
M4056 Lecture Notes. September 8, 2010

Sampling from a normal distribution II

Before getting to the meat of this lecture, we provide some orientation. Bear in mind the
kinds of inferential tasks we might face:

i) We are sampling from a population known to be normal and with known variance,
seeking to determine the mean. The previous lecture contained all the information
we need make the optimal guess about the mean and to compute confidence intervals.
We will examine the practical details later.

ii) We are sampling from a population known to be normal but with unknown variance,
seeking to determine the mean. This is a much more common situation than i). In
this case, we can still make an optimal guess about the mean, but we cannot find
confidence intervals without information incorporating some estimate of the variance.
The present lecture begins to address the mathematical theory that supports this.

iii) We are sampling from a population not known to be normal. The theory we are
presenting now has no bearing on this.

Throughout today’s lecture, we will be dealing with a sample X1, . . . , Xn of size n drawn
from an n(µ, σ2) distribution. X denotes the sample mean and S2 denotes the sample
variance. Last Friday, we saw that X would be n(µ, σ2/n). Today, we will show:

Fact 1. X and S2 are independent. (5.3.1.a)

Fact 2. (n − 1)S2/σ2 has the same distribution as the sum of the squares of n − 1
independent random variables, each with a n(0, 1) distribution. (5.3.1.c)

Before proving Fact 1, we shall review some facts about independent random variables.
Suppose X and Y are random variables—possibly vector-valued, e.g., X = (X1, . . . , Xm),
Y = (Y1, . . . , Yn). Then, X and Y are said to be independent if any one (hence all) of the
following equivalent conditions is satisfied:

i) the joint pdf fX,Y (x, y) factors as fX,Y (x, y) = fX(x) · fY (y),
ii) the joint cdf FX,Y (x, y) factors as FX,Y (x, y) = FX(x) · FY (y),

iii) for any measurable sets A ⊆ R
m and B ⊆ R

n,

P (X ∈ A & Y ∈ B) = P (X ∈ A) · P (Y ∈ B).

Lemma. If X and Y are independent random variables and g and h be continuous scalar
functions of X and Y , respectively, then U = g(X) and V = h(Y ) are independent.

Proof. Let Au = { x ∈ R
m | g(x) ≤ u }. Then, g(X) ≤ u ⇔ X ∈ Au, so P (g(X) ≤ u) =

P (X ∈ Au). This trick broadens the applicability of condition iii). We use it for both X
and Y :

FU,V (u, v) = P (U ≤ u & V ≤ v)

= P (g(X) ≤ u & h(Y ) ≤ v)

= P (g(X) ≤ u) · P (h(Y ) ≤ v)

= FU (u) · FV (v).



Proof of Fact 1. Note that

X1 − X = −
n

∑

i=2

Xi − X, (∗)

since
∑n

i=1
Xi − X = 0. Let Y1 = X and let Yi := Xi − X for i = 2, 3, . . . , n. Then

by (∗), S2 is a function Y2, . . . , Yn. Thus, it suffices to show that Y1 is independent of
~Y = (Y2, . . . , Yn). Now, X1 = Y1 −

∑n
i=2

Yi, and Xi = Yi + Y1. We see that ~X is a linear

function of ~Y , and
∣

∣

∂X
∂Y

∣

∣ = n. Viewing ~x as a function of ~y by the formulae just stated in
upper-case letters,

f~Y (~y) = n · f ~X(~x)

= n ·
1

(2π)n/2
· exp

(

−(1/2)

n
∑

i=1

x2
i

)

The sum appearing in the argument of the exponential function can be rewritten as follows
(see homework, below):

n
∑

i=1

x2
i = ny2

1 +
(

n
∑

i=2

yi

)2

+
n

∑

i=2

y2
i . (∗∗)

Since this is a sum of a function of y1 and a function of y2, . . . , yn, after applying the expo-
nential function, the result factors as a function of y1 alone times a function of y2, . . . , yn.

We now turn to Fact 2. The kind of distribution mentioned there is called “chi squared with
n − 1 degrees of freedom.” We will investigate the properties of such a distribution later,
and for now the name is not important. (As Feynman says, if we know the name of a bird
in all the languages of the world, we know something about language but we don’t know
anything about the bird; see http://www.youtube.com/watch?v=0XgmrMZ0h54, minute
6:15.)

Proof of Fact 2. The proof is by induction on the sample size. In case n = 2, you will
show in a homework problem that S2

2/σ2 is distributed as the square of a standard normal
variable. To carry out the rest of the proof, set Xk and S2

k be the statistics for a sample
of size k. Assume Fact 2 is known for samples of size n = k. We shall show that it is
true of samples of size n = k + 1. We will treat the case where µ = 0 and σ2 = 1, and
in your homework you will generalize. In your homework, you will verify that with µ = 0
and σ = 1:

kS2
k+1 = (k − 1)S2

k +
k

k + 1
(Xk+1 − Xk)2 (∗ ∗ ∗)

Now, S2
k is independent of Xk (by Fact 1) and independent Xk+1 (since all the Xi are

independent). Thus, S2
k is independent of k

k+1
(Xk+1 − Xk)2. Moreover, Xk+1 − Xk is

a sum of a n(0, 1) and a n(0, 1/k) variable, so it is normal with variance (k + 1)/k, and

therefore
√

k
k+1

(Xk+1−Xk) is n(0, 1). By the inductive hypothesis, (k−1)S2
k is distributed

as a sum of the squares of k − 1 independent n(0, 1) variables. Thus, kS2
k+1

is distributed
as a sum of the squares of k independent n(0, 1) variables, and Fact 2 is proved.



Homework

1. Prove the equality (∗).
2. Prove the equality (∗∗) by writing the xis in terms of the yis, expanding, canceling

and collecting terms.
3. Prove the n = 2 case of Fact 2. Here is a sketch. Note that

S2
2 = (X1 − X)2 + (X2 − X)2 = (X1 − X2)

2/2 = ((X1 − µ) − (X2 − µ))2/2.

Now X2−µ is symmetric, so S2 is half the square of the sum of two n(0, σ2) variables.
4. Prove the equality (∗ ∗ ∗). One way to do this is to use Theorem 5.2.4.b.
5. Deduce the general case of Fact 2 from the case we have proved (with µ = 0, σ2 = 1).


