MATH 7230 Homework 1 - Spring 2014

Due Thursday, Feb. 6 at 1:30

The notation "I-K" is shorthand for the textbook.

1. (a) Fill in the details of the following proof that there are infinitely many primes:

Pick an arbitrary $1 \neq N \in \mathbb{N}$ and set $a(1):=N$. Define

$$
\begin{aligned}
& a(2):=N \cdot(N+1), \\
& a(3):=N \cdot(N+1) \cdot[N \cdot(N+1)+1],
\end{aligned}
$$

and so on, with $a(m):=a(m-1) \cdot(a(m-1)+1)$. Prove that for all $m, a(m)$ has a prime factor p_{m} that does not divide $a(1), \ldots, a(m-1)$. Conclude that there is an infinite list of distinct primes p_{1}, p_{2}, \ldots.
(b) Generalize the above proof by letting $f: \mathbb{N} \rightarrow \mathbb{N}$ be any arithmetic function such that n is always coprime to $f(n)$, and constructing the iterative sequence $a(m):=a(m-1) \cdot f(a(m-1))$. For example, in part (a), $f(n)=n+1$.
2. (a) In this problem you will modify Euclid's proof to show that there are infinitely many primes of the form $4 n+3$. Given a list $q_{1}, q_{2}, \ldots, q_{k}$ of primes of this form, let $N:=4 q_{1} \cdots q_{k}-1$. Prove that N has a prime divisor $q \equiv 3(\bmod 4)$ that is not one of the q_{j} s.
(b) Generalize your result from part (a) as much as possible.

Hint: If p is prime and $m \in \mathbb{N}$, what are the possible residues $p \bmod m$?
3. In this problem you will prove that e is irrational.
(a) As a warm-up, prove that $2<e<3$ by comparing the Taylor expansion $e-2=$ $\sum_{n \geq 2} \frac{1}{n!}$ to the geometric series $\sum_{n \geq 1} \frac{1}{2^{n}}$.
(b) Suppose to the contrary that $e=\frac{a}{b} \in \mathbb{Q}$. Find a contradiction by showing that

$$
b!\left(e-\sum_{n=0}^{b} \frac{1}{n!}\right)
$$

is an integer between 0 and 1 .
Remark: Actually, it is easier to consider e^{-1}, which was suggested by Pennisi (1953).
(Optional) To learn why e is transcendental, I recommend starting with Hurwitz's proof, which is Theorem 204 in Hardy and Wright. You can also find the argument outlined online at: http://planetmath.org/eistranscendental.
An alternative proof follows directly from Euler's continued fraction representation $e=[2,1,2,1,1,4,1,1,6,1,1, \ldots]$, though this requires the theory of continued fraction convergents and Bessel functions.
4. Read I-K Sections $1.1-1.4$. Be sure that you understand all of the notation, definitions, and meanings of the following numbered formulas:
(1.5), (1.6), (1.11), (1.13), (1.15), (1.18), (1.24), (1.26), (1.32), (1.35).

Most of these require at least a few lines of calculation, and you are encouraged to hand in short proofs for all of them.
5. (a) Suppose that $a_{n} \geq 0$ for $n \geq 1$. Prove that $\prod_{n \geq 1}\left(1+a_{n}\right)$ converges if and only if $\sum_{n \geq 1} a_{n}$ converges.
(b) Prove that $\sum_{n \geq 0} \frac{1}{p_{n}}$ diverges, where p_{n} denotes the n-th prime. Hint: Recall that $\zeta(s)$ diverges as $s \rightarrow 1^{+}$.
(Optional) Given an example of real $\left\{b_{n}\right\}$ such that $\prod\left(1+b_{n}\right)$ converges, but $\sum b_{n}$ diverges. Give an example of $\left\{c_{n}\right\}$ such that $\Pi\left(1+c_{n}\right)$ diverges, but $\sum c_{n}$ converges.
6. Euler's ϕ-function is defined such that $\phi(n)$ is the number of integers $1 \leq a \leq n$ that are coprime to n. Provide an alternative proof of the formula ((1.36) from I-K)

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

One option is to use an Inclusion-Exclusion argument, by first removing all multiples of p_{1}, p_{2}, \ldots, and then correcting for over and under-counts.
Another option is to prove that for any m,

$$
\phi(p m)= \begin{cases}p \cdot \phi(m) & \text { if } p \mid m \\ (p-1) \cdot \phi(m) & \text { if } p \nmid m\end{cases}
$$

7. Prove and/or verify I-K equations (1.37) - (1.42). These definitions will be essential in the proof of the Prime Number Theorem.
