Results and conjectures on the "size" of the space of smooth functions on a compact manifold.

Ralph Howard Department of mathematics University of South Carolina Columbia, SC, 29208

Let M be a smooth compact manifold and let $C^{\infty}(M)$ be the space of all real (or if it is convenient complex) valued functions on M. Fix a Riemannian metric on M and let Δ be the Laplacian on M with the sign chosen so that Δ is a positive semi-definite operator. For $k \geq 0$ define $q_k : C^{\infty}(M) \to [0, \infty)$ by

$$q_k(u) = \| (I + \Delta)^{k/2} u \|_{L^2(M)}.$$

Then the collection of semi-norms $\{q_k\}_{k=1}^{\infty}$ defines a Fréchet topology on $C^{\infty}(M)$. This topology is independent of the choice of the Riemannian metric on M and is the standard topology on $C^{\infty}(M)$.

Definition. If M and N are smooth compact Riemannian manifolds. Then a linear operator $L: C^{\infty}(M) \to C^{\infty}(N)$ is **of finite order** iff there is an integer ℓ , the **order** of L, so that for all k, there is $C_k > 0$ such that

$$q_k(Lu) \le C_k q_{k+\ell}(u)$$

for all $u \in C^{\infty}(M)$.

Proposition. Given any two compact Riemannian manifolds M and N (with no restrictions on the dimensions) there is an injective linear $L: C^{\infty}(M) \to C^{\infty}(N)$ of order 0. In fact L can be taken to be a an integral operator with smooth kernel.

This gives counterexamples to a conjecture of mine that if $\dim M > \dim N$, then the kernel of L must be infinite dimensional. The goal had been to explain why the Radon transforms $R: C^{\infty}(\mathbf{Gr}_{j}(\mathbf{R}^{n})) \to C^{\infty}(\mathbf{Gr}_{k}(\mathbf{R}^{n}))$ between function spaces on Grassmann manifolds have infinite dimensional kernels when $\dim \mathbf{Gr}_{j}(\mathbf{R}^{n}) > \dim \mathbf{Gr}_{k}(\mathbf{R}^{n})$ by a method independent of representation theory that would generalize to geometric transforms not related to group actions.

The following would make the intuitive idea that $C^{\infty}(M)$ is somehow "larger" than $C^{\infty}(N)$ when dim $M > \dim N$.

Conjecture. Let $A: C^{\infty}(M) \to C^{\infty}(N)$ and $B: C^{\infty}(N) \to C^{\infty}(M)$ be linear operators each of finite order with

$$AB = I_{C^{\infty}(M)}$$
 and $BA = I_{C^{\infty}(N)}$

Then $\dim M = \dim N$.

This is known to be false if the condition that A and B have finite order is dropped. More details and a proof of the proposition above can be found at http://www.math.sc.edu/~howard/Notes/counterexample.pdf.