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II. The kinetic formulation of the skeleton equation

The skeleton equation: in the case of the zero range process,

@t⇢ = ��(⇢)�r · (�
1
2 (⇢)g) in Td ⇥ (0, T ),

for an L
2
-control g 2 (L

2
t,x)

d
. We specialize to the case, for some ↵ 2 (0,1),

@t⇢ = �⇢
↵ �r · (⇢

↵
2 g).

The kinetic formulation: for � = 1{0<⇠<⇢} � 1{⇢<⇠<0},

@t� = ↵⇠
↵�1

��+ @⇠q � @⇠(⇠
↵
2 g ·r�) +r · (⇠

↵
2 (@⇠�)g),

for a locally finite, nonnegative measure q on Td ⇥ R⇥ [0, T ] with

q � �⇢(↵⇠
↵�1|r⇢|2).
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II. The kinetic formulation of the skeleton equation

A renormalized kinetic solution of the skeleton equation

A nonnegative function ⇢ 2 C([0, T ];L
1
(Td

)) is a renormalized kinetic solution of the

skeleton equation if there exists a nonnegative, locally finite measure q on

Td ⇥ R⇥ [0, T ] such that ⇢ and q satisfy the following four properties.

— Preservation of mass: k⇢(x, t)k
L1(Td) = k⇢0kL1(Td) for every t 2 [0, T ].

— Local H1-regularity:
�
(⇢ ^K) _ 1

K

�
2 L

2
([0, T ];H

1
(Td

)) for every K 2 N.
— Regularity and vanishing of the measure at infinity: we have that

�⇢

�
↵⇠

↵�1|r⇢|2
�
 q and lim inf

M!1
q(Td ⇥ [M,M + 1]⇥ [0, T ]) = 0.

— The equation: for every  2 C
1
c (Td ⇥ (0,1)) and t 2 [0, T ],

ˆ
Td
� 

���
s=t

s=0
= �

ˆ
t

0

ˆ
Td
↵⇢

↵�1r⇢ · (r )(x, ⇢)�
ˆ

t

0

ˆ
Td

ˆ
R
(@⇠ )(x, ⇠)q

+

ˆ
t

0

ˆ
Td
(@⇠ )(x, ⇢)⇢

↵
2 g ·r⇢+

ˆ
T

0

ˆ
Td
⇢

↵
2 g · (r )(x, ⇢).

— we have that lim�!0

�
�
�1

q
�
Td ⇥ (

�

2 ,�)⇥ [0, T ]
��

= 0.
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II. The kinetic formulation of the skeleton equation

Well-posedness of renormalized kinetic solutions [F., Gess; 2023]

Let T 2 (0,1), d 2 N, and let � 2 C
1
loc((0,1)) \ C([0,1)) satisfy that

— �(0) = 0 with �
0
> 0 on (0,1),

— �
0
is locally 1/2-Hölder continuous on (0,1),

— and max{0<⇠M}
�(⇠)
�0(⇠)  cM .

Then for every nonnegative ⇢0 2 L
1
(Td

) there exists a unique renormalized kinetic

solution of the equation

@t⇢ = ��(⇢)�r · (�
1
2 (⇢)g) in Td ⇥ (0, T ) with ⇢(·, 0) = ⇢0.

Furthermore, if ⇢1 and ⇢2 are two solutions with initial data ⇢1,0 and ⇢2,0, then

max
t2[0,T ]

k⇢1(x, t)� ⇢2(x, t)kL1(Td) = k⇢1,0 � ⇢2,0kL1(Td) .

— including �(⇠) = ⇠
↵
for every ↵ 2 (0,1), for which

@t⇢ = �⇢
↵ �r · (⇢

↵
2 g).
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III. Weak solutions of the skeleton equation

The skeleton equation: @t⇢ = �⇢
↵ �r · (⇢↵

2 g) = 2r · (⇢↵
2 r⇢↵

2 )�r · (⇢↵
2 g).

Weak solutions of the skeleton equation

A weak solution of the skeleton equation is a nonnegative ⇢ 2 C([0, T ];L
1
(Td

)) that

satisfies the following two properties.

— The entropy estimate: we have that

⇢
↵
2 2 L

2
([0, T ];H

1
(Td

)).

— for every  2 C
1
(Td

) and t 2 [0, T ],

ˆ
Td
⇢(x, s) (x)

���
s=t

s=0
= �2

ˆ
t

0

ˆ
Td
⇢

↵
2 r⇢

↵
2 ·r +

ˆ
t

0

ˆ
Td
⇢

↵
2 g ·r .

The entropy estimate: we have that

max
t2[0,T ]

ˆ
Td
⇢ log(⇢) +

ˆ
T

0

ˆ
Td

|r⇢
↵
2 |2 .

ˆ
Td
⇢0 log(⇢0) +

ˆ
T

0

ˆ
Td

|g|2.

An interpolation inequality: we have that

���⇢
↵
2

���
L

2
tL

2
x

. k⇢0k↵L1
x
+

���r⇢
↵
2

���
L

2
tL

2
x

.
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III. Weak solutions of the skeleton equation

The kinetic formulation: for every  2 C
1
(Td

) and t 2 [0, T ],

ˆ
Td
� 

���
s=t

s=0
= �

ˆ
t

0

ˆ
Td
↵⇢

↵�1r⇢ · (r )(x, ⇢)�
ˆ

t

0

ˆ
Td

ˆ
R
(@⇠ )(x, ⇠)q

+

ˆ
t

0

ˆ
Td
(@⇠ )(x, ⇢)⇢

↵
2 g ·r⇢+

ˆ
T

0

ˆ
Td
⇢

↵
2 g · (r )(x, ⇢).

The weak formulation: for every  2 C
1
(Td

) and t 2 [0, T ],

ˆ
Td
⇢(x, s) (x)

���
s=t

s=0
= �2

ˆ
t

0

ˆ
Td
⇢

↵
2 r⇢

↵
2 ·r +

ˆ
t

0

ˆ
Td
⇢

↵
2 g ·r .

Weak-strong continuity: does a weakly convergent sequence

gn * g 2 (L
2
t,x)

d
,

induce a strongly convergent sequence of solutions

⇢n ! ⇢ 2 L
1
t,x?

— weak convergence implies that the gn are uniformly bounded in (L
2
t,x)

d
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III. Weak solutions of the skeleton equation

The entropy estimate: we have that

max
t2[0,T ]

ˆ
Td
⇢ log(⇢) +

ˆ
T

0

ˆ
Td

|r⇢
↵
2 |2 .

ˆ
Td
⇢0 log(⇢0) +

ˆ
T

0

ˆ
Td

|g|2.

Spatial regularity: if ↵ 2 [1, 2] then

r⇢ =
2

↵
(⇢

1�↵
2 )r⇢

↵
2 2 (L

2
3�↵
t,x

)
d
.

If ↵ 2 [2,1) then

|⇢(x)� ⇢(y)|↵  |⇢(x)
↵
2 � ⇢(y)

↵
2 |2 so that ⇢ 2 W

2
↵ ,1

(Td
).

L
1
-integrability of the products: we have that

⇢
↵
2 r⇢

↵
2 2 (L

1
t,x)

d
and ⇢

↵
2 g 2 (L

1
t,x)

d
.

Regularity in time: for s > d/2 we have that

@t⇢ = 2r · (⇢
↵
2 r⇢

↵
2 )�r · (⇢

↵
2 g) 2 H

�s
(Td

).

— Aubin–Lions–Simon Lemma for strong (L
1
t,x)

d
-compactness:

W
2
↵ ,1

(Td
),W

1,p
(Td

) ⇢⇢ L
1
(Td

) ✓ H
�s

(Td
).
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III. Weak solutions of the skeleton equation

Equivalence of weak and kinetic solutions: for initial data with finite entropy,

when is a weak solutionˆ
Td
⇢(x, s) (x)

���
s=t

s=0
= �2

ˆ
t

0

ˆ
Td
⇢

↵
2 r⇢

↵
2 ·r +

ˆ
t

0

ˆ
Td
⇢

↵
2 g ·r ,

a kinetic solutionˆ
Td
� 

���
s=t

s=0
= �

ˆ
t

0

ˆ
Td
↵⇢

↵�1r⇢ · (r )(x, ⇢)�
ˆ

t

0

ˆ
Td

ˆ
R
(@⇠ )(x, ⇠)q

+

ˆ
t

0

ˆ
Td
(@⇠ )(x, ⇢)⇢

↵
2 g ·r⇢+

ˆ
T

0

ˆ
Td
⇢

↵
2 g · (r )(x, ⇢)?

Deriving the kinetic form: for @⇠ (x, ⇠) =  (x, ⇠), for ⇢" = (⇢ ⇤ "
),

@t

ˆ
 (x, ⇢") =

ˆ
 (x, ⇢")@t⇢"

= �2

ˆ
(r )(x, ⇢") · (⇢

↵
2 r⇢

↵
2 )

" �
ˆ

(r )(x, ⇢") · (⇢
↵
2 g)

"

� 2

ˆ
Td
(@⇠ )(x, ⇢")r⇢" · (⇢

↵
2 r⇢

↵
2 )

" �
ˆ

(@⇠ )(x, ⇢")r⇢" · (⇢
↵
2 g)

"
.
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III. Weak solutions of the skeleton equation

DiPerna–Lions theory [DiPerna, Lions; 1989], [Ambrosio; 2004]

Let b : Td ⇥ [0, T ] ! Rd
satisfy

ˆ
T

0

k(r · b)k
L1

x
+ kbk

BVx
< 1.

Then, for every ⇢0 2 L
1
(Td

) the continuity equation

@t⇢ = r · (⇢b),

has a unique solution in (L
1 \ L

1
)(Td ⇥ [0, T ]).

— a lower bound on r · b is su�cient [Ambrosio; 2004]

— almost optimal conditions [Depauw; 2003]

— the skeleton equation

@t⇢ = �⇢
↵ �r · (⇢

↵
2 g).
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III. Weak solutions of the skeleton equation

The equation satisfied by the convolution: for ⇢ = (⇢ ⇤ "
),

@t⇢" = �(2⇢
↵
2 r⇢

↵
2 ⇤ r"

) + (⇢
↵
2 g ⇤ r"

).

Deriving the kinetic form: if ⇢ is a weak solution, for @⇠ (x, ⇠) =  (x, ⇠),

@t

ˆ
Td
 (x, ⇢") =

ˆ
Td
 (x, ⇢")@t⇢"

= �2

ˆ
Td
 (x, ⇢")(⇢

↵
2 r⇢

↵
2 ⇤ r"

) +

ˆ
Td
 (x, ⇢")(⇢

↵
2 g ⇤ r"

).

A useful decomposition: let Supp( ) ✓ Td ⇥ [0,M ] and let

A1 = {(x, t) : ⇢
↵
2 (x, t) � M

↵
2 + 1} and let A0 = (Td ⇥ [0, T ]) \A1.

We then write, for both terms,

ˆ
Td
 (x, ⇢")(⇢

↵
2 g ⇤ r"

) =

ˆ
Td
 (x, ⇢")(1A0⇢

↵
2 g ⇤ r"

)

+

ˆ
Td
 (x, ⇢")(1A1⇢

↵
2 g ⇤ r"

).

B. Fehrman (LSU) EPFL 15 August 2024 10 / 31



III. Weak solutions of the skeleton equation

A useful decomposition: let Supp( ) ✓ Td ⇥ [0,M ] and let

A1 = {(x, t) : ⇢
↵
2 (x, t) � M

↵
2 + 1} and let A0 = (Td ⇥ [0, T ]) \A1.

We then writeˆ
Td
 (x, ⇢")(⇢

↵
2 g ⇤ r"

) =

ˆ
Td
 (x, ⇢")(1A0⇢

↵
2 g ⇤ r"

) +

ˆ
Td
 (x, ⇢")(1A1⇢

↵
2 g ⇤ r"

).

The “good” term defined by A0: after integrating by parts,ˆ
Td
 (x, ⇢")(1A0⇢

↵
2 g ⇤ r"

) =

ˆ
Td
(@⇠ )(x, ⇢")(1A0⇢

↵
2 g ⇤ "

) ·r⇢"

+

ˆ
Td
(r )(x, ⇢") · (1A0⇢

↵
2 g ⇤ "

).

After passing "! 0, the strong L
2
t,x-convergence proves that

lim
"!0

ˆ
Td
 (x, ⇢")(1A0⇢

↵
2 g ⇤ r"

)

=

ˆ
Td
(@⇠ )(x, ⇢)(1A0⇢

↵
2 g) ·r⇢+

ˆ
Td

1A0⇢
↵
2 g · (r )(x, ⇢)

=

ˆ
Td
(@⇠ )(x, ⇢)⇢

↵
2 g ·r⇢+

ˆ
Td
⇢

↵
2 g · (r )(x, ⇢).
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III. Weak solutions of the skeleton equation

A useful decomposition: let Supp( ) ✓ Td ⇥ [0,M ] and let

A1 = {(x, t) : ⇢
↵
2 (x, t) � M

↵
2 + 1} and let A0 = (Td ⇥ [0, T ]) \A1.

We then writeˆ
Td
 (x, ⇢")(⇢

↵
2 g ⇤ r"

) =

ˆ
Td
 (x, ⇢")(1A0⇢

↵
2 g ⇤ r"

) +

ˆ
Td
 (x, ⇢")(1A1⇢

↵
2 g ⇤ r"

).

The “bad” term defined by A1: in this case, using Hölder’s inequality,

|
ˆ
Td
 (x, ⇢")(1A1⇢

↵
2 g ⇤ r"

)|

 "
�1
ˆ
Td

| (x, ⇢")|(1A1 |g|
2 ⇤ |"r"|)

1
2 (1A1⇢

↵ ⇤ |"r"|)
1
2

.
⇣ ˆ

Td
| (x, ⇢")|(1A1 |g|

2 ⇤ |"r"|)
⌘ 1

2 · "�1
⇣ ˆ

Td
| (x, ⇢")|(1A1⇢

↵ ⇤ |"r"|)
⌘ 1

2
.

We first observe that

lim
"!0

⇣ ˆ
Td

| (x, ⇢")|(1A1 |g| ⇤ |"r
"|)2

⌘ 1
2 '

⇣ ˆ
Td
 (x, ⇢)1A1 |g|

2
⌘ 1

2
= 0.
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III. Weak solutions of the skeleton equation

A still useful decomposition: for A1 = {(x, t) : ⇢↵
2 (x, t) � M

↵
2 + 1} we need that

lim sup
"!0

"
�1
⇣ ˆ

Td
| (x, ⇢")|(1A1⇢

↵ ⇤ |"r"|)
⌘ 1

2
< 1.

We first writeˆ
Td

| (y, ⇢")|(1A1⇢
↵⇤ |"r"|) =

ˆ
(Td)2

| (y+x, ⇢"(y+x))|1A1(x)⇢
↵
(x)|"r"

(y)| dx dy.

Then, for Ak = {(x, t) : ⇢↵
2 (x, t) � M

↵
2 + k} and 1k = 1Ak\Ak+1

,

ˆ
Td

| (y, ⇢")|(1A1⇢
↵ ⇤ |"r"|) dy

=

1X

k=1

ˆ
(Td)2

| (y + x, ⇢"(y + x))|1k(x)⇢
↵
(x)|"r"

(y)| dx dy

.
1X

k=1

ˆ
(Td)2

| (y + x, ⇢"(y + x))|(M
↵
2 + k + 1)

2
1k(x)|"r"

(y)| dx dy.
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III. Weak solutions of the skeleton equation

A decomposition: for Ak = {(x, t) : ⇢↵
2 (x, t) � M

↵
2 + k} and 1k = 1Ak\Ak+1

,

ˆ
Td

| (y, ⇢")|(1A1⇢
↵ ⇤ |"r"|) dy


1X

k=1

ˆ
(Td)2

| (y + x, ⇢"(y + x))|(M
↵
2 + k + 1)

2
1k(x)|"r"

(y)| dx dy.

If B
"

k,y = {(x, t) : |(⇢↵
2 ⇤ "

)(x+ y)� ⇢
↵
2 (x)|1k(x) � k} then

|B"

k,x| 
1

k2

ˆ
Td

|(⇢
↵
2 ⇤ "

)(y + x)� ⇢
↵
2 (x)|21k(x) dx

=
1

k2

ˆ
Td

|
ˆ
Td

�
⇢

↵
2 (y + x+ z)� ⇢

↵
2 (x)

�

"
(z) dz|21k(x) dx

 1

k2

ˆ
Td

⇣ ˆ
Td

|⇢
↵
2 (y + x+ z)� ⇢

↵
2 (x)|2"

(z) dz

⌘
1k(x) dx

=
1

k2

ˆ
Td

⇣ ˆ
Td

|
ˆ 1

0

r⇢
↵
2 (x+ s(y + z)) · (y + z) ds|2"

(z) dz

⌘
1k(x) dx

. |y|2 + "
2

k2

ˆ
(Td)2

ˆ 1

0

|r⇢
↵
2 (x+ s(y + z))|2"

(z)1k(x) ds dz dx.
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III. Weak solutions of the skeleton equation

A decomposition: for Ak = {(x, t) : ⇢↵
2 (x, t) � M + k} and 1k = 1Ak\Ak+1

,ˆ
Td

| (y, ⇢")|(1A1⇢
↵ ⇤ |"r"|) dy


1X

k=1

ˆ
(Td)2

| (y + x, ⇢"(y + x))|(M
↵
2 + k + 1)

2
1k(x)|"r"

(y)| dx dy.

If B
"

k,y = {(x, t) : |(⇢↵
2 ⇤ "

)(x+ y)� ⇢
↵
2 (x)|1k(x) � k} then

|B"

k,x| .
|y|2 + "

2

k2

ˆ
(Td)2

ˆ 1

0

|r⇢
↵
2 (x+ s(y + z))|2"

(z)1k(x) ds dz dx.

Since, if ↵ 2 [1, 2],

⇢
↵
2 (x)� (⇢

↵
2 ⇤ "

)(x+ y) � ⇢
↵
2 (x)� (⇢ ⇤ "

)
↵
2 (y + x) � ⇢

↵
2 (x)�M

↵
2 ,

for every (y, t) 2 Td ⇥ [0, T ],

Supp
�
 (y + ·, ⇢"(y + ·))1k(·)

�
✓ B

"

k,y,

and we having using the boundedness of  that

ˆ
Td

| (y, ⇢")|(1A1⇢
↵ ⇤ |"r"|) .

1X

k=1

ˆ
Td

|B"

k,y|(M
↵
2 + k + 1)

2|"r"
(y)| dy.

B. Fehrman (LSU) EPFL 15 August 2024 15 / 31



III. Weak solutions of the skeleton equation

A decomposition: for B
"

k,y = {(x, t) : |(⇢↵
2 ⇤ "

)(x+ y)� ⇢
↵
2 (x)|1k(x) � k},

|B"

k,x| .
|y|2 + "

2

k2

ˆ
(Td)2

ˆ 1

0

|r⇢
↵
2 (x+ s(y + z))|2"

(z)1k(x) ds dz dx,

we have thatˆ
Td

| (y, ⇢")|(1A1⇢
↵ ⇤ |"r"|) dy

.
1X

k=1

ˆ
Td

|B"

k,y|(M
↵
2 + k + 1)

2|"r"
(y)| dy

.
1X

k=1

ˆ
(Td)3

ˆ 1

0

⇣ |y|2 + "
2

k2

⌘
(M

↵
2 + k + 1)

2|"r"
(y)||r⇢

↵
2 (x+ s(y + z))|2"

(z)1k(x)

.
ˆ
(Td)3

ˆ 1

0

(|y|2 + "
2
)|"r"

(y)||r⇢
↵
2 (x+ s(y + z))|2"

(z)1A1(x)

. "
2
ˆ
(Td)3

ˆ 1

0

|"r"
(y)||r⇢

↵
2 (x+ s(y + z))|2"

(z)1A1(x)

. "
2
ˆ
Td

|r⇢
↵
2 |2.
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III. Weak solutions of the skeleton equation

The conclusion: we recall that for A1 = {(x, t) : ⇢(x, t) � M + 1},

|
ˆ
Td
 (x, ⇢")(1A1⇢

↵
2 g ⇤ r"

)|

.
⇣ ˆ

Td
| (x, ⇢")|(1A1 |g|

2 ⇤ |"r"|)
⌘ 1

2 · "�1
⇣ ˆ

Td
| (x, ⇢")|(1A1⇢

↵ ⇤ |"r"|)
⌘ 1

2
.

Since we have shown that
´
Td | (x, ⇢")|(1A1⇢

↵ ⇤ |"r"| . "
2
´
Td |r⇢

↵
2 |2,

lim
"!0

|
ˆ
Td
 (x, ⇢")(1A1⇢

↵
2 g ⇤ r"

)| = 0.

Therefore, since

ˆ
Td
 (x, ⇢")(⇢

↵
2 g ⇤ r"

) =

ˆ
Td
 (x, ⇢")(1A0⇢

↵
2 g ⇤ r"

) +

ˆ
Td
 (x, ⇢")(1A1⇢

↵
2 g ⇤ r"

),

we have that

lim
"!0

ˆ
Td
 (x, ⇢")(⇢

↵
2 g ⇤ r"

) =

ˆ
Td
(@⇠ )(x, ⇢)⇢

↵
2 g ·r⇢+

ˆ
Td
⇢

↵
2 g · (r )(x, ⇢).
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III. Weak solutions of the skeleton equation

Recovering the kinetic form: if ⇢ is weak solution, for ⇢" = (⇢ ⇤ "
),

@t

ˆ
Td
 (x, ⇢") =

ˆ
Td
 (x, ⇢")@t⇢"

= �2

ˆ
Td
 (x, ⇢")(⇢

↵
2 r⇢

↵
2 ⇤ r"

) +

ˆ
Td
 (x, ⇢")(⇢

↵
2 g ⇤ r"

)

and, after passing to the limit "! 0,

@t

ˆ
Td
 (x, ⇢) = �

ˆ
Td
(@⇠ )(x, ⇢)↵⇢

↵�1|r⇢|2 �
ˆ
Td
↵⇢

↵�1
(r )(x, ⇢) ·r⇢

+

ˆ
Td
(@⇠ )(x, ⇢)⇢

↵
2 g ·r⇢+

ˆ
Td
⇢

↵
2 g · (r )(x, ⇢).

The kinetic equation: for q = �⇢

�
↵⇠

↵�1|r⇢|2
�
,

@t

ˆ
Td

ˆ
R
 (x, ⇢)� = �

ˆ
Td

ˆ
R
(@⇠ )(x, ⇠)q �

ˆ
Td

ˆ
R
↵⇠

↵�1
(r )(x, ⇠) ·r�

+

ˆ
Td

ˆ
R
(@⇠ )(x, ⇠)⇠

↵
2 g ·r��

ˆ
Td

ˆ
R
⇠

↵
2 (@⇠�)g · (r )(x, ⇠),

and

@t� = r · (↵⇠↵�1r�) + @⇠q � @⇠(⇠
↵
2 g ·r�) +r · (⇠

↵
2 (@⇠�)g).
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III. Weak solutions of the skeleton equation

Equivalence of weak and renormalized kinetic solutions [F., Gess; 2023]

Under assumptions including �(⇠) = ⇠
m

for every m 2 [1,1), a nonnegative function

⇢ 2 C([0, T ];L
1
(Td

)) that satisfies

�
1
2 (⇢) 2 L

2
([0, T ];H

1
(Td

))

is a renormalized kinetic solution of the skeleton equation

@t⇢ = ��(⇢)�r · (�
1
2 (⇢)g) in Td ⇥ (0, T ) with ⇢(·, 0) = ⇢0,

for a nonnegative ⇢0 with finite entropy if and only if ⇢ is a weak solution. In

particular, weak solutions exist and are unique.

— equivalence of renormalized and weak solutions [DiPerna, Lions; 1989],

[Ambrosio; 2004].

— strong continuity with respect to weak convergence of the control

— for example, �
1
2 convex or concave or � satisfies that 0 < �  �0  ⇤.
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III. Weak solutions of the skeleton equation

Weak-strong continuity [F., Gess; 2023]

If ⇢n are solutions of the skeleton equation with controls gn * g and initial data

⇢0,n * ⇢0 with uniformly bounded entropy, then ⇢n ! ⇢ for ⇢ the solution of the

skeleton equation with control g and initial data ⇢0.

The entropy estimate: if @t⇢n = �⇢
↵

n �r · (⇢
↵
2
n gn) then

max
t2[0,T ]

ˆ
Td
⇢n log(⇢n) +

ˆ
T

0

ˆ
Td

|r⇢
↵
2
n |2 .

ˆ
Td
⇢0,n log(⇢0,n) +

ˆ
T

0

ˆ
Td

|gn|2.

Compactness since the gn are uniformly (L
2
t,x)

d
-bounded,

⇢n is strongly compact in L
1
t,x and ⇢

↵
2
n is weakly compact in L

2
tH

1
x.

Uniqueness of the limit: We have for some ⇢ that, along a subsequence,

⇢n ! ⇢ in L
1
t,x and ⇢

↵
2
n * ⇢

↵
2 in L

2
tH

1
x,

from which we conclude that

@t⇢ = 2r · (⇢
↵
2 r⇢

↵
2 )�r · (⇢

↵
2 g),

and that ⇢n ! ⇢ along the full sequence n ! 1.
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IV. L.s.c. envelope of the rate function

The zero range process: µ
N

on T1 ⇥ [0, T ] for N = 15 and T (k) ⇠ ke
�kt

,

The heat equation: the hydrodynamic limit @tp = �⇢,

The skeleton equation: the controlled equation @t⇢ = �⇢�r · (p⇢ · g),

The rate function: we have P(µN ' ⇢) ' exp(�NI(⇢)) for

I(⇢) =
1

2
inf{kgk2

L
2
t,x

: @t⇢ = �⇢�r · (p⇢g)}.
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IV. L.s.c. envelope of the rate function

The hydrodynamic limit: for the parabolically rescaled, mean zero particle

process µ
N

t on Td

N , as N ! 1, for J(⇢) = r�(⇢),
µ
N

t * ⇢ dx for @t⇢ = ��(⇢) = r · J(⇢).
Macroscopic fluctuation theory: the probability of observing a space-time

fluctuation (⇢, j) satisfying

@t⇢ = r · j
⇣
that is, @t

ˆ
U

⇢ =

˛
@U

j · ⌫
⌘
,

satisfies the large deviations bound [Bertini et al.; 2014]

P[µN ' ⇢] ' exp
�
�NI(⇢)

�
for I(⇢) =

ˆ
T

0

ˆ
Td
(j � J(⇢)) ·m(⇢)

�1
(j � J(⇢)).

The skeleton equation: if (j � J(⇢)) =

p
m(⇢)g then I(⇢) =

´
T

0

´
Td |g|2 and

@t⇢ = r ·
�
J(⇢) + (j � J(⇢))

�
= ��(⇢)�r · (

p
m(⇢)g).

The zero range process: �(⇢) = �(⇢) and m(⇢) = �(⇢) and

@t⇢ = ��(⇢)�r · (�
1
2 (⇢)g).

The exclusion process: �(⇢) = ⇢ and m(⇢) = ⇢(1� ⇢) and

@t⇢ = �⇢�r · (
p
⇢(1� ⇢)g).
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IV. L.s.c. envelope of the rate function

— for I(⇢) =
1
2 inf

�
kgk2

L2(Td⇥[0,T ];Rd) : @t⇢ = �⇢
↵ �r · (⇢↵

2 · g)
 
.

Large Deviations Principle [Benois, Kipnis, Landim; 1995]

For every closed A ✓ D([0, T ];M+(Td
)),

lim sup
N!1

1

N
log(P

⇥
µ
N 2 A

⇤
)  � inf

m2A

I(m).

For the space of smooth fluctuations

S = {@tm = �m
↵ �r · (m↵rH) : H 2 C

3,1
(Td ⇥ [0, T ])},

for every open subset A ✓ D([0, T ];M+(Td
)),

lim sup
N!1

1

N
log(P

⇥
µ
N 2 A

⇤
) � � inf

⇢2(A\S)
I(⇢)

lsc
.
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IV. L.s.c. envelope of the rate function

The restricted rate function: for the space of smooth fluctuations

S = {@tm = �m
↵ �r · (m↵rH) : H 2 C

3,1
(Td ⇥ [0, T ])},

the large deviations lower bound is defined by

lim sup
N!1

1

N
log(P

⇥
µ
N 2 A

⇤
) � � inf

⇢2(A\S)
I(⇢)

lsc
.

The recovery sequence: given an arbitrary fluctuation

@t⇢ = �⇢
↵ �r · (⇢

↵
2 g),

need find a sequence ⇢n 2 S such that

⇢n ! ⇢ 2 L
1
t,x and I(⇢n) ! I(⇢).
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IV. L.s.c. envelope of the rate function

The rate function: we have

I(⇢) =
1

2
inf

n
kgk2

L2 : @t⇢ = �⇢
↵ �r · (⇢

↵
2 g)

o
.

The Hilbert space: H
1
⇢↵ is the strong closure w.r.t. the inner product

hr ,r�i =
ˆ

T

0

ˆ
Td
⇢
↵r ·r� for �, 2 C

1
.

Unique minimizer: the equation defines

@t⇢��⇢↵ = �r · (⇢
↵
2 g) 2 H

�1
⇢↵ ,

and if I(⇢) < 1 then the minimizer g = ⇢
↵
2 rH for H 2 H

1
⇢↵ and

I(⇢) =
1

2

ˆ
T

0

ˆ
Td
⇢
↵|rH|2 =

1

2
kHk2

H
1
⇢↵

=
1

2
k@t⇢���(⇢)k2

H
�1
⇢↵

.

The “ill-posed” equation: we have the formally “supercritical” equation

@t⇢ = �⇢
↵ �r · (⇢↵rH).
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IV. L.s.c envelope of the rate function

The recovery sequence: given an arbitrary fluctuation

@t⇢ = �⇢
↵ �r · (⇢

↵
2 g),

need find a sequence ⇢n 2 S such that

⇢n ! ⇢ 2 L
1
t,x and I(⇢n) ! I(⇢).

A first attempt: there exists H 2 H
1
⇢↵ such that

@t⇢ = �⇢
↵ �r · (⇢↵rH) and I(⇢) =

1

2

ˆ
T

0

ˆ
Td
⇢
↵|rH|2.

Let ⇢" solve

@t⇢" = �⇢
↵

" �r · (⇢↵"rH
"
).

Passing "! 0?

— supercritical with no stable estimates with respect to rH

— the Hilbert space framework is too rigid
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IV. L.s.c envelope of the rate function

A second attempt: for some g 2 L
2
t,x and ⇢0 with finite entropy,

@t⇢ = �⇢
↵ �r · (⇢

↵
2 g) with ⇢(·, 0) = ⇢0.

Regularizing the data: we consider

⇢0,n =
�
(⇢0 ^ n) _ 1

n

�
⇤ 

1
n
x and gn = g ⇤ 

1
n
t,x

,

and solve

@t⇢n = �⇢
↵

n �r · (⇢
↵
2
n gn) with ⇢n(·, 0) = ⇢0,n.

There exists Hn 2 H
1
⇢↵n

such that

@t⇢n = �⇢
↵

n �r · (⇢↵nrHn) with ⇢n(·, 0) = ⇢0,n.

Deducing the regularity of Hn: we have the elliptic equation

�r · (⇢↵nrHn) = @t⇢n ��⇢↵n.

— not necessarily uniformly elliptic

— is ⇢n regular?
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IV. L.s.c envelope of the rate function

The final attempt: for some g 2 L
2
t,x and ⇢0 with finite entropy,

@t⇢ = �⇢
↵ �r · (⇢

↵
2 g) with ⇢(·, 0) = ⇢0.

Regularizing the data: we consider

⇢0,n =
�
(⇢0 ^ n) _ 1

n

�
⇤ 

1
n
x and gn = g ⇤ 

1
n
t,x

,

“Turning o↵” the control: for �n(⇠) = 0 if ⇠  1
n
or ⇠ � n, solve

@t⇢n = �⇢
↵

n �r · (⇢
↵
2
n �n(⇢n)gn)

= �⇢
↵

n �r · (⇢
↵
2
n g̃n),

for the control g̃n = �n(⇢n)gn.

Regularity of ⇢n: we have that
1
n
 ⇢n  n and ⇢n 2 C

1
(Td ⇥ [0, T ]).

Deducing the regularity of Hn: There exists Hn 2 H
1
⇢↵n

such that

@t⇢n = �⇢
↵

n �r · (⇢↵nrHn) and �r · (⇢↵nrHn) = @t⇢n ��⇢↵n.

— in general, @t⇢ = ��(⇢)�r · (� 1
2 (⇢)g) for � 2 C

2
loc((0,1))
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IV. L.s.c envelope of the rate function

The fluctuation: for some g 2 L
2
t,x and ⇢0 with finite entropy,

@t⇢ = �⇢
↵ �r · (⇢

↵
2 g) with ⇢(·, 0) = ⇢0.

The recovery sequence: for �n(⇠) = 0 if ⇠  1
n
or ⇠ � n, solve

@t⇢n = �⇢
↵

n �r · (⇢
↵
2
n �n(⇢n)gn) = �⇢

↵

n �r · (⇢
↵
2
n g̃n),

for the control g̃n = �n(⇢n)gn and with ⇢n(·, 0) = ⇢0,n.

Compactness: the ⇢n satisfy uniformly the entropy estimate and

⇢n ! ⇢ and �(⇢n)gn1{⇢>0} ! g1{⇢>0} and I(⇢n)  k�(⇢n)gnk22 ! kgk22 .

[F., Gess; 2023]

For the space of smooth fluctuations

S = {@tm = �m
↵ �r · (m↵rH) : H 2 C

3,1
(Td ⇥ [0, T ])},

we have that

I(⇢)
��
S

lsc
= I(⇢) =

1

2
inf{kgk22 : @t⇢ = �⇢

↵ �r · (⇢
↵
2 g)}.
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