Background on joint distributions. Recall that if $f_{X, Y}(x, y)$ is a joint density, then the marginal and conditional density functions are defined as follows:

$$
\begin{gathered}
\text { marginals: } \quad f_{X}(x):=\int_{\infty}^{\infty} f_{X, Y}(x, y) d y \quad f_{Y}(y):=\int_{\infty}^{\infty} f_{X, Y}(x, y) d x, \\
\text { conditionals: } \quad f_{X \mid Y}(x \mid Y=y):=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}, \quad f_{Y \mid X}(y \mid X=x):=\frac{f_{X, Y}(x, y) d y}{f_{X}(x)} .
\end{gathered}
$$

The " $Y=y$ " may be shortened: $f_{X \mid Y}(x \mid y)=f_{X \mid Y}(x \mid Y=y)$. Similarly for X.
We also have marginals and conditionals in case X and Y are discrete. Suppose X has values in $\{1, \ldots, m\}$ and Y in $\{1, \ldots, n\}$. Each joint outcome can written as a pair (i, j), and we can picture the set of all pairs as a rectangular array. Denote its probability $p_{X, Y}(i, j)$. The marginal $p m f s$ in this case are the row and column sums:

$$
p_{X}(i)=\sum_{j=1}^{n} p(i, j) \quad \text { and } \quad p_{Y}(j)=\sum_{i=1}^{m} p(i, j) .
$$

The conditional $p m f s$ are the normalized rows and columns themselves:

$$
p_{X \mid Y}(i \mid j):=\frac{p_{X, Y}(i, j)}{p_{Y}(j)} \quad \text { and } \quad p_{Y \mid X}(j \mid i):=\frac{p_{X, Y}(i, j)}{f_{X}(i)} .
$$

The Bayesian approach to parameter estimation treats the parameter as a random variable, not an unknown constant. We start with a presumed density for the parameter, which we call the prior, and we update the prior using the data, arriving at a revised density for the parameter, which we call the posterior. The details follow.

We introduce the symbol Θ to stand for the random variable that represents the parameter, and we use θ to stand for a fixed value. The prior is a density function for Θ. (In your book, this is called $\pi(\theta)$, but I will call it $f_{\Theta}(\theta)$.) The sample density is given as before by a function of the data \vec{x} and the parameter θ, but now we think of this as a conditional density

$$
f_{\vec{X}}(\vec{x} \mid \theta)=f_{\vec{X} \mid \Theta}(\vec{x} \mid \theta) .
$$

According to the formula for the conditional, the joint distribution of \vec{X} and Θ is:

$$
f_{\vec{X}, \Theta}(\vec{x}, \theta)=f_{\vec{X} \mid \Theta}(\vec{x} \mid \theta) f_{\Theta}(\theta) .
$$

The marginal of \vec{X} is

$$
f_{\vec{X}}(x)=\int_{\infty}^{\infty} f_{\vec{X}, \Theta}(x, \theta) d \theta=\int_{\infty}^{\infty} f_{\vec{X} \mid \Theta}(x \mid \theta) f_{\Theta}(\theta) d \theta
$$

and the posterior density of Θ is

$$
f_{\Theta \mid \vec{X}}(\theta \mid \vec{x})=\frac{f_{\vec{X}, \Theta}(x, \theta)}{f_{\vec{X}}(x)}=\frac{f_{\vec{X} \mid \Theta}(\vec{x} \mid \theta) f_{\Theta}(\theta)}{\int_{\infty}^{\infty} f_{\vec{X} \mid \Theta}(x \mid \theta) f_{\Theta}(\theta) d \theta} .
$$

Exercise 7.22. Assume X_{1}, \ldots, X_{n} i.i.d. normal $\left(\theta, \sigma^{2}\right)$ and that Θ has normal $\left(\mu, \tau^{2}\right)$ prior. Then \bar{X} is normal $\left(\theta, \sigma^{2} / n\right)$. For notational convenience, let $U=\bar{X}$.

$$
\begin{aligned}
f_{U, \Theta}(u, \theta) & =f_{U \mid \Theta}(u \mid \theta) f_{\Theta}(\theta) \\
& =\frac{\sqrt{n}}{\sqrt{2 \pi} \sigma} e^{-n(u-\theta)^{2} /\left(2 \sigma^{2}\right)} \frac{1}{\sqrt{2 \pi} \tau} e^{-(\theta-\mu)^{2} /\left(2 \tau^{2}\right)} \\
& =\frac{\sqrt{n}}{2 \pi \sigma \tau} \exp \left(-\frac{n \tau^{2}(u-\theta)^{2}+\sigma^{2}(\theta-\mu)^{2}}{2 \sigma^{2} \tau^{2}}\right) .
\end{aligned}
$$

The (negative of the) exponent is quadratic in θ :

$$
\frac{n \tau^{2}(u-\theta)^{2}+\sigma^{2}(\theta-\mu)^{2}}{2 \sigma^{2} \tau^{2}}=\frac{\left(n \tau^{2}+\sigma^{2}\right) \theta^{2}-2\left(n \tau^{2} u+\mu \sigma^{2}\right) \theta+\left(n \tau^{2} u^{2}+\mu^{2} \sigma^{2}\right)}{2 \sigma^{2} \tau^{2}} .
$$

The posterior density of θ is a constant multiple of $f_{U \mid \Theta}(u \mid \theta) f_{\Theta}(\theta)$.
Given any function of the form $f(\theta)=k e^{-\left(a \theta^{2}+2 b \theta+c\right)}$, there is a unique constant multiple of it which is a pdf. Since

$$
a \theta^{2}+b \theta+c=a\left(\theta-\frac{-b}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right)
$$

we deduce

$$
\frac{1}{2 \sigma^{2}}(x-\mu)^{2}=a\left(x-\frac{-b}{2 a}\right)^{2}
$$

so

$$
\frac{-b}{2 a}=\mu \quad \text { and } \quad \frac{1}{2 a}=\sigma^{2}
$$

