1. Consider the matrix $A=\left[\begin{array}{llll}1 & 1 & 0 & 3 \\ 0 & 4 & 1 & 5 \\ 1 & 1 & 0 & 1 \\ 2 & 2 & 3 & 4\end{array}\right]$.
(a) Calculate the determinant of A.

$$
\operatorname{det}(A)=\left|\begin{array}{llll}
1 & 1 & 0 & 3 \\
0 & 4 & 1 & 5 \\
1 & 1 & 0 & 1 \\
2 & 2 & 3 & 4
\end{array}\right|=\left|\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & 4 & 1 & 5 \\
0 & 0 & 0 & -2 \\
0 & 0 & 3 & -2
\end{array}\right|=-\left|\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & 4 & 1 & 5 \\
0 & 0 & 3 & -2 \\
0 & 0 & 0 & -2
\end{array}\right|=24
$$

For each of the following questions, give brief answers and explanations.
(b) Can the answer to part (a) be used to determine if the matrix A is invertible? Yes, since $\operatorname{det}(A) \neq 0, A$ is invertible.
(c) Can the answer to (a) be used to say how many solutions the system of equations $A \vec{x}=\overrightarrow{0}$ has? Yes, since $\operatorname{det}(A) \neq 0$ (so A is invertible), $A \vec{x}=\overrightarrow{0}$ has only the trivial solution $\vec{x}=A^{-1} \overrightarrow{0}=\overrightarrow{0}$.
2. Recall that \mathbb{R}^{n} denotes the vector space of all ordered n-tuples of real numbers.

Consider the vectors $\quad \vec{v}_{1}=(1,2,1), \quad \vec{v}_{2}=(-1,0,1), \quad \vec{v}_{3}=(2,7,3) \quad$ in \mathbb{R}^{3}.
(a) Can the vector $\vec{b}=(3,6,-1)$ be expressed as a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} ?

In matrix form, $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\vec{b}$ is $A \vec{x}=\vec{b}: \quad\left[\begin{array}{rrr}1 & -1 & 2 \\ 2 & 0 & 7 \\ 1 & 1 & 3\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{r}3 \\ 6 \\ -1\end{array}\right]$

$$
\left[\begin{array}{rrrlr}
1 & -1 & 2 & \vdots & 3 \\
2 & 0 & 7 & \vdots & 6 \\
1 & 1 & 3 & \vdots & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrrlr}
1 & -1 & 2 & \vdots & 3 \\
0 & 2 & 3 & \vdots & 0 \\
0 & 2 & 1 & \vdots & -4
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & -1 & 2 & \vdots & 3 \\
0 & 2 & 3 & \vdots & 0 \\
0 & 0 & -2 & \vdots & -4
\end{array}\right]
$$

From here, it is easy to see that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\sharp}\right)=3$, so the system is consistent, and \vec{b} can be expressed as a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3}.
(b) Does the set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ form a basis for \mathbb{R}^{3} ? Explain.

Yes. The calculation in (a) shows that any \vec{b} in \mathbb{R}^{3} can be expressed as a linear combination of \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} uniquely (since the matrix A has rank 3 and so is invertible). Consequently, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ spans \mathbb{R}^{3}. Furthermore, since $A \vec{x}=\overrightarrow{0}$ has only the trivial solution $\vec{x}=\overrightarrow{0}$, the columns of A, i.e., $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$, form a linearly independent set.
3. Let S be the subset of \mathbb{R}^{4} consisting of vectors of the form $(s, t, t, s+t)$, where s and t are real numbers. That is $\quad S=\left\{(s, t, t, s+t)\right.$ in $\mathbb{R}^{4}: s, t$ are real $\}=\left\{\left[\begin{array}{c}s \\ t \\ t \\ s+t\end{array}\right]\right.$ in $\mathbb{R}^{4}: s, t$ are real $\}$.
(a) Show that S is a subspace of \mathbb{R}^{4}.

Let \vec{u} and \vec{v} be in S. Then $\vec{u}=(a, b, b, a+b)$ and $\vec{v}=(c, d, d, c+d)$ for some real numbers a, b, c, d. Since $\vec{u}+\vec{v}=(a+c, b+d, b+d, a+b+c+d)=(s, t, t, s+t)$ for the real numbers $s=a+c$ and $t=b+d, \vec{u}+\vec{v}$ is in S, and S is closed under vector addition.
If k is a scalar, and \vec{u} is in S as above, then $k \vec{u}=(k a, k b, k b, k a+k b)=(s, t, t, s+t)$ for the real numbers $s=k a$ and $t=k b$. So $k \vec{u}$ is in S, and S is closed under scalar multiplication.
(b) Find a basis for S, and determine the dimension of S.

Since $(s, t, t, s+t)=s(1,0,0,1)+t(0,1,1,1)$, the set $\{(1,0,0,1),(0,1,1,1)\}$ spans S. It is easy to check that this set is linearly independent (do it). Consequently, $\{(1,0,0,1),(0,1,1,1)\}$ is a basis for S, and $\operatorname{dim}(S)=2$.
4. Recall that P_{3} denotes the vector space of all polynomials of degree at most 3 with real coefficients. Consider the polynomials $\quad p_{1}=1+x^{2}+x^{3}, \quad p_{2}=1+x+x^{3}, \quad p_{3}=x+x^{2}+x^{3} \quad$ in P_{3}.
(a) Determine if the set $\left\{p_{1}, p_{2}, p_{3}\right\}$ is linearly independent.

If $c_{1}\left(1+x^{2}+x^{3}\right)+c_{2}\left(1+x+x^{3}\right)+c_{3}\left(x+x^{2}+x^{3}\right)=0$, then
$\left(c_{1}+c_{2}\right)+\left(c_{2}+c_{3}\right) x+\left(c_{1}+c_{3}\right) x^{2}+\left(c_{1}+c_{2}+c_{3}\right) x^{3}=0+0 x+0 x^{2}+0 x^{3}$.
For this to hold, we must have $c_{1}+c_{2}=0 \quad c_{2}+c_{3}=0 \quad c_{1}+c_{3}=0 \quad c_{1}+c_{2}+c_{3}=0$.
This is a homogeneous system of 4 linear equations in the 3 variables c_{1}, c_{2}, c_{3}.
Solving this system (do it) yields a unique solution: $c_{1}=0, c_{2}=0, c_{3}=0$.
Consequently, the set $\left\{p_{1}, p_{2}, p_{3}\right\}$ is linearly independent.
(b) Explain why the set $\left\{p_{1}, p_{2}, p_{3}\right\}$ does not span P_{3}.

For instance, since $\operatorname{dim}\left(P_{3}\right)=4\left(\left\{1, x, x^{2}, x^{3}\right\}\right.$ is a basis), any spanning set must have at least 4 elements. Alternatively, you can check that the polynomial $a+b x+c x^{2}+d x^{3}$ is in $\operatorname{span}\left\{p_{1}, p_{2}, p_{3}\right\}$ only if $a+b+c-2 d=0$.
5. Consider the matrix $\quad A=\left[\begin{array}{rrr}1 & -1 & 2 \\ -3 & 3 & -6\end{array}\right]$.
(a) Find a basis for the subspace of \mathbb{R}^{2} spanned by the columns of A.

Give a brief geometric description of this subspace.
Write $A=\left[\vec{v}_{1} \vec{v}_{2} \vec{v}_{3}\right]$. Since $\vec{v}_{2}=-\vec{v}_{1}$ and $\vec{v}_{3}=2 \vec{v}_{1}$, we have $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\operatorname{span}\left\{\vec{v}_{1}\right\}$. So $\left\{\vec{v}_{1}\right\}$ is a basis. $\operatorname{span}\left\{\vec{v}_{1}\right\}$ is a line through the origin in \mathbb{R}^{2}.
(b) Recall that the nullspace of an $m \times n$ matrix A with real entries is the subspace of \mathbb{R}^{n} defined by nullspace $(A)=\left\{\vec{x}\right.$ in $\left.\mathbb{R}^{n}: A \vec{x}=\overrightarrow{0}\right\}$.
For the 2×3 matrix A above, find the dimension of the nullspace of A.
Give a brief geometric description of this subspace.
Solving $A \vec{x}=\overrightarrow{0}$ yields $\vec{x}=s\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right]$. Use this to check that $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis
for the nullspace of A. From this, the dimension of the nullspace of A is 2 , and this subspace is a plane through the origin in \mathbb{R}^{3}.
Note that all you need to know to figure out the dimension of the nullspace of A is the rank of A. If A is $m \times n$ and has rank r, then when solving $A \vec{x}=\overrightarrow{0}$, there are $n-r$ free variables. Each free variable will correspond to a basis element for the nullspace of A (all of which are linearly independent), and so $\operatorname{dim}($ nullspace $(A))=n-r$. This number is known as the nullity of A.

