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These examples illustrate the determination of a fundamental set of solutions for the system ~x ′ = A~x in instances where
the matrix A is defective. We will consider only the case of an eigenvalue of algebraic multiplicity 3 here. A more general
discussion may be found in §8.6 of the text. If λ is an eigenvalue of A of algebraic multiplicity 3, there are three possibilities:

(a) The geometric multiplicity of λ may also be 3. In this case, we can find three linearly independent eigenvectors
corresponding to the eigenvalue λ. If ~v1, ~v2, and ~v3 are three such eigenvectors, we obtain three linearly independent
solutions, ~x1(t) = eλt~v1, ~x2(t) = eλt~v2, and ~x3(t) = eλt~v3 of the system ~x ′ = A~x.

(b) The geometric multiplicity of λ may be 2. In this case, we can find two linearly independent eigenvectors, say ~v1

and ~v2, corresponding to the eigenvalue λ. From these, we obtain two linearly independent solutions, ~x1(t) = eλt~v1

and ~x2(t) = eλt~v2, of the system ~x ′ = A~x. A third solution of this system is of the form ~x(t) = teλt~v + eλt ~w, where
(A−λI)~v = ~0 and (A−λI)~w = ~v. [Check this.] These conditions say that ~v is an eigenvector corresponding to λ, and
~w is an associated generalized eigenvector. The vector ~v may be expressed as a linear combination, ~v = c1~v1 + c2~v2

of the two eigenvectors we started with. Some care must be taken here: we must choose ~v so that the system of
equations (A− λI)~w = ~v is consistent.

§8.6 #6 A =





15 −32 12
8 −17 6
0 0 −1



 has eigenvalues λ1 = λ2 = λ3 = −1 and corresponding eigenvectors ~v1 =





2
1
0



 and ~v2 =





−3
0
4





Solutions of ~x ′ = A~x are ~x1(t) = e−t~v1 = e−t





2
1
0



, ~x2(t) = e−t~v2 = e−t





−3
0
4



, and ~x3(t) = te−t~v + e−t ~w. We must

choose ~v = c1~v1 + c2~v2 =





2c1 − 3c2
c1
4c2



 so that (A + I)~w = ~v is consistent. The augmented matrix of this system is





16 −32 12 2c1 − 3c2
8 −16 6 c1
0 0 0 4c2



 −→





8 −16 6 c1
0 0 0 −3c2
0 0 0 4c2



. So the system is consistent if c2 = 0. If we take c1 = 1, then

~v = ~v1 =





2
1
0



 and one solution of (A+ I)~w = ~v is ~w =





1

8

0
0



. Thus ~x3(t) = te−t~v + e−t ~w = te−t





2
1
0



 + e−t





1

8

0
0



 is

a third solution of ~x ′ = A~x. Checking thatW [~x1, ~x2, ~x3] = e−3t/2 6= 0, we have found a fundamental set of solutions.

(c) The geometric multiplicity of λ may be 1. In this case, we can find only one (independent) eigenvector, say ~v,
corresponding to the eigenvalue λ. From this, we obtain one solution, ~x1(t) = eλt~v, of the system ~x ′ = A~x. Two

additional solutions of this system are of the form ~x2(t) = teλt~v + eλt ~w and ~x3(t) =
t
2

2
eλt~v + teλt ~w + eλt~z, where

(A − λI)~v = ~0, (A − λI)~w = ~v, and (A − λI)~z = ~w. [Check this.] These conditions say that ~v is an eigenvector
corresponding to λ, and that ~w and ~z are associated generalized eigenvectors.

§8.6 #8 A =





1 0 0
0 3 2
2 −2 −1



 has eigenvalues λ1 = λ2 = λ3 = 1 and corresponding eigenvector ~v =





0
−1
1





Solutions of ~x ′ = A~x are ~x1(t) = et~v = e−t





0
−1
1



, ~x2(t) = tet~v + et ~w, and ~x3(t) =
t
2

2
et~v + tet ~w + et~z.

For the eigenvector ~v above, one solution of the system (A−I)~w = ~v is ~w =





0
−1
0



. So ~x2(t) = tet





0
−1
1



 + et





0
−1
0



.

For ~w as above, one solution of the system (A−I)~z = ~w is ~z =





− 1

2

− 1

2

0



. So ~x3(t) =
t2

2
et





0
−1
1



 + tet





0
−1
0



 + et





− 1

2

− 1

2

0



.

Checking that W [~x1, ~x2, ~x3] = −e
3t/2 6= 0, we have found a fundamental set of solutions.


