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Abstract. Suitable macroscopic quantities beyond effective elastic properties are used to assess
the distribution of stress within a composite. The composite is composed of N anisotropic linearly
elastic materials and the length scale of the microstructure relative to the loading is denoted by
ε. The stress distribution function inside the composite λε(t) gives the volume of the set where
the norm of the stress exceeds the value t. The analysis focuses on the case when 0 < ε << 1.
A rigorous upper bound on limε→0λ

ε(t) is found. The bound is given in terms of a macroscopic
quantity called the macro stress modulation function. It is used to provide a rigorous assessment
of the volume of over stressed regions near stress concentrators generated by reentrant corners or
by an abrupt change of boundary loading.
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1 Introduction

In many cases the initiation of failure in a composite specimen can be related to the elastic stress
field present at the time of initiation, see Kelly and MacMillan (1986). Motivated by this we
examine the distribution of extreme values for the stress in the linear elastic regime. The focus
here is to assess the size and location of the region over which the magnitude of the stress (or
equivalent stress) exceeds a nominal value t. This approach is consistent with failure initiation
criteria given by a critical equivalent stress tc above which the composite is assumed to fail, see
Jeulin (1994).

Composites made from N anisotropic linearly elastic materials are considered. The domain
containing the composite is denoted by Ω and the stress tensor in the composite at the point x
is denoted by σε(x). Here ε gives the scale of the microstructure relative to the characteristic
length scale of the loading and the dimensions of the composite specimen. Coordinate invariant
measures of the stress are used in the formulation of failure criteria. In this treatment we consider
the equivalent stress given by

σε
eq =

√
Π(σε), Π(σε) = Πσε : σε, (1.1)

where Π is a positive definite fourth rank tensor, see Tsai and Hahn (1980). Examples of (1.1)
include the Von Mises equivalent stress given by

(
(1/2)[(σε

11 − σε
22)

2 + (σε
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33)
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33)

2] + 3((σε
12)

2 + (σε
13)

2 + (σε
23)

2)
)1/2

, (1.2)

and the magnitude of the stress given by |σε| =
√∑3

ij=1(σ
ε
ij)2. The subset of the specimen where

σε
eq exceeds the value t > 0 is denoted by Sε

t . The stress distribution function λε(t) gives the volume
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of the over stressed zone Sε
t . One also defines the stress distribution inside each elastic phase. The

volume of the set in the ith phase where σε
eq exceeds the value t > 0 is denoted by λε

i (t).
In this work rigorous bounds on λε(t) and λε

i (t) are obtained in the limit of vanishing ε, see
Propositions 1.1 and 1.2 of this section. These are used to provide rigorous asymptotic upper
bounds on the volume of the over stressed regions near stress concentrators generated by reentrant
corners or by an abrupt change of boundary loading. They provide estimates for the volume of the
overstressed zones for sufficiently small ε. This is illustrated in Section 2 where three examples are
given for fiber reinforced shafts subject to anti-plane shear and torsion loading. Motivated by these
examples general conditions are identified in Section 3 for which limεk→0λ

εk
i (t) exhibits polynomial

or exponential decay with t. Lastly, we point out the recent work of Luciano and Willis (2003)
where the boundary layer behaviour of the stress and strain fields with respect to ε is investigated
for random composite materials.

The bounds on limε→0 λε(t, ) and limε→0 λε
i (t) are given in terms of the macro stress modulation

functions. To introduce the macro stress modulation functions we consider a composite contained
in the unit cube Q. The local elastic tensor for N anisotropic elastic materials is denoted by C(y).
Each phase has an elastic tensor specified by Ai and C(y) = Ai in the ith phase. The characteristic
function of the ith phase is written as χi(y) and takes the value 1 in the ith phase and 0 otherwise.
No constraint is placed on the arrangement of the phases inside Q. We construct an infinite periodic
medium by repeated replication of the unit cube. For this case the strain ε(y) in the composite
can be decomposed into a prescribed average strain ε and a Q periodic fluctuation ε(w(y)) where
the periodic displacement w is the solution of

−div (C(y)(ε(w(y)) + ε)) = 0. (1.3)

The stress in the composite is σ(y) = C(y)(ε(w(y)) + ε). The average stress is related to the
average strain ε by σ = CEε, where CE is the effective elastic tensor, see Milton (2002).

One is interested in the maximum equivalent stress in the ith phase generated by subjecting Q
to the average or macroscopic stress σ. With this in mind we introduce the macro stress modulation
function. Set

f i(SEσ) = ‖χi(y)σeq(y)‖L∞(Q) (1.4)

where SE is the effective compliance (CE)−1. Here ‖ · ‖L∞(Q) denotes the L∞ norm over the
unit period cell Q. The macro stress modulation function f i(SEσ) measures the amplification or
diminution of σ by the microstructure.

It is easily seen that stress state is self similar under a rescaling of the configuration. Indeed set
εk = 1/k and rescale the material properties by Cεk(y) = C(y/εk). It is easily checked that the
stress also rescales as σεk(y) = σ(y/εk). Thus the stress analysis for the εk scale microstructure
reduces to the stress analysis for the un-rescaled configuration on the unit cube Q. However, in
general the loading is not uniform and the specimen shape is incommensurate with a rescaled
periodic replication of a configuration specified on the unit cube. Because of this, the stress state
in the composite is not obtained directly through an analysis of the stress in the unit cube. In this
paper a suitable multi scale analysis using macro stress modulation functions is shown to provide
rigorous bounds on the volume of the over stressed zones λε(t) and λε

i (t) in the limit of vanishing
ε.

The general boundary value problem for the specimen is given. The εk = 1/k periodic composite
inside the specimen is described by Cεk(x) = C(x/εk). The specimen Ω is subjected to a body load
f . A traction g is applied to part of the boundary of the specimen and a displacement uεk = U0

is prescribed on the remaining part of the boundary. Here the body loads, boundary tractions
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and boundary displacements can be nonuniform. The stress and displacement in the specimen are
denoted by σεk and uεk respectively. The equation of elastic equilibrium is given by

−div σεk = f . (1.5)

The elastic strain ε(uεk) is related to the stress by σεk = Cεkε(uεk).
The multi scale analysis proceeds in two steps. The first step is the homogenization step where

the macroscopic stress is determined. From the theory of periodic homogenization (Bensoussan,
et al. 1978) σεk and ε(uεk) converge to the macroscopic stress σM and strain ε(uM ) as εk goes to
zero. The macroscopic stress satisfies σMn = g on the part of the boundary experiencing traction
and the macroscopic displacement uM satisfies uM = U0 on the remaining part of the boundary.
The macroscopic stress satisfies the equilibrium equation −div σM = f . The stress and strain are
related through the homogenized constitutive law

σM (x) = CEε(uM (x)). (1.6)

The second step is a down scaling step and gives the interaction between the macroscopic stress
σM (x) and the microstructure. For each x one has the macroscopic strain εM (x) = ε(uM (x)) =
SEσM (x) and one computes the microscopic response given by σ(x,y) = C(y)(ε(w(x,y))+εM (x)).
For each x the Q periodic displacement w(x,y) solves

−divy

(
C(y)(εy(w(x,y)) + εM (x))

)
= 0, y in Q. (1.7)

Here all derivatives with respect to the microscopic variable y are denoted with subscripts and
x appears as a parameter. The relevant interaction is described by the macrostress modulation
function f i(SEσM (x)) given by

f i(SEσM (x)) = ‖χi(y)σeq(x,y)‖L∞(Q). (1.8)

The set of points where f i(SEσM (x)) ≥ t is denoted by {f i(SEσM (x)) ≥ t}. The volume of this
set is denoted by |{f i(SEσM (x)) ≥ t}|.

The bound on the volume of the over stressed zone in the ith phase is given by

Proposition 1.1.
limεk→0λ

εk
i (t) ≤ |{f i(SEσM (x)) ≥ t}|. (1.9)

We introduce the maximum

M(SEσM (x)) = max
i=1,...,N

f i(SEσM (x)) (1.10)

and the set of points where M(SEσM (x)) ≥ t is denoted by {M(SEσM (x)) ≥ t}. The volume of
this set is dented by |{M(SEσM (x)) ≥ t}|. The bound on the volume of the over stressed zone in
the specimen is given by

Proposition 1.2.
limεk→0λ

εk(t) ≤ |{M(SEσM (x)) ≥ t}|. (1.11)

Next consider a subdomain S of the composite specimen. The volume of the set of points in
the ith elastic phase contained in S for which σε

eq(x) > t is denoted by λεk
i (t, S). The following

propositions provide information on the location of over stressed zones.
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Proposition 1.3. If f i(SEσM (x)) < t for every point in S then

limεk→0λ
εk
i (t, S) = 0. (1.12)

Similarly, the volume of the set of points in S for which σε
eq(x) > t is denoted by λεk(t, S). One

has the following proposition given by

Proposition 1.4. If M(SEσM (x)) < t for every point in S then

limεk→0λ
εk(t, S) = 0. (1.13)

The Propositions (1.3) and (1.4) were derived in Lipton (2003).
Propositions 1.1 through 1.4 are employed to estimate the size and location of over stressed

zones in composites. This is illustrated in Section 2 where examples are given. General conditions
are identified in Section 3 for which limεk→0λ

εk
i (t, S) exhibit polynomial or exponential decay with

t. It is shown in Section 4 that Propositions 1.1 and 1.2 are direct consequences of homogeniza-
tion constraints relating the macrostress modulation functions to the distribution of states for the
equivalent stress. These constraints are introduced and proved in Lipton (2003). In that work the
constraints are derived for the more general case of graded locally periodic microstructures and in
the context of G convergence. Because of this the arguments given here deliver results identical to
Propositions 1.1 and 1.2 for more general classes of composites described by continuously graded lo-
cally periodic microstructures and for G convergent sequences of elastic tensors, see Lipton (2003).
Propositions 3.1, 3.2, and 3.3 are derived in Section 5.

2 Upper bounds on over stressed regions

In this section we consider prismatic shafts reinforced with long cylindrical fibers with circular
cross section. In the first example the shaft cross section has a reentrant corner, see Figure 1. The
angular width of the reentrant corner is 2π − ω where π < ω < 2π. The fiber microgeometry is
periodic and the length scale of the period is εk = 1/k, see Figure 2. In order to illustrate the stress
assessment methodology we first consider a period cell filled with microstructure for which the
microstress and strain fields can be solved for analytically. Here we consider the coated cylinder
assemblage of Hashin and Shtrikman (1962). A unit period cell filled with the coated cylinder
assemblage is illustrated in Figure 3. The coated cylinder assemblage is constructed by placing
a space filling configuration of disks of different sizes ranging down to the infinitesimal inside the
period cell. Each disk is partitioned in to a coating and a core. The area fractions of coating
and core are the same for all disks. The matrix phase is given by the union of all the coatings
and the fiber cross sections are given by the cores. The shear moduli of the fibers and matrix are
denoted by Gf and Gm respectively. The area fraction of the fiber phase in the cross section is
denoted by θ. The shaft is subject to anti-plane shear loading at the boundary. The out of plane
deformation is denoted by uεk and the associated out of plane stress components are given by the
vector σεk = (σεk

1 , σεk
2 ). The rapidly oscillating piecewise constant shear stress is denoted by Gεk

and σεk = 2Gεk∇uεk . The unit normal to the shaft cross section is denoted by n. On OA and
OB the shaft is traction free, i.e., σεk · n = 0. On the circular arc of radius one connecting B to
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A the traction is given by σεk · n = (π/ω) cos φπ/ω, for 0 < φ < ω. Inside the shaft one has the
equilibrium equations

2Gm∆uεk = 0, in the matrix and
2Gf∆uεk = 0, in the fibers. (2.1)

The displacement is continuous across material interfaces and

2Gm∂nuεk
m = 2Gf∂nuεk

f , (2.2)

where ∂n denoted the directional derivative along the unit normal pointing out of the fiber phase
and the subscripts denote the side of the interface where the normal derivatives are evaluated.

In this example we use Propositions 1.1–1.4 to provide rigorous upper bounds on the size of
over stressed regions as well as a methodology for the assessment of their location in the reinforced
cross section. The set in the fiber phase where |σεk | > t is denoted by Sεk

f,t and the set in the matrix
phase where |σεk | > t is denoted by Sεk

m,t. The areas occupied by the sets Sεk
f,t and Sεk

m,t are denoted
by λεk

f (t) and λεk
m (t) respectively. The set where |σεk | > t in the composite is denoted by Sεk

t and
the area of this set is denoted by λ(t)εk . In the sequel we will also use the following standard
convention: for a given function g we will denote the set of points for which the inequality g(x) ≥ t
holds by writing {g(x) ≥ t}. The volume of the set {g(x) ≥ t} is denoted by |{g(x) ≥ t}|.

2
2π−ϖ

O

A

B

Figure 1: Cross section of a long prismatic shaft with reentrant corner.

ε

2
2π−ϖ

Figure 2: The same shaft reinforced with long cylindrical fibers with circular cross section. The
microstructure is periodic.

In order to compute the macrostress modulation functions we perform the multiscale analysis
outlined in the introduction. The first step is the homogenization step. Passing to the limit as
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Figure 3: The unit period cell for the microstructure. Here the unit cell is filled with the Hashin –
Shtrikman coated cylinder assemblage.

εk tends to zero the homogenization theory shows that the macroscopic out of plane displacement
uM and stress σM satisfy σM = 2GE∇uM , where GE is the effective shear stiffness for the coated
cylinder assemblage given by

2GE = β

(
β(1 − θ) + α(1 + θ)
β(1 + θ) + α(1 − θ)

)
. (2.3)

Here β = 2Gm and α = 2Gf . One has ∇ · σM = 0 inside the shaft cross section. On the faces OA
and OB traction free boundary conditions σM · n = 0 are given. On the circular arc of radius one
connecting B to A the traction is given by σM · n = (π/ω) cos φπ/ω, for 0 < φ < ω. Solution of
the macroscopic problem gives

σM = er
π

ω
rπ/ω−1 cos φπ/ω − eφ

π

ω
rπ/ω−1 sin φπ/ω. (2.4)

Here (r, φ) are polar coordinates centered at O and er, eφ are the corresponding unit vectors.
The second step is the up scaling step. Here one solves (1.7) in the unit cell containing the

Hashin-Shtrikman coated cylinder assemblage. In the context of anti plane shear (1.7) reduces to

−divy

(
2G(y)(∇y(w(x,y)) + ∇uM (x))

)
= 0, y in Q, (2.5)

where G(y) is the piecewise constant shear modulus in the coated cylinder assemblage taking the
values Gm in the matrix and Gf in the fibers. For x fixed ∇uM (x) is a constant vector and the
fields w(x,y) and σ(x,y) = 2G(y)(∇y(w(x,y)) + ∇uM (x)) can be solved analytically, see Hashin
and Shtrikman (1962). Here the macrostress modulation in the matrix and fiber phases are given
by

fm(x) = ‖|σ(x,y)|‖L∞(Qm). (2.6)

and
f f(x) = ‖|σ(x,y)|‖L∞(Qf ). (2.7)

respectively, where Qm is the part of the unit cell occupied by matrix and Qf is the part occupied
by fibers. Changing to polar coordinates and solution of (2.5) gives

fm(r, φ) = Km π

ω
rπ/ω−1 and (2.8)

f f(r, φ) = Kf π

ω
rπ/ω−1, (2.9)
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where

Km =
1 + |β − α|/(β + α)

1 − θ(β − α)/(β + α)
and (2.10)

Kf =
2α

β + α − θ(β − α)
. (2.11)

Formulas (2.10) and (2.11) imply that 1 ≤ Kf ≤ Km. When the fiber is stiffer than the matrix
Kf = Km and when the fiber is more compliant then Kf < Km. Thus it is clear that

M(r, φ) = max{fm(r, φ), f f (r, φ)} = fm(r, φ). (2.12)

The area of the cross section with reentrant corner is denoted by A and for the case considered
here A = ω/2. Calculation gives

|{fm(r, φ) ≥ t}| = A(Km π

ω
)2ω/(ω−π) × t−2ω/(ω−π), for t > Km π

ω
and (2.13)

|{f f (r, φ) ≥ t}| = A(Kf π

ω
)2ω/(ω−π) × t−2ω/(ω−π), for t > Kf π

ω
(2.14)

and |{fm(r, φ) ≥ t}| = A for t ≤ Km π
ω and |{f f (r, φ) ≥ t}| = A for t ≤ Kf π

ω . Proposition 1.1
immediately gives the bounds

limεk→0λ
εk
m (t) ≤

{
A(Km π

ω )2ω/(ω−π) × t−2ω/(ω−π), for t > Km π
ω ,

A, for t ≤ Km π
ω

(2.15)

and

limεk→0λ
εk
f (t) ≤

{
A(Kf π

ω )2ω/(ω−π) × t−2ω/(ω−π), for t > Kf π
ω ,

A, for t ≤ Kf π
ω

. (2.16)

For comparison it is noted that the stress distribution λm(t) inside the cross section filled with pure
matrix material and no fibers is given by

λm(t) =
{

A(π
ω )2ω/(ω−π) × t−2ω/(ω−π), for t > π

ω ,
A, for t ≤ π

ω

. (2.17)

It is noted that Km = 1 when Gf = Gm and one sees that the upper bound (2.15) coincides with
the exact result (2.17) in the absence of reinforcement. In Section 3 we identify generic situations
for which the volume of the over stressed zones have polynomial decay of the kind given by (2.15)
and (2.16).

Next we apply Propositions 1.3 and 1.4 to identify the location and extent of the over stressed
zone due to the stress concentration at the reentrant corner. For a prescribed value of t the radii
dm = dm(t) and df = df (t) are defined by

fm(dm, φ) = Km π

ω
dπ/ω−1

m = t and (2.18)

f f(df , φ) = Kf π

ω
d

π/ω−1
f = t. (2.19)

From Proposition 1.3 it follows that for any set S containing only points with radial coordinate
r > df that

lim
εk→0

λεk
f (t, S) = 0, (2.20)
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Figure 4: Rigorous estimation of the over-stressed zone for the reentrant corner in a fiber reinforced
composite shaft subject to anti-plane shear.

and for any set S containing only points with radial coordinate r > dm that

lim
εk→0

λεk
m (t, S) = 0. (2.21)

From Proposition 1.4 and (2.12) it follows that for sets S containing only points with radial coor-
dinate r > dm that

lim
εk→0

λεk(t, S) = 0. (2.22)

For small values of εk, it is clear from (2.20), (2.21), and (2.22) that the radii dm(t) and df (t) provide
estimates for the extension of the over stressed regions Sεk

m,t, Sεk
t , and Sεk

f,t inside the composite. It
is evident from their definition that dm and df depend explicitly on the volume fraction of fibers
in the microstructure. To illustrate the ideas it is supposed that the fiber shear modulus is 1 the
matrix shear modulus is 20 and the area fraction of fibers is taken to be 0.6. For these values
Km = 7.14. In Figure 4 the radius dm(7) = 0.296 is plotted for a domain with ω = 3π/2. It is
evident from (2.20), (2.21), and (2.22) that progressively larger portions of the over stressed regions
Sεk

m,7, Sεk
7 , and Sεk

f,7 lie within the radius 0.296 as εk tends to zero. Indeed, there is a length scale εk

for which more than 99.9% of the areas of the sets Sεk
m,7, Sεk

7 , and Sεk
f,7 lie inside the radius 0.296.

Next we consider a shaft cross section given by a half disk of radius 0.3. The flat part of the
half disk lies on the x1 axis and the origin for the x1, x2 coordinate system lies midway between the
ends. The disk contains periodic microgeometry with period cells filled with the Hashin-Shtrikman
coated sphere assemblage and is subjected to an anti-plane shear load. On −0.3 < x1 < 0 we
prescribe the traction boundary condition σεk ·n = π, on 0 < x1 < 0.3 we prescribe σεk ·n = 0 and
on the circular arc r = 0.3, 0 < φ < π the traction is given by σεk · n = (ln 0.3 + 1) cos φ − φ sin φ.
Proceeding as before we find that

fm(r, φ) = Km
√

(ln r + 1)2 + φ2 and (2.23)
f f (r, φ) = Kf

√
(ln r + 1)2 + φ2. (2.24)

Application of Propositions 1.1 and 1.2 shows that

limεk→0λ
εk
m (t) ≤ |{Km

√
(ln r + 1)2 + φ2 ≥ t}|, (2.25)
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limεk→0λ
εk
f (t) ≤ |{Kf

√
(ln r + 1)2 + φ2 ≥ t}| (2.26)

and
limεk→0λ

εk(t) ≤ |{Km
√

(ln r + 1)2 + φ2 ≥ t}|. (2.27)

The fiber area fraction and fiber and matrix shear moduli are chosen as before to be Gm = 20,
Gf = 1, and θ = 0.6. For this choice Km = 7.14 We choose t = 22.25 and the set specified by

{(r, φ); 7.14
√

(ln r + 1)2 + φ2 ≥ 22.5} (2.28)

is given by the shaded region inside the half disk shown in Figure 5. From Proposition 1.4 it follows
that for any set S that does not intersect the shaded region that

lim
εk→0

λεk(22.5, S) = 0. (2.29)

Thus for microstructure characterized by sufficiently small εk, the shaded region gives an estimate
for the over stressed region Sεk

m,22.5. The shaded region provides a rigorous upper bound on the over
stressed region in the sense of (2.29) in the εk = 0 limit. It is noted that for sufficiently large values
of t and sufficiently small values of r the volume |{Km

√
(ln r + 1)2 + φ2 ≥ t}| is well approximated

by (π/2)e2 exp (−t/Km). In Section 3 we identify generic situations under which the volume of the
over stressed zones have exponential decay.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5: The shaded region gives a rigorous estimation for the over-stressed zone due to a change
in traction on the boundary of a fiber reinforced composite shaft subject to anti-plane shear.

Last consider an L shaped cross section subject to torsional loading. The cross section is filled
with a εk periodic repetition of the Hashin-Shtrikman coated cylinder assemblage. The stress
potential ϕεk vanishes on the boundary of the cross section and satisfies

−∆ϕεk = 2Gm in the matrix and
−∆ϕεk = 2Gm in the fibers. (2.30)

The stress potential is continuous across material interfaces and

(2Gm)−1∂nϕεk
m = (2Gf )−1∂nϕεk

f . (2.31)

Proceeding with the multi-scale analysis we first write the associated homogenized boundary
value problem for the macroscopic stress potential ϕM obtained in the εk = 0 limit. Here ϕM = 0
on the boundary of the L shaped domain and

−hE∆ϕM = 1, (2.32)
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Figure 6: Contour plot of macroscopic stress potential.

Figure 7: Rigorous estimation of the over-stressed zone for a fiber reinforced composite shaft with
L shaped cross section subject to torsion loading.

where

hE = β

(
β(1 − θ) + α(1 + θ)
β(1 + θ) + α(1 − θ)

)
. (2.33)

Here β = (2Gm)−1, α = (2Gf )−1 and θ is the area fraction of the fiber phase. The macroscopic
stress potential is solved numerically and is plotted in Figure 6. Next we up scale and solve for the
macrostress modulation functions. For this example the up scaling step requires us to solve for the
fluctuating stress potential w(y,x). Here w is Q periodic in the y variable and is the solution of

−divy

(
(2G(y))−1(∇y(w(x,y)) + ∇ϕM (x))

)
= 0, y in Q, (2.34)

where G(y) is the piecewise constant shear modulus in the coated cylinder assemblage taking the
values Gm in the matrix and Gf in the fibers. For x fixed ∇ϕM (x) is a constant vector and the
field w(x,y) can be solved analytically. For this problem the macrostress modulation functions are
written in the form

fm(x) = ‖|∇yw(x,y) + ∇ϕM (x)|‖L∞(Qm) (2.35)
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and
f f(x) = ‖|∇yw(x,y) + ∇ϕM (x)|‖L∞(Qf ). (2.36)

see Lipton (2003). Solution of (2.34) gives

fm(x) = K̃m|∇ϕM (x)| (2.37)

and
f f (x) = K̃f |∇ϕM (x)|. (2.38)

Here

K̃m =
1 + |β − α|/(β + α)

1 + θ(β − α)/(β + α)
and (2.39)

K̃f =
2β

β + α + θ(β − α)
. (2.40)

To illustrate the ideas we choose Gm = 10, Gf = 1 and θ = 0.2. For these choices hE = 0.7,
K̃m = 2.174 and K̃f = 0.2174. The level curves for fm(x) are plotted in Figure 7. The level
curve {fm(x) = 14} is highlighted in Figure 7. The set of points surrounded by the curve and the
reentrant corner is precisely the set {fm(x) ≥ 14}. The set of points outside this zone is precisely
the set {fm(x) < 14}. It is evident from Proposition 1.3 that limεk→0 λεk

m (14, S) = 0 for any set
S contained within {fm(x) < 14}. In this way we see that the set {fm(x) ≥ 14} provides a good
estimate for the overstressed zone {|∇ϕεk | > 14} when εk is sufficiently small.

3 Bounds with exponential and polynomial decay: sufficient con-
ditions

Motivated by the examples given in the previous section we identify generic conditions under which
the bounds on limεk→0 λεk

i (t) exhibit polynomial or exponential decay. The results presented here
easily follow from Propositions 1.1 and 1.2 given in the introduction. The utility of these results
lies in the fact that they apply to composites made from of N anisotropic elastic materials and
they apply to samples with reentrant corners.

In the first example of Section 2 bounds on limεk→0 λεk
i (t) were found that exhibited polynomial

decay in t. Motivated by this example we give general conditions for which limεk→0 λεk
i (t) ≤ Kt−p.

Such a bound follows immediately from Proposition 1.1 when it is known that for some p with
1 ≤ p < ∞ that

‖f i(SEσM (x))‖p
Lp =

∫
Ω

(f i(SEσM (x)))p dx < ∞. (3.1)

For this case one has the bound given by

Proposition 3.1.
lim

εk→0
λεk

i (t) ≤ ‖f i(SEσM (x))‖p
Lp × t−p (3.2)

In the second example of Section 2 bounds on limεk→0 λεk(t) are found that decay exponentially.
The macrostress modulation function for this example behaved asymptotically like Km| ln r| in the
limit as r → 0. Although | ln r| is unbounded it does have bounded mean oscillation (BMO).
Motivated by this example, we consider an open cube C0 immersed inside the composite and give

11



general conditions for which the upper bound on limεk→0 λεk(t, C0) decays exponentially in t. We
recall the macro stress modulation M(SEσM (x)) given by

M(SEσM (x)) = max
i=1,...,N

f i(SEσM (x)). (3.3)

The (BMO) norm of M(SEσM (x)) over the cube C0 is given by

‖M‖BMO = sup
C⊂C0

(
1
|C|

∫
C
|M(SEσM (x)) − MC | dx

)
(3.4)

where MC is the average of M(SEσM (x)) over C and the supremum is taken over all sub-cubes C
of C0. The BMO norm and the space of functions of bounded mean oscillation were introduced by
John and Nirenberg (1961).

For any positive number α between zero and one we define the constant C(α) by

C(α) =
α | ln α|

8‖M‖BMO

. (3.5)

Next we denote the average of M(SEσM (x)) over the cube C0 by MC0 and the bound on
limεk→0λ

εk(t, C0) is given in the following proposition.

Proposition 3.2. If t > 8‖M‖BMOα−1 + MC0 then

limεk→0λ
εk(t, C0) ≤ α−1e−C(α)×(t−MC0

). (3.6)

For t fixed the Proposition shows that λεk(t, C0) approaches or drops below

α−1e−C(α)×(t−MC0
)

for εk sufficiently small. It also shows that the upper bound is exponentially decreasing for large
t. Optimization over α, see Section 5, provides the tighter upper bound given by the following
Proposition.

Proposition 3.3. If t > 8‖M‖BMO + MC0 then

limεk→0λ
εk(t, C0) ≤ (α(t))−1e × e[−α(t)(t−MC0

)/(8‖M‖BMO )], (3.7)

where the factor α(t) lies in the interval e−1 < α(t) < 1 and is the root of the equation

κ−1 − α (1 + ln α) = 0, (3.8)

with κ = (t − MC0)/(8‖M‖BMO).

4 Derivation of basic inequalities

In this section we derive Propositions 1.1 and 1.2. These are shown to follow in a straight forward
manner from the homogenization constraint given in Lipton (2003).

In order to introduce the constraint we define the distribution of states for the equivalent stress
in a composite. Recall that the set in the ith phase where the equivalent stress exceeds t is denoted
by Sεk

t,i . Consider any subset S of the specimen. The distribution function λεk
i (t, S) is defined by

12



λεk
i (t, S) = |Sεk

t,i ∩S|. The indicator function for the set Sεk
t,i is written χεk

t,i taking the value 1 in Sεk
t,i

and 0 outside and we write λεk
i (t, S) =

∫
S χεk

t,idx. From the theory of weak convergence (see Evans
1990) there exists a density θt,i(x) taking values in the interval [0, 1] such that (on passage to a
subsequence if necessary) for every choice of S one has limk→∞ λεk

i (t, S) =
∫
S θt,i(x)dx. The density

θt,i(x) is the local distribution of states of the equivalent stress σεk
eq in the limit of vanishing εk.

One also considers the indicator function χεk
t for the set Sεk

t where the equivalent stress is greater
than t. Its clear that this set is the union of the sets Sεk

t,i . As before there is a density θt(x) such
that limk→∞ λεk(t, S) =

∫
S θt(x)dx, for every choice of set S. It follows easily that

∑
i θt,i = θt,

where 0 ≤ θt ≤ 1.
An application of Theorem 4.2 of Lipton (2003) delivers the homogenization constraints

θt,i(x)
(
f i(SEσM (x)) − t

) ≥ 0, i = 1, . . . , N. (4.1)

We now prove a slight generalization of Proposition 1.1. It is evident from (4.1) that at (almost)
every point for which θt,i(x) > 0 one has that f i(SEσM (x)) ≥ t. Now consider a subset S of the
composite domain. The set of points in S for which θt,i(x) > 0 is denoted by {x in S; θt,i(x) > 0}
and it is clear that

|{x in S; θt,i(x) > 0}| ≤ |{x in S; f i(SEσM (x)) ≥ t}|. (4.2)

Since 0 ≤ θt,i(x) ≤ 1 one has the estimate

lim
k→∞

λεk
i (t, S) =

∫
S

θt,i(x) dx ≤ |{x in S; θt,i(x) > 0}| (4.3)

and from (4.2) we deduce that

lim
k→∞

λεk
i (t, S) ≤ |{x in S; f i(SEσM (x)) ≥ t}|. (4.4)

Proposition 1.1 follows on making the choice S = Ω in (4.4).
Adding the homogenization constraints (4.1) and noting that

M(SEσM (x)) ≥ f i(SEσM (x)) and
∑

i θt,i(x) = θt(x) ≤ 1 we have

θt(x)
(
M(SEσM (x)) − t

) ≥ 0, i = 1, . . . , N. (4.5)

Arguing as before we find that

lim
k→∞

λεk(t, S) ≤ |{x in S;M(SEσM (x)) ≥ t}|. (4.6)

Proposition 1.2 follows on making the choice S = Ω in (4.6).

5 Derivation of the sufficient conditions for polynomial and expo-

nential decay

In this section Propositions 3.1, 3.2 and 3.3 are derived. To prove Proposition 3.1 we apply a
basic estimate for the right hand side of (4.4) when it is known that ‖f i(SEσM (x))‖Lp ≤ ∞. The
estimate is given by

|{x in S; f i(SEσM (x)) ≥ t}| ≤ ‖f i(SEσM (x))‖p
Lp × t−p (5.1)
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and Proposition 3.1 follows.
Now we derive Propositions 3.2 and 3.3. We apply the John–Nirenberg Theorem (1961) to

estimate the righthand side of (4.6) with S = C0. To do this we show first that

|{x in C0;M(SEσM (x)) ≥ t}| ≤ |{x in C0; |M(SEσM (x)) − MC0 | ≥ t − MC0}|. (5.2)

To see this note that since M(SEσM (x)) is non-negative one has that M(SEσM (x)) ≤ |M(SEσM (x))−
MC0 | + MC0 . Thus

{x in C0;M(SEσM (x)) ≥ t} ⊂ {x in C0; |M(SEσM (x)) − MC0 | ≥ t − MC0} (5.3)

and (5.2) follows. Application of the John–Nirenberg Theorem (1961) gives

|{x in C0; |M(SEσM (x)) − MC0 | ≥ s}|
|C0| ≤

{
1, for 0 < s ≤ 8‖M‖BMOα−1,

α−1e[−(C(α)×(s)], for 8‖M‖BMOα−1 < s.
(5.4)

Proposition 3.2 follows immediately from the change of variables s = t − MC0 and the inequalities
(4.6), (5.2), and (5.4). The function obtained by the change of variables s = t − MC0 in (5.4) is
denoted by Pα(t, C0) and

Pα(t, C0) =
{

1, for 0 < t − MC0 ≤ 8‖M‖BMOα−1,

α−1e[−(C(α)×(t−MC0
)], for 8‖M‖BMOα−1 < t − MC0 .

(5.5)

It is evident from the estimates that limεk→0λ
εk(t, C0) ≤ Pα(t, C0), for MC0 < t. Tighter upper

bounds are given by optimizing over α, i.e.,

limεk→0λ
εk(t, C0) ≤ U(t, C0) = inf

0<α<1
Pα(t, C0). (5.6)

Here U(t, C0) is continuous and decreasing and is given by

U(t, C0) =
{

1, for 0 < t − MC0 ≤ 8‖M‖BMO ,

(α(t))−1e × e[−α(t)(t−MC0
)/(8‖M‖BMO )], for 8‖M‖BMO + MC0 < t.

(5.7)

The factor α(t) lies in the interval e−1 < α(t) < 1 and is the root of the equation

κ−1 − α (1 + ln α) = 0, (5.8)

where κ = (t − MC0)/(8‖M‖BMO). Proposition 3.3 now follows immediately from (5.7).
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