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Theorem 1 (Mean Value Theorem). If f : [a, b] → R is continuous on [a, b]
and differentiable on (a, b), then there is some c ∈ (a, b) so that the slope of the
line tangent to the graph of f at c is equal to the slope of the secant line going

through the points (a, f(a)) and (b, f(b)), which means that f ′(c) = f(b)−f(a)
b−a .

Theorem 2 (L’Hospital’s rule). Let a be a real number and let f(x) and g(x)
be functions that are differentiable on some open interval containing a. Assume
also that g′(x) ̸= 0 on this interval, except perhaps at the point a itself. If
f(a) = g(a) = 0, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided the limit on the right exists.

Theorem 1 and Theorem 2 can be found on pages 76 and 401 of [1] respec-
tively.

Theorem 3. Let f(x) = x2. Suppose that a ∈ R and h > 0. Theorem 1 implies

that there is some θ ∈ (0, 1) so that f(a+h)−f(a)
h = f ′(a+ θh). The only solution

to this equation is θ = 1/2.

Proof. Firstly,

f(a+ h)− f(a)

h
=

(a+ h)2 − a2

h

=
(a+ h+ a)(a+ h− a)

h
= 2a+ h.

Meanwhile, f ′(a + θh) = 2(a + θh) = 2a + 2θh. We therefore have 2a + h =
2a+ 2θh, so θ = 1/2.
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Theorem 4. Let f(x) = x3. Suppose that a, h > 0. Theorem 1 implies that

there is some θ ∈ (0, 1) so that f(a+h)−f(a)
h = f ′(a+ θh). This equation defines

a function θ(h) : (0,∞) → (0, 1), and we have that limh→0 θ(h) = 1/2.

Proof. Firstly,

f(a+ h)− f(a)

h
=

(a+ h)3 − a3

h

=
a3 + 3a2h+ 3ah2 + h3 − a3

h

= 3a2 + 3ah+ h2.

Meanwhile, f ′(a+θh) = 3(a+θh)2 = 3a2+6aθh+3θ2h2. We therefore have that
3h2θ2+6ahθ+3a2 = 3a2+3ah+h2, which implies 3h2θ2+6ahθ−3ah−h2 = 0.
The quadratic formula implies

θ =
−6ah±

√
36a2h2 − 4(3h2)(−3ah− h2)

6h2

=
−6ah±

√
36a2h2 + 36ah3 + 12h4

6h2

=
−6ah±

√
4h2(9a2 + 9ah+ 3h2)

6h2

=
−6ah± 2h

√
9a2 + 9ah+ 3h2

6h2

=
−3a±

√
9a2 + 9ah+ 3h2

3h
.

Subtracting the square root will yield a negative number, so the θ ∈ (0, 1) that
we are looking for is obtained by choosing to add the square root:

θ =
−3a+

√
9a2 + 9ah+ 3h2

3h
.

We see that the limit of the numerator is limh→0(−3a +
√
9a2 + 9ah+ 3h2) =

−3a +
√
9a2 = 0, so we may apply Theorem 2 to compute the limit of θ as

follows:

lim
h→0

θ = lim
h→0

−3a+
√
9a2 + 9ah+ 3h2

3h

= lim
h→0

9a+ 6h

6
√
9a2 + 9ah+ 3h2

=
9a

6
√
9a2

=
9a

18a

=
1

2
.
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Theorem 5. Let f(x) = ex. Suppose that a ∈ R and h > 0. Theorem 1 implies

that there is some θ ∈ (0, 1) so that f(a+h)−f(a)
h = f ′(a + θh). This equation

defines a function θ(h) : (0,∞) → (0, 1), and we have that limh→0 θ(h) = 1/2.

Proof. Firstly,

f(a+ h)− f(a)

h
=

ea+h − ea

h
=

ea(eh − 1)

h
.

Meanwhile, f ′(a+ θh) = ea+θh = eaeθh. We therefore have that ea(eh − 1)/h =
eaeθh, which implies eθh = (eh−1)/h. Since h > 0, the right side of the previous
equation is positive, so we can take the natural logarithm of both sides of the
equation and then divide both sides by h to obtain

θ =
ln
(

eh−1
h

)
h

.

Theorem 2 implies

lim
h→0

eh − 1

h
= lim

h→0
eh = 1.

Hence, the continuity of ln(x) implies

lim
h→0

ln

(
eh − 1

h

)
= ln

(
lim
h→0

eh − 1

h

)
= ln(1) = 0.

We can therefore use Theorem 2 three more times to compute the limit of θ as
follows:

lim
h→0

θ = lim
h→0

ln
(

eh−1
h

)
h

= lim
h→0

(
h

eh − 1

)
·
(
heh − (eh − 1)

h2

)
= lim

h→0

heh − eh + 1

h(eh − 1)

= lim
h→0

heh + eh − eh

heh + (eh − 1)

= lim
h→0

heh

heh + eh − 1

= lim
h→0

heh + eh

heh + eh + eh

=
1

2
.
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Theorem 6. Let f(x) = ln(x). Suppose that a, h > 0. Theorem 1 implies that

there is some θ ∈ (0, 1) so that f(a+h)−f(a)
h = f ′(a+ θh). This equation defines

a function θ(h) : (0,∞) → (0, 1), and we have that limh→0 θ(h) = 1/2.

Proof. Since f ′(x) = 1/x, the equation in question is

ln(a+ h)− ln(a)

h
=

1

a+ θh
.

Taking reciprocals, we have

a+ θh =
h

ln(a+ h)− ln(a)
,

and so

θh =
h− a ln(a+ h) + a ln(a)

ln(a+ h)− ln(a)
,

hence finally

θ =
h− a ln(a+ h) + a ln(a)

h(ln(a+ h)− ln(a))
.

We see that the numerator and the denominator both converge to 0 as h → 0,
so we may apply Theorem 2 to compute the limit of θ.

lim
h→0

θ = lim
h→0

h− x ln(x+ h) + x ln(x)

h(ln(x+ h)− ln(x))

= lim
h→0

1− x 1
x+h

h 1
x+h + (ln(x+ h)− ln(x))

= lim
h→0

x+h−x
x+h

h+(x+h)(ln(x+h)−ln(x))
x+h

= lim
h→0

h

h+ (x+ h)(ln(x+ h)− ln(x))
.

We see that we can apply Theorem 2 once more.

lim
h→0

θ = lim
h→0

h

h+ (x+ h)(ln(x+ h)− ln(x))

= lim
h→0

1

1 + (x+ h) 1
x+h + (ln(x+ h)− ln(x))

= lim
h→0

1

2 + ln(x+ h)− ln(x)

=
1

2
.
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Theorem 7. Let f(x) =
√
x. Suppose that a, h > 0. Theorem 1 that there

is some θ ∈ (0, 1) so that f(a+h)−f(a)
h = f ′(a + θh). This equation defines a

function θ(h) : (0,∞) → (0, 1), and we have that limh→0 θ(h) = 1/2.

Proof 1. Since f ′(x) = 1/(2
√
x), the equation in question is

√
a+ h−

√
a

h
=

1

2
√
a+ θh

.

After squaring both sides and then taking reciprocals, we have

4(a+ θh) =
h2

2a+ h− 2
√
a2 + ah

.

We then solve for θ to obtain

θ =
h

8a+ 4h− 8
√
a2 + ah

− a

h

=
h2 − a(8a+ 4h− 8

√
a2 + ah)

h(8a+ 4h− 8
√
a2 + ah)

=
h2 − 8a2 − 4ah+ 8a

√
a2 + ah

8ah+ 4h2 − 8h
√
a2 + ah

.

We see that the numerator and the denominator both converge to 0 as h → 0,
so we may apply Theorem 2 to compute the limit of θ.

lim
h→0

θ = lim
h→0

h2 − 8a2 − 4ah+ 8a
√
a2 + ah

8ah+ 4h2 − 8h
√
a2 + ah

= lim
h→0

2h− 4a+ 8a a
2
√
a2+ah

8a+ 8h− 8h a
2
√
a2+ah

− 8
√
a2 + ah

= lim
h→0

2h− 4a+ 4a2(a2 + ah)−1/2

8a+ 8h− 4ah(a2 + ah)−1/2 − 8
√
a2 + ah

.

We can again check that the conditions for Theorem 2 are satisfied.

lim
h→0

θ = lim
h→0

2h− 4a+ 4a2(a2 + ah)−1/2

8a+ 8h− 4ah(a2 + ah)−1/2 − 8
√
a2 + ah

= lim
h→0

2 + 4a2
(
− 1

2 (a
2 + ah)−3/2a

)
8−

[
4ah

(
− 1

2 (a
2 + ah)−3/2a

)
+ 4a(a2 + ah)−1/2

]
− 8 a

2
√
a2+ah

= lim
h→0

2− 2a3(a2 + ah)−3/2

8 + 2a2h(a2 + ah)−3/2 − 8a(a2 + ah)−1/2
.
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We see once more that we can apply Theorem 2.

lim
h→0

θ = lim
h→0

2− 2a3(a2 + ah)−3/2

8 + 2a2h(a2 + ah)−3/2 − 8a(a2 + ah)−1/2

= lim
h→0

3a3(a2 + ah)−5/2a

2a2h
[
− 3

2 (a
2 + ah)−5/2a

]
+ 2a2(a2 + ah)−3/2 + 4a2(a2 + ah)−3/2

= lim
h→0

3a4(a2 + ah)−5/2

−3a3h(a2 + ah)−5/2 + 6a2(a2 + ah)−3/2

=
1

2
.

Proof 2. Since f ′(x) = 1/(2
√
x), the equation in question is

√
a+ h−

√
a

h
=

1

2
√
a+ θh

.

Wemultiple both the numerator and the denominator on the left by
√
a+ h+

√
a

to obtain
h

h(
√
a+ h+

√
a)

=
1√

a+ h+
√
a
=

1

2
√
a+ θh

.

After squaring both sides, we have

1

2a+ h+ 2
√
a2 + ah

=
1

4(a+ θh)
,

which implies

4a+ 4θh = 2a+ h+ 2
√
a2 + ah

and so
4θh = h+ 2

√
a2 + ah− 2a

and finally we have

θ =
h+ 2

√
a2 + ah− 2a

4h
.

We see that the numerator and the denominator both converge to 0, so me may
apply Theorem 2 to compute the limit of θ.

lim
h→0

θ = lim
h→0

h+ 2
√
a2 + ah+ 2a

4h

= lim
h→0

1 + 2 a
2
√
a2+ah

4

=
1

2
.
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Theorem 8. Let f(x) = 1
x . Suppose that a, h > 0. Theorem 1 implies that

there is some θ ∈ (0, 1) so that f(a+h)−f(a)
h = f ′(a+ θh). This equation defines

a function θ(h) : (0,∞) → (0, 1), and we have that limh→0 θ(h) = 1/2.

Proof. Firstly, we have that

f(a+ h)− f(a)

h
=

1
a+h − 1

a

h
=

a−(a+h)
a(a+h)

h
=

−h
a2+ah

h
=

−h

h(a2 + ah)
=

−1

a2 + ah
.

Meanwhile, f ′(x) = −1/x2, so

f ′(a+ θh) =
−1

(a+ θh)2
=

−1

a2 + 2aθh+ θ2h2
.

The equation in question is therefore

−1

a2 + ah
=

−1

a2 + 2aθh+ θ2h2
,

which implies h2θ2 + 2ahθ − ah = 0. The quadratic formula implies

θ =
−2ah±

√
4a2h2 − 4(h2)(−ah)

2h2

=
−2ah±

√
4a2h2 + 4ah3

2h2

=
−2ah± 2h

√
a2 + ah

2h2

=
−a±

√
a2 + ah

h
.

Since choosing the negative square root will yield a negative number, we know
that since θ is positive, we must choose the positive square root. We then see
that the conditions of Theorem 2 are satisfied, so we can use it to compute the
limit of θ.

lim
h→0

θ = lim
h→0

−a+
√
a2 + ah

h

= lim
h→0

a

2
√
a2 + ah

=
1

2
.
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