M7210 Lecture 22

Abelian Groups II

Sums of *R*-modules

If $M_{\lambda}, \lambda \in \Lambda$ is any set of *R*-modules, then $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ denotes the subset of the cartesian product $\prod_{\lambda \in \Lambda} M_{\lambda}$ consisting of those elements that are non-zero for at most finitely many indices of Λ . (If Λ is finite, then $\bigoplus_{\lambda \in \Lambda} M_{\lambda} = \prod_{\lambda \in \Lambda} M_{\lambda}$.) Let $\iota_{\lambda} : M_{\lambda} \to \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ take $m \in M_{\lambda}$ to the Λ -indexed vector that is 0 at all places except the λ -th, where the entry is m.

Proposition. $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ together with the embeddings ι_{λ} is the categorical sum of the M_{λ} .

Proof. We need to prove that this object and these morphisms satisfy the universal mapping property that defines the categorical sum (see Lecture 20). Suppose T is an R-module and $\phi_{\lambda} : M_{\lambda} \to T$ is and R-module morphism for each $\lambda \in \Lambda$. Define $\phi : \bigoplus_{\lambda \in \Lambda} M_{\lambda} \to T$ by

$$\phi((m_{\lambda})_{\lambda \in \Lambda}) = \sum_{\lambda \in \Lambda} \phi_{\lambda}(m_{\lambda}).$$

Because only finitely many of the m_{λ} are non-zero, the sum is meaningful. It is left to the reader to check that ϕ preserves sums and *R*-action, and that it indeed satisfies the conditions required by the definition of sums.

Free \mathbb{Z} -modules

The abelian group \mathbb{Z} has the following universal mapping property: If A is any abelian group and $a \in A$, then there is a unique group morphism $\phi : \mathbb{Z} \to A$ such that $\phi(1) = a$. The morphism is defined thus: $\phi(n) := na$. It follows from the UMP of \mathbb{Z} and the UMP of the sum that if $a_{\lambda}, \lambda \in \Lambda$ is any set of elements in A, then there is a unique group homomorphism $\phi : \bigoplus_{\lambda \in \Lambda} \mathbb{Z} \to A$ such that $\phi(e_{\lambda}) = a_{\lambda}$, where $e_{\lambda} := \iota_{\lambda}(1)$. This property of $\bigoplus_{\lambda \in \Lambda} \mathbb{Z}$ and its elements e_{λ} is so significant that it has a special name.

Definition. We say F is a free abelian group—or free \mathbb{Z} -module—on the set $\{f_{\lambda} \mid \lambda \in \Lambda\} \subset F$ if, for any abelian group A and any set map $\alpha : \{f_{\lambda} \mid \lambda \in \Lambda\} \to A$, there is a unique group morphism $\overline{\alpha} : F \to A$ such that $\overline{\alpha}(f_{\lambda}) = \alpha(f_{\lambda})$.

Obviously, $\bigoplus_{\lambda \in \Lambda} \mathbb{Z}$ is free on $\{e_{\lambda} \mid \lambda \in \Lambda\}$. It is also a routine consequence of the UMP that a \mathbb{Z} -module F is free on $\{f_{\lambda} \mid \lambda \in \Lambda\}$ if and only if there is an isomorphism from $\bigoplus_{\lambda \in \Lambda} \mathbb{Z}$ to F that takes e_{λ} to f_{λ} . Can we recognize when such an isomorphism exists from "internal data"? Yes! The next definition and proposition show how:

Definition. Let F be a \mathbb{Z} -module. We call a subset $B = \{f_{\lambda} \mid \lambda \in \Lambda\} \subset F$ a basis of F if a) the only finite \mathbb{Z} -linear combination of elements of B that equals 0 is the one with all coefficients 0 (i.e., B is independent) and b) B generates F.

Conditions a) and b) are closely related to the *existence* and *uniqueness* conditions in the definition of freeness. Independence assures that there are no relations between elements of B that could conflict with an attempt to extend a set morphism from B to a \mathbb{Z} -module A to a group morphism from F to A. If B generates F, then a set morphism defined on B can have no more than one extension to a group morphism defined on F.

Proposition. A \mathbb{Z} -module F is free on a subset $B = \{f_{\lambda} \mid \lambda \in \Lambda\} \subset F$ if and only if B is a basis of F.

Proof. Suppose F has basis $B = \{f_{\lambda} \mid \lambda \in \Lambda\} \subset F$. Using the UMP of $\bigoplus_{\lambda \in \Lambda} \mathbb{Z}$, there is a \mathbb{Z} -module morphism from this object to F that takes e_{λ} to f_{λ} . Since B generates, this morphism is surjective. Suppose $\sum_{\lambda} n_{\lambda} e_{\lambda} = 0$. Then $\sum_{\lambda} n_{\lambda} f_{\lambda} = 0$, so each $n_{\lambda} = 0$ by definition of basis. Our morphism is both injective and surjective, so it is an isomorphism. /////

Free *R*-modules

The entire discussion of free \mathbb{Z} -modules generalizes to R-modules. I leave it to you to check the details. This is a matter of checking that all definitions, theorems and proofs are compatible with the R-action.

Finite generation

Before turning to the structure theorem, we derive some information about finitely-generated abelian groups.

Proposition. (4.52, page 157). A subgroup of an abelian group that is generated by n elements is generated by n or fewer elements.

The proof makes use of a

Lemma. (4.51, page 157). Suppose $\phi : G \to B$ is surjective with kernel K. If K has a generating set of cardinality m and B has a generating set of cardinality n, then G has a generating set of cardinality m + n.

Proof. Let x_1, \ldots, x_m be generators of $K \subseteq G$. Let y_1, \ldots, y_n be generators for B and let x'_1, \ldots, x'_n be elements of G such that $\phi(x'_i) = y_i$. If $x \in G$, then $\phi(x) = \sum_{i=1}^n a_i y_i$ for some $a_i \in \mathbb{Z}$, so $x - \sum_{i=1}^n a_i x'_i \in K$, so there are $b_j \in \mathbb{Z}$ such that $x - \sum_{i=1}^n a_i x'_i = \sum_{j=1}^m b_i x_j$, i.e., $x = \sum_{j=1}^m b_i x_j - \sum_{i=1}^n a_i x'_i$. Thus, $\{x_1, \ldots, x_m, x'_1, \ldots, x'_n\}$ generate G.

Proof of 4.52. We prove the theorem by induction on n. The theorem is clearly true when n = 1.* Suppose the theorem is known for all natural numbers up to n. Let G be an abelian group with n + 1 generators, and let H be a subgroup of G. Let K be the subgroup of G generated by the first n generators, and let $\phi: G \to G/K$. Then $H \cap K$ has a generating set with n elements, and $\phi(H) = (H + K)/K \subseteq G/K$ is cyclic. By the lemma, H has a generating set with n + 1 elements.

Rank

The rank of a free abelian group is the cardinality of a basis. It is not obvious that every basis has the same cardinality but this follows from

Lemma. Any linearly independent subset of the free abelian group \mathbb{Z}^n has cardinality $\leq n$.

Proof. Note that $\mathbb{Z}^n \subseteq \mathbb{Q}^n$. If $\{z_1, \ldots, z_k\} \subset \mathbb{Z}^n$ is not independent considered as a set of elements in \mathbb{Q}^n , then there are integers p_i, q_i with not all the $p_i = 0$ such that $\sum_{i=1}^k \frac{p_i}{q_i} z_i = 0$. By multiplying by the least common multiple of the q_i , we get a non-trivial \mathbb{Z} -linear combination of the z_i . /////

Proposition. Any two bases of a finitely-generated free abelian group have the same number of elements.

Proof. Suppose basis B of G has cardinality n and basis B' has cardinality n'. Using B, we have an isomorphism of G with \mathbb{Z}^n , and since B' is independent, $n' \leq n$. Reversing the roles of B and B', we have $n \leq n'$.

Subgroups of free abelian groups: a preview of what's up next.

Suppose S is subgroup of $A \cong \mathbb{Z}^n$. Then S has a generating set $\{s_1, \ldots, s_k\}$ with $k \leq n$. By itself, this is not very informative. We are going to prove an amazing result that vastly strengthens this.

Theorem. If S is subgroup of $A \cong \mathbb{Z}^n$, then we can choose a new basis $\{b, \ldots, b_n\}$ of A and a new generating set $\{t_1, \ldots, t_\ell\}$ for S such that $t_i = m_i b_i$ for $i = 1, \ldots, \ell$, where $m_i \in \mathbb{Z}$.

This has remarkable consequences. First, it means that every subgroup of a free abelian group is free, for the t_i form a basis for S. Second, the structure theorem for finitely generated abelian groups falls out. Here's how. If G is any finitely-generated abelian group, then there is a surjection $\mathbb{Z}^n \to G$. Let S be the kernel of this map, and choose $\{b_1, \ldots, b_n\}$ and $\{t_1, \ldots, t_\ell\}$ as in the theorem. Then $G \cong \mathbb{Z}^n/S \cong$ $\mathbb{Z}/m_1\mathbb{Z} \oplus \mathbb{Z}/m_2\mathbb{Z} \oplus \cdots \mathbb{Z}/m_\ell\mathbb{Z} \oplus \mathbb{Z}^{n-\ell}$.

But wait! There's more! The proof of the theorem is constructive. The proof actually constructs the basis and the m_i .

^{*} One proof is, "A subgroup of a cyclic group is cyclic." Another goes as follows. Any non-zero subgroup of \mathbb{Z} is generated by its least positive element. If $G = \langle g \rangle$, then there is a surjection $\phi : \mathbb{Z} \to G$ with $\phi(1) = g$. If H is a subgroup of G, then $\phi^{-1}(H)$ is a subgroup of \mathbb{Z} , and hence has a single generator. Therefore, $\phi(\phi^{-1}(H)) = H$ has a single generator.