18.781 Problem Set 3 - Fall 2008

Due Tuesday, Sep. 30 at 1:00

1. (Niven 2.3.3) Solve the congruences $x \equiv 1(\bmod 4), x \equiv 0(\bmod 3), x \equiv 5(\bmod 7)$.
2. (Niven 2.3.8) Find the smallest positive integer whose remainder is $1,2,3,4$, and 5 when divided by $3,5,7,9$, and 11 , respectively. What is the second smallest such integer?
3. (Niven 2.3.18) For any $k \geq 1$, prove that there exist k consecutive positive integers that are each divisible by a square number. For example, the sequence $\{48,49,50\}$ works for $k=3$.
4. This problem presents an iterative approach to solving the simultaneous congruences $x \equiv a_{1}\left(\bmod m_{1}\right), x \equiv a_{2}\left(\bmod m_{2}\right), \ldots x \equiv a_{k}\left(\bmod m_{k}\right)$, where all of the m_{i} are coprime (thereby proving CRT). This technique is especially useful when the a_{i} are all relatively close in value. The algorithm follows:
(i) Given $a_{1}, m_{1}, a_{2}, m_{2}, \ldots, a_{k}, m_{k}$, re-number indices so that $a_{1} \leq a_{2} \cdots \leq a_{k}$.
(ii) Use the Euclidean algorithm to find y such that $y m_{1} \equiv 1\left(\bmod m_{2}\right)$.
(iii) Set $a^{\prime}:=a_{1}+\left(a_{2}-a_{1}\right) y m_{1}\left(\bmod m^{\prime}\right)$, where $m^{\prime}=m_{1} m_{2}$.
(iv) If $k \geq 3$, return to step (ii) with $a^{\prime}, m^{\prime}, a_{3}, m_{3}, \ldots, a_{k}, m_{k}$.
(a) Prove that the algorithm works by showing that the final output a^{\prime} is the unique solution x modulo $m_{1} m_{2} \cdots m_{k}$ (the main details to verify are in (iii)).
(b) Solve the congruences $x \equiv 4(\bmod 5), x \equiv 5(\bmod 7), x \equiv 6(\bmod 11)$.
5. (Niven 2.3.20) Prove that there is a simultaneous solution of $x \equiv a_{1}\left(\bmod m_{1}\right), x \equiv$ $a_{2}\left(\bmod m_{2}\right)$ iff $a_{1} \equiv a_{2}\left(\bmod \left(m_{1}, m_{2}\right)\right)$. Prove that the solution is unique modulo [m_{1}, m_{2}].
6. (Niven 2.3.25) Prove that the number of integers $1 \leq n \leq m k$ that satisfy $(n, m)=1$ is $k \phi(m)$.
7. (Niven 2.3.26) Prove that $\phi(n m)=n \phi(m)$ if every prime divisor of n also divides m.
8. (Niven 4.2.4) Find the smallest m for which there exists another $n \neq m$ with $\sigma(m)=$ $\sigma(n)$.
9. (Niven 4.2.5) Prove that

$$
\prod_{d \mid n} d=n^{d(n) / 2}
$$

10. (Niven 4.2.9) Suppose that $f(n)$ and $g(n)$ are multiplicative.
(a) Prove that $F(n):=f(n) g(n)$ is also multiplicative.
(b) If $g(n) \neq 0$ for all n, prove that $G(n):=f(n) / g(n)$ is multiplicative.
11. (Niven 4.2.12) Prove that $\omega(n)=\#\{d \mid n\}$ is odd iff n is a square.
12. (Niven 4.2.16 and 4.2.19) A positive integer n is a perfect number if $\sigma(n)=2 n$ (i.e., n is the sum of its proper divisors; for example, $6=1+2+3$ is perfect). Prove that if $2^{m}-1=p$ is prime, then $2^{m-1} p$ is perfect.
(Bonus) Prove that every even perfect number has this form.
Remark: It is widely believed that there are no odd perfect numbers, although this is still an open conjecture!
13. (Niven 4.2.1) Find n such that $\mu(n)+\mu(n+1)+\mu(n+2)=3$.
14. (Niven 4.2.2) Prove that $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0$ for all n.
(Bonus) (a) Prove that if f and g are multiplicative, then

$$
F(n):=\sum_{d \mid n} f(d) g(n / d)
$$

is multiplicative.
(b) Prove that if

$$
F(n)=\sum d \mid n f(d),
$$

then $f(n)$ is also multiplicative.
(c) Define

$$
F(n):= \begin{cases}1 & \text { if } n \text { is square } \\ 0 & \text { otherwise }\end{cases}
$$

Use Möbius inversion to find $f(n)$ such that

$$
F(n)=\sum_{d \mid n} f(d) .
$$

Prove that f is multiplicative and find an explicit formula for $f(n)$.

