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De Broglie geometry on Zeeman manifolds: A new non-perturbative approach to the infinities of
QED (Review of the scalar theory)

Zoltán Imre Szabó ∗

Lehman College and Graduate Center of the City University of New York†

In de Broglie geometry the Hilbert space, where the Hamilton operator acts, is decomposed into invariant
subspaces, alias zones, which are separately investigated both from mathematical and physical points of views.
The points are non-existing objects on a zone. They rather appear as wave packets (point spreads) there. This
implies that also the particles living in a zone are extended ones. Rigorous mathematics shows that quantities
appearing as infinities on the total Hilbert space are finite ones on the zonal setting. It is well known that the
appearance of infinities in the quantum theory is ultimately due to contradictory concepts such as the point
mass and/or point charge. De Broglie geometry ostracizes these infinities by throwing out the point concept and
compelling the particles to spread out all over the whole space.

Since these zonal particles can locally interact with the magnetic field present in the AB-solenoid, this model
gives a relativistically satisfactory explanation for the Aharanov Bohm effect. The zones are constructed with
particular vector potentials. General vector potentials do not define zonal decomposition, thus the zonal structure
is not a gauge-invariant concept. The zones attribute physical meaning to the potential by which they are
constructed.

PACS numbers: 11.15.Tk, 12.20.-m

I. INTRODUCTION.

This paper consists of two parts. In the first one the
Zeeman-Hamilton operator of free charged particles orbiting
in a constant magnetic field is established as the Laplacian on
a Riemannian, called, Zeeman manifold. The 2D version of
this Hamiltonian, introduced by Landau (1928), appears as the
Laplacian on a 3D time-periodic Heisenberg group endowed
with the natural left-invariant metric.The most general version
of Zeeman manifolds are defined, in this paper, on center pe-
riodic 2-step nilpotent Lie groups. This paper explores the
physical contents offered by this most natural mathematical
model. No other objects will be involved into investigations.

The constant magnetic field defined by the invariant Rie-
mannian metric determines a unique inertia system, along
with self-time, for each particle, in which the field has van-
ishing electric field E. This constant magnetic field, so to
speak, furnishes this model with relativistic features, relat-
ing it to Dirac’s relativistic multi-time model. It is remark-
able that this model leads to probabilistic quantum theory
working with positive probabilities defined just on the space.
Dirac’s relativistic electron theory, which is not the same as
his multi-time theory, establishes such positive probabilities
on the Minkowski space time. This idea was sharply criti-
cized by Pauli, according to whom such probabilistic theory
makes sense only on the space. The problem is that no clear
descending from the space time level to the space is offered by
the Minkowski geometry. It can be defined, however, in our
model. The transmission from the whole group (space multi-
time) to the space is called Pauli transmission. This concept
is nothing to do with the Riemannian submersion theory.
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The second theme of the paper involves and further devel-
ops the Fock-Bargmann theory on Zeeman manifolds. The
FB-representation of the complex Heisenberg group is orig-
inally considered only on the Fock space, generated by the
holomorphic polynomials in the total space of complex val-
ued functions. No other invariant subspaces of this reducible
representation have been investigated in the literature so far.
This paper explores all irreducible subspaces, called Zeeman
zones, of the FB-representation. This zonal spectral analy-
sis includes the explicit description of various zonal objects
such as the projection kernels, the zonal spectra, and the zonal
Wiener- resp. Schrödinger-flows. The most surprising result
is that both zonal flows are of the trace class, defining the
zonal partition and zeta functions in the standard way, by us-
ing no renormalization. Even the zonal Feynman measures on
the path-space are well defined. In other words, quantities ap-
pearing as infinities on the global level are well defined finite
ones on the zonal setting.

II. ZEEMAN MANIFOLDS

A. Zeeman-Hamilton operators.

The classical Zeeman operator of a charged particle is

HZ = −
h̄2

2µ
∆−

h̄eB
2µci

Dz •+
e2B2

8µc2 (x2 + y2)+ eV, (1)

where V is the Coulomb potential originated from the nucleus
(for free particles V = 0 holds). This operator is usually con-
sidered on the 3-space. The free particle operator restricted
onto the (x,y)-plane (i. e., V = 0 and ∆ is the Euclidean
Laplacian on R2) is called Landau Hamiltonian. This paper
proceeds with this version of the Zeeman operator. Operator
Dz• = x∂y − y∂x is the so called angular momentum operator.
The Dz• commutes with the rest part, O, of the complete op-
erator, thus the spectrum appears on common eigenfunctions.
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I. e., the Dz• splits the spectral lines of O which phenomena
is associated with the Zeeman effect. Actually, the HZ is the
Hamilton operator of an electron orbiting about the origin of
the (x,y)-plane in a constant magnetic field K = B∂z. The 3D-
version can be established by means of the Maxwell equations
and the real Heisenberg group representation. To establish the
Landau Hamiltonian, one can use the Fock-Bargmann repre-
sentation of the complex Heisenberg group. The next con-
siderations proceed with the Landau version of the Zeeman
operator defined over a complex vector space Ck/2 = Rk.

B. Mathematical modeling: Zeeman manifolds.

Interestingly enough, the Landau operator, HZ , can be iden-
tified with the Laplace operators of two step nilpotent Lie
groups endowed with the natural left invariant metrics. As
far as the author knows, this interpretation is unknown in the
literature. A 2-step nilpotent metric Lie group is defined on
the product v⊕z of Euclidean spaces, where the components,
v = Rk and z = Rl , are called X- and Z-space respectively.
The Lie algebra is completely determined by the linear space,
Jz, of skew endomorphisms acting on the X-space defined by
〈[X ,Y ],Z〉 = 〈JZ(X),Y 〉, where X ,Y ∈ v and JZ is the endo-
morphism associated with Z ∈ z. The metric, g, is the left
invariant extension of the natural Euclidean metric on the Lie
algebra. The exponential map identifies the Lie algebra with
the group. Thus also the group can be considered such that it
is defined on the same vector space. By this identification, a
point is represented by (X ,Z) also on the group.

Particular 2-step nilpotent Lie groups are the Heisenberg-
type groups, introduced by Kaplan [K], defined by endomor-
phism spaces satisfying the Clifford condition J2

Z = −|Z|2id.
These metric groups are attached to Clifford modules, thus
the classification of these modules provides classification also
for the H-type groups. In this case the X-space decomposes
into the product v = (Rr(l))a+b = Rr(l)a ×Rr(l)b. Endomor-
phisms JZ are defined by endomorphisms jZ acting on the
smaller space Rr(l). Namely, the JZ acts on Rr(l)a resp. Rr(l)b

as jZ ×·· ·× jZ resp. − jZ ×·· ·×− jZ . The H-type groups are
denoted by H(a,b)

l
, indicating the above decomposition.

The Laplacians on H-type groups are of the form

∆ = ∆X +(1+
1
4
|X |2)∆Z +

r

∑
α=1

∂α Dα•, (2)

where Dα• denotes directional derivatives along the fields
Jα(X) = JZα

(X) and {Zα} is an orthonormal basis on the Z-
space. This operator is not the Landau operator yet. It appears,
however, on center periodic H-type groups, Γ\H, defined by
factorizing the center of the group with a Z-lattice Γ = {Zγ}.
In fact, in this case the L2 function space is the direct sum
of function spaces Wγ spanned by functions of the form
Ψγ(X ,Z) = ψ(X)e2πi〈Zγ ,Z〉. Each Wγ is invariant under the ac-
tion of the Laplacian, i. e., ∆Ψγ(X ,Z) = 2γ ψ(X)e2πi〈Zγ ,Z〉,
where operator 2γ , acting on L2(v), is of the form

2γ = ∆X +2πiDγ •−4π2|Zγ |
2(1+

1
4
|X |2). (3)

Notice that the Landau Hamiltonian can be identified with
HZ = −(1/2)2γ , defined for the 3D-Heisenberg group, by
choosing the constants in the form µ = h̄ = 1,π|Zγ | = λ =
eB/2c. However, operator (3) contains also the surplus con-
stant 4π2|Zγ |

2 = 4λ 2, which does not appear in the Landau
Hamiltonian. This constant can be interpreted as the total en-
ergy of the field attached to a zonal particle. On a (k + 1)-
dimensional Heisenberg group, defined by a complex struc-
ture J acting on the even dimensional Euclidean space v = Rk,
number k/2 is interpreted as the number of particles repre-
sented by the system. The Zeeman operator appears as Lapla-
cian on general center periodic 2-step nilpotent Lie groups in a
bit more complex form. The k/2 particles, represented by this
model, are orbiting in their own constant magnetic fields. The
system can be in crystal states represented by the endomor-
phisms Jγ . The Hamilton operators belonging to these crystal
states are − 1

22γ .
There is described in the Introduction how this model can

be associated with Dirac’s famous multi-time theory, which,
in order to establish a relativistic quantum theory, attributed
self-time to the particles. The unique inertia system and self
time is defined for each crystal state associated with Zγ sepa-
rately. The line spanned by Zγ and parametrized by the arc-
length t can be interpreted as the self-time axis in the inertia
system. By considering this construction on the non-periodic
group for each element Z of the center, operator (2) can be
interpreted as the Gordon-Klein operator on this relativistic
model.

Pauli’s criticism of Dirac’s relativistic electron equation
shows that an adequate relativistic space-time model on
the quantum level requires substantial modification of the
Minkowski space-time concept. Particularly, he was missing
a transmission by which one can descend from the space time
level to the space level. Our model solves this problem by
a canonical choice of a unique inertia system by means of
the constant magnetic field defined by the invariant Rieman-
nian metric. The physical system is described in this iner-
tia system. The above construction clearly demonstrates the
Pauli transmission of the Gordon-Klein operator (2), which
still contains operations regarding the Z-variables, to the Lan-
dau Hamiltonian, (3), acting on functions depending just on
the X-variable. The operations regarding the center variables
can be eliminated because the Fourier functions defined by
the lattice Γ on the center are eigenfunctions of operators ∆Z
and ∂α . Note that this transmission is established for any in-
variant subspace Wγ separately by the map πγ : Wγ → H ;
πγ : Ψγ(X ,Z) → ψ(X), where Hilbert space H consisting
functions depending just on the X-variable is introduced in
the next paragraph. The probabilistic quantum theory is es-
tablished by the Landau Hamiltonian, which defines positive
probabilities on the X-space.

This paper deals also with the corresponding theory on the
non-periodic groups. The Riemannian manifolds introduced
so far are prototypes of a general Zeeman manifold concept.
This general concept is beyond the scope of this review. The
Riemannian manifolds depicted above aroused, originally, in
constructing isospectral isospctral manifolds with different lo-
cal geometry [Sz1]-[Sz4]. The isospectrality deformations in-
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troduced in these papers will be used to develop a theory of
symmetries on the quantum level.

III. NORMAL DE BROGLIE GEOMETRY

A. Introducing the zones.

The Laplacian 2λ acts on complex valued functions de-
fined on the X-space. In what follows the investigations are
performed on the X-space by considering the Laplacian 2 for
a fixed lattice point Zγ . There is described in Section III E that
how these considerations can be “transported” to the whole
(X,Z)-space.

The Hilbert space, H , of the L2-functions is isomorphic to
the weighted space defined by the Gauss density dηλ (X) =

e−λ |X |2dX . The latter space is spanned by the complex valued
polynomials. Next H is considered in this form. The natural
complex Heisenberg group representation on H is defined by

ρc(zi)(ψ) = (−∂zi
+λ zi·)ψ , ρc(zi)(ψ) = ∂zi

ψ, (4)

where {zi} is a complex coordinate system on the X-space.
This representation is reducible. In fact, it is irreducible on
the Fock space generated by the holomorphic polynomials.
There it is called Fock-Bargmann representation. Besides the
Fock space there are infinitely many other irreducible invari-
ant subspaces. The above representation is called extended
Fock-Bargmann representation. In the function operator cor-
respondence, this representation associates operator (1) to the
Hamilton function of an electron orbiting in constant magnetic
field.

The zones are defined in two different ways. First, they
can be defined by the invariant subspaces of representation
(4). The actual construction uses Gram-Schmidt orthogonal-
ization. On the complex plane v = C, corresponding to the
2D Landau operator, the H is the direct sum of subspaces
G(a) spanned by functions of the form zah, where h is an arbi-
trary holomorphic polynomial. Then one gets the zones H (a),
where a = 0,1,2, . . . , by the Gram-Schmidt orthogonalization
process applied to the function spaces G(a). It is clear that the
first zone, H (0), is the Fock space. The zone index a indicates
the maximal number of the antiholomorphic coordinates z in
the polynomials spanning the zone.

One of the referees of [Sz6] pointed out to me that the poly-
nomials produced by this constructions were considered also
by Itô [I] in the context of complex Markov processes. In fact,
Itô defines the Hermite polynomials of complex variables for
p,q = 0,1,2, . . . by the explicit formula

Hpq(z,z)=
p∧q

∑
n=0

(−1)n |p|q

|n|p−n|q−n
zp−nzq−n, p∧q = min(p,q).

(5)
In the 2D case, they form an orthonormal basis in H defined
for λ = 1. In this formalism, the zones are spanned by poly-
nomials belonging to fixed values of q, i. e., the q corresponds
to the zone index a in our formalism.

The construction with the Gram Schmidt orthogonalization
easily extends to general dimensions. Gross zone H (a) is

constructed by means of all polynomials z(a1)
1

. . .z
(ak/2)

k/2
satis-

fying a1 + · · ·+ ak/2 = a. This gross zone is the direct sum

of the subzones H
(a1...ak/2) defined for the particular values

a1, . . . ,ak/2. In the 2D-case all the zones are irreducible under
the action of the extended Fock-Bargmann representation. In
the higher dimensions, however, the gross zones are reducible
and the subzones are irreducible. Note that the holomorphic
(Fock) zone is always irreducible. For the sake of simplicity,
all the formulas below are established on the gross zones.

The second technique explores that the zones are in-
variant under the action of the Laplacian and defines
the very same zones by computing the spectrum and
the corresponding eigenfunctions explicitly. According to
these computations, the eigenfunctions appear in the form
h(p,υ)(X) = H(p,υ)(X)e−λ |X |2/2 with the corresponding eigen-
values −((4p + k)λ + 4kλ 2), where p resp. υ are the holo-
morphic resp. antiholomorphic degrees of polynomial H (p,υ).
Numbers l = p + υ and m = 2p− l are called azimuthal and
magnetic quantum numbers (AQN and MQN) respectively.
The above function is an eigenfunction also of the magnetic
dipole moment operator with eigenvalue m. Then a zone is
spanned by eigenfunctions having the same index υ . Accord-
ing to the formula υ = 1

2 (l −m), the zones are determined
by the magnetic quantum number m. Thus a zone exhibits
the magnetic state of the particle. Note that eigenvalues are
independent of the antiholomorphic index and they depend
just on the holomorphic index. As a result, each eigenvalue
has infinite multiplicity. On the irreducible zones, however,
each multiplicity is k/2. Moreover, two irreducible zones are
isospectral.

It is noteworthy that the above spectrum computation is not
the standard one, where the eigenfunctions are sought in the
form f (|X |)G(l), where G(l) is an lth-order homogeneous har-
monic polynomial. Indeed, in the 2D case, the homogeneous
harmonic polynomials are of the form zp or zq which shows
the differences between the two calculations. In [Sz6] the
eigenfunctions are explicitly computed in both ways. In quan-
tum theory the azimuthal quantum number is defined by the
order of G. Thus it is different from the above AQN which in-
volves some contribution also from the radial part. However,
one defines the very same magnetic quantum numbers in both
ways.

It is very intriguing that functions (5) are eigenfunctions of
the Landau Hamiltonian. (This statement is not quite obvious
and the presentations given in (5) and [Sz6] should be consid-
ered as equivalent and not the same ones.) As it is pointed out
by the above referee, the motivation for these polynomials in
Itô’s work is quite different and this connection between the
two fields seems to be unknown in the literature. This is prob-
ably due to the standard computational techniques applied in
spectral theory by which Itô’s polynomials are not “visible”.
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B. Projection kernels and point-spreads.

In the literature only the projection onto the Fock space
H (0) is well known, which turned out to be a convo-
lution operator with the so called Fock-Bargmann kernel
(λ/π)k/2eλ (z·w− 1

2 (|z|2+|w|2). Our theory, developed in [Sz5,
Sz6], explicitly determines the projection also onto a general
zone H (a), regarding of which the projection kernel is

δ (a)
λ z

(w) = (λ/π)k/2L((k/2)−1)
a (λ |z−w|2)eλ (z·w− 1

2 (|z|2+|w|2),

(6)
where L((k/2)−1)

a (t) is the Laguerre polynomial indicated by
the indexes. To have this formula, consider an orthonor-
mal basis {ϕ (a)

i
}∞

i=1 formed by eigenfunctions being in H (a).
The projection kernel can be formally expressed in the form

δ (a)(z,w) = ∑i ϕ(a)
i

(z)ϕ(a)
i

(w), where z and w represent com-

plex vectors on C
k
2 = Rk. Then the formula can be established

by means of the explicit eigenfunctions. These kernels can be
interpreted as restrictions of the global Dirac delta distribu-
tion, δz(w) = ∑ϕi(z)ϕ i(w), onto the zones.

These kernels represent one of the most important concepts
in this theory. They can be interpreted such that, on a zone,
a point particle appears as a spread described by the above
wave-kernel. Note that how these kernels, called zonal point-
spreads, are derived from the one defined for the holomor-
phic (Fock) zone. This holomorphic spread, which involves a
Gauss function, is just multiplied by the radial Laguerre poly-
nomial corresponding to the zone. This form of the functions
describing the point-spreads show the most definite similarity
to the de Broglie wave packets. In a rigorous theory, function

δ (a)
λZ

δ (a)
λZ is the density of the point-spread concentrated around

Z and δ (a)
λZ

is the so called spread-amplitude. On a given zone
the point-spreads are the most compressed wave packets, yet
they are distributed all over the whole space. This zonal par-
ticle theory gives a clear explanation for the Aharanov-Bohm
(AB) effect [AB] as well as other phenomenas described in
[Sz5].

The AB effect produces relative phase shift between two
electron beams enclosing a magnetic flux even if they do not
touch the magnetic field. This effect has no explanation in
the classical mechanics and it contradicts even the relativistic
principle of all fields must interact only locally. Yet, this effect
was clearly demonstrated by the Tonomura et al experiments
[T1, T2].

Although the point electrons do not touch the fields, the
vector potential involved into the Hamilton operator of the
system does reach there. Exploiting this phenomena, Aha-
ranov and Bohm explained the effect by the “significance of
electromagnetic potentials in the quantum theory”. In clas-
sical physics this potential is considered to be a mere math-
ematical convenience which is completely meaningless from
physical point of view. In de Broglie geometry the zonal par-
ticles are extended ones which must touch the magnetic field,
which is a clear enough explanation for the AB effect. Since
the zones are defined by a particular vector potential, this ex-
planation is in accordance with the Aharanov-Bohm idea. In-

deed, the vector potential is not just a mathematical conve-
nience any more but it is one of the important physical objects
by which the zonal structure is defined.

Despite the clear demonstration that the experiments were
performed under the condition of complete confinement of the
magnetic field in the magnet, some physicists have questioned
the validity of the tests, attributing the phase shift to leak-
age fields. The electron spread idea developed in this paper
can be interpreted such that not the magnetic field but “the
electrons are leaking”. By the uncertainty principle, it is im-
possible to design an apparatus to determine the leakage of
electrons, that will not at the same time disturb the electrons
enough to destroy the interference pattern demonstrating the
AB effect. Thus our reasoning for explaining the AB effect is
indisputable, both logically and experimentally.

C. Global Wiener- and Schrödinger-flows.

In order to continue with the zonal analysis, first, we de-
scribe the global flows, defined on the total Hilbert space H .
The global Wiener-flow, e−tHZ (t,X ,Y ), appears in the follow-
ing explicit form:

( λ
2πsinh(λ t)

)k/2
e−λ ( 1

2 coth(λ t)|X−Y |2+i〈X ,J(Y )〉. (7)

This kernel satisfies the Chapman-Kolmogorov identity and it
tends to δ (X ,Y ) when t → 0+. However, it is not of the trace
class, thus functions such as the partition function or the zeta
function are not defined in the standard way. Also note that by
regularization (renormalization) only well defined relative(!)
partition and zeta functions are introduced.

The global Schrödinger kernel, e−tiHZ (t,X ,Y ), appears in
the following explicit form:

( λi

2πisin(λ t)

)k/2
eiλ{ 1

2 cot(λ t)|X−Y |2−〈X ,J(Y )〉}. (8)

Since for fixed t and X the function depending on Y is not L2,
the integral required for the Chapman-Kolmogorov identity is
not defined for this kernel. Neither is this kernel of the trace
class. Nevertheless, it satisfies the above limit property when
t → 0+.

It is well known that rigorously defined measure on the
path-spaces can be introduced only with the Wiener kernel
e−tH . Note that the heat kernel involves a Gauss density which
makes this constructions possible. Whereas, the Schrödinger
kernel does not involve such term. This is why no well defined
constructions can be carried out with this kernel. These diffi-
culties disappear, however, by considering these constructions
on the zones separately.

D. Zonal Wiener- and Schrödinger-flows.

The zones are invariant with respect to the action of the
Hamilton (Laplace) operator, thus the zonal flows are well de-
fined on each zone. The zonal Wiener-kernels are of the trace
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class, which can be described by the following explicit formu-
las.

e−tH(0)
Z =

(λe−λ t

π
)

k
2 eλ (− 1

2 (|X |2+|Y |2)+e−2λ t 〈X ,Y+iJ(Y )〉), (9)

e−tH(a)
Z = L

( k
2−1)

a (t,X ,Y ))e−tH(0)
Z (t,X ,Y ), (10)

where L
( k

2−1)
a can be explicitly computed in terms of the re-

garding Laguerre polynomial and e−2t . Furthermore, for the

zonal partition function, Tre−tH(a)
Z , we have

Z
(a)

1
(t) =

(

a+(k/2)−1
a

)

e−
kλ t
2 /(1− e−2λ t)

k
2 . (11)

Also the zonal Schrödinger kernels are of the trace class
which, together with their partition functions, can be de-
scribed by the following explicit formulas.

e−tiH(0)
Z =

(λe−λ ti

π
)

k
2 eλi(−

1
2 (|X |2+|Y |2)+e−2λiti〈X ,Y+iJ(Y )〉), (12)

e−tiH(a)
Z = L

( k
2−1)

ia
(t,X ,Y ))e−tiH(0)

Z (t,X ,Y ), (13)

Z
(a)

i
(t) =

(

a+(k/2)−1
a

)

e−
kλ ti

2 /(1− e−2λ ti)
k
2 (14)

The zonal Schrödinger-kernels are zonal fundamental solu-
tions of the Schrödinger equation, satisfying the Chapman-
Kolmogorov identity and tending to δ (a) when t → 0+.

On the zones the W- and the Sch-kernels are not just of
the trace class. They both define, rigorously, complex zonal
measures, the zonal Wiener measure dwT (a)

1xy
(ω) and the zonal

Feynman measure dwT (a)
ixy

(ω), on the space of continuous

curves ω : [0,T ]→ Rk connecting two points x and y. The ex-
istence of zonal W-measure is not surprising, since this mea-
sure exists even for the global setting. However, the trace class
property is a new feature, indeed. In case of the zonal Feyn-
man measure both the trace class property and the existence of
rigorously defined zonal Feynman measures are new features
indeed. Note that also the zonal Sch-kernels involve a Gauss
kernel which makes these constructions well defined.

E. The non-periodic zones defined by Fourier-averaging.

On center periodic 2-step nilpotent Lie groups the invari-
ant subspaces Wγ , defined for a lattice point Zγ by functions
of the form Ψγ(X ,Z) = ψ(X)e2πi〈Zγ ,Z〉, is identified, by the
map Ψγ → ψ , with function space H consisting of functions
depending just on the X-variable. Although the zonal decom-
position is established on H , it depends on γ and it lives,
actually, on Wγ . By considering this zonal decomposition on
each Wγ , it lives on L2(Γ\H).

Such simple reduction to the X-space is not possible on
non-periodic groups. Unlike in the periodic case, where the
zonal functions involve just one function, e2πi〈Zγ ,Z〉, which de-
pend on the Z-variable, the zonal functions in a zone on the

non-periodic manifolds involve all the functions which de-
pend on the Z-variable. Next we describe this construction
just on the H-type groups.

In the first step, for any unit vector Vu of the Z-space, con-
sider a complex orthonormal basis {QVu1, . . . ,QVuk/2} on the
complex X-space defined by the complex structure JVu

which
defines the complex coordinate system {zVu1, . . . ,zVuk/2} on
the X-space. This basis field must be smooth on an every-
where dense open subset of the unit Z-sphere such that it
is the complement of a set of 0 measure. For given values
a1, . . . ,ak/2 satisfying a1 + · · ·+ ak/2 = a consider the zone,

H
(a1...ak/2)

Vu
, defined by z(a1)

Vu1
. . .z

(ak/2)

Vuk/2
by the Gram Schmidt

orthogonalization. Then the straight zone, S
(a1...ak/2), is

spanned by functions of the form
∫

Rl ei〈Z,V 〉φ(V )h
(a1...ak/2)

Vu
dV,

where φ(V ) is an L2-function defined on the Z-space Rl and

h
(a1...ak/2)

Vu
is eigenfunction (Itô-function) from the correspond-

ing zone H
(a1...ak/2)

Vu
.

It can be shown that the L2 Hilbert space on the whole
group H is the direct sum of the straight zones S

(a1...ak/2).
The spectral investigations on these zones are much more
complicated then on the zones defined for center periodic
groups. For indicating the difficulties we mention that the
eigenfunctions of the Gordon-Klein Laplacian ∆ are of the

form
∮

SRZ

ei〈Z,V 〉φ(V )h
(a1...ak/2)

Vu
dV, where SRZ

is a sphere of

radius RZ around the origin of the Z-space and φ(V ) is an L2-
function defined on this sphere. This formula shows that the
spectrum of the operator is continuous and each eigenvalue
has infinite multiplicities. The spectral analysis with such a
complicated spectrum will be developed elsewhere.

F. Infinities in Quantum Electrodynamics.

The problem of infinities (divergent integrals), which is
present in calculations since the early days of quantum field
theory (cf. Heisenberg-Pauli (1929-30)) or elementary par-
ticle physics (cf. Oppenheimer (1930) and Waller (1930) in
electron theory), is treated by renormalization in the current
theories. This perturbative tool provides the desired finite
quantities by differences of infinities. This problem is the
legacy of controversial concepts such as point mass and point
charge of classical electron theory, which provided the first
warning that a point electron will have infinite electromag-
netic self-mass: the mass e2/6πac2 for a surface distribution
of charge with radius a blows up for a → 0.

The infinities, related to the divergence of the summations
over all possible distributions of energy/momentum of the vir-
tual particles, mostly appear in the form of infinite traces of
kernels such as the W-kernel e−tH or the Sch-kernel e−tHi.
The new non-perturbative approach, described in this paper,
to the problem of infinities is called de Broglie geometry. This
name readily suggests that a point, x, is a non-existing object
on a zone. It rather appears there as a point spread defined by
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projecting the Dirac delta, δx, onto the zone. I. e., a point be-
comes a wave packet on a zone whose explicit form exhibits
its very close kinship to the de Broglie waves. In a sense, de
Broglie geometry ostracizes the infinities by exchanging the
points for wave packets. This paper reviews the first part of

a mathematically complete theory [Sz6]. This theory extends
to Anomalous de Broglie Geometry, established for the Pauli-
Dirac operator, as well as to Bounded Particle Theory, where
the Coulomb potential is eliminated and replaced by potentials
defined by the curvature on the X-space.
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