18.781 Problem Set 8 - Fall 2008

Due Tuesday, Nov. 4 at 1:00

1. Evaluate the following Legendre symbols:
(a) $\left(\frac{85}{101}\right)$
(c) $\left(\frac{101}{1987}\right)$.
(b) $\left(\frac{29}{541}\right)$
2. (Niven 3.2.4abce) Determine which of the following are solvable (the moduli are all primes):
(a) $x^{2} \equiv 5(\bmod 227)$
(c) $x^{2} \equiv-5(\bmod 227)$
(b) $x^{2} \equiv 5(\bmod 229)$
(d) $x^{2} \equiv 7(\bmod 1009)$.
3. Prove that if $p \mid\left(n^{2}-5\right)$ for some integer n, then $p \equiv 1$ or $4(\bmod 5)$.
4. Show that if $p \equiv 3(\bmod 4)$, then $x=a^{(p+1) / 4}$ is a solution to $x^{2} \equiv a(\bmod p)$.
5. (Niven 3.2.6) Determine whether $x^{2} \equiv 150(\bmod 1009)$ is solvable.
6. (Niven 3.2.8 \& 3.2.9)
(a) Characterize all primes p such that $\left(\frac{10}{p}\right)=1$.
(b) Characterize all primes p such that $\left(\frac{5}{p}\right)=-1$.
7. Use quadratic reciprocity to evaluate $\left(\frac{7}{p}\right)$ based on the residue class of $p \bmod 28$.
8. In this problem you will produce an alternative proof of the formula for $\left(\frac{2}{p}\right)$ when p is an odd prime.
(a) Prove that $2 \cdot 4 \cdots(p-3) \cdot(p-1) \equiv\left(\frac{2}{p}\right) \cdot\left(\frac{p-1}{2}\right)!(\bmod p)$.
(b) If u is the number of terms in the product that are larger than $\frac{p-1}{2}$, prove that

$$
2 \cdot 4 \cdots(p-3) \cdot(p-1) \equiv(-1)^{u}\left(\frac{p-1}{2}\right)!\quad(\bmod p)
$$

(c) Compare (a) and (b) to derive the formula for $\left(\frac{2}{p}\right)$; you will need to separate into cases based on the value of $p \bmod 8$.
9. (Niven 3.3.1) Evaluate using quadratic reciprocity for Jacobi symbols:
(a) $\left(\frac{-23}{83}\right)$
(c) $\left(\frac{71}{73}\right)$
(b) $\left(\frac{51}{71}\right)$
(d) $\left(\frac{-35}{97}\right)$.
10. (Niven 3.3.7, 3.3.8 \& 3.3.9)
(a) For which primes are there solutions to $x^{2}+y^{2} \equiv 0(\bmod p)$ with $(x, p)=(y, p)=$ 1?
(b) For which prime powers are there solutions to $x^{2}+y^{2} \equiv 0\left(\bmod p^{n}\right)$ with $(x, p)=$ $(y, p)=1$?
(Bonus) For which integers n are there solutions to $x^{2}+y^{2} \equiv 0(\bmod n)$ with $(x, n)=$ $(y, n)=1$?
(Bonus) (Niven 3.2.16) Show that if $p=2^{2^{n}}+1$ is prime, then 3 is a primitive root modulo p, and that 5 and 7 are primitive roots when $n>1$.

