These examples illustrate the determination of a fundamental set of solutions for the system $\vec{x}^{\prime}=A \vec{x}$ in instances where the matrix A is defective. We will consider only the case of an eigenvalue of algebraic multiplicity 3 here. A more general discussion may be found in $\S 8.6$ of the text. If λ is an eigenvalue of A of algebraic multiplicity 3 , there are three possibilities:
(a) The geometric multiplicity of λ may also be 3 . In this case, we can find three linearly independent eigenvectors corresponding to the eigenvalue λ. If \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} are three such eigenvectors, we obtain three linearly independent solutions, $\vec{x}_{1}(t)=e^{\lambda t} \vec{v}_{1}, \vec{x}_{2}(t)=e^{\lambda t} \vec{v}_{2}$, and $\vec{x}_{3}(t)=e^{\lambda t} \vec{v}_{3}$ of the system $\vec{x}^{\prime}=A \vec{x}$.
(b) The geometric multiplicity of λ may be 2 . In this case, we can find two linearly independent eigenvectors, say \vec{v}_{1} and \vec{v}_{2}, corresponding to the eigenvalue λ. From these, we obtain two linearly independent solutions, $\vec{x}_{1}(t)=e^{\lambda t} \vec{v}_{1}$ and $\vec{x}_{2}(t)=e^{\lambda t} \vec{v}_{2}$, of the system $\vec{x}^{\prime}=A \vec{x}$. A third solution of this system is of the form $\vec{x}(t)=t e^{\lambda t} \vec{v}+e^{\lambda t} \vec{w}$, where $(A-\lambda I) \vec{v}=\overrightarrow{0}$ and $(A-\lambda I) \vec{w}=\vec{v}$. [Check this.] These conditions say that \vec{v} is an eigenvector corresponding to λ, and \vec{w} is an associated generalized eigenvector. The vector \vec{v} may be expressed as a linear combination, $\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$ of the two eigenvectors we started with. Some care must be taken here: we must choose \vec{v} so that the system of equations $(A-\lambda I) \vec{w}=\vec{v}$ is consistent.
$\S 8.6 \# 6 \quad A=\left[\begin{array}{rrr}15 & -32 & 12 \\ 8 & -17 & 6 \\ 0 & 0 & -1\end{array}\right]$ has eigenvalues $\lambda_{1}=\lambda_{2}=\lambda_{3}=-1$ and corresponding eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{r}-3 \\ 0 \\ 4\end{array}\right]$ Solutions of $\vec{x}^{\prime}=A \vec{x}$ are $\vec{x}_{1}(t)=e^{-t} \vec{v}_{1}=e^{-t}\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \vec{x}_{2}(t)=e^{-t} \vec{v}_{2}=e^{-t}\left[\begin{array}{r}-3 \\ 0 \\ 4\end{array}\right]$, and $\vec{x}_{3}(t)=t e^{-t} \vec{v}+e^{-t} \vec{w}$. We must choose $\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\left[\begin{array}{c}2 c_{1}-3 c_{2} \\ c_{1} \\ 4 c_{2}\end{array}\right]$ so that $(A+I) \vec{w}=\vec{v}$ is consistent. The augmented matrix of this system is $\left[\begin{array}{rrrc}16 & -32 & 12 & 2 c_{1}-3 c_{2} \\ 8 & -16 & 6 & c_{1} \\ 0 & 0 & 0 & 4 c_{2}\end{array}\right] \longrightarrow\left[\begin{array}{rrrr}8 & -16 & 6 & c_{1} \\ 0 & 0 & 0 & -3 c_{2} \\ 0 & 0 & 0 & 4 c_{2}\end{array}\right]$. So the system is consistent if $c_{2}=0$. If we take $c_{1}=1$, then $\vec{v}=\vec{v}_{1}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and one solution of $(A+I) \vec{w}=\vec{v}$ is $\vec{w}=\left[\begin{array}{c}\frac{1}{8} \\ 0 \\ 0\end{array}\right]$. Thus $\vec{x}_{3}(t)=t e^{-t} \vec{v}+e^{-t} \vec{w}=t e^{-t}\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]+e^{-t}\left[\begin{array}{l}\frac{1}{8} \\ 0 \\ 0\end{array}\right]$ is a third solution of $\vec{x}^{\prime}=A \vec{x}$. Checking that $W\left[\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right]=e^{-3 t} / 2 \neq 0$, we have found a fundamental set of solutions.
(c) The geometric multiplicity of λ may be 1 . In this case, we can find only one (independent) eigenvector, say \vec{v}, corresponding to the eigenvalue λ. From this, we obtain one solution, $\vec{x}_{1}(t)=e^{\lambda t} \vec{v}$, of the system $\vec{x}^{\prime}=A \vec{x}$. Two additional solutions of this system are of the form $\vec{x}_{2}(t)=t e^{\lambda t} \vec{v}+e^{\lambda t} \vec{w}$ and $\vec{x}_{3}(t)=\frac{t^{2}}{2} e^{\lambda t} \vec{v}+t e^{\lambda t} \vec{w}+e^{\lambda t} \vec{z}$, where $(A-\lambda I) \vec{v}=\overrightarrow{0},(A-\lambda I) \vec{w}=\vec{v}$, and $(A-\lambda I) \vec{z}=\vec{w}$. [Check this.] These conditions say that \vec{v} is an eigenvector corresponding to λ, and that \vec{w} and \vec{z} are associated generalized eigenvectors.
§8.6 \#8 $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 3 & 2 \\ 2 & -2 & -1\end{array}\right]$ has eigenvalues $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$ and corresponding eigenvector $\vec{v}=\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]$
Solutions of $\vec{x}^{\prime}=A \vec{x}$ are $\vec{x}_{1}(t)=e^{t} \vec{v}=e^{-t}\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right], \vec{x}_{2}(t)=t e^{t} \vec{v}+e^{t} \vec{w}$, and $\vec{x}_{3}(t)=\frac{t^{2}}{2} e^{t} \vec{v}+t e^{t} \vec{w}+e^{t} \vec{z}$.
For the eigenvector \vec{v} above, one solution of the system $(A-I) \vec{w}=\vec{v}$ is $\vec{w}=\left[\begin{array}{r}0 \\ -1 \\ 0\end{array}\right]$. So $\vec{x}_{2}(t)=t e^{t}\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]+e^{t}\left[\begin{array}{r}0 \\ -1 \\ 0\end{array}\right]$.
For \vec{w} as above, one solution of the system $(A-I) \vec{z}=\vec{w}$ is $\vec{z}=\left[\begin{array}{r}-\frac{1}{2} \\ -\frac{1}{2} \\ 0\end{array}\right]$. So $\vec{x}_{3}(t)=\frac{t^{2}}{2} e^{t}\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]+t e^{t}\left[\begin{array}{r}0 \\ -1 \\ 0\end{array}\right]+e^{t}\left[\begin{array}{r}-\frac{1}{2} \\ -\frac{1}{2} \\ 0\end{array}\right]$. Checking that $W\left[\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right]=-e^{3 t} / 2 \neq 0$, we have found a fundamental set of solutions.

