for some functions and for small intervals, the tangent line at the point halfway between the endpoints of the secant line has the same slope as the secant line

Jackson Knox

Fall 2023

Theorem 1 (Mean Value Theorem). If $f : [a, b] \to \mathbb{R}$ is continuous on [a, b]and differentiable on (a, b), then there is some $c \in (a, b)$ so that the slope of the line tangent to the graph of f at c is equal to the slope of the secant line going through the points (a, f(a)) and (b, f(b)), which means that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Theorem 2 (L'Hospital's rule). Let a be a real number and let f(x) and g(x) be functions that are differentiable on some open interval containing a. Assume also that $g'(x) \neq 0$ on this interval, except perhaps at the point a itself. If f(a) = g(a) = 0, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided the limit on the right exists.

Theorem 1 and Theorem 2 can be found on pages 76 and 401 of [1] respectively.

Theorem 3. Let $f(x) = x^2$. Suppose that $a \in \mathbb{R}$ and h > 0. Theorem 1 implies that there is some $\theta \in (0, 1)$ so that $\frac{f(a+h)-f(a)}{h} = f'(a+\theta h)$. The only solution to this equation is $\theta = 1/2$.

Proof. Firstly,

$$\frac{f(a+h) - f(a)}{h} = \frac{(a+h)^2 - a^2}{h} = \frac{(a+h+a)(a+h-a)}{h} = 2a+h.$$

Meanwhile, $f'(a + \theta h) = 2(a + \theta h) = 2a + 2\theta h$. We therefore have $2a + h = 2a + 2\theta h$, so $\theta = 1/2$.

Theorem 4. Let $f(x) = x^3$. Suppose that a, h > 0. Theorem 1 implies that there is some $\theta \in (0, 1)$ so that $\frac{f(a+h)-f(a)}{h} = f'(a+\theta h)$. This equation defines a function $\theta(h) : (0, \infty) \to (0, 1)$, and we have that $\lim_{h\to 0} \theta(h) = 1/2$.

Proof. Firstly,

$$\frac{f(a+h) - f(a)}{h} = \frac{(a+h)^3 - a^3}{h}$$
$$= \frac{a^3 + 3a^2h + 3ah^2 + h^3 - a^3}{h}$$
$$= 3a^2 + 3ah + h^2.$$

Meanwhile, $f'(a+\theta h) = 3(a+\theta h)^2 = 3a^2+6a\theta h+3\theta^2 h^2$. We therefore have that $3h^2\theta^2+6ah\theta+3a^2=3a^2+3ah+h^2$, which implies $3h^2\theta^2+6ah\theta-3ah-h^2=0$. The quadratic formula implies

$$\begin{split} \theta &= \frac{-6ah \pm \sqrt{36a^2h^2 - 4(3h^2)(-3ah - h^2)}}{6h^2} \\ &= \frac{-6ah \pm \sqrt{36a^2h^2 + 36ah^3 + 12h^4}}{6h^2} \\ &= \frac{-6ah \pm \sqrt{4h^2(9a^2 + 9ah + 3h^2)}}{6h^2} \\ &= \frac{-6ah \pm 2h\sqrt{9a^2 + 9ah + 3h^2}}{6h^2} \\ &= \frac{-3a \pm \sqrt{9a^2 + 9ah + 3h^2}}{3h}. \end{split}$$

Subtracting the square root will yield a negative number, so the $\theta \in (0, 1)$ that we are looking for is obtained by choosing to add the square root:

$$\theta = \frac{-3a + \sqrt{9a^2 + 9ah + 3h^2}}{3h}.$$

We see that the limit of the numerator is $\lim_{h\to 0}(-3a + \sqrt{9a^2 + 9ah + 3h^2}) = -3a + \sqrt{9a^2} = 0$, so we may apply Theorem 2 to compute the limit of θ as follows:

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{-3a + \sqrt{9a^2 + 9ah + 3h^2}}{3h}$$
$$= \lim_{h \to 0} \frac{9a + 6h}{6\sqrt{9a^2 + 9ah + 3h^2}}$$
$$= \frac{9a}{6\sqrt{9a^2}}$$
$$= \frac{9a}{18a}$$
$$= \frac{1}{2}.$$

Theorem 5. Let $f(x) = e^x$. Suppose that $a \in \mathbb{R}$ and h > 0. Theorem 1 implies that there is some $\theta \in (0,1)$ so that $\frac{f(a+h)-f(a)}{h} = f'(a+\theta h)$. This equation defines a function $\theta(h) : (0,\infty) \to (0,1)$, and we have that $\lim_{h\to 0} \theta(h) = 1/2$.

Proof. Firstly,

$$\frac{f(a+h) - f(a)}{h} = \frac{e^{a+h} - e^a}{h} = \frac{e^a(e^h - 1)}{h}$$

Meanwhile, $f'(a + \theta h) = e^{a+\theta h} = e^a e^{\theta h}$. We therefore have that $e^a(e^h - 1)/h = e^a e^{\theta h}$, which implies $e^{\theta h} = (e^h - 1)/h$. Since h > 0, the right side of the previous equation is positive, so we can take the natural logarithm of both sides of the equation and then divide both sides by h to obtain

$$\theta = \frac{\ln\left(\frac{e^h - 1}{h}\right)}{h}.$$

Theorem 2 implies

$$\lim_{h \to 0} \frac{e^h - 1}{h} = \lim_{h \to 0} e^h = 1.$$

Hence, the continuity of $\ln(x)$ implies

$$\lim_{h \to 0} \ln\left(\frac{e^h - 1}{h}\right) = \ln\left(\lim_{h \to 0} \frac{e^h - 1}{h}\right) = \ln(1) = 0.$$

We can therefore use Theorem 2 three more times to compute the limit of θ as follows:

$$\begin{split} \lim_{h \to 0} \theta &= \lim_{h \to 0} \frac{\ln\left(\frac{e^{h}-1}{h}\right)}{h} \\ &= \lim_{h \to 0} \left(\frac{h}{e^{h}-1}\right) \cdot \left(\frac{he^{h}-(e^{h}-1)}{h^{2}}\right) \\ &= \lim_{h \to 0} \frac{he^{h}-e^{h}+1}{h(e^{h}-1)} \\ &= \lim_{h \to 0} \frac{he^{h}+e^{h}-e^{h}}{he^{h}+(e^{h}-1)} \\ &= \lim_{h \to 0} \frac{he^{h}}{he^{h}+e^{h}-1} \\ &= \lim_{h \to 0} \frac{he^{h}+e^{h}}{he^{h}+e^{h}+e^{h}} \\ &= \frac{1}{2}. \end{split}$$

Theorem 6. Let $f(x) = \ln(x)$. Suppose that a, h > 0. Theorem 1 implies that there is some $\theta \in (0,1)$ so that $\frac{f(a+h)-f(a)}{h} = f'(a+\theta h)$. This equation defines a function $\theta(h) : (0,\infty) \to (0,1)$, and we have that $\lim_{h\to 0} \theta(h) = 1/2$.

Proof. Since f'(x) = 1/x, the equation in question is

$$\frac{\ln(a+h) - \ln(a)}{h} = \frac{1}{a+\theta h}$$

Taking reciprocals, we have

$$a + \theta h = \frac{h}{\ln(a+h) - \ln(a)},$$

and so

$$\theta h = \frac{h - a\ln(a+h) + a\ln(a)}{\ln(a+h) - \ln(a)},$$

hence finally

$$\theta = \frac{h - a\ln(a+h) + a\ln(a)}{h(\ln(a+h) - \ln(a))}$$

We see that the numerator and the denominator both converge to 0 as $h \to 0$, so we may apply Theorem 2 to compute the limit of θ .

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{h - x \ln(x + h) + x \ln(x)}{h(\ln(x + h) - \ln(x))}$$
$$= \lim_{h \to 0} \frac{1 - x \frac{1}{x + h}}{h \frac{1}{x + h} + (\ln(x + h) - \ln(x))}$$
$$= \lim_{h \to 0} \frac{\frac{x + h - x}{x + h}}{\frac{h + (x + h)(\ln(x + h) - \ln(x))}{x + h}}$$
$$= \lim_{h \to 0} \frac{h}{h + (x + h)(\ln(x + h) - \ln(x))}.$$

We see that we can apply Theorem 2 once more.

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{h}{h + (x+h)(\ln(x+h) - \ln(x))}$$
$$= \lim_{h \to 0} \frac{1}{1 + (x+h)\frac{1}{x+h} + (\ln(x+h) - \ln(x))}$$
$$= \lim_{h \to 0} \frac{1}{2 + \ln(x+h) - \ln(x)}$$
$$= \frac{1}{2}.$$

Theorem 7. Let $f(x) = \sqrt{x}$. Suppose that a, h > 0. Theorem 1 that there is some $\theta \in (0,1)$ so that $\frac{f(a+h)-f(a)}{h} = f'(a+\theta h)$. This equation defines a function $\theta(h): (0,\infty) \to (0,1)$, and we have that $\lim_{h\to 0} \theta(h) = 1/2$.

Proof 1. Since $f'(x) = 1/(2\sqrt{x})$, the equation in question is

$$\frac{\sqrt{a+h} - \sqrt{a}}{h} = \frac{1}{2\sqrt{a+\theta h}}.$$

After squaring both sides and then taking reciprocals, we have

$$4(a + \theta h) = \frac{h^2}{2a + h - 2\sqrt{a^2 + ah}}.$$

We then solve for θ to obtain

$$\begin{aligned} \theta &= \frac{h}{8a+4h-8\sqrt{a^2+ah}} - \frac{a}{h} \\ &= \frac{h^2 - a(8a+4h-8\sqrt{a^2+ah})}{h(8a+4h-8\sqrt{a^2+ah})} \\ &= \frac{h^2 - 8a^2 - 4ah + 8a\sqrt{a^2+ah}}{8ah+4h^2 - 8h\sqrt{a^2+ah}}. \end{aligned}$$

We see that the numerator and the denominator both converge to 0 as $h \to 0$, so we may apply Theorem 2 to compute the limit of θ .

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{h^2 - 8a^2 - 4ah + 8a\sqrt{a^2 + ah}}{8ah + 4h^2 - 8h\sqrt{a^2 + ah}}$$
$$= \lim_{h \to 0} \frac{2h - 4a + 8a\frac{a}{2\sqrt{a^2 + ah}}}{8a + 8h - 8h\frac{a}{2\sqrt{a^2 + ah}} - 8\sqrt{a^2 + ah}}$$
$$= \lim_{h \to 0} \frac{2h - 4a + 4a^2(a^2 + ah)^{-1/2}}{8a + 8h - 4ah(a^2 + ah)^{-1/2} - 8\sqrt{a^2 + ah}}.$$

We can again check that the conditions for Theorem 2 are satisfied.

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{2h - 4a + 4a^2(a^2 + ah)^{-1/2}}{8a + 8h - 4ah(a^2 + ah)^{-1/2} - 8\sqrt{a^2 + ah}}$$

=
$$\lim_{h \to 0} \frac{2 + 4a^2 \left(-\frac{1}{2}(a^2 + ah)^{-3/2}a\right)}{8 - \left[4ah \left(-\frac{1}{2}(a^2 + ah)^{-3/2}a\right) + 4a(a^2 + ah)^{-1/2}\right] - 8\frac{a}{2\sqrt{a^2 + ah}}}$$

=
$$\lim_{h \to 0} \frac{2 - 2a^3(a^2 + ah)^{-3/2}}{8 + 2a^2h(a^2 + ah)^{-3/2} - 8a(a^2 + ah)^{-1/2}}.$$

We see once more that we can apply Theorem 2.

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{2 - 2a^3(a^2 + ah)^{-3/2}}{8 + 2a^2h(a^2 + ah)^{-3/2} - 8a(a^2 + ah)^{-1/2}}$$

=
$$\lim_{h \to 0} \frac{3a^3(a^2 + ah)^{-5/2}a}{2a^2h\left[-\frac{3}{2}(a^2 + ah)^{-5/2}a\right] + 2a^2(a^2 + ah)^{-3/2} + 4a^2(a^2 + ah)^{-3/2}}$$

=
$$\lim_{h \to 0} \frac{3a^4(a^2 + ah)^{-5/2}}{-3a^3h(a^2 + ah)^{-5/2} + 6a^2(a^2 + ah)^{-3/2}}$$

=
$$\frac{1}{2}.$$

Proof 2. Since $f'(x) = 1/(2\sqrt{x})$, the equation in question is

$$\frac{\sqrt{a+h} - \sqrt{a}}{h} = \frac{1}{2\sqrt{a+\theta h}}.$$

We multiple both the numerator and the denominator on the left by $\sqrt{a+h} + \sqrt{a}$ to obtain

$$\frac{h}{h(\sqrt{a+h}+\sqrt{a})} = \frac{1}{\sqrt{a+h}+\sqrt{a}} = \frac{1}{2\sqrt{a+\theta h}}.$$

After squaring both sides, we have

$$\frac{1}{2a+h+2\sqrt{a^2+ah}} = \frac{1}{4(a+\theta h)},$$

which implies

$$4a + 4\theta h = 2a + h + 2\sqrt{a^2 + ah}$$

and so

$$4\theta h = h + 2\sqrt{a^2 + ah} - 2a$$

and finally we have

$$\theta = \frac{h + 2\sqrt{a^2 + ah} - 2a}{4h}.$$

We see that the numerator and the denominator both converge to 0, so me may apply Theorem 2 to compute the limit of θ .

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{h + 2\sqrt{a^2 + ah} + 2a}{4h}$$
$$= \lim_{h \to 0} \frac{1 + 2\frac{a}{2\sqrt{a^2 + ah}}}{4}$$
$$= \frac{1}{2}.$$

Theorem 8. Let $f(x) = \frac{1}{x}$. Suppose that a, h > 0. Theorem 1 implies that there is some $\theta \in (0,1)$ so that $\frac{f(a+h)-f(a)}{h} = f'(a+\theta h)$. This equation defines a function $\theta(h): (0,\infty) \to (0,1)$, and we have that $\lim_{h\to 0} \theta(h) = 1/2$.

Proof. Firstly, we have that

$$\frac{f(a+h) - f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a - (a+h)}{a(a+h)}}{h} = \frac{\frac{-h}{a^2 + ah}}{h} = \frac{-h}{h(a^2 + ah)} = \frac{-1}{a^2 + ah}$$

Meanwhile, $f'(x) = -1/x^2$, so

$$f'(a + \theta h) = \frac{-1}{(a + \theta h)^2} = \frac{-1}{a^2 + 2a\theta h + \theta^2 h^2}$$

The equation in question is therefore

$$\frac{-1}{a^2+ah}=\frac{-1}{a^2+2a\theta h+\theta^2 h^2}$$

which implies $h^2\theta^2 + 2ah\theta - ah = 0$. The quadratic formula implies

$$\begin{split} \theta &= \frac{-2ah \pm \sqrt{4a^2h^2 - 4(h^2)(-ah)}}{2h^2} \\ &= \frac{-2ah \pm \sqrt{4a^2h^2 + 4ah^3}}{2h^2} \\ &= \frac{-2ah \pm 2h\sqrt{a^2 + ah}}{2h^2} \\ &= \frac{-a \pm \sqrt{a^2 + ah}}{h}. \end{split}$$

Since choosing the negative square root will yield a negative number, we know that since θ is positive, we must choose the positive square root. We then see that the conditions of Theorem 2 are satisfied, so we can use it to compute the limit of θ .

$$\lim_{h \to 0} \theta = \lim_{h \to 0} \frac{-a + \sqrt{a^2 + ah}}{h}$$
$$= \lim_{h \to 0} \frac{a}{2\sqrt{a^2 + ah}}$$
$$= \frac{1}{2}.$$

References

[1] George Finlay Simmons. *Calculus with Analytic Geometry*. 2nd ed. McGraw-Hill, 1996.