- **1.** [14 points] Consider the differential equation $xy\frac{dy}{dx} = y^2 1$.
 - (a) Verify that $y = \sqrt{1 + Cx^2}$ is a solution of this differential equation if C is a constant. If $y = \sqrt{1 + Cx^2}$, then $\frac{dy}{dx} = \frac{Cx}{\sqrt{1 + Cx^2}}$ and $xy\frac{dy}{dx} = x\sqrt{1 + Cx^2}\frac{Cx}{\sqrt{1 + Cx^2}} = Cx^2 = y^2 - 1$.
 - (b) Solve the initial value problem $xy\frac{dy}{dx} = y^2 1$, y(1) = 3. Since $y = \sqrt{1 + Cx^2}$ solves the D.E., y(1) = 3 yields $3 = \sqrt{1 + C}$, so C = 8 and $y = \sqrt{1 + 8x^2}$ solves the I.V.P.
 - (c) Can you be certain that the initial value problem in part (b) has a unique solution? Explain. Yes, the I.V.P. in part (b) has a unique solution. In standard form, the D.E. involved in this I.V.P. is $\frac{dy}{dx} = f(x, y)$, where $f(x, y) = \frac{y^2 - 1}{xy}$. Since f(x, y) and $\frac{\partial f}{\partial y} = \frac{y^2 + 1}{xy^2}$ are continuous near the point (1,3) (on a rectangle containing (1,3)), the I.V.P. has a unique solution by the existence and uniqueness theorem for first order differential equations.
- 2. [18 points] Solve each of the following differential equations.

(a)
$$\frac{dy}{dx} = (x-2)e^{-2y}$$
 (b) $\frac{dy}{dx} = \frac{9x^2 - 2x\sin y}{x^2\cos y + \sin y}$

- (a) This D.E. is separable: $e^{2y} dy = (x-2) dx$. Integrating, we get $\frac{1}{2}e^{2y} = \frac{1}{2}x^2 2x + C$. This yields $y = \frac{1}{2}\ln(x^2 4x + A)$, where A is a constant.
- (b) This D.E. is exact: In differential form M(x, y) dx + N(x, y) dy = 0, it can be written as $(2x \sin y 9x^2) dx + (x^2 \cos y + \sin y) dy = 0$. So $M = 2x \sin y 9x^2$ and $N = x^2 \cos y + \sin y$. Since $\frac{\partial M}{\partial y} = 2x \cos y = \frac{\partial N}{\partial x}$, the D. E. is exact. So there is a potential function $\phi = \phi(x, y)$ with $\frac{\partial \phi}{\partial x} = M = 2x \sin y 9x^2$ and $\frac{\partial \phi}{\partial y} = N = x^2 \cos y + \sin y$. Integrating the first of these equalities with respect to x yields $\phi = x^2 \sin y 3x^3 + h(y)$. Then, $\frac{\partial \phi}{\partial y} = x^2 \cos y + h'(y) = x^2 \cos y + \sin y$, so $h(y) = -\cos y$. So $\phi = x^2 \sin y 3x^3 \cos y$ and $x^2 \sin y 3x^3 \cos y = C$ solves the D.E.
- **3**. [18 points] Consider the differential equation $y' 2y = 3e^x y^3$.
 - (a) Explain why this differential equation is not linear. Linear differential equations are linear functions of the dependent variable y and its derivatives. y^3 is not a linear function of y.
 - (b) Show that making the substitution $u = y^{-2}$ yields the differential equation $u' + 4u = -6e^x$. If $u = y^{-2}$, then by the chain rule $u' = -2y^{-3}y'$, so $-\frac{1}{2}u' = y^{-3}y'$. Dividing the original D.E. by y^3 yields $y^{-3}y' - 2y^{-2} = 3e^x$. Substituting gives $-\frac{1}{2}u' - 2u = 3e^x$, i.e., $u' + 4u = -6e^x$.
 - (c) Solve the D.E. in part (b), and explain how this can be used to solve $y' 2y = 3e^x y^3$. The D.E. $u' + 4u = -6e^x$ is linear. The integrating factor is $I = e^{\int 4dx} = e^{4x}$. Multiplying by I yields $e^{4x}u' + 4e^{4x}u = -6e^{5x}$, i.e., $\frac{d}{dx}(e^{4x}u) = -6e^{5x}$. Integrating we get $e^{4x}u = -\frac{6}{5}e^{5x} + C$, so $u = -\frac{6}{5}e^x + Ce^{-4x}$. Since $u = y^{-2}$, substituting yields $y^{-2} = -\frac{6}{5}e^x + Ce^{-4x}$ which (implicitly) solves the original D.E.

4. [16 points] Consider the consistent system of linear equations: $\begin{array}{cccc} x_1 & -& 2x_2 & +& x_3 & -& x_4 & =& 1\\ 3x_1 & -& 6x_2 & +& x_3 & +& x_4 & =& 1\\ \end{array}$ Write the system in matrix form; find the free and bound variables; and find the solution set.

In matrix form, the system is
$$\begin{bmatrix} 1 & -2 & 1 & -1 \\ 3 & -6 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.
$$\begin{bmatrix} 1 & -2 & 1 & -1 & \vdots & 1 \\ 3 & -6 & 1 & 1 & \vdots & 1 \end{bmatrix} \xrightarrow{R2 \to R2 - 3R1} \begin{bmatrix} 1 & -2 & 1 & -1 & \vdots & 1 \\ 0 & 0 & -2 & 4 & \vdots & -2 \end{bmatrix} \xrightarrow{R2 \to -\frac{1}{2}R2} \begin{bmatrix} 1 & -2 & 1 & -1 & \vdots & 1 \\ 0 & 0 & 1 & -2 & \vdots & 1 \end{bmatrix}$$
 x_2, x_4 free, x_1, x_3 bound. Back substitution yields $x_1 = 2s - t, x_2 = s, x_3 = 1 + 2t, x_4 = t$.

5. [18 points] Consider the matrix
$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 3 & 1 & 5 \\ 0 & 1 & 1 & 1 \\ 2 & 4 & 2 & 6 \end{bmatrix}$$
.

(a) Find a row echelon matrix that is row equivalent to A, and find the rank of A.

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 2 & 3 & 1 & 5 \\ 0 & 1 & 1 & 1 \\ 2 & 4 & 2 & 6 \end{bmatrix} \xrightarrow{R2 \to R2 - 2R1} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \end{bmatrix} \xrightarrow{R3 \to R3 - R2} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ rank } A = 2$$

Answer the following questions based on your results in part (a). Include brief explanations.

(b) Is the matrix A invertible?

No, since rank A = 2 < 4, A is not invertible.

- (c) If \vec{b} is a 4×1 vector, is the system of linear equations $A\vec{x} = \vec{b}$ necessarily consistent? No, $A\vec{x} = \vec{b}$ is consistent for any \vec{b} if and only if A is invertible if and only if rank A = 4. But rank A = 2 < 4. Can you find a vector \vec{b} for which the system $A\vec{x} = \vec{b}$ has no solution?
- (d) How many solutions does the homogeneous system of linear equations $A \vec{x} = \vec{0}$ have? Infinitely many, since rank A = 2 the homogeneous system will have 4 - 2 = 2 free variables.

6. [16 points] Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 5 \\ -1 \\ 8 \end{bmatrix}$. The inverse of A is $A^{-1} = \begin{bmatrix} 2 & 1 & -1 \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -1 & 0 & 1 \end{bmatrix}$.

(a) Use Gauss-Jordan elimination to calculate the inverse of the matrix A by hand.

(b) Use the inverse of the matrix A to solve the system of linear equations $A\vec{x} = \vec{b}$.

$$A\vec{x} = \vec{b} \implies A^{-1}A\vec{x} = A^{-1}\vec{b} \implies I\vec{x} = A^{1}\vec{b} \implies \vec{x} = A^{-1}\vec{b} = \begin{bmatrix} 2 & 1 & -1\\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5\\ -1\\ 8 \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$