1. [14 points] Consider the differential equation $x y \frac{d y}{d x}=y^{2}-1$.
(a) Verify that $y=\sqrt{1+C x^{2}}$ is a solution of this differential equation if C is a constant.

If $y=\sqrt{1+C x^{2}}$, then $\frac{d y}{d x}=\frac{C x}{\sqrt{1+C x^{2}}}$ and $x y \frac{d y}{d x}=x \sqrt{1+C x^{2}} \frac{C x}{\sqrt{1+C x^{2}}}=C x^{2}=y^{2}-1$.
(b) Solve the initial value problem $x y \frac{d y}{d x}=y^{2}-1, y(1)=3$.

Since $y=\sqrt{1+C x^{2}}$ solves the D.E., $y(1)=3$ yields $3=\sqrt{1+C}$, so $C=8$ and $y=\sqrt{1+8 x^{2}}$ solves the I.V.P.
(c) Can you be certain that the initial value problem in part (b) has a unique solution? Explain. Yes, the I.V.P. in part (b) has a unique solution. In standard form, the D.E. involved in this I.V.P. is $\frac{d y}{d x}=f(x, y)$, where $f(x, y)=\frac{y^{2}-1}{x y}$. Since $f(x, y)$ and $\frac{\partial f}{\partial y}=\frac{y^{2}+1}{x y^{2}}$ are continuous near the point $(1,3)$ (on a rectangle containing $(1,3)$), the I.V.P. has a unique solution by the existence and uniqueness theorem for first order differential equations.
2. [18 points] Solve each of the following differential equations.
(a) $\frac{d y}{d x}=(x-2) e^{-2 y}$
(b) $\frac{d y}{d x}=\frac{9 x^{2}-2 x \sin y}{x^{2} \cos y+\sin y}$
(a) This D.E. is separable: $e^{2 y} d y=(x-2) d x$. Integrating, we get $\frac{1}{2} e^{2 y}=\frac{1}{2} x^{2}-2 x+C$. This yields $y=\frac{1}{2} \ln \left(x^{2}-4 x+A\right)$, where A is a constant.
(b) This D.E. is exact: In differential form $M(x, y) d x+N(x, y) d y=0$, it can be written as
$\left(2 x \sin y-9 x^{2}\right) d x+\left(x^{2} \cos y+\sin y\right) d y=0$. So $M=2 x \sin y-9 x^{2}$ and $N=x^{2} \cos y+\sin y$. Since $\frac{\partial M}{\partial y}=2 x \cos y=\frac{\partial N}{\partial x}$, the D. E. is exact. So there is a potential function $\phi=\phi(x, y)$ with $\frac{\partial \phi}{\partial x}=M=2 x \sin y-9 x^{2}$ and $\frac{\partial \phi}{\partial y}=N=x^{2} \cos y+\sin y$. Integrating the first of these equalities with respect to x yields $\phi=x^{2} \sin y-3 x^{3}+h(y)$. Then, $\frac{\partial \phi}{\partial y}=x^{2} \cos y+h^{\prime}(y)=x^{2} \cos y+\sin y$, so $h(y)=-\cos y$. So $\phi=x^{2} \sin y-3 x^{3}-\cos y$ and $x^{2} \sin y-3 x^{3}-\cos y=C$ solves the D.E.
3. [18 points] Consider the differential equation $y^{\prime}-2 y=3 e^{x} y^{3}$.
(a) Explain why this differential equation is not linear.

Linear differential equations are linear functions of the dependent variable y and its derivatives. y^{3} is not a linear function of y.
(b) Show that making the substitution $u=y^{-2}$ yields the differential equation $u^{\prime}+4 u=-6 e^{x}$. If $u=y^{-2}$, then by the chain rule $u^{\prime}=-2 y^{-3} y^{\prime}$, so $-\frac{1}{2} u^{\prime}=y^{-3} y^{\prime}$. Dividing the original D.E. by y^{3} yields $y^{-3} y^{\prime}-2 y^{-2}=3 e^{x}$. Substituting gives $-\frac{1}{2} u^{\prime}-2 u=3 e^{x}$, i.e., $u^{\prime}+4 u=-6 e^{x}$.
(c) Solve the D.E. in part (b), and explain how this can be used to solve $y^{\prime}-2 y=3 e^{x} y^{3}$.

The D.E. $u^{\prime}+4 u=-6 e^{x}$ is linear. The integrating factor is $I=e^{\int 4 d x}=e^{4 x}$. Multiplying by I yields $e^{4 x} u^{\prime}+4 e^{4 x} u=-6 e^{5 x}$, i.e., $\frac{d}{d x}\left(e^{4 x} u\right)=-6 e^{5 x}$. Integrating we get $e^{4 x} u=-\frac{6}{5} e^{5 x}+C$, so $u=-\frac{6}{5} e^{x}+C e^{-4 x}$. Since $u=y^{-2}$, substituting yields $y^{-2}=-\frac{6}{5} e^{x}+C e^{-4 x}$ which (implicitly) solves the original D.E.
4. [16 points] Consider the consistent system of linear equations: $x_{1}-2 x_{2}+x_{3}-x_{4}=1$
$3 x_{1}-6 x_{2}+x_{3}+x_{4}=1$
Write the system in matrix form; find the free and bound variables; and find the solution set.
In matrix form, the system is $\left[\begin{array}{rrrr}1 & -2 & 1 & -1 \\ 3 & -6 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
$\left[\begin{array}{rrrrrr}1 & -2 & 1 & -1 & \vdots & 1 \\ 3 & -6 & 1 & 1 & \vdots & 1\end{array}\right] \xrightarrow{R 2 \rightarrow R 2-3 R 1}\left[\begin{array}{rrrrrr}1 & -2 & 1 & -1 & \vdots & 1 \\ 0 & 0 & -2 & 4 & \vdots & -2\end{array}\right] \xrightarrow{R 2 \rightarrow-\frac{1}{2} R 2}\left[\begin{array}{rrrrlr}1 & -2 & 1 & -1 & \vdots & 1 \\ 0 & 0 & 1 & -2 & \vdots & 1\end{array}\right]$
x_{2}, x_{4} free, x_{1}, x_{3} bound. Back substitution yields $x_{1}=2 s-t, x_{2}=s, x_{3}=1+2 t, x_{4}=t$.
5. [18 points] Consider the matrix $\quad A=\left[\begin{array}{cccc}1 & 1 & 0 & 2 \\ 2 & 3 & 1 & 5 \\ 0 & 1 & 1 & 1 \\ 2 & 4 & 2 & 6\end{array}\right]$.
(a) Find a row echelon matrix that is row equivalent to A, and find the rank of A.

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 2 \\
2 & 3 & 1 & 5 \\
0 & 1 & 1 & 1 \\
2 & 4 & 2 & 6
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2-2 R 1}\left[\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 2 & 2 & 2
\end{array}\right] \xrightarrow{\begin{array}{l}
R 3 \rightarrow R 3-R 2 \\
R 4 \rightarrow R 4-2 R 2
\end{array}}\left[\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \operatorname{rank} A=2
$$

Answer the following questions based on your results in part (a). Include brief explanations.
(b) Is the matrix A invertible?

No, since $\operatorname{rank} A=2<4, A$ is not invertible.
(c) If \vec{b} is a 4×1 vector, is the system of linear equations $A \vec{x}=\vec{b}$ necessarily consistent?

No, $A \vec{x}=\vec{b}$ is consistent for any \vec{b} if and only if A is invertible if and only if $\operatorname{rank} A=4$. But $\operatorname{rank} A=2<4$. Can you find a vector \vec{b} for which the system $A \vec{x}=\vec{b}$ has no solution?
(d) How many solutions does the homogeneous system of linear equations $A \vec{x}=\overrightarrow{0}$ have?

Infinitely many, since rank $A=2$ the homogeneous system will have $4-2=2$ free variables.
6. [16 points] Let $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -2 & 1 \\ 1 & 2 & 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{r}5 \\ -1 \\ 8\end{array}\right]$. The inverse of A is $A^{-1}=\left[\begin{array}{rrr}2 & 1 & -1 \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -1 & 0 & 1\end{array}\right]$.
(a) Use Gauss-Jordan elimination to calculate the inverse of the matrix A by hand.

$$
\begin{aligned}
& {\left[\begin{array}{rrrllll}
1 & 2 & 0 & \vdots & 1 & 0 & 0 \\
0 & -2 & 1 & \vdots & 0 & 1 & 0 \\
1 & 2 & 1 & \vdots & 0 & 0 & 1
\end{array}\right] \xrightarrow{R 3 \rightarrow R 3-R 1}\left[\begin{array}{rrrrrrr}
1 & 2 & 0 & \vdots & 1 & 0 & 0 \\
0 & -2 & 1 & \vdots & 0 & 1 & 0 \\
0 & 0 & 1 & \vdots & -1 & 0 & 1
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2-R 3}\left[\begin{array}{rrrrrrr}
1 & 2 & 0 & \vdots & 1 & 0 & 0 \\
0 & -2 & 0 & \vdots & 1 & 1 & -1 \\
0 & 0 & 1 & \vdots & -1 & 0 & 1
\end{array}\right]} \\
& \xrightarrow{R 1 \rightarrow R 1+R 2}\left[\begin{array}{rrrlrrr}
1 & 0 & 0 & \vdots & 2 & 1 & -1 \\
0 & -2 & 0 & \vdots & 1 & 1 & -1 \\
0 & 0 & 1 & \vdots & -1 & 0 & 1
\end{array}\right] \xrightarrow{R 2 \rightarrow-\frac{1}{2} R 2}\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & \vdots & 2 & 1 & -1 \\
0 & 1 & 0 & \vdots & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & \vdots & -1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(b) Use the inverse of the matrix A to solve the system of linear equations $A \vec{x}=\vec{b}$.

$$
A \vec{x}=\vec{b} \Longrightarrow A^{-1} A \vec{x}=A^{-1} \vec{b} \Longrightarrow I \vec{x}=A^{1} \vec{b} \Longrightarrow \vec{x}=A^{-1} \vec{b}=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
5 \\
-1 \\
8
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

