
Lecture 19. Generating Functions and Moment Generating Functions

This lecture is related to the material in Chapter 11.

Recall the following from the last lecture:

Definition. Let X be a random variable that takes values in the set {0, 1, 2, . . .} and has
pmf f . The generating function of X is

GX(t) := f(0) + f(1)t + f(2)t2 + · · · =
∞
∑

i=0

f(i)ti

In Lecture 18, I called this pX(t). But we use p for so many other things that it seems
like a good idea to use a different letter. G has the advantage that it is the first letter of
“generating.” The generating function is useful because of the useful way in which it keeps
track of all the information in the pmf, as the applications we see below will demonstrate.

Remark. Note that if X is defined on the probability space Ω, then

GX(t) =
∑

ω∈Ω

f(ω)tX(ω).

Example. The Binomial Theorem states:

(A + B)m =
m
∑

i=0

(

m

i

)

AiBm−i.

If X is binomial (m, p), then f(i) =
(

m
i

)

pi(1 − p)m−i, so

GX(t) =
m
∑

i=0

f(i) ti =
m
∑

i=0

(

m

i

)

(pt)i(1 − p)m−i =
(

p t + (1 − p)
)m

.

Remark. A generating function can be viewed in two ways: either as a formal, symbolic
object f(0) + f(1)t + f(2)t2 + · · · or as a real-valued function

∑

∞

i=0 f(i)ti of t. If there
are only finitely many values of i such that f(i) 6= 0, the difference is inconsequential, for
then we have a polynomial expression. Each polynomial expression gives us a polynomial
function, and every polynomial function has an expression. However, if f(i) is non-zero for
infinitely many values of i, then we need to know that

∑

∞

i=0 f(i)ti converges before we can
regard GX(t) as a real-valued function of t. But there is good news! Since

∑

∞

i=0 f(i) = 1,
∑

∞

i=0 f(i)ti converges at least on [−1, 1].
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Generating functions and addition of random variables

When we introduced the generating function in Lecture 18, we were motivated by the
formula for adding independent random variables. As we showed:

Fact. If X and Y are both random variable that take values in the set {0, 1, 2, . . .}, then

GX+Y (t) = GX(t) · GY (t).

Problem. Show that if X is binomial (m, p) and Y is binomial (n, p), then X + Y is
binomial (m + n, p).

Solution. We can accomplish this by showing that the generating function of X + Y is
(

p t + (1 − p)
)m+n

, because if two random variables have the same generating function,

then they have the same pmf . Now,

GX+Y (t) = GX(t) · GY (t) =
(

p t + (1 − p)
)m

·
(

p t + (1 − p)
)n

=
(

p t + (1 − p)
)m+n

.

Now the right hand side is the generating function of a binomial (m+n, p) random variable.

Example. Suppose X is Poisson, with parameter λ. Then:

P (X = n) = e−λ λn

n!
.

Thus,

GX(t) =
∞
∑

n=0

e−λ λn

n!
tn = e−λ

∞
∑

i=0

(λt)n

n!
= e−λetλ = eλ(t−1)

1. Homework. Show that if X is Poisson, with parameter λ and Y is Poisson, with param-
eter µ, then X + Y is Poisson, with parameter λ + µ.

Generating functions, expectation and variance

Let GX
′(t) = d

dt
GX(t). Observe that

GX
′(1) =

∞
∑

i=0

f(i) · i ti−1 |t=1=
∞
∑

i=0

i f(i) = E(X).

GX
′′(1) =

∞
∑

i=0

f(i) · i(i − 1) ti−2 |t=1=
∞
∑

i=0

i2 f(i) −
∞
∑

i=0

i f(i) = E(X2) − E(X).
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2. Homework. Express Var(X) in terms of GX
′(1) and GX

′′(1).

3. Homework. Suppose X is Poisson with parameter λ. Find E(X) and Var(X).

We can find a formula that includes all the moments of X by applying GX to the expo-
nential function, expanding the latter, reversing the order of summation and simplifying:

GX(et) =

∞
∑

k=0

f(k)ekt

=

∞
∑

k=0

f(k)

∞
∑

n=0

(kt)n

n!

=

∞
∑

n=0

∞
∑

k=0

f(k)
(kt)n

n!

=

∞
∑

n=0

(

∞
∑

k=0

kn f(k)

)

tn

n!

=

∞
∑

n=0

E(Xn)
tn

n!
.

Definition. Let X be a random variable that takes values in the set {0, 1, 2, . . .} and has
pmf f . The moment generating function of X , denoted MX(t) is

MX(t) := GX(et).

4. Homework. Let MX
(j) be the jth derivative of MX(t). Show that

MX
(j)(0) = E(Xj).

Recall that E(Xj) is called the jth moment of X . This accounts for the name “moment
generating function.”

5. Homework. Show that
MX+Y (t) = MX(t) · MY (t).

Moment generating functions of continuous random variables

Definition. Suppose X is a continuous random variable with values in R. The moment

generating function of X , denoted MX(t) is defined by

MX(t) = E(etX) =

∫

R

etxf(x) dx.
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6. Homework. Find MX(t) in each of the following cases:

a) X is uniform on (a, b);

b) X is standard normal;

c) X is normal with parameters E(X) = µ and Var(X) = σ2;

d) X is exponential with parameter λ.
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