The weak formulation of the skeleton equation

Benjamin Fehrman

LSU

15 August 2024

II. The kinetic formulation of the skeleton equation

The skeleton equation: in the case of the zero range process,

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g) \text{ in } \mathbb{T}^d \times (0,T),$$

for an L^2 -control $g \in (L^2_{t,x})^d$. We specialize to the case, for some $\alpha \in (0,\infty)$,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g).$$

The kinetic formulation: for $\chi = \mathbf{1}_{\{0 < \xi < \rho\}} - \mathbf{1}_{\{\rho < \xi < 0\}}$,

$$\partial_t \chi = \alpha \xi^{\alpha - 1} \Delta \chi + \partial_{\xi} q - \partial_{\xi} (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_{\xi} \chi) g),$$

for a locally finite, nonnegative measure q on $\mathbb{T}^d \times \mathbb{R} \times [0, T]$ with

$$q \ge \delta_{\rho}(\alpha \xi^{\alpha - 1} |\nabla \rho|^2).$$

II. The kinetic formulation of the skeleton equation

A renormalized kinetic solution of the skeleton equation

A nonnegative function $\rho \in \mathcal{C}([0,T]; L^1(\mathbb{T}^d))$ is a renormalized kinetic solution of the skeleton equation if there exists a nonnegative, locally finite measure q on $\mathbb{T}^d \times \mathbb{R} \times [0,T]$ such that ρ and q satisfy the following four properties.

- $\ \ Preservation \ of \ mass: \ \|\rho(x,t)\|_{L^1(\mathbb{T}^d)} = \|\rho_0\|_{L^1(\mathbb{T}^d)} \ \text{for every} \ t \in [0,T].$
- Local H^1 -regularity: $((\rho \wedge K) \vee \frac{1}{K}) \in L^2([0,T]; H^1(\mathbb{T}^d))$ for every $K \in \mathbb{N}$.
- Regularity and vanishing of the measure at infinity: we have that

$$\delta_{\rho}\left(\alpha\xi^{\alpha-1}|\nabla\rho|^{2}\right) \leq q \text{ and } \liminf_{M \to \infty} q(\mathbb{T}^{d} \times [M, M+1] \times [0, T]) = 0$$

— The equation: for every $\psi \in C_c^{\infty}(\mathbb{T}^d \times (0,\infty))$ and $t \in [0,T]$,

$$\begin{split} \int_{\mathbb{T}^d} \chi \psi \Big|_{s=0}^{s=t} &= -\int_0^t \int_{\mathbb{T}^d} \alpha \rho^{\alpha-1} \nabla \rho \cdot (\nabla \psi)(x,\rho) - \int_0^t \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\partial_{\xi} \psi)(x,\xi) q \\ &+ \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \psi)(x,\rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho + \int_0^T \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x,\rho). \end{split}$$

- we have that $\lim_{\beta \to 0} \left(\beta^{-1} q \left(\mathbb{T}^d \times \left(\frac{\beta}{2}, \beta \right) \times [0, T] \right) \right) = 0.$

II. The kinetic formulation of the skeleton equation

Well-posedness of renormalized kinetic solutions [F., Gess; 2023]

Let
$$T \in (0,\infty)$$
, $d \in \mathbb{N}$, and let $\Phi \in C^1_{loc}((0,\infty)) \cap C([0,\infty))$ satisfy that

-
$$\Phi(0) = 0$$
 with $\Phi' > 0$ on $(0, \infty)$,

— Φ' is locally ¹/₂-Hölder continuous on $(0, \infty)$,

— and
$$\max_{\{0 < \xi \le M\}} \frac{\Phi(\xi)}{\Phi'(\xi)} \le cM$$
.

Then for every nonnegative $\rho_0 \in L^1(\mathbb{T}^d)$ there exists a unique renormalized kinetic solution of the equation

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g)$$
 in $\mathbb{T}^d \times (0,T)$ with $\rho(\cdot,0) = \rho_0$.

Furthermore, if ρ_1 and ρ_2 are two solutions with initial data $\rho_{1,0}$ and $\rho_{2,0}$, then

$$\max_{t \in [0,T]} \|\rho_1(x,t) - \rho_2(x,t)\|_{L^1(\mathbb{T}^d)} = \|\rho_{1,0} - \rho_{2,0}\|_{L^1(\mathbb{T}^d)}.$$

- including $\Phi(\xi) = \xi^{\alpha}$ for every $\alpha \in (0, \infty)$, for which

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot \left(\rho^{\frac{\alpha}{2}} g \right)$$

The skeleton equation: $\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) = 2\nabla \cdot (\rho^{\frac{\alpha}{2}}\nabla \rho^{\frac{\alpha}{2}}) - \nabla \cdot (\rho^{\frac{\alpha}{2}}g).$

Weak solutions of the skeleton equation

A weak solution of the skeleton equation is a nonnegative $\rho \in \mathcal{C}([0,T]; L^1(\mathbb{T}^d))$ that satisfies the following two properties.

— The entropy estimate: we have that

$$\rho^{\frac{\alpha}{2}} \in L^2([0,T]; H^1(\mathbb{T}^d)).$$

— for every $\psi \in C^{\infty}(\mathbb{T}^d)$ and $t \in [0, T]$,

$$\int_{\mathbb{T}^d} \rho(x,s)\psi(x)\Big|_{s=0}^{s=t} = -2\int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} \cdot \nabla \psi + \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot \nabla \psi.$$

The entropy estimate: we have that

$$\max_{e \in [0,T]} \int_{\mathbb{T}^d} \rho \log(\rho) + \int_0^T \int_{\mathbb{T}^d} |\nabla \rho^{\frac{\alpha}{2}}|^2 \lesssim \int_{\mathbb{T}^d} \rho_0 \log(\rho_0) + \int_0^T \int_{\mathbb{T}^d} |g|^2.$$

An interpolation inequality: we have that

$$\left\|\rho^{\frac{\alpha}{2}}\right\|_{L^2_t L^2_x} \lesssim \left\|\rho_0\right\|_{L^1_x}^{\alpha} + \left\|\nabla\rho^{\frac{\alpha}{2}}\right\|_{L^2_t L^2_x}$$

B. Fehrman (LSU)

1

The kinetic formulation: for every $\psi \in C^{\infty}(\mathbb{T}^d)$ and $t \in [0, T]$,

$$\begin{split} \int_{\mathbb{T}^d} \chi \psi \Big|_{s=0}^{s=t} &= -\int_0^t \int_{\mathbb{T}^d} \alpha \rho^{\alpha-1} \nabla \rho \cdot (\nabla \psi)(x,\rho) - \int_0^t \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\partial_{\xi} \psi)(x,\xi) q \\ &+ \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \psi)(x,\rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho + \int_0^T \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x,\rho). \end{split}$$

The weak formulation: for every $\psi \in C^{\infty}(\mathbb{T}^d)$ and $t \in [0,T]$,

$$\int_{\mathbb{T}^d} \rho(x,s)\psi(x)\Big|_{s=0}^{s=t} = -2\int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} \cdot \nabla \psi + \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot \nabla \psi.$$

Weak-strong continuity: does a weakly convergent sequence

$$g_n \rightharpoonup g \in (L^2_{t,x})^d,$$

induce a strongly convergent sequence of solutions

$$\rho_n \to \rho \in L^1_{t,x}?$$

— weak convergence implies that the g_n are uniformly bounded in $(L^2_{t,x})^d$

The entropy estimate: we have that

$$\max_{t\in[0,T]} \int_{\mathbb{T}^d} \rho \log(\rho) + \int_0^T \int_{\mathbb{T}^d} |\nabla \rho^{\frac{\alpha}{2}}|^2 \lesssim \int_{\mathbb{T}^d} \rho_0 \log(\rho_0) + \int_0^T \int_{\mathbb{T}^d} |g|^2.$$

Spatial regularity: if $\alpha \in [1, 2]$ then

$$\nabla \rho = \frac{2}{\alpha} (\rho^{1-\frac{\alpha}{2}}) \nabla \rho^{\frac{\alpha}{2}} \in (L_{t,x}^{\frac{2}{3-\alpha}})^d.$$

If $\alpha \in [2,\infty)$ then

$$|\rho(x) - \rho(y)|^{\alpha} \le |\rho(x)^{\frac{\alpha}{2}} - \rho(y)^{\frac{\alpha}{2}}|^2 \text{ so that } \rho \in W^{\frac{2}{\alpha},1}(\mathbb{T}^d).$$

 L^1 -integrability of the products: we have that

$$\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} \in (L^1_{t,x})^d \text{ and } \rho^{\frac{\alpha}{2}} g \in (L^1_{t,x})^d.$$

Regularity in time: for s > d/2 we have that

$$\partial_t \rho = 2\nabla \cdot (\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}}) - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \in H^{-s}(\mathbb{T}^d).$$

— Aubin–Lions–Simon Lemma for strong $(L_{t,x}^1)^d$ -compactness:

$$W^{\frac{2}{\alpha},1}(\mathbb{T}^d), W^{1,p}(\mathbb{T}^d) \subset \subset L^1(\mathbb{T}^d) \subseteq H^{-s}(\mathbb{T}^d).$$

Equivalence of weak and kinetic solutions: for initial data with finite entropy, when is a weak solution

$$\int_{\mathbb{T}^d} \rho(x,s)\psi(x)\Big|_{s=0}^{s=t} = -2\int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} \cdot \nabla \psi + \int_0^t \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot \nabla \psi,$$

a kinetic solution

$$\begin{split} \int_{\mathbb{T}^d} \chi \psi \Big|_{s=0}^{s=t} &= -\int_0^t \int_{\mathbb{T}^d} \alpha \rho^{\alpha-1} \nabla \rho \cdot (\nabla \psi)(x,\rho) - \int_0^t \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\partial_{\xi} \psi)(x,\xi) q \\ &+ \int_0^t \int_{\mathbb{T}^d} (\partial_{\xi} \psi)(x,\rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho + \int_0^T \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x,\rho)? \end{split}$$

Deriving the kinetic form: for $\partial_{\xi}\Psi(x,\xi) = \psi(x,\xi)$, for $\rho_{\varepsilon} = (\rho * \kappa^{\varepsilon})$,

$$\partial_t \int \Psi(x,\rho_{\varepsilon}) = \int \psi(x,\rho_{\varepsilon}) \partial_t \rho_{\varepsilon}$$

= $-2 \int (\nabla \psi)(x,\rho_{\varepsilon}) \cdot (\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}})^{\varepsilon} - \int (\nabla \psi)(x,\rho_{\varepsilon}) \cdot (\rho^{\frac{\alpha}{2}}g)^{\varepsilon}$
 $- 2 \int_{\mathbb{T}^d} (\partial_{\xi} \psi)(x,\rho_{\varepsilon}) \nabla \rho_{\varepsilon} \cdot (\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}})^{\varepsilon} - \int (\partial_{\xi} \psi)(x,\rho_{\varepsilon}) \nabla \rho_{\varepsilon} \cdot (\rho^{\frac{\alpha}{2}}g)^{\varepsilon}.$

DiPerna–Lions theory [DiPerna, Lions; 1989], [Ambrosio; 2004]

Let $b: \mathbb{T}^d \times [0,T] \to \mathbb{R}^d$ satisfy

$$\int_0^T \|(\nabla \cdot b)\|_{L^\infty_x} + \|b\|_{BV_x} < \infty.$$

Then, for every $\rho_0 \in L^{\infty}(\mathbb{T}^d)$ the continuity equation

$$\partial_t \rho = \nabla \cdot (\rho b),$$

has a unique solution in $(L^1 \cap L^\infty)(\mathbb{T}^d \times [0,T])$.

- a lower bound on $\nabla \cdot b$ is sufficient [Ambrosio; 2004]
- almost optimal conditions [Depauw; 2003]
- the skeleton equation

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g).$$

The equation satisfied by the convolution: for $\rho = (\rho * \kappa^{\varepsilon})$,

$$\partial_t \rho_{\varepsilon} = -(2\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} * \nabla \kappa^{\varepsilon}) + (\rho^{\frac{\alpha}{2}} g * \nabla \kappa^{\varepsilon}).$$

Deriving the kinetic form: if ρ is a weak solution, for $\partial_{\xi}\Psi(x,\xi) = \psi(x,\xi)$,

$$\partial_t \int_{\mathbb{T}^d} \Psi(x,\rho_\varepsilon) = \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon) \partial_t \rho_\varepsilon$$
$$= -2 \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon) (\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} * \nabla \kappa^\varepsilon) + \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon) (\rho^{\frac{\alpha}{2}} g * \nabla \kappa^\varepsilon).$$

A useful decomposition: let $\operatorname{Supp}(\psi) \subseteq \mathbb{T}^d \times [0, M]$ and let

$$A_1 = \{(x,t) : \rho^{\frac{\alpha}{2}}(x,t) \ge M^{\frac{\alpha}{2}} + 1\}$$
 and let $A_0 = (\mathbb{T}^d \times [0,T]) \setminus A_1$.

We then write, for both terms,

$$\int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) = \int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) + \int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\mathbf{1}_{A_1}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}).$$

A useful decomposition: let $\operatorname{Supp}(\psi) \subseteq \mathbb{T}^d \times [0, M]$ and let

$$A_1 = \{(x,t) : \rho^{\frac{\alpha}{2}}(x,t) \ge M^{\frac{\alpha}{2}} + 1\}$$
 and let $A_0 = (\mathbb{T}^d \times [0,T]) \setminus A_1$.

We then write

$$\int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon)(\rho^{\frac{\alpha}{2}}g * \nabla \kappa^\varepsilon) = \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon)(\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^\varepsilon) + \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon)(\mathbf{1}_{A_1}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^\varepsilon).$$

The "good" term defined by A_0 : after integrating by parts,

$$\begin{split} \int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon}) (\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) &= \int_{\mathbb{T}^d} (\partial_{\xi}\psi)(x,\rho_{\varepsilon}) (\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \kappa^{\varepsilon}) \cdot \nabla \rho_{\varepsilon} \\ &+ \int_{\mathbb{T}^d} (\nabla \psi)(x,\rho_{\varepsilon}) \cdot (\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \kappa^{\varepsilon}). \end{split}$$

After passing $\varepsilon \to 0,$ the strong $L^2_{t,x}\text{-convergence}$ proves that

$$\begin{split} &\lim_{\varepsilon \to 0} \int_{\mathbb{T}^d} \psi(x, \rho_\varepsilon) (\mathbf{1}_{A_0} \rho^{\frac{\alpha}{2}} g * \nabla \kappa^\varepsilon) \\ &= \int_{\mathbb{T}^d} (\partial_\xi \psi)(x, \rho) (\mathbf{1}_{A_0} \rho^{\frac{\alpha}{2}} g) \cdot \nabla \rho + \int_{\mathbb{T}^d} \mathbf{1}_{A_0} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x, \rho) \\ &= \int_{\mathbb{T}^d} (\partial_\xi \psi)(x, \rho) \rho^{\frac{\alpha}{2}} g \cdot \nabla \rho + \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}} g \cdot (\nabla \psi)(x, \rho). \end{split}$$

A useful decomposition: let $\text{Supp}(\psi) \subseteq \mathbb{T}^d \times [0, M]$ and let

$$A_1 = \{(x,t) : \rho^{\frac{\alpha}{2}}(x,t) \ge M^{\frac{\alpha}{2}} + 1\}$$
 and let $A_0 = (\mathbb{T}^d \times [0,T]) \setminus A_1$.

We then write

$$\int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon)(\rho^{\frac{\alpha}{2}}g * \nabla \kappa^\varepsilon) = \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon)(\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^\varepsilon) + \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon)(\mathbf{1}_{A_1}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^\varepsilon).$$

The "bad" term defined by A_1 : in this case, using Hölder's inequality,

$$\begin{split} &|\int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon}) (\mathbf{1}_{A_1} \rho^{\frac{\alpha}{2}} g * \nabla \kappa^{\varepsilon})| \\ &\leq \varepsilon^{-1} \int_{\mathbb{T}^d} |\psi(x,\rho_{\varepsilon})| (\mathbf{1}_{A_1} |g|^2 * |\varepsilon \nabla \kappa^{\varepsilon}|)^{\frac{1}{2}} (\mathbf{1}_{A_1} \rho^{\alpha} * |\varepsilon \nabla \kappa^{\varepsilon}|)^{\frac{1}{2}} \\ &\lesssim \Big(\int_{\mathbb{T}^d} |\psi(x,\rho_{\varepsilon})| (\mathbf{1}_{A_1} |g|^2 * |\varepsilon \nabla \kappa^{\varepsilon}|) \Big)^{\frac{1}{2}} \cdot \varepsilon^{-1} \Big(\int_{\mathbb{T}^d} |\psi(x,\rho_{\varepsilon})| (\mathbf{1}_{A_1} \rho^{\alpha} * |\varepsilon \nabla \kappa^{\varepsilon}|) \Big)^{\frac{1}{2}}. \end{split}$$

We first observe that

$$\lim_{\varepsilon \to 0} \left(\int_{\mathbb{T}^d} |\psi(x,\rho_\varepsilon)| (\mathbf{1}_{A_1} |g| * |\varepsilon \nabla \kappa^\varepsilon|)^2 \right)^{\frac{1}{2}} \simeq \left(\int_{\mathbb{T}^d} \psi(x,\rho) \mathbf{1}_{A_1} |g|^2 \right)^{\frac{1}{2}} = 0.$$

A still useful decomposition: for $A_1 = \{(x,t) : \rho^{\frac{\alpha}{2}}(x,t) \ge M^{\frac{\alpha}{2}} + 1\}$ we need that

$$\limsup_{\varepsilon \to 0} \varepsilon^{-1} \Big(\int_{\mathbb{T}^d} |\psi(x, \rho_\varepsilon)| (\mathbf{1}_{A_1} \rho^\alpha * |\varepsilon \nabla \kappa^\varepsilon|) \Big)^{\frac{1}{2}} < \infty.$$

We first write

$$\int_{\mathbb{T}^d} |\psi(y,\rho_\varepsilon)| (\mathbf{1}_{A_1}\rho^\alpha * |\varepsilon \nabla \kappa^\varepsilon|) = \int_{(\mathbb{T}^d)^2} |\psi(y+x,\rho_\varepsilon(y+x))| \mathbf{1}_{A_1}(x)\rho^\alpha(x)|\varepsilon \nabla \kappa^\varepsilon(y)| \,\mathrm{d}x \,\mathrm{d}y.$$

Then, for $A_k = \{(x,t) \colon \rho^{\frac{\alpha}{2}}(x,t) \ge M^{\frac{\alpha}{2}} + k\}$ and $\mathbf{1}_k = \mathbf{1}_{A_k \setminus A_{k+1}}$,

$$\begin{split} &\int_{\mathbb{T}^d} |\psi(y,\rho_{\varepsilon})| (\mathbf{1}_{A_1}\rho^{\alpha} * |\varepsilon\nabla\kappa^{\varepsilon}|) \,\mathrm{d}y \\ &= \sum_{k=1}^{\infty} \int_{(\mathbb{T}^d)^2} |\psi(y+x,\rho_{\varepsilon}(y+x))| \mathbf{1}_k(x)\rho^{\alpha}(x)|\varepsilon\nabla\kappa^{\varepsilon}(y)| \,\mathrm{d}x \,\mathrm{d}y \\ &\lesssim \sum_{k=1}^{\infty} \int_{(\mathbb{T}^d)^2} |\psi(y+x,\rho_{\varepsilon}(y+x))| (M^{\frac{\alpha}{2}} + k + 1)^2 \mathbf{1}_k(x)|\varepsilon\nabla\kappa^{\varepsilon}(y)| \,\mathrm{d}x \,\mathrm{d}y. \end{split}$$

A decomposition: for $A_k = \{(x,t) : \rho^{\frac{\alpha}{2}}(x,t) \ge M^{\frac{\alpha}{2}} + k\}$ and $\mathbf{1}_k = \mathbf{1}_{A_k \setminus A_{k+1}}$,

$$\begin{split} &\int_{\mathbb{T}^d} |\psi(y,\rho_{\varepsilon})| (\mathbf{1}_{A_1}\rho^{\alpha} * |\varepsilon \nabla \kappa^{\varepsilon}|) \, \mathrm{d}y \\ &\leq \sum_{k=1}^{\infty} \int_{(\mathbb{T}^d)^2} |\psi(y+x,\rho_{\varepsilon}(y+x))| (M^{\frac{\alpha}{2}} + k + 1)^2 \mathbf{1}_k(x) |\varepsilon \nabla \kappa^{\varepsilon}(y)| \, \mathrm{d}x \, \mathrm{d}y. \end{split}$$

If $B_{k,y}^{\varepsilon} = \{(x,t) \colon |(\rho^{\frac{\alpha}{2}} * \kappa^{\varepsilon})(x+y) - \rho^{\frac{\alpha}{2}}(x)|\mathbf{1}_k(x) \ge k\}$ then

$$\begin{split} |B_{k,x}^{\varepsilon}| &\leq \frac{1}{k^2} \int_{\mathbb{T}^d} |(\rho^{\frac{\alpha}{2}} * \kappa^{\varepsilon})(y+x) - \rho^{\frac{\alpha}{2}}(x)|^2 \mathbf{1}_k(x) \,\mathrm{d}x \\ &= \frac{1}{k^2} \int_{\mathbb{T}^d} |\int_{\mathbb{T}^d} \left(\rho^{\frac{\alpha}{2}}(y+x+z) - \rho^{\frac{\alpha}{2}}(x)\right) \kappa^{\varepsilon}(z) \,\mathrm{d}z|^2 \mathbf{1}_k(x) \,\mathrm{d}x \\ &\leq \frac{1}{k^2} \int_{\mathbb{T}^d} \left(\int_{\mathbb{T}^d} |\rho^{\frac{\alpha}{2}}(y+x+z) - \rho^{\frac{\alpha}{2}}(x)|^2 \kappa^{\varepsilon}(z) \,\mathrm{d}z\right) \mathbf{1}_k(x) \,\mathrm{d}x \\ &= \frac{1}{k^2} \int_{\mathbb{T}^d} \left(\int_{\mathbb{T}^d} |\int_0^1 \nabla \rho^{\frac{\alpha}{2}}(x+s(y+z)) \cdot (y+z) \,\mathrm{d}s|^2 \kappa^{\varepsilon}(z) \,\mathrm{d}z\right) \mathbf{1}_k(x) \,\mathrm{d}x \\ &\lesssim \frac{|y|^2 + \varepsilon^2}{k^2} \int_{(\mathbb{T}^d)^2} \int_0^1 |\nabla \rho^{\frac{\alpha}{2}}(x+s(y+z))|^2 \kappa^{\varepsilon}(z) \mathbf{1}_k(x) \,\mathrm{d}s \,\mathrm{d}z \,\mathrm{d}x. \end{split}$$

A decomposition: for $A_k = \{(x,t) : \rho^{\frac{\alpha}{2}}(x,t) \ge M+k\}$ and $\mathbf{1}_k = \mathbf{1}_{A_k \setminus A_{k+1}}$,

$$\begin{split} &\int_{\mathbb{T}^d} |\psi(y,\rho_{\varepsilon})| (\mathbf{1}_{A_1}\rho^{\alpha} * |\varepsilon \nabla \kappa^{\varepsilon}|) \, \mathrm{d}y \\ &\leq \sum_{k=1}^{\infty} \int_{(\mathbb{T}^d)^2} |\psi(y+x,\rho_{\varepsilon}(y+x))| (M^{\frac{\alpha}{2}} + k + 1)^2 \mathbf{1}_k(x) |\varepsilon \nabla \kappa^{\varepsilon}(y)| \, \mathrm{d}x \, \mathrm{d}y. \\ &\text{If } B_{k,y}^{\varepsilon} = \{(x,t) \colon |(\rho^{\frac{\alpha}{2}} * \kappa^{\varepsilon})(x+y) - \rho^{\frac{\alpha}{2}}(x)| \mathbf{1}_k(x) \ge k\} \text{ then} \\ &\quad |B_{k,x}^{\varepsilon}| \lesssim \frac{|y|^2 + \varepsilon^2}{k^2} \int_{(\mathbb{T}^d)^2} \int_0^1 |\nabla \rho^{\frac{\alpha}{2}}(x+s(y+z))|^2 \kappa^{\varepsilon}(z) \mathbf{1}_k(x) \, \mathrm{d}s \, \mathrm{d}z \, \mathrm{d}x. \end{split}$$

Since, if $\alpha \in [1, 2]$,

$$\rho^{\frac{\alpha}{2}}(x) - (\rho^{\frac{\alpha}{2}} \ast \kappa^{\varepsilon})(x+y) \ge \rho^{\frac{\alpha}{2}}(x) - (\rho \ast \kappa^{\varepsilon})^{\frac{\alpha}{2}}(y+x) \ge \rho^{\frac{\alpha}{2}}(x) - M^{\frac{\alpha}{2}},$$

for every $(y,t) \in \mathbb{T}^d \times [0,T]$,

Supp
$$(\psi(y+\cdot,\rho_{\varepsilon}(y+\cdot))\mathbf{1}_{k}(\cdot)) \subseteq B_{k,y}^{\varepsilon},$$

and we having using the boundedness of ψ that

$$\int_{\mathbb{T}^d} |\psi(y,\rho_{\varepsilon})| (\mathbf{1}_{A_1}\rho^{\alpha} * |\varepsilon \nabla \kappa^{\varepsilon}|) \lesssim \sum_{k=1}^{\infty} \int_{\mathbb{T}^d} |B_{k,y}^{\varepsilon}| (M^{\frac{\alpha}{2}} + k + 1)^2 |\varepsilon \nabla \kappa^{\varepsilon}(y)| \, \mathrm{d}y.$$

A decomposition: for $B_{k,y}^{\varepsilon} = \{(x,t) \colon |(\rho^{\frac{\alpha}{2}} * \kappa^{\varepsilon})(x+y) - \rho^{\frac{\alpha}{2}}(x)|\mathbf{1}_k(x) \ge k\},\$

$$|B_{k,x}^{\varepsilon}| \lesssim \frac{|y|^2 + \varepsilon^2}{k^2} \int_{(\mathbb{T}^d)^2} \int_0^1 |\nabla \rho^{\frac{\alpha}{2}} (x + s(y+z))|^2 \kappa^{\varepsilon}(z) \mathbf{1}_k(x) \,\mathrm{d}s \,\mathrm{d}z \,\mathrm{d}x,$$

we have that

$$\begin{split} &\int_{\mathbb{T}^d} |\psi(y,\rho_{\varepsilon})| (\mathbf{1}_{A_1}\rho^{\alpha} * |\varepsilon\nabla\kappa^{\varepsilon}|) \, \mathrm{d}y \\ &\lesssim \sum_{k=1}^{\infty} \int_{\mathbb{T}^d} |B_{k,y}^{\varepsilon}| (M^{\frac{\alpha}{2}} + k + 1)^2 |\varepsilon\nabla\kappa^{\varepsilon}(y)| \, \mathrm{d}y \\ &\lesssim \sum_{k=1}^{\infty} \int_{(\mathbb{T}^d)^3} \int_0^1 \Big(\frac{|y|^2 + \varepsilon^2}{k^2}\Big) (M^{\frac{\alpha}{2}} + k + 1)^2 |\varepsilon\nabla\kappa^{\varepsilon}(y)| |\nabla\rho^{\frac{\alpha}{2}} (x + s(y + z))|^2 \kappa^{\varepsilon}(z) \mathbf{1}_k(x) \\ &\lesssim \int_{(\mathbb{T}^d)^3} \int_0^1 (|y|^2 + \varepsilon^2) |\varepsilon\nabla\kappa^{\varepsilon}(y)| |\nabla\rho^{\frac{\alpha}{2}} (x + s(y + z))|^2 \kappa^{\varepsilon}(z) \mathbf{1}_{A_1}(x) \\ &\lesssim \varepsilon^2 \int_{(\mathbb{T}^d)^3} \int_0^1 |\varepsilon\nabla\kappa^{\varepsilon}(y)| |\nabla\rho^{\frac{\alpha}{2}} (x + s(y + z))|^2 \kappa^{\varepsilon}(z) \mathbf{1}_{A_1}(x) \\ &\lesssim \varepsilon^2 \int_{\mathbb{T}^d} |\nabla\rho^{\frac{\alpha}{2}}|^2. \end{split}$$

The conclusion: we recall that for $A_1 = \{(x, t) : \rho(x, t) \ge M + 1\},\$

$$\begin{split} &|\int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\mathbf{1}_{A_1}\rho^{\frac{\alpha}{2}}g*\nabla\kappa^{\varepsilon})|\\ &\lesssim \Big(\int_{\mathbb{T}^d} |\psi(x,\rho_{\varepsilon})|(\mathbf{1}_{A_1}|g|^2*|\varepsilon\nabla\kappa^{\varepsilon}|)\Big)^{\frac{1}{2}} \cdot \varepsilon^{-1}\Big(\int_{\mathbb{T}^d} |\psi(x,\rho_{\varepsilon})|(\mathbf{1}_{A_1}\rho^{\alpha}*|\varepsilon\nabla\kappa^{\varepsilon}|)\Big)^{\frac{1}{2}}. \end{split}$$

Since we have shown that $\int_{\mathbb{T}^d} |\psi(x,\rho_{\varepsilon})| (\mathbf{1}_{A_1}\rho^{\alpha} * |\varepsilon \nabla \kappa^{\varepsilon}| \lesssim \varepsilon^2 \int_{\mathbb{T}^d} |\nabla \rho^{\frac{\alpha}{2}}|^2$,

$$\lim_{\varepsilon \to 0} \left| \int_{\mathbb{T}^d} \psi(x, \rho_{\varepsilon}) (\mathbf{1}_{A_1} \rho^{\frac{\alpha}{2}} g * \nabla \kappa^{\varepsilon}) \right| = 0.$$

Therefore, since

$$\int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) = \int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\mathbf{1}_{A_0}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}) + \int_{\mathbb{T}^d} \psi(x,\rho_{\varepsilon})(\mathbf{1}_{A_1}\rho^{\frac{\alpha}{2}}g * \nabla \kappa^{\varepsilon}),$$

we have that

$$\lim_{\varepsilon \to 0} \int_{\mathbb{T}^d} \psi(x,\rho_\varepsilon)(\rho^{\frac{\alpha}{2}}g * \nabla \kappa^\varepsilon) = \int_{\mathbb{T}^d} (\partial_\xi \psi)(x,\rho) \rho^{\frac{\alpha}{2}}g \cdot \nabla \rho + \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}}g \cdot (\nabla \psi)(x,\rho).$$

Recovering the kinetic form: if ρ is weak solution, for $\rho_{\varepsilon} = (\rho * \kappa^{\varepsilon})$,

$$\partial_t \int_{\mathbb{T}^d} \Psi(x, \rho_{\varepsilon}) = \int_{\mathbb{T}^d} \psi(x, \rho_{\varepsilon}) \partial_t \rho_{\varepsilon}$$
$$= -2 \int_{\mathbb{T}^d} \psi(x, \rho_{\varepsilon}) (\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}} * \nabla \kappa^{\varepsilon}) + \int_{\mathbb{T}^d} \psi(x, \rho_{\varepsilon}) (\rho^{\frac{\alpha}{2}} g * \nabla \kappa^{\varepsilon})$$

and, after passing to the limit $\varepsilon \to 0$,

$$\partial_t \int_{\mathbb{T}^d} \Psi(x,\rho) = -\int_{\mathbb{T}^d} (\partial_{\xi}\psi)(x,\rho)\alpha\rho^{\alpha-1} |\nabla\rho|^2 - \int_{\mathbb{T}^d} \alpha\rho^{\alpha-1} (\nabla\psi)(x,\rho) \cdot \nabla\rho \\ + \int_{\mathbb{T}^d} (\partial_{\xi}\psi)(x,\rho)\rho^{\frac{\alpha}{2}}g \cdot \nabla\rho + \int_{\mathbb{T}^d} \rho^{\frac{\alpha}{2}}g \cdot (\nabla\psi)(x,\rho).$$

The kinetic equation: for $q = \delta_{\rho} \left(\alpha \xi^{\alpha - 1} |\nabla \rho|^2 \right)$,

$$\begin{split} \partial_t \int_{\mathbb{T}^d} \int_{\mathbb{R}} \psi(x,\rho) \chi &= -\int_{\mathbb{T}^d} \int_{\mathbb{R}} (\partial_{\xi} \psi)(x,\xi) q - \int_{\mathbb{T}^d} \int_{\mathbb{R}} \alpha \xi^{\alpha-1} (\nabla \psi)(x,\xi) \cdot \nabla \chi \\ &+ \int_{\mathbb{T}^d} \int_{\mathbb{R}} (\partial_{\xi} \psi)(x,\xi) \xi^{\frac{\alpha}{2}} g \cdot \nabla \chi - \int_{\mathbb{T}^d} \int_{\mathbb{R}} \xi^{\frac{\alpha}{2}} (\partial_{\xi} \chi) g \cdot (\nabla \psi)(x,\xi), \end{split}$$

and

$$\partial_t \chi = \nabla \cdot (\alpha \xi^{\alpha - 1} \nabla \chi) + \partial_\xi q - \partial_\xi (\xi^{\frac{\alpha}{2}} g \cdot \nabla \chi) + \nabla \cdot (\xi^{\frac{\alpha}{2}} (\partial_\xi \chi) g).$$

Equivalence of weak and renormalized kinetic solutions [F., Gess; 2023]

Under assumptions including $\Phi(\xi) = \xi^m$ for every $m \in [1, \infty)$, a nonnegative function $\rho \in \mathcal{C}([0, T]; L^1(\mathbb{T}^d))$ that satisfies

$$\Phi^{\frac{1}{2}}(\rho) \in L^{2}([0,T]; H^{1}(\mathbb{T}^{d}))$$

is a renormalized kinetic solution of the skeleton equation

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g)$$
 in $\mathbb{T}^d \times (0,T)$ with $\rho(\cdot,0) = \rho_0$,

for a nonnegative ρ_0 with finite entropy if and only if ρ is a weak solution. In particular, weak solutions exist and are unique.

- equivalence of renormalized and weak solutions [DiPerna, Lions; 1989], [Ambrosio; 2004].
- strong continuity with respect to weak convergence of the control
- for example, $\Phi^{\frac{1}{2}}$ convex or concave or Φ satisfies that $0 < \lambda \leq \Phi' \leq \Lambda$.

Weak-strong continuity [F., Gess; 2023]

If ρ_n are solutions of the skeleton equation with controls $g_n \rightarrow g$ and initial data $\rho_{0,n} \rightarrow \rho_0$ with uniformly bounded entropy, then $\rho_n \rightarrow \rho$ for ρ the solution of the skeleton equation with control g and initial data ρ_0 .

The entropy estimate: if $\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot (\rho_n^{\frac{\alpha}{2}} g_n)$ then

$$\max_{t \in [0,T]} \int_{\mathbb{T}^d} \rho_n \log(\rho_n) + \int_0^T \int_{\mathbb{T}^d} |\nabla \rho_n^{\frac{\alpha}{2}}|^2 \lesssim \int_{\mathbb{T}^d} \rho_{0,n} \log(\rho_{0,n}) + \int_0^T \int_{\mathbb{T}^d} |g_n|^2$$

Compactness since the g_n are uniformly $(L_{t,x}^2)^d$ -bounded,

 ρ_n is strongly compact in $L_{t,x}^1$ and $\rho_n^{\frac{\alpha}{2}}$ is weakly compact in $L_t^2 H_x^1$. **Uniqueness of the limit**: We have for some ρ that, along a subsequence,

$$\rho_n \to \rho \text{ in } L^1_{t,x} \text{ and } \rho_n^{\frac{\alpha}{2}} \rightharpoonup \rho^{\frac{\alpha}{2}} \text{ in } L^2_t H^1_x,$$

from which we conclude that

$$\partial_t \rho = 2\nabla \cdot \left(\rho^{\frac{\alpha}{2}} \nabla \rho^{\frac{\alpha}{2}}\right) - \nabla \cdot \left(\rho^{\frac{\alpha}{2}} g\right),$$

and that $\rho_n \to \rho$ along the full sequence $n \to \infty$.

The zero range process: μ^N on $\mathbb{T}^1 \times [0,T]$ for N = 15 and $T(k) \sim ke^{-kt}$,

The heat equation: the hydrodynamic limit $\partial_t \overline{p} = \Delta \overline{\rho}$,

The skeleton equation: the controlled equation $\partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho} \cdot g)$,

The rate function: we have $\mathbb{P}(\mu^N \simeq \rho) \simeq \exp(-NI(\rho))$ for

$$I(\rho) = \frac{1}{2} \inf\{\|g\|_{L^2_{t,x}}^2 : \partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho}g)\}.$$

The hydrodynamic limit: for the parabolically rescaled, mean zero particle process μ_t^N on \mathbb{T}_N^d , as $N \to \infty$, for $J(\overline{\rho}) = \nabla \sigma(\overline{\rho})$,

$$\mu_t^N \rightharpoonup \overline{\rho} \, \mathrm{d}x \text{ for } \partial_t \overline{\rho} = \Delta \sigma(\overline{\rho}) = \nabla \cdot J(\overline{\rho}).$$

Macroscopic fluctuation theory: the probability of observing a space-time fluctuation (ρ, j) satisfying

$$\partial_t \rho = \nabla \cdot j \ \left(\text{that is, } \partial_t \int_U \rho = \oint_{\partial U} j \cdot \nu \right),$$

satisfies the large deviations bound [Bertini et al.; 2014]

$$\mathbb{P}[\mu^N \simeq \rho] \simeq \exp\left(-NI(\rho)\right) \text{ for } I(\rho) = \int_0^T \int_{\mathbb{T}^d} (j - J(\rho)) \cdot m(\rho)^{-1} (j - J(\rho)).$$

The skeleton equation: if $(j - J(\rho)) = \sqrt{m(\rho)}g$ then $I(\rho) = \int_0^T \int_{\mathbb{T}^d} |g|^2$ and

$$\partial_t \rho = \nabla \cdot (J(\rho) + (j - J(\rho))) = \Delta \sigma(\rho) - \nabla \cdot (\sqrt{m(\rho)g}).$$

The zero range process: $\sigma(\rho) = \Phi(\rho)$ and $m(\rho) = \Phi(\rho)$ and

$$\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g).$$

The exclusion process: $\sigma(\rho) = \rho$ and $m(\rho) = \rho(1 - \rho)$ and

$$\partial_t \rho = \Delta \rho - \nabla \cdot (\sqrt{\rho(1-\rho)}g).$$

$$- \text{ for } I(\rho) = \frac{1}{2} \inf \left\{ \left\| g \right\|_{L^2(\mathbb{T}^d \times [0,T];\mathbb{R}^d)}^2 : \partial_t \rho = \Delta \rho^\alpha - \nabla \cdot (\rho^{\frac{\alpha}{2}} \cdot g) \right\}.$$

Large Deviations Principle [Benois, Kipnis, Landim; 1995]

For every closed $A \subseteq D([0,T]; \mathcal{M}_+(\mathbb{T}^d)),$

$$\limsup_{N \to \infty} \frac{1}{N} \log(\mathbb{P}[\mu^N \in A]) \le -\inf_{m \in A} I(m).$$

For the space of smooth fluctuations

$$\mathcal{S} = \{\partial_t m = \Delta m^{\alpha} - \nabla \cdot (m^{\alpha} \nabla H) \colon H \in \mathbf{C}^{3,1}(\mathbb{T}^d \times [0,T])\},\$$

for every open subset $A \subseteq D([0,T]; \mathcal{M}_+(\mathbb{T}^d)),$

$$\limsup_{N \to \infty} \frac{1}{N} \log(\mathbb{P}[\mu^N \in A]) \ge -\overline{\inf_{\rho \in (A \cap S)} I(\rho)}^{\mathrm{lsc}}.$$

The restricted rate function: for the space of smooth fluctuations

$$\mathcal{S} = \{\partial_t m = \Delta m^{\alpha} - \nabla \cdot (m^{\alpha} \nabla H) \colon H \in \mathbf{C}^{3,1}(\mathbb{T}^d \times [0,T])\},\$$

the large deviations lower bound is defined by

$$\limsup_{N \to \infty} \frac{1}{N} \log(\mathbb{P}[\mu^N \in A]) \ge -\overline{\inf_{\rho \in (A \cap S)} I(\rho)}^{\mathrm{lsc}}$$

The recovery sequence: given an arbitrary fluctuation

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g),$$

need find a sequence $\rho_n \in \mathcal{S}$ such that

$$\rho_n \to \rho \in L^1_{t,x}$$
 and $I(\rho_n) \to I(\rho)$.

The rate function: we have

$$I(\rho) = \frac{1}{2} \inf \left\{ \|g\|_{L^2}^2 : \partial_t \rho = \Delta \rho^\alpha - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \right\}.$$

The Hilbert space: $H^{1}_{\rho^{\alpha}}$ is the strong closure w.r.t. the inner product

$$\langle \nabla \psi, \nabla \phi \rangle = \int_0^T \int_{\mathbb{T}^d} \rho^{\alpha} \nabla \psi \cdot \nabla \phi \text{ for } \phi, \psi \in \mathbf{C}^{\infty} .$$

Unique minimizer: the equation defines

$$\partial_t \rho - \Delta \rho^{\alpha} = -\nabla \cdot (\rho^{\frac{\alpha}{2}}g) \in H^{-1}_{\rho^{\alpha}},$$

and if $I(\rho)<\infty$ then the minimizer $g=\rho^{\frac{\alpha}{2}}\nabla H$ for $H\in H^1_{\rho^\alpha}$ and

$$I(\rho) = \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \rho^{\alpha} |\nabla H|^2 = \frac{1}{2} \|H\|_{H^1_{\rho^{\alpha}}}^2 = \frac{1}{2} \|\partial_t \rho - \Delta \Phi(\rho)\|_{H^{-1}_{\rho^{\alpha}}}^2.$$

The "ill-posed" equation: we have the formally "supercritical" equation

$$\partial_t \rho = \Delta \rho^\alpha - \nabla \cdot (\rho^\alpha \nabla H).$$

The recovery sequence: given an arbitrary fluctuation

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g),$$

need find a sequence $\rho_n \in \mathcal{S}$ such that

$$\rho_n \to \rho \in L^1_{t,x} \text{ and } I(\rho_n) \to I(\rho).$$

A first attempt: there exists $H \in H^1_{\rho^{\alpha}}$ such that

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\alpha} \nabla H) \text{ and } I(\rho) = \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \rho^{\alpha} |\nabla H|^2.$$

Let ρ_{ε} solve

$$\partial_t \rho_{\varepsilon} = \Delta \rho_{\varepsilon}^{\alpha} - \nabla \cdot (\rho_{\varepsilon}^{\alpha} \nabla H^{\varepsilon}).$$

Passing $\varepsilon \to 0$?

- supercritical with no stable estimates with respect to ∇H
- the Hilbert space framework is too rigid

A second attempt: for some $g \in L^2_{t,x}$ and ρ_0 with finite entropy,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \text{ with } \rho(\cdot, 0) = \rho_0.$$

Regularizing the data: we consider

$$\rho_{0,n} = \left(\left(\rho_0 \wedge n \right) \vee \frac{1}{n} \right) * \kappa_x^{\frac{1}{n}} \text{ and } g_n = g * \kappa_{t,x}^{\frac{1}{n}},$$

and solve

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot (\rho_n^{\frac{\alpha}{2}} g_n) \text{ with } \rho_n(\cdot, 0) = \rho_{0,n}.$$

There exists $H_n \in H^1_{\rho_n^{\alpha}}$ such that

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot (\rho_n^{\alpha} \nabla H_n) \text{ with } \rho_n(\cdot, 0) = \rho_{0,n}.$$

Deducing the regularity of H_n : we have the elliptic equation

$$-\nabla \cdot (\rho_n^{\alpha} \nabla H_n) = \partial_t \rho_n - \Delta \rho_n^{\alpha}.$$

- not necessarily uniformly elliptic
- is ρ_n regular?

The final attempt: for some $g \in L^2_{t,x}$ and ρ_0 with finite entropy,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \text{ with } \rho(\cdot, 0) = \rho_0.$$

Regularizing the data: we consider

$$\rho_{0,n} = \left(\left(\rho_0 \wedge n \right) \vee \frac{1}{n} \right) * \kappa_x^{\frac{1}{n}} \text{ and } g_n = g * \kappa_{t,x}^{\frac{1}{n}},$$

"Turning off" the control: for $\sigma_n(\xi) = 0$ if $\xi \leq \frac{1}{n}$ or $\xi \geq n$, solve

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot \left(\rho_n^{\frac{\alpha}{2}} \sigma_n(\rho_n) g_n\right)$$
$$= \Delta \rho_n^{\alpha} - \nabla \cdot \left(\rho_n^{\frac{\alpha}{2}} \tilde{g}_n\right),$$

for the control $\tilde{g}_n = \sigma_n(\rho_n)g_n$.

Regularity of ρ_n : we have that $\frac{1}{n} \leq \rho_n \leq n$ and $\rho_n \in C^{\infty}(\mathbb{T}^d \times [0,T])$.

Deducing the regularity of H_n : There exists $H_n \in H^1_{\rho_n^{\alpha}}$ such that

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot (\rho_n^{\alpha} \nabla H_n) \text{ and } - \nabla \cdot (\rho_n^{\alpha} \nabla H_n) = \partial_t \rho_n - \Delta \rho_n^{\alpha}$$

— in general, $\partial_t \rho = \Delta \Phi(\rho) - \nabla \cdot (\Phi^{\frac{1}{2}}(\rho)g)$ for $\Phi \in C^2_{loc}((0,\infty))$

The fluctuation: for some $g \in L^2_{t,x}$ and ρ_0 with finite entropy,

$$\partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g) \text{ with } \rho(\cdot, 0) = \rho_0.$$

The recovery sequence: for $\sigma_n(\xi) = 0$ if $\xi \leq \frac{1}{n}$ or $\xi \geq n$, solve

$$\partial_t \rho_n = \Delta \rho_n^{\alpha} - \nabla \cdot \left(\rho_n^{\frac{\alpha}{2}} \sigma_n(\rho_n) g_n \right) = \Delta \rho_n^{\alpha} - \nabla \cdot \left(\rho_n^{\frac{\alpha}{2}} \tilde{g}_n \right),$$

for the control $\tilde{g}_n = \sigma_n(\rho_n)g_n$ and with $\rho_n(\cdot, 0) = \rho_{0,n}$.

Compactness: the ρ_n satisfy uniformly the entropy estimate and

$$\rho_n \to \rho \text{ and } \sigma(\rho_n) g_n \mathbf{1}_{\{\rho > 0\}} \to g \mathbf{1}_{\{\rho > 0\}} \text{ and } I(\rho_n) \le \|\sigma(\rho_n) g_n\|_2^2 \to \|g\|_2^2.$$

[F., Gess; 2023]

For the space of smooth fluctuations

$$\mathcal{S} = \{\partial_t m = \Delta m^{\alpha} - \nabla \cdot (m^{\alpha} \nabla H) \colon H \in \mathbf{C}^{3,1}(\mathbb{T}^d \times [0,T])\},\$$

we have that

$$\overline{I(\rho)|_{\mathcal{S}}}^{\text{lsc}} = I(\rho) = \frac{1}{2} \inf\{\|g\|_2^2 : \partial_t \rho = \Delta \rho^{\alpha} - \nabla \cdot (\rho^{\frac{\alpha}{2}}g)\}.$$

V. References

L. Ambrosio

Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158(2): 227-260, 2004.

O. Benois and C. Kipnis and C. Landim

Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stochastic Process. Appl., 55(1): 65-89, 1995.

L. Bertini and A. De Sole and D. Gabrielli and G. Jona-Lasinio and C. Landim

Macroscopic fluctuation theory. arXiv:1404.6466, 2014.

A. Budhiraja and P. Dupuis

A variational representation for positive functional of infinite dimensional Brownian motions. Probab. Math. Statist. 20: 39-61, 2000.

A. Budhiraja and P. Dupuis and V. Maroulas

Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36(4): 1390-1420, 2008.

N Depauw

Non unicité des solutions bornées pour un champ de vecteurs BV en dehors dún hyperplan. C. R. Math. Acad. Sci. Paris, 337(4): 249-252, 2003.

R.J. DiPerna and P.-L. Lions

Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3): 511-547, 1989.

Conservative stochastic PDE and fluctuations of the symmetric simple exclusion process. arXiv:2012.02126, 2020.

V. References

A. Donev

Fluctuating hydrodynamics and coarse-graining. First Berlin-Leipzig Workshop on Fluctuating Hydrodynamics, 2019.

B. Fehrman and B. Gess

Well-posedness of the Dean-Kawasaki and the nonlinear Dawson-Watanabe equation with correlated noise. Arch. Ration. Mech. Anal., 248(20): 2024.

B. Fehrman and B. Gess

Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Invent. Math., 234:573-636, 2023.

B. Fehrman and B. Gess and R. Gvalani

Ergodicity and random dynamics systems of conservative SPDEs. arXiv:2206.14789, 2022.

P. Ferrari and E. Presutti and M. Vares

Nonequilibrium fluctuations for a zero range process. Ann. Inst. H. Poincaré Probab. Statist., 24(2): 237-268, 1988.

B. Perthame

Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure.

J. Math. Pures Appl. 77(10), 1055-1064, 1998.

H. Spohn

Large Scale Dynamics of Interacting Particles. Springer-Verlag, Heidelberg, 1991.