18.781 Problem Set 8 - Fall 2008

Due Tuesday, Nov. 4 at 1:00

1. Evaluate the following Legendre symbols:

(a)
$$\left(\frac{85}{101}\right)$$
 (c) $\left(\frac{101}{1987}\right)$
(b) $\left(\frac{29}{541}\right)$

2. (Niven 3.2.4abce) Determine which of the following are solvable (the moduli are all primes):

(a)
$$x^2 \equiv 5 \pmod{227}$$
(c) $x^2 \equiv -5 \pmod{227}$ (b) $x^2 \equiv 5 \pmod{229}$ (d) $x^2 \equiv 7 \pmod{1009}$

- 3. Prove that if $p \mid (n^2 5)$ for some integer n, then $p \equiv 1 \text{ or } 4 \pmod{5}$.
- 4. Show that if $p \equiv 3 \pmod{4}$, then $x = a^{(p+1)/4}$ is a solution to $x^2 \equiv a \pmod{p}$.
- 5. (Niven 3.2.6) Determine whether $x^2 \equiv 150 \pmod{1009}$ is solvable.
- 6. (Niven 3.2.8 & 3.2.9)

(a) Characterize all primes
$$p$$
 such that $\left(\frac{10}{p}\right) = 1$.
(b) Characterize all primes p such that $\left(\frac{5}{p}\right) = -1$.

- 7. Use quadratic reciprocity to evaluate $(\frac{7}{p})$ based on the residue class of $p \mod 28$.
- 8. In this problem you will produce an alternative proof of the formula for $(\frac{2}{p})$ when p is an odd prime.
 - (a) Prove that $2 \cdot 4 \cdots (p-3) \cdot (p-1) \equiv \left(\frac{2}{p}\right) \cdot \left(\frac{p-1}{2}\right)! \pmod{p}$.
 - (b) If u is the number of terms in the product that are larger than $\frac{p-1}{2}$, prove that

$$2 \cdot 4 \cdots (p-3) \cdot (p-1) \equiv (-1)^u \left(\frac{p-1}{2}\right)! \pmod{p}.$$

- (c) Compare (a) and (b) to derive the formula for $(\frac{2}{p})$; you will need to separate into cases based on the value of $p \mod 8$.
- 9. (Niven 3.3.1) Evaluate using quadratic reciprocity for Jacobi symbols:

(a)
$$\left(\frac{-23}{83}\right)$$
 (c) $\left(\frac{71}{73}\right)$
(b) $\left(\frac{51}{71}\right)$ (d) $\left(\frac{-35}{97}\right)$.

- 10. (Niven 3.3.7, 3.3.8 & 3.3.9)
 - (a) For which primes are there solutions to $x^2 + y^2 \equiv 0 \pmod{p}$ with (x, p) = (y, p) = 1?
 - (b) For which prime powers are there solutions to $x^2 + y^2 \equiv 0 \pmod{p^n}$ with (x, p) = (y, p) = 1?
- (Bonus) For which integers n are there solutions to $x^2 + y^2 \equiv 0 \pmod{n}$ with (x, n) = (y, n) = 1?
- (Bonus) (Niven 3.2.16) Show that if $p = 2^{2^n} + 1$ is prime, then 3 is a primitive root modulo p, and that 5 and 7 are primitive roots when n > 1.