1. [13 points] In part (a), determine if the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defines a linear transformation.
(a) $T\left(x_{1}, x_{2}\right)=\left(x_{1}+2 x_{2}, 3+4 x_{1}\right)$

Since, for instance, $T(\vec{x}+\vec{y})=T\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(x_{1}+y_{1}+2 x_{2}+2 y_{2}, 3+4 x_{1}+4 y_{1}\right)$ and $T(\vec{x})+T(\vec{y})=$ $T\left(x_{1}, x_{2}\right)+T\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}+2 x_{2}+2 y_{2}, 6+4 x_{1}+4 y_{1}\right)$, we have $T(\vec{x}+\vec{y}) \neq T(\vec{x})+T(\vec{y})$, and T is not a linear transformation.
(b) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation with $T(1,0)=(1,3)$ and $T(1,1)=(3,3)$, find $T(-1,3)$.

Since $(-1,3)=3(1,1)-4(1,0), T(-1,3)=T(3(1,1)-4(1,0))=3 T(1,1)-4 T(1,0)=(5,-3)$.
2. [13 points] Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1}-x_{2}+2 x_{3} \\ -3 x_{1}+3 x_{2}-6 x_{3}\end{array}\right]$.
(a) Find the matrix of T.

The matrix of T is $A=\left[\begin{array}{lll}T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & T\left(\vec{e}_{3}\right)\end{array}\right]=\left[\begin{array}{rrr}1 & -1 & 2 \\ -3 & 3 & -6\end{array}\right]$.
(b) Find the dimensions of the kernel and range of T.

Since the matrix A of T has rank 1, the dimension of the kernel of T is 2 (the kernel of T is the nullspace of A, and there are 2 free variables). Then, for instance by the rank-nullity theorem, the dimension of the range of T is 1 , since $\operatorname{dim} \operatorname{Ker}(T)+\operatorname{dim} \operatorname{Rng}(T)=\operatorname{dim} \mathbb{R}^{3}=3$. (Alternatively, the range of T is the column space of A, i.e., the subspace of \mathbb{R}^{2} spanned by the columns of A. From part (a), it is clear that this subspace is spanned by, e.g., the first column of A, so has dimension 1 . See problem 5 on Exam 2.)
3. [13 points] Find the eigenvalues of the matrix $A=\left[\begin{array}{rrr}3 & 0 & -1 \\ 2 & 4 & 6 \\ 1 & 0 & 3\end{array}\right]$.

Expanding along column 2, the characteristic polynomial of A is:
$p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}3-\lambda & 0 & -1 \\ 2 & 4-\lambda & 6 \\ 1 & 0 & 3-\lambda\end{array}\right|=(4-\lambda)\left|\begin{array}{cc}3-\lambda & -1 \\ 1 & 3-\lambda\end{array}\right|=(4-\lambda)\left(\lambda^{2}-6 \lambda+10\right)$
Using the quadratic formula, the eigenvalues of A are $\lambda_{1}=4, \lambda_{2}=3+i, \lambda_{3}=3-i$.
4. [13 points] Suppose that A is a 2×2 matrix with eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ associated to the eigenvalues $\lambda_{1}=4$ and $\lambda_{2}=6$ respectively. Find the matrix A.
We are given that $A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$ and $A \vec{v}_{2}=\lambda_{2} \vec{v}_{2}$. Write $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$ reads $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=$ $4\left[\begin{array}{l}1 \\ 2\end{array}\right]$, so $\left[\begin{array}{l}a+2 b \\ c+2 d\end{array}\right]=\left[\begin{array}{l}4 \\ 8\end{array}\right]$. Similarly, from $A \vec{v}_{2}=\lambda_{2} \vec{v}_{2}$, we get $\left[\begin{array}{l}a+3 b \\ c+3 d\end{array}\right]=\left[\begin{array}{c}6 \\ 18\end{array}\right]$.
This yields a system of 4 linear equations in 4 unknowns: $a+2 b=4, a+3 b=6, c+2 d=8, c+3 d=18$. Solving yields $A=\left[\begin{array}{cc}0 & 2 \\ -12 & 10\end{array}\right]$.

Alternatively, the matrix A is diagonalizable (why?), $S^{-1} A S=D$, where $S=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]$ and $D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]=\left[\begin{array}{cc}4 & 0 \\ 0 & 6\end{array}\right]$. Since $S^{-1} A S=D$, we have $A=S D S^{-1}=\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 0 & 6\end{array}\right]\left[\begin{array}{rr}3 & -1 \\ -2 & 1\end{array}\right]$.
5. [14 points] The matrix $A=\left[\begin{array}{rrr}1 & -3 & 1 \\ -1 & -1 & 1 \\ -1 & -3 & 3\end{array}\right]$ has characteristic polynomial $p(\lambda)=-(\lambda-2)^{2}(\lambda+1)$.

Determine if A is defective or diagonalizable. If A is diagonalizable, find a diagonal matrix D and an invertible matrix S so that $S^{-1} A S=D$.
(You do not have to find S^{-1}.)
A has eigenvalues $\lambda_{1}=\lambda_{2}=2$ (algebraic multiplicity 2$)$ and $\lambda_{3}=-1$ (algebraic multiplicity 1).
$A-2 I=\left[\begin{array}{lll}-1 & -3 & 1 \\ -1 & -3 & 1 \\ -1 & -3 & 1\end{array}\right] \longrightarrow\left[\begin{array}{rrr}-1 & -3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Solving $(A-2 I) \vec{v}=\overrightarrow{0}$ yields two linearly independent eigenvectors, e.g., $\vec{v}_{1}=\left[\begin{array}{r}-3 \\ 1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
So the eigenvalue 2 has geometric multiplicity 2 .
$A+I=\left[\begin{array}{rrr}2 & -3 & 1 \\ -1 & 0 & 1 \\ -1 & -3 & 4\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$. Solving $(A+I) \vec{v}=\overrightarrow{0}$ yields $\vec{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
So the eigenvalue -1 has geometric multiplicity 1 .
The calculations above show that A has a complete set of eigenvectors, so A is diagonalizable,
$S^{-1} A S=D$, where $S=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]=\left[\begin{array}{rrr}-3 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right]$.
6. [21 points] Give real-valued solutions.
(a) Solve the initial value problem $y^{\prime \prime}-6 y^{\prime}+9 y=0, y(0)=1, y^{\prime}(0)=5$.

The auxiliary polynomial is $r^{2}-6 r+9=(r-3)^{2}$, so the DE has general solution $y=c_{1} e^{3 x}+c_{2} x e^{3 x}$. Note that $y^{\prime}=3 c_{1} e^{3 x}+c_{2} e^{3 x}+3 c_{2} x e^{3 x}$. The initial conditions $y(0)=1$ and $y^{\prime}(0)=5$ yield $c_{1}=1$ and $3 c_{1}+c_{2}=5$, so $c_{2}=2$. Consequently, $y=e^{3 x}+2 x e^{3 x}$ solves the IVP.
(b) Find the general solution of the differential equation $(D-4)\left(D^{2}-6 D+10\right) y=0$.

Since the auxiliary polynomial $(r-4)\left(r^{2}-6 r+10\right)$ has roots $4,3+i, 3-i$, the DE has general solution $y=c_{1} e^{4 x}+c_{2} e^{3 x} \cos (x)+c_{3} e^{3 x} \sin (x)$.
(c) Verify that $y_{p}=e^{4 x}-1$ is a particular solution of the differential equation $y^{\prime \prime}-9 y=7 e^{4 x}-9$, and find the general solution of this differential equation.
As some of you noted, there was a typo on the exam. The particular solution should have been $y_{p}=e^{4 x}+1$. Here is a solution with this correction included:
If $y_{p}=e^{4 x}+1$, then $y_{p}^{\prime}=4 e^{4 x}$, and $y_{p}^{\prime \prime}=16 e^{4 x}$, so $y_{p}^{\prime \prime}-9 y_{p}=16 e^{4 x}-9 e^{4 x}-9=7 e^{4 x}-9$.
The auxiliary polynomial is $r^{2}-9=(r-3)(r+3)$, so $y_{c}=c_{1} e^{3 x}+c_{2} e^{-3 x}$ is the complementary solution. Thus, $y=y_{c}+y_{p}=c_{1} e^{3 x}+c_{2} e^{-3 x}+e^{4 x}-1$ is the general solution of the given non-homogeneous DE.
In light of the typo, I gave full credit on this part for any reasonable response.
7. [13 points] Consider the differential equation $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=0, x>0$.
(a) Find the two values of r for which the function $y(x)=x^{r}$ is a solution of this differential equation.

If $y=x^{r}$, then $y^{\prime}=r x^{r-1}$, and $y^{\prime \prime}=r(r-1) x^{r-2}$, so $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=r(r-1) x^{r}-r x^{r}-3 x^{r}=$ $x^{r}\left(r^{2}-2 r-3\right)=x^{r}(r-3)(r+1)$. Since $x>0$, this is equal to zero if $r=3$ or $r=-1$. So $y_{1}=x^{3}$ and $y_{2}=x^{-1}$ are solutions of the DE.
(b) If r_{1} and r_{2} are the two values of r from part (a), does the set of functions $\left\{x^{r_{1}}, x^{r_{2}}\right\}$ form a basis for the solution space of this differential equation on the interval $(0, \infty)$? Explain.
Since $W\left[x^{3}, x^{-1}\right]=\left|\begin{array}{rr}x^{3} & x^{-1} \\ 3 x^{2} & -x^{-2}\end{array}\right|=-4 x \neq 0$ on the interval $(0, \infty)$, the set $\left\{x^{3}, x^{-1}\right\}$ is linearly independent on $(0, \infty)$. Since x^{3} and x^{-1} are linearly independent solutions of the given second order homogeneous linear DE, the set $\left\{x^{3}, x^{-1}\right\}$ is a basis for the solution space of this DE.
Note that this part can be done without completing part (a). If $x^{r_{1}}$ and $x^{r_{2}}$ are solutions of the given DE with $r_{1} \neq r_{2}$, then since $W\left[x^{r_{1}}, x^{r_{2}}\right]=\left|\begin{array}{cc}x^{r_{1}} & x^{r_{2}} \\ r_{1} x^{r_{1}-1} & r_{2} x^{r_{2}-1}\end{array}\right|=\left(r_{2}-r_{1}\right) x^{r_{1}+r_{2}-1} \neq 0$ on $(0, \infty)$, the set $\left\{x^{r_{1}}, x^{r_{2}}\right\}$ is linearly independent, so forms a basis for the solution space as above.

