z1 and z2 be distinct
elements of C ÿ A, and suppose that z A fz1; z2g. Then z A Z ÿ A, so, by (4.4.4),
z B cl�A�. Moreover, by (xi) of Lemma 4.1, M has a triad T � that contains z and
meets cl�A� in two elements. By (4.3.6), T � must meet A in two elements. By
orthogonality, jT � VCjV 2. Hence jT � ÿ CjU 1 and so T �JZ by (4.3.5). Thus
T � VAJZ VAJ fa; ng by (4.4.1). Hence T � � fz; a; ng. In particular, the triads
fz1; a; ng and fz2; a; ng contradict (vi) of Lemma 4.1.

Next we complete the proof of the ®rst part of Lemma 4.4 by showing that T �x
exists, thereby obtaining a contradiction since we have assumed that T �x does not
exist.

4.4.6. T �x exists.

Suppose ®rst that x A X ÿ cl�A�. Then, by hypothesis (a), M has no triangle
that contains x and avoids cl�A�. Therefore, by (xi) of Lemma 4.1, there is a triad
T � of M such that T � ÿ xJ cl�A� and hence, by (4.3.6), T � ÿ xJA. If a A T �,
we can take T � � T �x and (4.4.6) holds. Thus we may assume that a B T �. Then
T � ÿ x is a 2-cocircuit of Mnx=a. As N is a minor of Mnx=a and T �ÿ
xJ cl�A� ÿ a, the cocircuit T � ÿ x contradicts (4.3.4). We conclude that, for every
element x of X ÿ cl�A�, the triad T �x exists.

Now suppose that x A cl�A� ÿ A. By (4.4.5), r�Z� � jZj. As fZ;Wg is a 2-
separation for Mnx, we have, by Lemma 2.5, that if z and z 0 are distinct elements
of Z, then fx; z; z 0g is a cocircuit of M. But x A fx; z; z 0gV �cl�A� ÿ A�, so, by
Lemma 2.6, jfx; z; z 0gV cl�A�jV 2. Hence, by hypothesis (b), jfx; z; z 0gVAjV 2.
As x B A, it follows that both z and z 0 belong to A. Since these two elements were
arbitrarily chosen in Z, it follows that Z JA. Thus Z VA � Z. By (4.4.1),
Z VAJ fa; ng and hence Z � fa; ng since jZjV 2. In this case, we can take
T �x � fx; a; ng thereby completing the proof of (4.4.6) and hence that of Lemma
4.4(i).

To prove the second part of the lemma, we shall argue by contradiction.
Suppose that x and x 0 are di¨erent elements of X. By (i), the triads T �x and T �x 0
both exist. Let T �x � fa; x; bg and T �x 0 � fa; x 0; b 0g be as in Lemma 4.4. Thus
fb; b 0gJA.

We prove next that b0 b 0. Assume the contrary. Then, by (vi) of Lemma 4.1,
both x and x 0 belong to cl�A�. Moreover, M �jfa; x; x 0; bg is isomorphic to U2;4.
Hence fx; x 0; bg is a triad of M containing two elements of cl�A� but just one ele-
ment of A; a contradiction to hypothesis (b). Thus b0 b 0.

Observe that fb; b 0; ag is contained in a series class or is a set of coloops of
Mnfx; x 0g. Thus fb; b 0g contains a cocircuit of �M=a�nfx; x 0g which is contrary to
(4.3.4). r

Recall that N � �M=a�nX=Y . We have just shown that jX jU 1. Next we
consider jY j.

4.5. Lemma. If y A Y , then y belongs to a triangle of M.
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Proof. Suppose that y is in no triangles of M. By (4.3.1), y B cl�A�. Thus, if
H �M=y, then H has a 2-separation fZ;Wg. By (4.3.5), we may assume that
fZ;Wg is chosen such that jZ VE�N�jU 1 and Z is closed in both H and H �. As
before, if Z VE�N� is non-empty, its unique element will be denoted by n. Thus

Z VAJ fa; ng: �6�
As M is 3-connected and fZ;Wg is a 2-separation for M=y, it follows that

y A cl�Z�V cl�W� �7�
We shall prove next that

4.5.1. Z ÿ X is independent in M=ynX .

We argue by contradiction. Thus assume that M=y has a circuit C that is
contained in Z ÿ X . By (4.3.2), it follows that C ÿ �Y U a�0h. Hence

h 0C ÿ �Y U a�JZ ÿ �X UY U a�JZ VE�N�J fng:
Thus n exists and is in C, and C ÿ �Y U a� � fng. Hence n is a loop of �M=y�=
�C ÿ n� and yU �C ÿ n�JY U a so N is a minor of �M=y�=�C ÿ n�. Therefore n

is a loop of N; a contradiction. We conclude that (4.5.1) holds.
Now, we shall prove that

4.5.2. jZjV 3 and X contains a unique element x. Moreover, x A Z and, for every 2-
element subset Z0 of Z ÿ X , the set Z0 U x is a triad of M.

The fact that jZjV 3 follows because Z spans y in M by (7), and y does not
belong to a triangle. Now, by Lemma 4.4, jX jU 1. Moreover, since jZ VE�N�jU
1 and jE�N�V 4, we have

jW jV jE�N� ÿ ZjV jE�N�j ÿ 1V 3:

Thus jW ÿ X jV 2 and, since jZjV 3, we also have that jZ ÿ X jV 2. Hence
fZ ÿ X ;W ÿ Xg is a 2-separation for M=ynX . Therefore, by (4.5.1) and Lemma
2.5, if Z0 is a 2-element subset of Z ÿ X , then Z0 contains a cocircuit of M=ynX .
Thus Z0 UX contains a cocircuit of M=y and hence of M. But every cocircuit of
M has at least three elements, so Z0 UX is a cocircuit of M and jX j � 1 since, by
Lemma 4.4, jX jU 1. Moreover, X JZ since Z is closed in H �.

Now, we shall show that

4.5.3. jZj � 3.

Suppose that jZjV 4. By (4.5.2), there is a unique element x in X, and M �jZ is
isomorphic to U2; jZj. If x B cl�A�, it follows that M has two triads that contradict
(vi) of Lemma 4.1. Thus x A cl�A�. Now let Z0 be a 2-element subset of Z ÿ x. By
(4.5.2), xUZ0 is a triad of M. Since x A cl�A� ÿ A, it follows by Lemma 2.6 that
j�xUZ0�V cl�A�jV 2. Thus, by hypothesis (b), j�xUZ0�VAjV 2. As x B A, it
follows that Z0 JA. As Z0 was chosen arbitrarily, we deduce that Z ÿ xJA.
Thus Z ÿ x � Z VA. But, by (6), Z VAJ fa; ng. Thus 3U jZ ÿ xj � jZ VAjU 2;
a contradiction. Hence (4.5.3) holds.

302 M. Lemos et al.



Next we prove the following.

4.5.4. Z U y is a circuit of M, the element n exists and is in A, and Z equals fx; a; ng
and is a triad of M.

As Z spans y by (7), it follows that Z U y is a circuit of M, since y does
not belong to a triangle and jZj � 3. By Lemma 4.4, there is a triad T �x of M such
that x A T �x and T �x ÿ xJA. By orthogonality, since x A Z, we have that
jT �x V �Z U y�jV 2. As y B A, it follows that T �x is a triad of H, which equals M=y.
Since Z is closed in H �, we deduce that T �x JZ because 1V jT �x ÿ �Z U y�j �
jT �x ÿ Zj. Hence T �x � Z. Thus T �x ÿ x � T �x VA � Z VAJ fa; ng, by (6). Hence
n exists and is in A, and T �x � fa; n; xg. We conclude that (4.5.4) holds.

Now y B cl�A� by (4.3.1). Thus, by (xi) of Lemma 4.1, there is a triad T � of M

such that y A T � and T � ÿ yJ cl�A�. By (4.5.4), Z is also a triad of M and Z U y

is a circuit of M. By (vi) of Lemma 4.1, jZ VT �j � 1. If x A cl�A�, then all but one
element of the circuit Z U y is in cl�A�; a contradiction. Thus x B cl�A� so, by
Lemma 4.1(i), M=x is not 3-connected. Thus we may apply the dual of Lemma 2.7
to M to deduce that x is in some triangle T of M. By orthogonality, jT VZjV 2
and hence jT ÿ ZjU 1. As Z is closed in M=y, it follows that T JZ. Hence
T � Z and Z is both a triangle and a triad of the 3-connected matroid M. This
contradiction implies that Lemma 4.5 holds. r

4.6. Lemma. jY jU 1 and if jY j � 1, then jX j � 1. Moreover, if Y � fyg and X �
fxg, then there is an element a 0 of Aÿ a such that fx; a 0; ag is a triad of M and

fx; y; a 0g is a triangle of M.

Proof. Suppose that y A Y . By Lemma 4.5, M has a triangle Ty containing y.
Now, by (4.3.1), y B cl�A�. Thus, by (4.3.7), Ty contains a unique element a 0 of A.
Moreover, a 00 a since, by hypothesis, a is in no triangles. Hence a 0 A E�N�. Let
Ty � fy; a 0; dg where d is some element of E�M�. Then a 0 and d are parallel in
M=y. But N is a 3-connected minor of M=y and has no circuits of size less than
three. Hence d B E�N�. Now d B Y , otherwise a 0 is a loop of N. Therefore d A X .
Thus, by Lemma 4.4, d is the unique element x of X, and M has a triad T �x where
T �x � fx; a; bg for some b in A. Since x A T �x VTy, orthogonality implies that
a 0 � b as a is in no triangles. Thus Ty � fy; x; bg. But y was arbitrarily chosen in
Y. Hence if y 0 A Y ÿ y, then Mjfy; y 0; x; bgGU2;4 and so fy; y 0; xg is a triangle
of M meeting the triad fx; a; bg in a single element, x; a contradiction. We con-
clude that Y ÿ y is empty. Hence jY jU 1. Moreover, if jY j � 1, say Y � fyg,
then X � fxg and the required triangle and triad of M exist. r

We are now ready to ®nish the proof of Lemma 4.3. We have N � �M=a�nX=
Y . By Lemma 4.4, jX jU 1, and, by Lemma 4.6, jY jU 1 with equality in the latter
implying equality in the former. Hence we have three possibilities:

(i) jY j � 0 � jX j;
(ii) jY j � 0 and jX j � 1; and
(iii) jY j � 1 � jX j.

The ®rst possibility means that (i) of Lemma 4.3 holds. Moreover, by Lemma
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4.4, the second possibility implies that (ii) of Lemma 4.3 holds. Thus it remains
only to consider when the third possibility holds. Hence let Y � fyg and X � fxg.
By Lemma 4.6, for some a 0 in Aÿ a, the matroid M has a triad T �1 and a triangle
T such that T �1 � fa; x; a 0g and T � fx; y; a 0g. Since y B cl�A�, the triangle T

implies that x B cl�A�. Moreover, by (xi) of Lemma 4.1 and (4.3.6), there is a triad
T �2 of M containing y such that T �2 ÿ yJA. Thus, by orthogonality with the tri-
angle fx; y; a 0g, it follows that T �2 � fa 0; y; a 00g for some a 00 in A. Hence either
T �1 ;T ;T

�
2 is a fan of M and (iii) of Lemma 4.3 holds, or T �1 ;T ;T

�
2 is not a fan of

M. We may therefore assume that the latter possibility holds. Then, as jE�N�jV 4
and so jE�M�jV 7, there is a triangle T 0 of M such that T 0;T �1 ;T ;T

�
2 or

T �1 ;T ;T
�
2 ;T

0 is a chain of M. The ®rst case implies that a A T 0 and the second
that a 00 A T 0. But M has no triangle containing a so a 00 A T 0. Hence T 0 V
�T �1 UT UT �2 � � fy; a 00g. But N �M=a; ynx and so N has a circuit of size at most
two containing a 00; a contradiction. This completes the proof of Lemma 4.3. r

4.7. Lemma. Suppose that �M;A� is a minimal pair in which jAjV 7. Let e be an

element of E�M� ÿ cl�A� that is in exactly h triads, T �1 ;T
�
2 ; . . . ;T �h , for some hV 2.

Suppose that T �i VA � fai; big for all i. Then �M 0;A 0� is a minimal pair where
M 0 �Mne=fa1; a2; . . . ; ahg and A 0 � Aÿ fa1; a2; . . . ; ahg.
Proof. We note ®rst that, by (vi) of Lemma 4.1, if i 0 j, then T �i VT �j � feg.
Moreover, by (i) of Lemma 4.1, M 0 is 3-connected. Now M 0 has a 3-connected
minor N 0 such that �N 0;A 0� is a minimal pair and N 0jA 0 �M 0jA 0. Then N 0 �
M 0nX=Y for some independent set Y and coindependent set X. Clearly

4.7.1. X U e is coindependent in M.

We shall complete the proof of the lemma by showing that both X and Y are
empty. First we show that

4.7.2. r�A� � r�Y� � r�AUY�.
By orthogonality, fa1; a2; . . . ; ahg is independent in Mne and hence in M. As Y

is independent in M=fa1; a2; . . . ; ahg, it follows that fa1; a2; . . . ; ahgUY is inde-
pendent in M. Thus, as N 0jA 0 �M 0jA 0, we have

rM=fa1;a2;...;ahg=Y �Aÿ fa1; a2; . . . ; ahg� � rM=fa1;a2;...;ahg�Aÿ fa1; a2; . . . ; ahg�:
Therefore

r�AUY � ÿ r�fa1; a2; . . . ; ahgUY � � r�A� ÿ r�fa1; a2; . . . ; ahg�;
so r�AUY� ÿ hÿ jY j � r�A� ÿ h, and (4.7.2) follows.

Next we observe that

4.7.3. jE�N 0�jV 4.

To see this, we note that, since jAjV 7 and

E�N 0�KAÿ fa1; a2; . . . ; ahgK fb1; b2; . . . ; bhg;
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it follows that jAj ÿ hV h. Thus, if hU 3, then jAj ÿ hV 4, and (4.7.3) holds; and
if hV 4, then jE�N 0�jV hV 4, and again (4.7.3) holds.

Now Mn�X U e�=Y is obtained from the 3-connected matroid N 0 by adding ai

in series with bi for all i. Hence Mn�X U e�=Y is connected. Moreover, the fol-
lowing is an easy consequence of the fact that jE�N 0�jV 4.

4.7.4. Every 2-separation of Mn�X U e�=Y has some fai; big as a part.

We show next that

4.7.5. T �i is a triad of MnX=Y for every i.

Suppose that this fails for some i. Then, since T �i is a triad of M and T �i ÿ e is
a cocircuit of �MnX=Y�ne, it follows that either (i) T �i is contained in a series class
of MnX=Y ; or (ii) e is a coloop of MnX=Y . But, since X U e is coindependent in
M, (ii) cannot occur. Likewise, (i) cannot occur, otherwise fbi; eg is a cocircuit of
MnX=Y , so bi is a coloop of �MnX=Y�ne and hence of N 0; a contradiction. We
conclude that (4.7.5) holds.

Next we shall prove that

4.7.6. MnX=Y is 3-connected.

Since �MnX=Y�ne is connected and e is in a triad of MnX=Y , the last matroid
is certainly connected. Assume that (4.7.6) fails and let fZ;Wg be a partition of
E��MnX=Y �ne� such that fZ U e;Wg is a 2-separation of MnX=Y . Then fZ;Wg
is a 2-separation of �MnX=Y�ne unless jZj � 1. But, in the exceptional case, Z U e

is either (i) a 2-element cocircuit, or (ii) a 2-element circuit of MnX=Y . The ®rst
case implies the contradiction that Z is a 1-element cocircuit of the connected
matroid �MnX=Y �ne. In the second case, orthogonality and (4.7.5) imply that Z

meets the h disjoint sets of the form T �i ÿ e. This is a contradiction since jZj � 1
and hV 2. We conclude that fZ;Wg is indeed a 2-separation of �MnX=Y�ne.

By (4.7.4), one of Z and W is fai; big for some i. Suppose ®rst that Z � fai; big.
Then Z U e � T �i and, in MnX=Y , we have

1 � r�Z U e� � r�W� ÿ r�MnX=Y� � r�Z U e� � r��Z U e� ÿ jZ U ej
� r�Z U e� � 2ÿ 3:

Hence r�Z U e�0 2. But r�Z� � r�fai; big� � 2 since ai and bi are in series in
�MnX=Y�ne. Thus e is in a circuit C of MnX=Y contained in T �i . This contradicts
orthogonality since, for j 0 i, the triad T �j of MnX=Y meets C in a single element.
We conclude that Z 0 fai; big.

We may now assume that W � fai; big. Since fZ U e;Wg is a 2-separation of
MnX=Y , it follows that fai; big is a circuit or a cocircuit of MnX=Y . But fai; big
is a proper subset of the triad T �i of MnX=Y , so fai; big is certainly not a cocircuit
of MnX=Y . Moreover, if fai; big is a circuit of MnX=Y , then bi is a loop of
�MnX=Y�ne=fa1; a2; . . . ; ahg, that is, of N 0. This contradiction completes the
proof of (4.7.6).
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By (4.7.2), r�AUY� � r�A� � r�Y�, so �MnX=Y�jA �MjA. Since �M;A� is a
minimal pair, it follows that X � Y �h. Hence N 0 �M 0 and so �M 0;A 0� is a
minimal pair. r

5. Proofs of the Main Theorems

Theorems 1.5 and 1.6 can be combined into the following result.

5.1. Theorem. If �M;A� is a minimal pair, then

jE�M�jU jAj � l1�A;M�� l2�A;M��minfl3�A;M�; r�M�ÿ rM�A�gÿ a�A;M�;
where

a�A;M� �
0; when A is a circuit of M

1; when A is not a circuit

(
This theorem will be derived from two propositions. The ®rst of these, which is

stated and proved below, gives the structure of a minimal counterexample to the
theorem; the second, which was proved in an earlier paper [6], will be stated fol-
lowing the proof of the ®rst.

5.2. Proposition. Let �M;A� be a minimal pair that is a counterexample to Theorem

5.1 and is chosen so that

�jE�M�j;ÿjAj�
is lexicographically minimal among such counterexamples. Then every element of

E�M� ÿ cl�A� belongs to some type-2 fan of length three in which the rim is con-

tained in a 4-circuit of MjA and the spokes are contained in E�M� ÿ cl�A�.
Proof. Suppose that �M;A� does not satisfy the proposition. Then, clearly,

E�M� ÿ cl�A�0h: �8�
Moreover, by (iii) of Lemma 4.1,

jAjV 3: �9�
The rest of the proof of the proposition will be broken up into a sequence of

lemmas, the ®rst of which is as follows.

5.3. Lemma. M is neither a wheel having rim cl�A� nor a whirl having rim A.

Proof. Suppose that M is the rank-n whirl having rim A. Then A is independent
and

jAj � l1�A;M� � l2�A;M�
�minfl3�A;M�; r�M� ÿ rM�A�g ÿ a�A;M� � 3jAj ÿ 1 � 3nÿ 1:

306 M. Lemos et al.



But �M;A� is a counterexample to Theorem 5.1 and jE�M�j � 2n, so 2n > 3nÿ 1;
a contradiction.

Next suppose that M is the rank-n wheel having rim cl�A� but A0 cl�a�. Then
A � cl�A� ÿ a for some element a, so A is independent. Again, we have that

jAj � l1�A;M� � l2�A;M�
�minfl3�A;M�; r�M� ÿ rM�A�g ÿ a�A;M� � 3jAj ÿ 1 � 3nÿ 4:

But jE�M�j � 2n and �M;A� is a counterexample to Theorem 5.1. Thus 2n >
3nÿ 4 so nU 3. Hence jAj � nÿ 1U 2; a contradiction to (9).

Finally, suppose that M is the rank-n wheel and A is its rim. In this case, nV 4,
otherwise n � 3 and A is a 3-element circuit so �MjA;A� is a minimal pair; a
contradiction. Now l1�A;M� � 1; l2�A;M� � nÿ 2; l3�A;M� � nÿ 3; r�M�ÿ
r�A� � 1, and a�A;M� � 0. Thus

2n � jE�M�j > n� 1� �nÿ 2� � 1ÿ 0:

This contradiction completes the proof of Lemma 5.3. r

In several of the lemmas below, we shall replace the minimal pair �M;A� by
another minimal pair �M 0;A 0� such that �jE�M 0�j;ÿjA 0j� is lexicographically less
than �jE�M�j;ÿjAj�. Thus �M 0;A 0� must satisfy the conclusion of Theorem 5.1
although �M;A� does not. Hence

jAj � l1�A;M� � l2�A;M�
�minfl3�A;M�; r�M� ÿ rM�A�g ÿ a�A;M� ÿ jE�M�j < 0

and

jA 0j � l1�A 0;M 0� � l2�A 0;M 0�
�minfl3�A 0;M 0�; r�M 0� ÿ rM 0 �A 0�g ÿ a�A 0;M 0� ÿ jE�M 0�jV 0:

On taking the di¨erence of these two inequalities, we get

dA � d1 � d2 � dm ÿ da ÿ dE < 0; �10�
where

dA � jAj ÿ jA 0j;
d1 � l1�A;M� ÿ l1�A 0;M 0�;
d2 � l2�A;M� ÿ l2�A 0;M 0�;
dm � min fl3�A;M�; r�M� ÿ rM�A�g ÿminfl3�A 0;M 0�; r�M 0� ÿ rM 0 �A 0�g;
da � a�A;M� ÿ a�A 0;M 0�;
dE � jE�M�j ÿ jE�M 0�j:

Hence we shall arrive at a contradiction whenever (10) is not satis®ed. To deal
with dm, we de®ne two other di¨erences:
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d3 � l3�A;M� ÿ l3�A 0;M 0�;
dr � �r�M� ÿ rM�A�� ÿ �r�M 0� ÿ rM 0 �A 0��:

The elementary proof of the next lemma is omitted.

5.4. Lemma. (i) If dr or d3 is zero, then dm Vminfdr; d3g.
(ii) If dr � d3, then dm � dr � d3.

5.5. Lemma. Every triangle of M that meets E�M� ÿ cl�A� contains an element of

cl�A�.
Proof. Suppose that T is a triangle of M that avoids cl�A�. By (viii) of Lemma 4.1,
there is a triad that meets T in exactly two elements and contains some element a

of A. Then, by Lemma 4.2, if M 0 �M=T and A 0 � Aÿ a, then �M 0;A 0� is a
minimal pair and

�M=T�j�Aÿ a� �Mj�Aÿ a�:
As jE�M 0�j < jE�M�j, the minimal pair �M 0;A 0� satis®es Theorem 5.1. Hence (10)
holds. We shall now consider each individual di¨erence in (10). Clearly

dA � 1 and dE � 3:

Next we note that, since �M=T�j�Aÿ a� �Mj�Aÿ a� and a is a coloop of
MjA, we have

d1 � d2 � 1 and d3 � 0:

Now r�M 0� � r�M� ÿ 2 and rM 0 �A 0� � rM�Aÿ a� � rM�A� ÿ 1. It follows that
dr � 1 and hence, by Lemma 5.4,

dm V 0:

Finally, (viii) of Lemma 4.1 implies that MjA has at least three coloops including
a, and therefore

da � 0:

On combining the above di¨erences, we have

dA � d1 � d2 � dm ÿ da ÿ dE V 1� 1� 1� 0ÿ 0ÿ 3 � 0:

This contradiction to (10) completes the proof of the lemma. r

5.6. Lemma. If T � is a triad of M such that jT � V cl�A�jV 2, then jT � VAjV 2.

Proof. Suppose that jT � VAjU 1. By Lemma 2.6, T � VA � fag for some a in A.
Choose e in �T � V cl�A�� ÿ A. Let M 0 �M and A 0 � AU e. Clearly �M 0;A 0� is a
minimal pair. Observe that the connected component Ne of Mj�AU e� that con-
tains e must also contain a. Moreover, a is a coloop of Nene. Let l be the number
of coloops of Nene that are not coloops of Ne. Then l V 1. By Lemma 2.9(i) of [6],
we have that

d1 � d2 V l:

308 M. Lemos et al.



Observe also that

dA � ÿ1; dE � 0; and dr � 0;

where the last of these holds because A spans e.
Now consider a series class S of MjA. Its contribution to l3�A;M� is

maxf0; jSj ÿ 3g. In Mj�AU e�, there is a partition fS1;S2; . . . ;Skg of S such that
each Si is a series class of Mj�AU e�. The total contribution of these series classes
to l3�AU e;M� is Xk

i�1

maxf0; jSij ÿ 3g;

which clearly does not exceed maxf0; jSj ÿ 3g. The only non-trivial series class of
Mj�AU e� that is not contained in a non-trivial series class of MjA is the one that
contains e and the set of l elements that are coloops of Nene but not of Ne. Its
contribution to l3�AU e;M� is maxf0; l ÿ 2g. We conclude that

d3 Vÿmaxf0; l ÿ 2g � minf0; 2ÿ lg
and, since dr � 0, Lemma 5.4 implies that

dm Vminf0; 2ÿ lg:
Thus

dA � �d1 � d2� � dm ÿ dE Vÿ 1� l �minf0; 2ÿ lg ÿ 0:

By (10), we must have that da > l ÿ 1�minf0; 2ÿ lg. Hence

da > minfl ÿ 1; 1g:
But da U 1 and l V 1, so da � 1 and l ÿ 1 � 0. The ®rst of these implies that AU e

is a circuit of M. Hence Ne �Mj�AU e� and A equals the set of coloops of Nene
that are not coloops of Ne. Thus l � jAjV 3, by (9); a contradiction. r

The proof of Lemma 5.8 will use the following result of Oxley and Wu [11,
Lemma 2.4].

5.7. Lemma. For some nV 2, let fe1; e2; . . . ; eng and f f1; f2; . . . ; fng be disjoint

subsets of the ground set of a 3-connected matroid N. Suppose that, for all i in

f1; 2; . . . ; nÿ 1g and all j in f1; 2; . . . ; ng; fei; fi; ei�1g is a triangle and f fj; ej�1;
fj�1g is a triad, where all subscripts are read modulo n. Then N is isomorphic to a

wheel or whirl of rank n.

5.8. Lemma. Let f be an element of E�M� ÿ cl�A�. Suppose that either

(i) f is in a chain with at least three links such that all the spokes of this chain are in

E�M� ÿ cl�A� and the rim of this chain is contained in cl�A�; or

(ii) f is in a unique triad of M but is in no triangles.

Then f is in a type-2 fan of length three in which the rim is a series class of MjA and

the spokes are contained in E�M� ÿ cl�A�.
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Proof. We shall show ®rst that, in each case, there are elements a of A and e of
E�M� ÿ cl�A� such that M=ane has a minimal 3-connected minor M 0 for which
M 0jA 0 � �M=a�jA 0 where A 0 � Aÿ a and either

(a) M 0 �M=ane where fa; eg is contained in a triad of M; or
(b) M 0 �M=ane=e 0 for some element e 0 of E�M� ÿ cl�A� such that f A fe; e 0g.

Moreover, for some element a1 and a2 of A, the set fe; a1; e
0g is a triangle, and

fa; e; a1g; fe; a1; e
0g; fa1; e

0; a2g is a type-2 fan of M.

Suppose that (ii) occurs and let T � be the unique triad containing f. Then
T � ÿ f meets A, otherwise, by Lemma 4.1(v), jT � ÿ cl�A�jU 1 in which case, by
Lemma 5.6, jT � VAjV 2; a contradiction. Let T � ÿ f � fa; gg where a A A. Now
suppose that a is in a triangle of M. Then, since this triangle cannot contain f, it
must contain g. But, in that case, the cosimpli®cation of Mn f is not 3-connected,
contradicting Lemma 4.1(i). We conclude that a is in no triangles of M.

We are aiming to apply Lemma 4.3 to M. We know, by Lemmas 5.5 and 5.6,
that hypotheses (a) and (b) of that lemma hold and that a is in no triangles of M.
Now consider M=a. It must be 3-connected otherwise neither M=a nor M= f is 3-
connected and the dual of Tutte's triangle lemma (2.4) implies that a is in a trian-
gle; a contradiction. Next consider Mn f . Since f is in no triangles, the simpli®ca-
tion of M= f equals M= f and so is not 3-connected. Thus the cosimpli®cation of
Mn f is 3-connected. Since T is the unique triad of M containing f, this cosimpli-
®cation is Mn f =a. Thus M=an f is 3-connected. Therefore there is a minimal 3-
connected minor M 0 of M=a for which M 0j�Aÿ a� � �M=a�j�Aÿ a� such that
M 0 is a minor of M=an f . Then Lemma 4.3 and the fact that f is in no triangles
imply that M 0 � �M=a�n f . We conclude that if (ii) occurs, then (a) holds with
e � f .

Next suppose that (i) holds, and take a maximal such chain T1;T2; . . . ;Tk of
M. Then k V 3. Assume that there is a set Tk�1 such that T2;T3; . . . ;Tk�1 is a
chain. Let Ti � fei; ei�1; ei�2g for all i in f1; 2; . . . ; k � 1g. Suppose ®rst that
T1;T2; . . . ;Tk�1 is a chain. By the choice of T1;T2; . . . ;Tk, we deduce that either
ek�3 is a spoke of T1;T2; . . . ;Tk�1 that is in cl�A�, or ek�3 is a rim element of
T1;T2; . . . ;Tk�1 that is not in cl�A�. In the ®rst case, Tk�1 is a triangle containing
two elements of cl�A�, so ek�1 A cl�A�; a contradiction. In the second case, by
Lemmas 5.5 and 4.1(xi), ek�2 belongs to a triad T �0 that meets cl�A� in two ele-
ments. By orthogonality with Tk, we must have that ek�1 A T �0 , so, by Lemma 2.9,
T �0 � Tk�1; a contradiction. We conclude that T1;T2; . . . ;Tk�1 is not a chain.
Then ek�3 A T1 UT2 U . . . UTk and it follows, by orthogonality, that ek�3 � e1 and
that T1 and Tk�1 are either both triangles or are both triads. Then, by Lemma 5.7,
it follows that M is isomorphic to a wheel or whirl of rank k � 2. Moreover,
clearly this wheel or whirl has rim cl�A� and so we have a contradiction to Lemma
5.3. We conclude that there is no set Tk�1 such that T2;T3; . . . ;Tk�1 is a chain.
Similarly, there is no set T0 such that T0;T1; . . . ;Tkÿ1 is a chain. We conclude that
T1;T2; . . . ;Tk is a fan F. Moreover, since e1 and ek�2 are non-essential, it follows
by Lemma 4.1(ix) that both T1 and Tk are triads of M.

Let fa; e; a1g be the ®rst link T � of F where a is the rim element of T � that is in
no triangles, and e is the spoke of T �, the ®rst spoke of F. By Lemma 5.6,
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fa; a1gJA. By Lemma 4.1(i), the cosimpli®cation of Mne is 3-connected. Sup-
pose that this cosimpli®cation is isomorphic to Mne=a, and let M 0 be a minimal 3-
connected minor of Mne=a for which M 0j�Aÿ a� � �M=a�j�Aÿ a�. Then Lemma
4.3 implies that (a) or (b) holds provided that, as we now show, f A fe; e 0g. Clearly
e is in both the fan F and the fan fa; e; a1g; fe; a1; e

0g; fa1; e
0; a2g whose existence is

asserted in Lemma 4.3(iii). By Theorem 2.2, if these fans are distinct, then F has
®ve elements and has e as a rim element; a contradiction. Hence these two fans are
the same, so f A fe; e 0g. We conclude that if the cosimpli®cation of Mne is iso-
morphic to Mne=a, then (a) or (b) holds.

Now assume that the cosimpli®cation of Mne is not isomorphic to Mne=a.
Then M has a triad T �1 that contains e and is di¨erent from T �. It follows, using
orthogonality, that T �1 must contain the ®rst two spokes, e and e 0, of F. More-
over, by Lemma 4.1(v), the other element a 0 of T �1 is in A. By orthogonality again,
F cannot have a third spoke. Hence e and e 0 are the only two spokes of F, so
f A fe; e 0g. Moreover, T � and T �1 are the only triads of M containing e, and the
cosimpli®cation of Mne is isomorphic to Mne=a=e 0. We show next that

�Mne=a=e 0�j�Aÿ a� � �M=a�j�Aÿ a�:
This follows if �M=a�j��Aÿ a�U e 0� has e 0 as a coloop. Assume the contrary. Then
e 0 is in the closure of Aÿ a in M=a, so e 0 is in the closure of A in M; a contra-
diction. Clearly Mne=a=e 0 has a minimal 3-connected minor M 0 for which
M 0j�Aÿ a� � �M=a�j�Aÿ a�. Thus, by Lemma 4.3, we have that (a) or (b), and
hence (b), holds.

We now know that (a) or (b) holds, and we examine the minimal pair �M 0;A 0�.
Since jE�M 0�j < E�M�j, Theorem 5.1 holds for �M 0;A 0�. Clearly

dA � 1:

Moreover,

dr �
0; when M 0 �M=ane; and

1; when M 0 �M=ane=e 0.

(
The rest of the argument will be broken into the following cases.

(I) a is a coloop of MjA;
(II) a is in a series class of MjA.

In case (I), since M 0jA 0 � �M=a�jA 0,
d1 � 1; d2 � 1; and d3 � 0:

Thus, by Lemma 5.4, dm V 0. Hence, by (10),

1� 1� 1� 0U dA � d1 � d2 � dm < da � dE :

Thus, as da U 1 and dE U 3, we deduce that da � 1 and dE � 3. The ®rst of these
implies that A is not a circuit of M but Aÿ a is a circuit of M 0; and the second
implies that (b) holds. By (b), Mne has fa; a1g as a cocircuit. Thus MjA has
fa; a1g as a union of cocircuits. But a is a coloop of MjA. Hence so is a1. This
contradicts the fact that Aÿ a is a circuit of �MjA�=a. Thus (I) cannot occur.
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Now consider (II). In this case, MjA is obtained from M 0jA 0 by adding a in
series to some element of A 0. Thus MjA is isomorphic to the 2-sum of M 0jA 0 and a
copy of U2;3. Hence

d1 � 0; d2 � 1; and da � 0:

Moreover, if Sa is the series class of MjA containing a, then

d3 �
0; when jSajU 3;

1; when jSajV 4:

(
Since dr A f0; 1g, it follows, by Lemma 5.4, that

dm V 0:

Thus, by (10),

1� 0� 1� 0ÿ 0U 1� 0� 1� dm ÿ 0 � dA � d1 � d2 � dm ÿ da < dE :

Since dE U 3, we deduce that dE � 3 and dm � 0. Hence (b) holds, that is,
M 0 �M=ane=e 0, so dr � 1. Thus, by Lemma 5.4, d3 0 1 otherwise dm � 1. Hence
d3 � 0 so jSajU 3. Therefore, by (b), Sa � fa; a1; a2g and the fan fa; e; a1g;
fe; a1; e

0g; fa1; e
0; a2g satis®es all the conditions asserted in the lemma. r

5.9. Lemma. jAjV 7.

Proof. As E�M� ÿ cl�A�0h, there is a cocircuit D of M that avoids cl�A�.
Moreover, since �M;A� is a minimal pair, for all elements e of D, the matroid
M=e is not 3-connected. Thus, by Theorem 2.8, M has two triangles T1 and T2

meeting D in distinct subsets. By Lemma 5.5, each Ti meets cl�A�. Hence, by
Lemma 4.1(ix), there is a unique element aTi

in Ti V cl�A� and there is a chain
T �iTi

;Ti;T
�
2Ti

whose rim ATi
is contained in cl�A�. Take an element f1 of

�T1 ÿ T2� ÿ cl�A�. By Lemma 5.8, f1 is in a 5-element fan F 01 whose rim is a series
class of MjA and all of whose spokes are in E�M� ÿ cl�A�. Clearly T2 ÿ cl�A� has
an element f2 that is not in F 01 and, by Lemma 5.8 again, f2 is in a 5-element fan
F 02 whose rim is a series class of MjA.

The rims R1 and R2 of F 01 and F 02 are both series classes of MjA and, by The-
orem 2.2, these rims are not equal. Hence R1 and R2 are disjoint and so jAjV 6.
We may now assume that jAj � 6 otherwise the lemma holds. But, in that case,
MjA is the union of the two series classes R1 and R2. Hence each Ri is a triangle of
MjA. This is a contradiction as F 0i is a fan. r

5.10. Lemma. An element e of E�M� ÿ cl�A� that does not belong to a triangle of M

belongs to exactly one triad.

Proof. The element e certainly belongs to at least one triad, otherwise, by Lemma
2.3, either Mne or M=e is 3-connected; a contradiction to the fact that �M;A� is a
minimal pair. Now let T �1 ;T

�
2 ; . . . ;T �n be the triads of M that contain e and sup-

pose that nV 2. For all i, we must have that jT �i ÿ cl�A�j < 2, otherwise Tutte's
triangle lemma (2.4) implies that e is in a triangle. Hence jT �i V cl�A�jV 2 for all i
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and it follows, by Lemma 5.6, that jT �i VAj � 2. Let T �i VA � fai; big for all i.
Then since, by the previous lemma, jAjV 7, Lemma 4.7 implies that �M 0;A 0� is a
minimal pair where M 0 �Mne=fa1; a2; . . . ; ang and A 0 � Aÿ fa1; a2; . . . ; ang.

Clearly

dA � n and dE � n� 1:

Moreover, for each i, either ai is in series with bi in MjA, or ai is a coloop of MjA.
Without loss of generality, assume that the set of coloops of MjA in
fa1; a2; . . . ; ang is fa1; a2; . . . ; akg. Then a matroid isomorphic to MjA can be
obtained from M 0jA 0 in two stages: ®rst take the direct sum of M 0jA 0 with the k

coloops a1; a2; . . . ; ak; and then take the 2-sum of the resulting matroid with nÿ k

copies of U2;3 using bk�1; bk�2; . . . ; bn as basepoints. Thus

d1 � k V 0 and d2 � n:

As each series class of M 0jA 0 is contained in a series class of MjA, we have
d3 V 0. Moreover, as dr is clearly zero, Lemma 5.4 implies that

dm V 0:

Therefore, by (10), we obtain a contradiction unless

n� 0� n� 0U dA � d1 � d2 � dm < dE � da � �n� 1� � da:

Thus 1U nÿ 1 < da U 1; a contradiction. r

On combining Lemmas 5.8 and 5.10, we obtain the following.

5.11. Corollary. If f A E�M� ÿ cl�A�, then f is in a type-2 fan of length three in

which the rim is a series class of MjA and the spokes are contained in E�M�ÿ cl�A�.
Moreover, two distinct such fans are disjoint.

Proof. Either f is in a triangle of M or not. In the ®rst case, by Lemma 5.10, f is in
a unique triad but no triangle and the ®rst part of the corollary follows by Lemma
5.8. In the second case, by Lemma 5.5, f is in a triangle with some element of
cl�A�. Then, by Lemma 4.1(ix), f satis®es (i) of Lemma 5.8 and again the ®rst part
of the corollary follows by that lemma.

Now observe that the intersection of two distinct fans F1 and F2 satisfying the
speci®ed conditions is a subset of the intersection of their rims or the intersection
of their sets of spokes. But each rim is a series class of MjA so the rims are either
equal or disjoint. Thus if F1 meets F2, then F1 and F2 have a common element that
is essential in M. But this violates Theorem 2.2. r

Now let T0;T1;T2 be a type-2 fan F of M where T0 � fa0; e1; a1g; T1 �
fe1; a1; e2g, and T2 � fa1; e2; a2g where fa0; a1; a2gJ cl�A� and fe1; e2gV cl�A� �
h. A chord of F is an element y such that RU y is a circuit of M where R is the rim
fa0; a1; a2g of F. In view of the last corollary, to complete the proof of Proposition
5.2, it su½ces to show that F has a chord that is contained in A.

5.12. Lemma. If y is a chord of F, then y is unique and y A A.
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Proof. If fy; a0; a1; a2g and fy 0; a0; a1; a2g are circuits of M, then fy; y 0; a0; a2g
contains a circuit, which, by orthogonality, must be fy; y 0g; a contradiction. Thus
y is unique. Now assume that y B A. Then Mny is not 3-connected. Let fX ;Yg be
a 2-separation of Mny and suppose, without loss of generality, that jX VT1jV 2.
Subject to this restriction, choose the 2-separation fX ;Yg such that jX VF j is
maximum.

We now show that jY jV 3. Assume that jY j � 2. As M is simple, Y must be a
cocircuit of Mny, and so Y U y is a triad T � of M. By orthogonality, T � VR0h.
By Lemma 2.9, a1 B T �. Hence we may assume that a0 A T �. Because R is a series
class of MjA, the unique element, z say, of T � ÿ fy; a0g must belong to A other-
wise a0 is a coloop of MjA. Thus z and a0 are in series in MjA so z � a2, and
T � � fy; a0; a2g. By elimination and orthogonality, fa0; e1; e2; a2g is a cocircuit of
M. Hence �fa0; e1; e2; a2gU fy; a0; a2g� ÿ a0 contains a cocircuit D of M. But MjA
has a circuit containing fa0; a1; a2g so, by orthogonality, D � fe1; e2; yg. This is a
contradiction since jDV �RU y�j � 1. We conclude that jY jV 3.

Next we observe that, since X spans T1, it follows that fX UT1;Y ÿ T1g is a 2-
separation of Mny. By the choice of fX ;Yg, we deduce that X UT1 � X , so
T1 JX . Thus X spans T0 in M �, so fX UT0;Y ÿ T0g is a 2-separation of Mny,
which, as above, must equal fX ;Yg. Thus T0 JX and, by symmetry, T2 JX .
We conclude that F JX , so X spans y. This contradiction completes the proof
that y A A. r

We may now assume that F has no chord, otherwise Proposition 5.2 follows.

5.13. Lemma. M=fa0; a2g is 3-connected.

Proof. As a0 A T0 ÿ T1 and T0;T1;T2 is a type-2 fan, Lemma 2.1 implies that a0 is
non-essential. Thus M=a0 is 3-connected. We show next that M=a0 has no triangle
containing a2. Assume that such a triangle T 0 exists.

Suppose ®rst that e2 A T 0. Then T 0 � fa2; e2; e3g for some e3 in E�M�ÿ
fa0; a2; e2g. Since e2 B cl�A�, it follows that e3 B cl�A�. Thus either T 0 or T 0 U a0 is
a circuit of M. The ®rst possibility contradicts the fact that T0;T1;T2 is a fan; the
second contradicts orthogonality with the triad T0 since e3 0 e1 otherwise M=a0

has a line containing fa1; a2; e1; e2g.
We may now assume that e2 B T 0. Then, by orthogonality with T2, we have

T 0 � fa2; a1; gg for some element g. By Lemma 2.9, T 0 is not a triangle of M so
T 0 U a0 is a circuit of M and hence g is a chord of M; a contradiction.

We conclude that there is indeed no triangle of M=a0 containing a2. But the
cosimpli®cation of M=a0na2 is not 3-connected, so the simpli®cation of M=a0=a2,
which equals M=fa0; a2g, is 3-connected. r

Now let A 0 � Aÿ fa0; a2g and let M 0 be a 3-connected matroid such that
M 0jA 0 � �M=fa0; a2g�jA 0 and �M 0;A 0� is a minimal pair. Then M 0 �
�M=fa0; a2g�nX=Y for some disjoint subsets X and Y of E�M� ÿ fa0; a2g.

5.14. Lemma. Y U �X ÿ cl�A��J fe1; e2g.
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Proof. Suppose that there is an element z in �Y U �X ÿ cl�A��� ÿ fe1; e2g. We shall
®rst show that z B cl�A�. If not, then z A Y V cl�A� and

r�M 0jA 0�U r��M=fa0; a2; zg�jA 0� � r��M=fa0; a2g�jA 0� ÿ 1;

a contradiction. We conclude that we do indeed have that z B cl�A�. Thus
z A E�M� ÿ �cl�A�UF�. Then, by Corollary 5.11, z is in a type-2 fan F 0 of M of
length three whose rim is a series class of MjA and such that F 0JE�M� ÿ F .
Since z B cl�A�, it follows that z is a spoke of F 0. Therefore Mnz has a 2-cocircuit
contained in Aÿ fa0; a2g that remains a 2-cocircuit of M=fa0; a2gnX=Y . Now the
last matroid is 3-connected of size at least ®ve since jAjV 7. Hence z B X . On the
other hand, if z A Y , then M=z has a 2-circuit containing a spoke z 0 of F 0. Thus
M 0 is a minor of M=znz 0 and hence of Mnz 0. Again we obtain a contradiction.

r

5.15. Lemma. X V cl�A� �h.

Proof. Suppose that X V cl�A�0h. Let H �Mn�X V cl�A��. Then HjA �MjA.
As �M;A� is a minimal pair, it follows that H is not 3-connected. For some k in
f1; 2; g, let fZ;Wg be a k-separation of H for which jZ VT1jV 2 and jZ VF j is
maximum subject to this condition.

5.15.1. F PZ.

Assume the contrary. Then jZjV 5. But, by Lemma 5.14, E�H� ÿ E�M 0�
J fa0; a2; e1; e2gJF . Thus Z VE�M 0�KZ ÿ fa0; a2; e1; e2gK fa1g. Since
fZ VE�M 0�;Wg is not a 2-separation of M 0, it follows that jZ VE�M 0�jU 1.
Hence Z ÿ fa0; a2; e1; e2g � fa1g, so Z � F .

Now a0; a1, and a2 are in series on Mnfe1; e2g because F is a fan. These ele-
ments are also in series in MjA. Thus they are also in series in Mjcl�A�. Hence
cl�A� is spanned by Aÿ a0, so cl�A� ÿ a0 is spanned by Aÿ a0. But a1 and a2 are
coloops of Mj�cl�A� ÿ a0�. Thus Aÿ R spans cl�A� ÿ R. Since F � Z, it follows
that Aÿ RJW . Hence W spans cl�A� ÿ R. But cl�A� ÿ RK cl�A�VX , so W

spans cl�A�VX and hence fZ;W U �X V cl�A��g is a k-separation of M, a con-
tradiction. Thus (5.15.1) holds.

5.15.2. jW j � 2 and W is a cocircuit of H.

Suppose that jW jV 3. Then a minor modi®cation of the argument given in the
last paragraph of the proof of Lemma 5.12 establishes that F JZ. This contra-
diction to (5.15.1) implies that jW jU 2. Then W consists of either one or two
coloops of H, or a 2-cocircuit of H.

Suppose that W is a set of coloops of H. Then W J cl�A� since every element
in E�M� ÿ cl�A� belongs to a triangle of H by Corollary 5.11. Orthogonality now
implies that W JA. As W is a set of coloops of H, it is a set of coloops of MjA, so
W VR �h. Hence W is a set of coloops of M 0. This contradiction completes the
proof of (5.15.2).
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5.15.3. W � fa0; a2g.
Since W is a cocircuit of Mn�X V cl�A��, it follows that M has a cocircuit

D that contains W and is contained in W U �X V cl�A��. Hence DJW U
�cl�A� ÿ A�. As jDjV 3, there is certainly an element of cl�A� ÿ A in D.

Now W does not contain a cocircuit of M 0, so W V �Y U fa0; a2g�0h. Sup-
pose that Y VW 0h. Then, by Lemma 5.14, we may assume that fe1gJ
Y J fe1; e2g. But Y 0 fe1; e2g otherwise a1 is a loop of M=Y and hence of M 0.
Thus Y � fe1g. Now, by orthogonality, since D meets cl�A� ÿ A, it must also
meet A. But the only element of D that can be in A is the unique element of
W ÿ Y . Then, by orthogonality with T1, this element must be a1. Thus
jW VT1j � 2; a contradiction. We conclude that Y VW �h.

We may now assume that a0 A W . As DVAJDVW and DVA contains a
cocircuit of MjA, we deduce, since R is a series class of MjA, that DVW �
fa0; a2g and so (5.15.3) holds.

5.15.4. fe1; e2g is a cocircuit of H.

Since F is a fan of the 3-connected matroid M, the set fa0; e1; e2; a2g is a
cocircuit of M. Therefore this set is a union of cocircuits of H. By (5.15.2) and
(5.15.3), fa0; a2g is a cocircuit of H. Moreover, fe1; a1; e2g is a triangle of H.
Assume that fe1; e2g is not a cocircuit of H. Then, by orthogonality, fa0; e1; e2g or
fa2; e1; e2g is a cocircuit of H. Thus HjA, which equals MjA, has fa0g or fa2g as a
cocircuit. This contradiction ®nishes the proof of (5.15.4).

By (5.15.4), ffe1; e2g;E�H� ÿ fe1; e2gg is a 2-separation of H. Thus, as
jfe1; e2gVT1jV 2, the triangle T1 implies that ffe1; e2; a1g;E�H� ÿ fe1; e2; a1gg is
a 2-separation of H. Moreover, for each i in f0; 2g, the triad Ti of M implies
that ffe1; e2; a1; aig;E�H� ÿ fe1; e2; a1; aigg is also a 2-separation of H unless
E�H� � F . Assume that E�H�0F . Then H has a 2-separation fZ;Wg such that
Z K fe1; e2; a1; a0g and jZ VF j is maximum subject to this. Then (5.15.3) implies
that W � fa0; a2g; a contradiction. We conclude that E�H� � F . Then, since T1 is
a triangle of H, and fa0; a2g and fe1; e2g are cocircuits of H, we deduce that
fa0; a1; a2g is a triangle of H; a contradiction. We conclude that Lemma 5.15
holds. r

Now, for the minimal pair �M 0;A 0�, since X UY J fe1; e2g, we have dE U 4.
Clearly dA � 2. As M 0jA 0 � �M=fa0; a2g�jA 0 and fa0; a1; a2g is a series class of
MjA, we can obtain MjA by taking the 2-sum of MjA 0 and a 4-circuit. Thus
d1 � 0, d2 � 2; d3 � 0, and da � 0. Finally, it is clear that dr V 0. Thus, by Lemma
5.4, dm V 0. Hence, by (10),

2� 0� 2� 0U dA � d1 � d2 � dm < da � dE U 0� 4:

This contradiction completes the proof of Proposition 5.2. r

Theorem 5.1 is quite straightforward to prove by combining Proposition 5.2
and the following technical proposition that we proved in [6].
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5.16. Proposition. Let �M;A� be a minimal pair such that

(i) M is not isomorphic to U1;3; and

(ii) every element of E�M� ÿ cl�A� belongs to some type-2 fan of length three in

which the rim is contained in a 4-circuit of MjA and the spokes are contained in

E�M� ÿ cl�A�.
Then

jE�M�jU jAj � l1�A;M� � l2�A;M� ÿ b�A;M�;
where

b�A;M� �
1; when A is a circuit of M or r�A�0 r�M�;
2; when A is not a circuit of M and r�A� � r�M�.

(
Proof of Theorem 5.1. Assume that the theorem fails and choose a minimal pair
�M;A� that is a counterexample and is chosen so that �jE�M�j;ÿjAj� is lexico-
graphically minimal. Suppose ®rst that M GU1;3. Then jAj � 3 and it is straight-
forward to check that �M;A� is not a counterexample to the theorem. Thus we
may assume that M l U1;3. Moreover, by Proposition 5.2, �M;A� satis®es hy-
pothesis (ii) of Proposition 5.16. Thus the latter proposition implies that

jE�M�jU jAj � l1�A;M� � l2�A;M� ÿ b�A;M�:
As ÿa�A;M�Vÿ b�A;M� and minfl3�A;M�; r�M� ÿ rM�A�gV 0, it follows
that jE�M�jUjAj�l1�A;M��l2�A;M��minfl3�A;M�; r�M�ÿrM�A�gÿa�A;M�.
But this is a contradiction since �M;A� was chosen to be a counterexample to
Theorem 5.1. r

To conclude the paper, we now prove Theorem 1.4.

Proof of Theorem 1.4. We shall prove that A is spanning. The theorem will then
follow from [6, Theorem 1.1]. Suppose that E�M� ÿ cl�A� is non-empty. Then it
contains a cocircuit D of M. By Theorem 2.8, D must meet a triangle T of M. If
T V cl�A� is empty, then, by Lemma 4.1(viii), M has a triad that contains two
elements of T and one of A, so MjA has a coloop; a contradiction. Thus T meets
cl�A� so, by Lemma 4.1(ix), there is a chain T �1T ;T ;T

�
2T whose rim is contained in

cl�A�. Since MjA has no coloops, this rim is contained in a series class S of MjA.
Since r�S�U 2, it follows that S is a triangle of M. Thus if X � T �1T UT UT �2T ,
then

r�X � � r��X� ÿ jX jU 3� 3ÿ 5 � 1:

But M is 3-connected so jE�M� ÿ X jU 1 and it follows without di½culty that M

is a rank-3 wheel having cl�A� as a triangle. Thus �M;A� is not a minimal pair; a
contradiction. r

Acknowledgments. The ®rst author was partially supported by CNPq, CAPES, FINEP and
PRONEX 107/97. The second author was partially supported by the National Security
Agency.

On the 3-Connected Matroids That are Minimal Having a Fixed Restriction 317



References

1. Bixby, R.E.: A simple theorem on 3-connectivity. Linear Algebra Appl. 45, 123±126
(1982)

2. Brylawski, T.H.: Modular constructions for combinatorial geometries. Trans. Am.
Math. Soc. 203, 1±44 (1975)

3. Cunningham, W.H.: A combinatorial decomposition theory. Ph.D. thesis, University of
Waterloo, 1973

4. Ding, G., Oporowski, B., Oxley, J., Vertigan, D.: Unavoidable minors of large 3-con-
nected matroids. J. Comb. Theory Ser. B 71, 244±293 (1997)

5. Lemos, M.: On 3-connected matroids. Discrete Math. 73, 273±283 (1989)
6. Lemos, M., Oxley, J.: On the 3-connected matroids that are minimal having a ®xed

spanning restriction, submitted
7. Lemos, M., Oxley, J.: On size, circumference and circuit removal in 3-connected mat-

roids, submitted
8. Oxley, J.G.: On matroid connectivity, Quart. J. Math. Oxf. Ser. (2) 32, 193±208 (1981)
9. Oxley, J.G.: Matroid theory. New York: Oxford University Press 1992

10. Oxley, J., Wu, H.: A note on matroid connectivity, Discrete Math. 146, 321±324 (1995)
11. Oxley, J., Wu, H.: On the structure of 3-connected matroids and graphs, submitted
12. Truemper, K.: Partial matroid representations. Eur. J. Comb. 3, 377±394 (1984)
13. Tutte, W.T.: Connectivity in matroids. Can. J. Math. 18, 1301±1324 (1966)

Received: July 17, 1998
Revised: March 15, 1999

318 M. Lemos et al.


