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Abstract. In 1961, Dirac showed that chordal graphs are exactly
the graphs that can be constructed from complete graphs by a se-
quence of clique-sums. In an earlier paper, by analogy with Dirac’s
result, we introduced the class of GF (q)-chordal matroids as those
matroids that can be constructed from projective geometries over
GF (q) by a sequence of generalized parallel connections across pro-
jective geometries over GF (q). Our main result showed that when
q = 2, such matroids have no induced minor in {M(C4),M(K4)}.
In this paper, we show that the class of GF (2)-chordal matroids co-
incides with the class of binary matroids that have none of M(K4),
M∗(K3,3), or M(Cn) for n ≥ 4 as a flat. We also show that GF (q)-
chordal matroids can be characterized by an analogous result to
Rose’s 1970 characterization of chordal graphs as those that have
a perfect elimination ordering of vertices.

1. Introduction

The notation and terminology in this paper will follow [5] for graphs
and [10] for matroids. Unless stated otherwise, all graphs and matroids
considered here are simple. Thus every contraction of a set from a
matroid is immediately followed by the simplification of the resulting
matroid. We will also assume all matroids are binary unless otherwise
specified. Following Cordovil, Forge, and Klein [4], we define a simple
or non-simple matroid M to be chordal if, for each circuit D that has at
least four elements, there are circuits D1 and D2 and an element e such
that D1∩D2 = {e} and D = (D1∪D2)−e. Therefore, a simple binary
matroid is chordal precisely when it has no member of {M(Cn) : n ≥ 4}
as a flat, where Cn is the n-edge cycle. In Section 2, we prove an
assertion made in [7] that the class of such matroids coincides with the
class of binary matroids with no M(C4) as an induced minor, where
an induced minor of a matroid M is any matroid that can be obtained
from M by a sequence of contractions and restrictions to flats. This
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matroid notion is analogous to a graph notion, an induced minor of a
graph G being a graph that can be obtained from G by a sequence of
vertex deletions and edge contractions.

For a prime power q, we denote the projective geometry PG(r−1, q)
by Pr when context makes the field clear. A matroid is GF (q)-chordal
if it can be obtained by repeated generalized parallel connections across
projective geometries over GF (q) starting with projective geometries
over GF (q). In Section 3, we prove the next theorem, which is the
main result of the paper, and we give an analogous result for q > 2.
The equivalence of (i) and (ii) was shown in [7].

Theorem 1.1. The following are equivalent for a binary matroid M .

(i) M is GF (2)-chordal.
(ii) M has no member of {M(C4),M(K4)} as an induced minor.
(iii) M has no member of {M(Cn) : n ≥ 4} ∪ {M(K4),M

∗(K3,3)}
as an induced restriction.

In Section 3, we also prove the following analog of Theorem 1.1 for
all other primes.

Theorem 1.2. For each prime p > 2, the following are equivalent for
a GF (p)-representable matroid M .

(i) M is GF (p)-chordal.
(ii) M has no member of {U2,k : 3 ≤ k ≤ p} as an induced minor.
(iii) M has no member of {Un,n+1 : n ≥ 2} ∪ {U2+t,k+t : 4 ≤ k ≤

p and 0 ≤ t ≤ p + 1− k} as an induced restriction.

Chordal graphs have been characterized in several other ways apart
from Dirac’s [6] description. A perfect elimination ordering of a graph
G is an ordering of V (G) such that, for every vertex v, the graph
induced by v and all of its neighbors that occur after v in the ordering
is a clique. In 1970, Rose [11] proved the following characterization.

Theorem 1.3. A graph G chordal if and only if G has a perfect elim-
ination ordering.

A perfect elimination ordering of cocircuits of a matroid M is a col-
lection C∗1 , C

∗
2 , . . . , C

∗
r such that, for all i in [r], the set C∗i is a cocircuit

of the matroid Mi, which is M\(C∗1 ∪C∗2 ∪ · · · ∪C∗i−1), and M |clMi
(C∗i )

is a projective geometry. In Section 4, we prove the following analog
of Theorem 1.3 for GF (q)-chordal matroids.

Theorem 1.4. A matroid M is GF (q)-chordal if and only M has a
perfect elimination ordering of cocircuits.
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2. Binary chordal matroids

In this section, we will show that the class of binary chordal matroids
coincides with the class of matroids with no M(C4) as an induced
minor. We then give a constructive characterization of such matroids.

Lemma 2.1. Let n be the size of a largest circuit that is an induced
minor of a binary matroid M . Then M has an n-element circuit as an
induced restriction.

Proof. We may assume that, for some independent set I of M , the
matroid si(M/I) has an n-element circuit as a flat. If |I| = 0, then the
result holds. Assume the result holds for |I| < k, and let |I| = k ≥ 1.
Take e ∈ I. Then si((M/e)/(I − e)) has an n-element circuit as a flat.
Certainly a largest circuit that occurs as an induced minor of si(M/e)
has n elements. Thus, by the induction assumption, si(M/e) has, as an
induced restriction, an n-element circuit C where C = {e1, e2, . . . , en}.
Then C is a circuit of M/e\Y for some set Y . Thus C or C ∪ e is a
circuit of M . We may assume that no n-element circuit is an induced
restriction of M . Now view M as a restriction of the binary projective
geometry Pr where r = r(M). For each i in [n], let fi be the third
point on the projective line clPr({e, ei}). For each i in [n], the set
{e1, e2, . . . , en}−{ei} is an independent set Ii of M/e and hence of M .
Now clM(Ii) does not contain e otherwise Ii contains a circuit of M/e.
Moreover, clM(Ii) does not contain ei as M does not have an n-element
circuit as an induced restriction. The projective flat clPr(Ii) must meet
{e, fi, ei} in Pr, so this intersection is fi. If fi is in E(M), then M
has Ii ∪ fi as an induced restriction that is an n-element circuit. Thus
{f1, f2, . . . , fn} avoids E(M). We deduce that C∪e is an (n+1)-element
circuit of M that is an induced minor of M , a contradiction. �

In the next theorem, the equivalence of (i) and (iii) is an immediate
consequence of the definition. In [7, Lemma 3.8], we had asserted the
equivalence of (i) and (ii). Our proof of this relies on Lemma 2.1 and
is more subtle than we originally thought, so we have included it.

Theorem 2.2. The following are equivalent for a binary matroid M .

(i) M is chordal.
(ii) M has no M(C4) as an induced minor.

(iii) M has no member of {M(Cn) : n ≥ 4} as an induced restric-
tion.

Proof. Clearly (iii) implies (ii). Now suppose that M has M(C4) as an
induced minor. Let n be the size of a largest circuit that is an induced
minor of M . Since M has M(C4) as an induced minor, n ≥ 4. Then,
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by Lemma 2.1, M has an n-element circuit as an induced restriction,
that is, M has M(Cn) as an induced restriction for some n ≥ 4. �

We now give a constructive characterization of binary chordal ma-
troids. In a matroid M , denote a vertical k-separation (X, Y ) by
(X,G, Y ) where G = clM(X) ∩ clM(Y ). The vertical k-separation
(X, Y ) is exact if r(X) + r(Y ) − r(M) = k − 1. For a rank-r binary
matroid M that is viewed as a restriction of Pr, if X ⊆ E(Pr)−E(M),
we denote by M + X the matroid Pr|(E(M) ∪X).

Lemma 2.3. For some k ≥ 2, let (X,G, Y ) be an exact vertical k-
separation of a binary matroid M where G = ∅. Then M has M(C4)
as an induced minor.

Proof. Let r(M) = r. Since X spans clPr(X), we may choose C0 to
be a smallest set contained in X such that, for some z in clPr(X) ∩
clPr(Y ), the set C0 ∪ {z} is a circuit of M |clPr(X). Since (X,G, Y ) is
an exact vertical k-separation, such a point z must exist. Let M ′ =
M |clM(Y ∪C0). Since M ′ is simple and binary, it follows by the choice
of C0 that clPr(C0) ∩ (clPr(X) ∩ clPr(Y )) = {z}. We conclude that M ′

decomposes as the 2-sum of (M |clM(Y )) + {z} and (M |clM(C0)) + {z}
at the basepoint z. Let a and b be distinct elements of C0 and let N =
M ′/(C0 − {a, b}). Then N decomposes as the 2-sum of (M |clM(Y )) +
{z} and the triangle {a, b, z} at the basepoint z. Let D0 be a smallest
set contained in Y such that D0∪{z} is a circuit of (M |clM(Y )) +{z}.
Then the set D0∪{a, b} is a circuit of N , and, by the choice of D0, the
set D0∪{a, b} is a flat of N . Therefore, N has the circuit D0∪{a, b} as
an induced restriction. By Theorem 2.2, N has M(C4) as an induced
minor. We conclude that M has M(C4) as an induced minor. �

Lemma 2.4. For some k ≥ 2, suppose (X,G, Y ) is an exact vertical
k-separation of a binary chordal matroid M . Then rM(G) = k − 1.

Proof. Suppose r(G) < k−1. Then, for k′ = k−r(G), we see that k′ ≥
2 and M/G has an exact vertical k′-separation (X ′, G′, Y ′) with G′ = ∅.
By Lemma 2.3, M has M(C4) as an induced minor, a contradiction to
Theorem 2.2. Therefore, r(G) = k − 1. �

In the next two proofs, we allow the matroids to be non-simple and
we do not simplify after contracting. The next result seems unlikely to
be new, but we include a proof for completeness.

Lemma 2.5. If G is a flat of a matroid N and G− g is a modular flat
of N/g for some g in G, then G is modular flat of N .
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Proof. The result is immediate if g is a loop of N , so assume r({g}) = 1.
For all flats F of N/g,

rN/g(F ) + rN/g(G− g) = rN/g(F ∩ (G− g)) + rN/g(F ∪ (G− g)). (2.1)

We shall show that, if H is a flat of N , then

rN(H) + rN(G)− rN(H ∩G)− rN(H ∪G) = 0. (2.2)

Suppose g ∈ H. Then rN/g(H − g) = rN(H)− 1 and rN/g((H ∪G)−
g) = rN(H ∪G)− 1. Therefore, since (2.1) holds, so does (2.2).

Now suppose g 6∈ H. Then rN/g(H) = rN(H ∪ g)− 1 and rN/g(H ∩
G) = rN((H ∩ G) ∪ g) − 1. Since H and G are flats of N , it follows
that H ∩ G is a flat of N . Therefore, rN(H ∪ g) = rN(H) + 1 and
rN((H ∩G) ∪ g) = rN(H ∩G) + 1. Thus (2.2) holds and the lemma is
proved. �

Lemma 2.6. For some k ≥ 2, let (X,G, Y ) be an exact vertical k-
separation of a binary chordal matroid M . Then G is a modular flat
of M |cl(X) or of M |cl(Y ).

Proof. If k = 2, then, by Lemma 2.4, r(G) = 1. Moreover, M is a
parallel connection of M |cl(X) and M |cl(Y ). By Theorem 2.2, both of
these matroids are chordal. As G is a single point, it is a modular flat
in both M |cl(X) and M |cl(Y ) and the result holds. Suppose the result
holds for all k < n and let (X,G, Y ) be an exact vertical n-separation
of M . Then, for any g in G, the matroid M/g has an exact vertical
(n−1)-separation (X− g,G− g, Y − g). By the induction assumption,
G− g is a modular flat in either (M/g)|cl(X − g) or (M/g)|cl(Y − g).
Therefore, by Lemma 2.5, it follows that G is a modular flat of M |cl(X)
or of M |cl(Y ). �

Theorem 2.7. All binary chordal matroids can be obtained by starting
with round binary chordal matroids and repeatedly taking generalized
parallel connections of two previously constructed matroids across a set
that is a modular flat of one of them.

Proof. Let M be a binary chordal matroid. If M has no vertical k-
separations for any k, then M is round and the result holds. If M
has an exact vertical k-separation (X,G, Y ) for some k > 1, then, by
Lemma 2.6, M is a generalized parallel connection of M |cl(X) and
M |cl(Y ) across M |cl(G), and G is a modular flat of M |cl(X) or of
M |cl(Y ). �
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3. GF (q)-chordal matroids

The goal of this section is to prove Theorem 1.1. Recall that a
matroid is GF (2)-chordal if it can be built from binary projective ge-
ometries by repeated generalized parallel connections across projective
geometries. In [7, Theorem 1.3], we showed that the class of GF (2)-
chordal matroids is closed under taking induced minors and therefore,
the class is also closed under taking induced restrictions. For a binary
matroid M , we may uniquely specify M by describing its complement
in the projective geometry Pr(M). In general, Brylawski and Lucas [3]
(see also [10, Proposition 10.1.7]) showed that the complement of any
uniquely GF (q)-representable matroid M is well defined in any projec-
tive geometry of rank at least r(M). We will first examine the matroids
that have M(K4) as an induced minor.

Lemma 3.1. If M is a simple binary matroid with r(M) = 4 and
|E(M)| > 9, then either M has M(C4) or M(K4) as an induced re-
striction, or M does not contain M(K4) as an induced minor.

Proof. Let P4 be the rank-4 binary projective geometry. Suppose T is
a largest subset of E(P4) such that P4|T contains M(K4) as an induced
minor, but T does not contain one of M(C4) or M(K4) as an induced
restriction. Certainly, P4 does not contain M(K4) as an induced minor
and so |T | < 15. If |T | ∈ {13, 14}, then P4|T certainly has M(K4) as
an induced restriction. If |T | = 12, then P4\T is either P2 or U3,3. If
P4\T is P2, then P4|T has M(C4) as an induced restriction. If P4\T
is U3,3, then P4|T will again contain M(K4) as an induced restriction.
If |T | = 11, then P4\T is M(C4), U4,4, or P2 ⊕ U1,1. When P4\T is
M(C4), we see that P4|T ∼= PP2(P3, P3), so it has no element whose
contraction gives M(K4). If P4\T is U4,4, then P4|T has a plane with
exactly six points, so P4|T has M(K4) as an induced restriction. If
P4\T is P2 ⊕ U1,1, then P4|T has M(C4) as an induced restriction. If
|T | = 10, then P4\T is M(K4− e), M(C4)⊕U1,1, or P2⊕U2,2. In each
case, P4|T has M(K4) as an induced restriction. �

Lemma 3.2. If M/f has M(K4) as an induced restriction for some
f in E(M), then M has M(C4),M(K4), or M∗(K3,3) as an induced
restriction.

Proof. It suffices to show the result holds for r(M) = 4 since we may
restrict to a rank-4 flat F such that (M |F )/f ∼= M(K4). Assume M
does not have any of M(C4),M(K4), or M∗(K3,3) as an induced restric-
tion. Since M/f is isomorphic to M(K4), it follows that |E(M)| ≥ 7,
and, by Lemma 3.1, we have |E(M)| ≤ 9. Certainly M is connected.
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If M is not 3-connected, then M is isomorphic to the 2-sum or the par-
allel connection of U2,3 and M(K4). In the former case, M has M(C4)
as an induced restriction, and, in the latter case, M has M(K4) as an
induced restriction. Thus we may assume M is 3-connected. Suppose
M is graphic. Then M is obtained from M(K5) by deleting at most
two edges. If two incident edges have been deleted from K5, then M is
not 3-connected. Therefore M is isomorphic to M(K5\e) for some edge
e, or M is isomorphic to M(W4). In the first case, M has M(K4) as
an induced restriction; in the second case, M has M(C4) as an induced
restriction.

We may now assume that M is not graphic. Then M has one of
M∗(K5), M

∗(K3,3), F7, or F ∗7 as a minor by a theorem of Tutte [13] (see
also [10, Theorem 6.6.7]). Since |E(M)| ≤ 9, we have M 6∼= M∗(K5).
If M ∼= M∗(K3,3), the result holds. If r∗(M) = 3, then M ∼= F ∗7 ,
and thus M has M(C4) as an induced restriction, a contradiction. If
r∗(M) = 4, then, by a result of Seymour [12] (see also [10, Lemma
12.2.4]), M is isomorphic to either AG(3, 2) or S8, and, in each case, M
has M(C4) as an induced restriction, a contradiction. By the Splitter
Theorem, if |E(M)| = 9, then M is an extension of AG(3, 2) or S8.
Since the rank-4 complements of AG(3, 2) and S8 are F7 and M(K4)⊕
U1,1, respectively, there are exactly two possible 9-element matroids as
extensions of AG(3, 2) and S8, that is, M is the rank-4 complement of
M(K4) or the rank-4 complement of M(K4\e)⊕U1,1. In each case, M
has M(C4) as an induced restriction, a contradiction. �

To complete the proof of Theorem 1.1, we only need to consider the
matroids with M∗(K3,3) as an induced minor.

Lemma 3.3. If M/e has M∗(K3,3) as an induced minor, then M con-
tains one of M(C4),M(K4), or M∗(K3,3) as an induced restriction.

Proof. It suffices to show the result holds when r(M) = 5 since we
may restrict to the relevant rank-5 flat. Assume M does not have any
member of {M(C4),M(K4),M

∗(K3,3)} as an induced restriction. Let
e1, e2, e3, e4 be the standard basis for P4. Then we may assume that the
ground set Z of the M∗(K3,3)-restriction of M/e is {e1, e2, e3, e4, e1 +
e2, e2 + e3, e3 + e4, e1 + e4, e1 + e2 + e3 + e4}. Then the ground set of
M may only contain e, elements of Z, and elements of the form e + f
where f is an element of Z. Let T be a rank-4 flat of M such that
(M/e)|clM/e(T ) ∼= M∗(K3,3) and |T | is maximal with this property.
Certainly |T | < 9. Observe that, for every rank-4 flat F of M that
avoids e, we have (M/e)|clM/e(F ) ∼= M∗(K3,3).

3.3.1. |T | < 8.
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If |T | = 8, then M |T is isomorphic to a 4-wheel, which has M(C4)
as an induced restriction, a contradiction. Thus 3.3.1 holds.

3.3.2. |T | < 7.

If |T | = 7, then, to avoid having M(C4) as an induced restriction, we
may assume T = {e1, e3, e4, e1+e4, e2+e3, e3 + e4, e1 + e2 + e3 + e4}.
Therefore, E(M) must contain {e, e + e2, e + e1 + e2}. Look at the
flat containing {e3, e2 + e3, e + e2, e}, noting that e2 is absent. Since
this flat is not isomorphic to M(C4), it must contain either e + e3 or
e + e2 + e3. Suppose that e + e2 + e3 is present. Then M contains
{e1, e1 +e4, e4, e3 +e4, e3, e+e2 +e3, e+e2, e+e1 +e2} as eight elements
of a rank-4 flat F that avoids e. By 3.3.1, |F | ≤ 7, a contradiction. We
deduce that e+e2+e3 is absent, and hence e+e3 must be present. In this
case, M has {e1, e4, e1+e4, e1+e2+e3+e4, e2+e3, e+e3, e+e2, e+e1+e2}
as eight elements of a rank-4 flat that avoids e, and again we contradict
3.3.1. We conclude that, 3.3.2 holds.

3.3.3. The set Z − T does not contain a triangle.

Without loss of generality, suppose Z − T contains the triangle
{e1, e2, e1 + e2}. Then M must contain the 4-element circuit {e, e +
e1, e+ e2, e+ e1 + e2} as a flat, a contradiction. Therefore, 3.3.3 holds.

3.3.4. |T | < 6.

If |T | = 6, then, since M does not have M(C4) as an induced restric-
tion and Z−T does not contain a triangle, we may assume T is missing
{e2, e1 + e2, e2 + e3}. Then M contains {e+ e2, e+ e1 + e2, e+ e2 + e3}.
Thus M contains {e1, e+e1+e2, e+e2, e+e2+e3, e3, e3+e4, e4, e1+e4}
as eight elements of a rank-4 flat of M that avoids e, a contradiction
to 3.3.1. Therefore, 3.3.4 holds.

3.3.5. |T | < 5.

If |T | = 5, then, since M does not have M(C4) as an induced re-
striction and Z − T does not contain a triangle, we may assume T is
missing one of the following four sets of points.

(a) {e2, e3, e3 + e4, e1 + e2}
(b) {e2, e2 + e3, e3 + e4, e1 + e2}
(c) {e1, e2, e3 + e4, e1 + e2 + e3 + e4}

In case (a), M has {e1, e + e1 + e2, e + e2, e + e3, e2 + e3, e1 + e2 + e3 +
e4, e1 + e4, e4} as eight elements of a rank-4 flat of M that avoids e,
which contradicts 3.3.1. In case (b), {e1, e + e1 + e2, e + e2, e + e2 +
e3, e3, e4, e1 + e4} spans a rank-4 flat F of M that avoids e and has
at least seven elements, which contradicts 3.3.2. In case (c), M has
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{e + e2, e + e2 + e3, e3, e4, e + e1, e1 + e2} contained in a rank-4 flat of
M avoiding e, which contradicts 3.3.4. Therefore, 3.3.5 holds.

If |T | = 4, then, as T must be independent and Z − T contains no
triangles, we may assume that T = {e1, e1 + e2, e3, e1 + e2 + e3 + e4}.
This implies that M has {e1, e+ e2, e+ e2 + e3, e3, e+ e3 + e4} spanning
a rank-4 flat of M that avoids e, a contradiction to 3.3.5. �

The next result establishes a connection between the excluded in-
duced minors of a class of matroids and the excluded induced restric-
tions of that class of matroids.

Lemma 3.4. Suppose N is a class of matroids such that if a matroid M
has an element e such that M/e is isomorphic to a member of N , then
M has a member of N as an induced restriction. Let N ′ be the class
of induced-minor-minimal members of N . Then the class of matroids
with no member of N ′ as an induced minor coincides with the class of
matroids with no member of N as an induced restriction.

Proof. Clearly if M has a member of N as an induced restriction, then
M has a member of N ′ as an induced minor. Conversely, suppose M
has a member of N ′ as an induced minor. We may assume that M has
no member of N ′ as an induced restriction. Then M has a flat F and
a nonempty independent set T such that (M |F )/T is isomorphic to a
member of N ′ and hence a member of N . We argue by induction on
|T | that M has a member of N as an induced restriction.

When |T | = 1, we see that the assertion holds by the definition of
N . Now assume the result holds for |T | < n, and let |T | = n ≥ 2.
Let M1 = M |F , and take e in T . Then (M1/e)/(T − e) is isomorphic
to a member of N . Thus, by the induction assumption, M1/e has
a member of N as an induced restriction. Then, by the induction
assumption again, M1 has a member of N as an induced restriction,
and hence M has a member of N as an induced restriction. �

Proof of Theorem 1.1. LetN = {M(Cn) : n ≥ 4}∪{M(K4),M
∗(K3,3)}.

Then, by Lemmas 2.1, 3.2, and 3.3, the set N has the property that if
M/e is isomorphic to a member of N , then M has a member of N as
an induced minor. Since {M(C4),M(K4)} is the set of induced-minor-
minimal members of N , the result holds by Lemma 3.4. �

Next we prove the analog of Theorem 1.1 when q > 2. Although
the result is rather unattractive, we include it for completeness. The
equivalence of (i) and (ii) was shown in [7]. Because U3,q+2 is GF (q)-
representable if and only if q is even, when q is odd, we can omit U3,q+2

from (ii). This corrects a small error in Theorem 1.4 of [7]. Note
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that some matroids in (iii) may be excluded as they fail to be GF (q)-
representable. But the problem of determining precisely which uniform
matroids are GF (q)-representable is open. For results on exactly which
uniform matroids are known to be GF (q)-representable, we direct the
reader to [1, 2, 8, 9] (see also [10, Conjecture 6.5.20]). Recall that
the class of GF (q)-chordal matroids is the class of matroids that can
be obtained by a sequence of generalized parallel connections across
projective geometries over GF (q) starting with projective geometries
over GF (q).

Theorem 3.5. When q > 2, the following are equivalent for a GF (q)-
representable matroid M .

(i) M is GF (q)-chordal.
(ii) M has no member of {U2,k : 2 < k ≤ q}∪{U3,q+2} as an induced

minor.
(iii) M has no member of {Un,n+1 : n ≥ 2} ∪ {U2+t,k+t : 4 ≤ k ≤

q and 0 ≤ t ≤ q − 3} ∪ {U3,q+2} as an induced restriction.

Lemma 3.6. Suppose M is GF (q)-representable. If M/e has U2,n as
an induced minor for some n with 3 ≤ n ≤ q, then M has a member
of {U2,k : 3 ≤ k ≤ q} ∪ {U3,n+1} as an induced restriction.

Proof. It suffices to show that the result holds for r(M) = 3 since we
may restrict to the relevant rank-3 flat. Let E(M/e) = {x1, x2, . . . , xk}.
If M has a (q + 1)-point line, then e must be on that line, otherwise,
M/e would be U2,q+1. Without loss of generality, suppose cl({e, xk}) is
a (q + 1)-point line, L1. Then the line L2 = cl({x1, x2}) must intersect
L1 at a point different from e. Therefore, L2 is either isomorphic to
U2,k for some k with 3 ≤ k ≤ q, in which case the result holds, or L2 is
a (q + 1)-point line, and M/e is isomorphic to U2,q+1, a contradiction.
Thus, we may assume that M has no (q + 1)-point lines. Let X be
a 3-element subset of E(M). If X is dependent, then, since M is
simple having no (q+1)-point lines, M |cl(X) is isomorphic to a member
of {U2,k : 3 ≤ k ≤ q} and the result holds. We deduce that X is
independent. Therefore, M is isomorphic to U3,n+1. �

To complete the proof Theorem 3.5, we consider the following general
result for uniform matroids.

Lemma 3.7. Let M be GF (q)-representable for some q > 2 and sup-
pose M/e ∼= Ur,n for some r and n with 2 < r < n. Then M has a
member of {U2+t,k+t : 3 ≤ k ≤ q and 0 ≤ t ≤ q − 3} ∪ {Ur,n, Ur+1,n+1}
as an induced restriction.
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Proof. Assume the result fails. Observe that, since U2,q+2 is not GF (q)-
representable, we must have n ≤ q + r − 1. Next note that if M has
a hyperplane H0 that avoids e, then M |H0 must be isomorphic to
a uniform matroid for if H0 contains a non-spanning circuit C, then
M/e must also contain C as a non-spanning circuit. Moreover, H0

can contain at most n elements as |E(M/e)| = n. Therefore, M |H0

is isomorphic to Ur,s for some s with r ≤ s ≤ n. Suppose that H0

can be chosen so that s > r. If s = n, then M has Ur,n as an induced
restriction, a contradiction. Thus we may suppose that s < n. Observe
that if r > q−1, then, since Uq,q+2 is not GF (q)-representable, we must
have n = r + 1, so s = n, a contradiction. Thus we may assume that
r ≤ q − 1. Then we obtain a contradiction by taking t = r − 2 and
k = s−r+2 for then t ≤ q−3 and k < n−r+2 ≤ (q+r−1)−r+2 =
q + 1. Hence we may assume that every hyperplane that avoids e is an
independent set of size r.

Let E(M/e) = {x1, x2, . . . , xn}. If M has a (q + 1)-point line, this
line must contain e as M/e does not have a (q+1)-point line. Without
loss of generality, suppose clM({e, xn}) is a (q + 1)-point line, L. Then
clM({x1, x2, . . . , xr}) is a hyperplane H of M that meets L at a point
different from e. Therefore H is a hyperplane that avoids e and contains
a circuit of M , a contradiction. We conclude that M has no (q+1)-point
lines. Therefore, either e is contained in a U2,k induced restriction for
some k with 3 ≤ k ≤ q, and the result holds, or every circuit containing
e has size r+2. Let X be a subset of E(M)−e. If |X| < r+1, then X
is certainly independent as X must be independent in M/e. Suppose
|X| = r+1 and that X is dependent. Then clM(X) is a hyperplane that
avoids e and contains a circuit of M , a contradiction. Therefore, X is
an independent set of size r + 1, and M is isomorphic to Ur+1,n+1. �

Proof of Theorem 3.5. It suffices to show the equivalence of (ii) and
(iii). Let N = {Un,n+1 : n ≥ 2} ∪ {U2+t,k+t : 4 ≤ k ≤ q and 0 ≤ t ≤
q − 3} ∪ {U3,q+2}. Then, since U4,q+3 is not GF (q)-representable for
any q, it follows by Lemmas 3.6 and 3.7 that N has the property that
if M/e is isomorphic to a member of N , then M has a member of N
as an induced minor. Since {U2,k : 3 ≤ k ≤ q} ∪ {U3,q+2} is the set of
induced-minor-minimal members of N , the result holds by Lemma 3.4.

Note if M has U2+t,k+t as an induced restriction for some t and k
with t ≥ q − 2 and k ≥ 4, then M has Uq,q+2 as a minor, so M is not
GF (q)-representable, a contradiction. �

Theorem 1.2 follows from Theorem 3.5 and a result of Ball [1] (see
also [10, Theorem 6.5.21]), which establishes precisely when a uniform
matroid is GF (p)-representable for p a prime.
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When p = 3, Theorem 1.2 gives the following.

Corollary 3.8. The following are equivalent for a ternary matroid M .

(i) M is GF (3)-chordal.
(ii) M has no M(C3) induced minor.
(iii) M has no member of {M(Cn) : n ≥ 3} as an induced restric-

tion.

Similarly, Theorem 3.5 gives the following when q = 4.

Corollary 3.9. The following are equivalent for a matroid M that is
representable over GF (4).

(i) M is GF (4)-chordal.
(ii) M has no member of {U2,3, U2,4, U3,6} as an induced minor.
(iii) M has no member of {Un,n+1 : n ≥ 2} ∪ {U2,4, U3,5, U3,6} as an

induced restriction.

4. Perfect Elimination Ordering

In this section, we will prove Theorem 1.4. Recall that a perfect
elimination ordering of cocircuits of a matroid M is a collection of sets
C∗1 , C

∗
2 , . . . , C

∗
r such that, for all i in [r], the set C∗i is a cocircuit of the

matroid Mi = M\(C∗1 ∪C∗2 ∪· · ·∪C∗i−1) and M |clMi
(C∗i ) is a projective

geometry. Observe that M |clMi
(C∗i ) = Mi|clMi

(C∗i ) and that E(Mi) is
a flat of M of rank r(M) − i + 1. We omit the straightforward proof
of the next result.

Lemma 4.1. Projective geometries have a perfect elimination ordering
of cocircuits.

We now prove the second main result of the paper.

Proof of Theorem 1.4. Suppose M is a GF (q)-chordal matroid that
does not have a perfect elimination ordering of cocircuits and has
|E(M)| a minimum among such matroids. Since M is GF (q)-chordal,
M may be written as a PN(M1,M2) where N is a projective geom-
etry and M2 is a projective geometry. Therefore, M2 has a perfect
elimination ordering of cocircuits. Choose C∗1 to be a cocircuit of M2

that avoids E(N). By the minimality of M , the matroid M\C∗1 has
a perfect elimination ordering of cocircuits C∗2 , C

∗
3 , . . . , C

∗
r . Therefore,

M has a perfect elimination ordering.
Suppose M has a perfect elimination ordering of cocircuits labeled

C∗1 , C
∗
2 , . . . , C

∗
r . Let M1 = M , and let Mi = M\(C∗1 ∪ C∗2 ∪ · · · ∪ C∗i−1)

for each i with 2 ≤ i ≤ r. Certainly, Mr is a projective geometry, and
therefore is GF (q)-chordal. Let k be the smallest integer such that
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Mk is not GF (q)-chordal. Then Mk+1 is GF (q)-chordal, Mk|clMk
(C∗k)

is a projective geometry, and Mk+1 is a hyperplane of Mk. Thus
E(Mk+1) ∩ E(Mk|clMk

(C∗k)) is a flat, N , of a projective geometry and
so M |N is a projective geometry. Hence Mk is a generalized paral-
lel connection of GF (q)-chordal matroids across a projective geometry,
namely PM |N(Mk+1,M |clMk

(C∗k)). Thus, Mk is GF (q)-chordal, a con-
tradiction. �

On combining Theorems 1.1 and 1.4, we obtain the following.

Corollary 4.2. The following are equivalent for a binary matroid M .

(i) M is GF (2)-chordal.
(ii) M has no member of {M(C4),M(K4)} as an induced minor.
(iii) M has no member of {M(Cn) : n ≥ 4} ∪ {M(K4),M

∗(K3,3)}
as an induced restriction.

(iv) M has a perfect elimination ordering of cocircuits.

References

[1] Ball, S., On sets of vectors of a finite vector space in which every subset of
basis size is a basis, J. Eur. Math. Soc. 14 (2012), 733–748

[2] Ball, S., and De Beule, J., On sets of vectors of a finite vector space in which
every subset of basis size is a basis II, Des. Codes Cryptogr. 65 (2012), 5–14

[3] Brylawski, T.H., and Lucas, D., Uniquely representable combinatorial geome-
tries, Teorie Combinatorie (Proc. 1973 Internat. Colloq.), pp. 83-104, Ac-
cademia Nazionale dei Lincei, Rome, 1976

[4] Cordovil, R., Forge, D., and Klein, S., How is a chordal graph like a supersolv-
able binary matroid?, Discrete Math. 288 (2004), 167–172.

[5] Diestel, R., Graph Theory, Third Edition, Springer, Berlin, 2005.
[6] Dirac, G.A., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25

(1961), 71–76.
[7] Douthitt, J.D., and Oxley, J., Chordal matroids arising from generalized par-

allel connections, Adv. in Appl. Math. 153 (2024) 102631, 10 pp.
[8] Hirschfeld, J.W.P., and Storme, L., The packing problem in statistics, coding

theory and finite projective spaces: update 2001, Finite Geometries, 201–246,
Dev. Math. 3, Kluwer Acad. Publ., Dordrecht, 2001.

[9] Hirschfeld, J.W.P., and Thas, J.A., General Galois Geometries, Oxford Uni-
versity Press, New York, 1991.

[10] Oxley, J., Matroid Theory, Second Edition, Oxford University Press, New
York, 2011.

[11] Rose, D.J., Triangulated graphs and the elimination process, J. Math. Anal.
Appl. 32 (1970), 597–609.

[12] Seymour, P.D., Minors of 3-connected matroids. European J. Combin. 6 (1985),
375–382

[13] Tutte, W.T., Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527–
552.



14 JAMES DYLAN DOUTHITT AND JAMES OXLEY

Mathematics Department, Louisiana State University, Baton Rouge,
Louisiana

E-mail address: jdouth5@lsu.edu

Mathematics Department, Louisiana State University, Baton Rouge,
Louisiana

E-mail address: oxley@math.lsu.edu


