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1 Introduction

Let Ω be a convex polygonal domain in R
2 and f ∈ L2(Ω). In this paper we will consider a weakly

over-penalized nonsymmetric interior penalty (WOPNIP) method for the following model problem:
Find u ∈ H1

0 (Ω) such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω). (1.1)

Before introducing our new method, we first review some well-known interior penalty methods
for (1.1) to motivate our approach. Let Th be a quasi-uniform triangulation of Ω where h is
the mesh size. We define Vh to be the discontinuous P1 finite element space with respect to the
triangulation Th. That is, Vh = {v ∈ L2(Ω) : vT = v|T ∈ P1(T ) ∀T ∈ Th}. Also, we define
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2 S.C. Brenner and L. Owens

the jumps and means in the usual way [2, 3]. Let e be an interior edge shared by the triangles
T1, T2 ∈ Th. Then we define on e,

[[v]] = v1n1 + v2n2, (1.2)

{{∇v}} =
1

2

(

∇v1 + ∇v2

)

, (1.3)

where v1 = v
∣

∣

T1
, v2 = v

∣

∣

T2
and n1 (resp. n2) is the unit normal of e pointing towards the outside

of T1 (resp. T2). On an edge e along ∂Ω, we define

[[v]] = (v
∣

∣

e
)n, (1.4)

{{∇v}} = (∇v)
∣

∣

e
, (1.5)

where n is the unit normal of e pointing outside Ω.
The variational problem can be solved by the symmetric interior penalty Galerkin (SIPG)

method [13, 1] and the nonsymmetric interior penalty (NIPG) method [12], which are defined as
follows.

Find u±
h ∈ Vh such that

a±
h (u±

h , v) =

∫

Ω

fv dx ∀ v ∈ Vh, (1.6)

where

a±
h (w, v) =

∑

T∈Th

∫

T

∇w · ∇v dx −
∑

e∈Eh

∫

e

{{∇w}} · [[v]] ds ±
∑

e∈Eh

∫

e

{{∇v}} · [[w]] ds

+
∑

e∈Eh

η

|e|

∫

e

[[w]] · [[v]] ds,

Eh is the set of all the edges of Th, and η > 0 is a penalty parameter.
The function u+

h (resp. u−
h ) in (1.6) is the NIPG (resp. SIPG) approximate solution of (1.1).

It is well-known that both methods are consistent, the NIPG method is stable for any choice of η,
and the SIPG method is stable for sufficiently large η. Furthermore, when the methods are stable,
we have [1, 12]

‖u − u±
h ‖a+

h

≤ Ch‖f‖L2(Ω),

where
‖v‖2

a+

h

= a+
h (v, v) =

∑

T∈Th

‖∇v‖2
L2(T ) + η

∑

e∈Eh

|e|−1‖[[v]]‖2
L2(e)

,

provided
η ≥ η0 > 0. (1.7)

From now on we assume that the penalty parameter η satisfies (1.7), i.e., it is bounded away from
0, and we will use C (with or without subscript) to denote a generic positive constant independent
of f , h and η that can take different values at different occurrences.

Since the SIPG method is symmetric, it is also adjoint consistent. Consequently the Aubin-
Nitsche duality argument can be applied and we have

‖u − u−
h ‖L2(Ω) ≤ Ch2‖f‖L2(Ω). (1.8)

On the other hand the NIPG method is not adjoint consistent and the analog of (1.8) does not
hold for u+

h .
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A Weakly Over-Penalized Interior Penalty Method 3

To recover the quasi-optimal L2 error estimate for the NIPG approach, the following over-
penalized method was introduced in [12].

Find ũh ∈ Vh such that

ãh(ũh, v) =

∫

Ω

fv dx ∀ v ∈ Vh, (1.9)

where

ãh(w, v) =
∑

T∈Th

∫

T

∇w · ∇v dx −
∑

e∈Eh

∫

e

{{∇w}} · [[v]] ds +
∑

e∈Eh

∫

e

{{∇v}} · [[w]] ds

+
∑

e∈Eh

η

|e|3

∫

e

[[w]] · [[v]] ds.

The method (1.9) is stable for any η > 0 and

‖u − ũh‖L2(Ω) + h‖u − ũh‖ãh
≤ Ch2‖f‖L2(Ω),

where ‖v‖ãh
=

√

ãh(v, v). Of course, the gain in the L2 error estimate is at the expense of
increasing the condition number of the discrete system from O(h−2) for (1.6) to O(h−4) for (1.9).

Our goal is to design an interior penalty method such that (i) it is consistent, (ii) it is stable
for any choice of the penalty parameter, (iii) it satisfies quasi-optimal error estimates in both the
energy norm and the L2 norm, and (iv) we only have to solve a system of linear equations whose
condition number is of order O(h−2). Our idea for the new scheme is based on the following
observation on the over-penalized method (1.9).

Since {{∇w}} and {{∇v}} are constant vectors along the edges of Th, we can rewrite the bilinear
form as

ãh(w, v) =
∑

T∈Th

∫

T

∇w · ∇v dx −
∑

e∈Eh

∫

e

{{∇w}} · Π0
e[[v]] ds +

∑

e∈Eh

∫

e

{{∇v}} · Π0
e[[w]] ds

+
∑

e∈Eh

η

|e|3

∫

e

[[w]] · [[v]] ds,

where Π0
e is the orthogonal projection operator from L2(e) onto P0(e). That is,

Π0
ev =

1

|e|

∫

e

v ds ∀ v ∈ L2(e). (1.10)

Accordingly, we only need to over-penalize the integral
∫

e Π0
e[[w]] · Π0

e[[v]] ds. The resulting weakly
over-penalized method is:

Find uh ∈ Vh such that

ah(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh, (1.11)

where

ah(w, v) =
∑

T∈Th

∫

T

∇w · ∇v dx −
∑

e∈Eh

∫

e

{{∇w}} · [[v]] ds

+
∑

e∈Eh

∫

e

{{∇v}} · [[w]] ds +
∑

e∈Eh

η

|e|3

∫

e

Π0
e[[w]] · Π0

e[[v]] ds. (1.12)

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



4 S.C. Brenner and L. Owens

Remark 1.1. Heuristically, the WOPNIP method (1.11)–(1.12) works because the weak over-
penalization forces Π0

euh to be almost 0 and it is well-known [8] that weakly continuous P1 functions
can be used to solve the Poisson problem (1.1). Also, at first glance the condition number of (1.11)
is as bad as the condition number of (1.9). However, there is a simple block diagonal preconditioner
(cf. Section 3 below) that will reduce the condition number of the system back to O(h−2).

Remark 1.2. It follows from the midpoint rule that

Π0
ev = v(me) ∀ v ∈ P1(e), (1.13)

where me is the midpoint of the edge e. Therefore the natural nodal basis for the WOPNIP method
is associated with the midpoints of the edges of Th.

The rest of the paper is organized as follows. We derive quasi-optimal error estimates for the
WOPNIP method in Section 2 and construct the block diagonal preconditioner in Section 3. We
then present numerical results in Section 4 and end with some concluding remarks in Section 5.

2 Error Analysis

First we note that the solution u of (1.1) satisfies, via integration by parts,

ah(u, v) =

∫

Ω

fv dx ∀ v ∈ Vh, (2.1)

i.e., the scheme (1.11) is consistent. Furthermore, we have the elliptic regularity estimate [10]

‖u‖H2(Ω) ≤ C‖f‖L2(Ω). (2.2)

We will carry out the error analysis using the mesh-dependent norms ‖ · ‖h and ||| · |||h defined
by

‖v‖2
h =

∑

T∈Th

‖∇v‖2
L2(T ) +

∑

e∈Eh

|e| ‖{{∇v}}‖2
L2(e)

+
∑

e∈Eh

η

|e|3
‖Π0

e[[v]]‖2
L2(e)

, (2.3)

|||v|||2h =
∑

T∈Th

‖∇v‖2
L2(T ) +

∑

e∈Eh

η

|e|3
‖Π0

e[[v]]‖2
L2(e)

, (2.4)

for all v ∈ H2(Ω) + Vh.
It is easy to see that

|||v|||2h = ah(v, v) ∀ v ∈ H2(Ω) + Vh, (2.5)

i.e., the scheme (1.11) is stable for any choice of the penalty parameter.
We begin our analysis with several lemmas, where we use the notation Th,e to denote the set

of the triangles of Th that have e ∈ Eh as an edge.

Lemma 2.1. The bilinear form ah(·, ·) is bounded on H2(Ω) + Vh with respect to ‖ · ‖h, i.e,

|ah(w, v)| ≤ C‖w‖h‖v‖h ∀ v, w ∈ H2(Ω) + Vh, (2.6)

where the positive constant C depends only on the minimum angle of Th.

Proof. Let e ∈ Eh and v ∈ H2(Ω) + Vh be arbitrary. We have

1

|e|
‖[[v]]‖2

L2(e)
≤ C

( 1

|e|
‖Π0

e[[v]]‖2
L2(e)

+
1

|e|
‖[[v]] − Π0

e[[v]]‖2
L2(e)

)
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A Weakly Over-Penalized Interior Penalty Method 5

≤ C
1

|e|
‖Π0

e[[v]]‖2
L2(e)

+ C
∑

T∈Te

1

|e|
‖vT − Π0

evT‖
2
L2(e)

(2.7)

≤ C
( 1

|e|
‖Π0

e[[v]]‖2
L2(e)

+
∑

T∈Th,e

‖∇v‖2
L2(T )

)

,

where the constant C depends only on the shape of the triangles in Th,e. In the last step we have
used the trace theorem (with scaling) and the Bramble-Hilbert lemma [4, 6].

The estimate (2.6) follows from the Cauchy-Schwarz inequality, (1.7), (1.12) and (2.7):

|ah(w, v)| ≤
∑

T∈Th

‖∇w‖L2(T )‖∇v‖L2(T ) +
∑

e∈Eh

(

|e|1/2‖{{∇w}}‖L2(e)

)(

|e|−1/2‖[[v]]‖L2(e)

)

+
∑

e∈Eh

(

|e|1/2‖{{∇v}}‖L2(e)

)(

|e|−1/2‖[[w]]‖L2(e)

)

+
∑

e∈Eh

η

|e|3
‖Π0

e[[w]]‖L2(e)‖Π
0
e[[v]]‖L2(e)

≤
(

∑

T∈Th

‖∇w‖2
L2(T ) +

∑

e∈Eh

|e|‖{{∇w}}‖2
L2(e)

+
∑

e∈Eh

1

|e|
‖[[w]]‖2

L2(e)
+

∑

e∈Eh

η

|e|3
‖Π0

e[[w]]‖2
L2(e)

)1/2

×
(

∑

T∈Th

‖∇v‖2
L2(T ) +

∑

e∈Eh

|e|‖{{∇v}}‖2
L2(e)

+
∑

e∈Eh

1

|e|
‖[[v]]‖2

L2(e)
+

∑

e∈Eh

η

|e|3
‖Π0

e[[v]]‖2
L2(e)

)1/2

≤ C‖w‖h‖v‖h.

It is clear from (2.3) and (2.4) that

|||v|||h ≤ ‖v‖h ∀ v ∈ H2(Ω) + Vh. (2.8)

Moreover, the two norms are equivalent on Vh.

Lemma 2.2. It holds that

‖v‖h ≈ |||v|||h ∀ v ∈ Vh. (2.9)

Proof. Let v ∈ Vh be arbitrary. It follows from (1.2), (1.4) and an inverse estimate that

∑

e∈Eh

|e| ‖{{∇v}}‖2
L2(e)

≤ C
∑

e∈Eh

|e|
∑

T∈Th,e

‖∇vT‖
2
L2(e)

≤ C
∑

T∈Th

‖∇v‖2
L2(T ),

where the constant C depends only on the minimum angle of Th. Therefore we have

‖v‖h ≤ C|||v|||h ∀ v ∈ Vh.

Lemma 2.3. It holds that

|||u − uh|||h ≤ C inf
v∈Vh

‖u − v‖h. (2.10)

Proof. It follows from (1.11) and (2.1) that

ah(u − uh, v) = 0 ∀ v ∈ Vh. (2.11)

Using (2.5), (2.6), (2.9) and (2.11), we find

|||uh − v|||2h = ah(uh − v, uh − v) = ah(u − v, uh − v) ≤ C‖u − v‖h|||uh − v|||h.

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



6 S.C. Brenner and L. Owens

Therefore, we have
|||uh − v|||h ≤ C‖u − v‖h ∀ v ∈ Vh,

and hence, in view of (2.8),

|||u − uh|||h ≤ |||u − v|||h + |||v − uh|||h ≤ C‖u − v‖h ∀ v ∈ Vh,

which implies (2.10).

Let Πh be the nodal interpolation operator for the conforming P1 finite element. It follows
from (2.2), a standard interpolation error estimate [7, 6] and [[u]] = [[Πhu]] = 0 that

|||u − Πhu|||h = ‖∇(u − Πhu)‖L2(Ω) ≤ Ch|u|H2(Ω) ≤ Ch‖f‖L2(Ω). (2.12)

Furthermore, by the trace theorem (with scaling) and standard interpolation estimates, we have

∑

e∈Eh

|e|‖{{∇(u− Πhu)}}‖2
L2(e)

≤ C
∑

e∈Eh

∑

T∈Te

(

|u − Πhu|2H1(T ) + h2
T |u|

2
H2(T )

)

≤ C
∑

e∈Eh

∑

T∈Te

h2
T |u|

2
H2(T ) ≤ Ch2|u|H2(Ω) (2.13)

which, together with (2.2), (2.3) and (2.12), implies

‖u − Πhu‖h ≤ Ch‖f‖L2(Ω). (2.14)

Combining (2.10) and (2.14), we have the following result for the energy error.

Theorem 2.4. It holds that

|||u − uh|||h ≤ Ch‖f‖L2(Ω). (2.15)

We can also measure the error in the ‖ · ‖h norm.

Corollary 2.5. It holds that

‖u − uh‖h ≤ Ch‖f‖L2(Ω). (2.16)

Proof. From (2.9), (2.12), (2.14) and (2.15), we have

‖u − uh‖h ≤ ‖u − Πhu‖h + ‖Πhu − uh‖h

≤ Ch‖f‖L2(Ω) + C|||Πhu − uh|||h

≤ Ch‖f‖L2(Ω) + C
(

|||Πhu − u|||h + |||u − uh|||h
)

≤ Ch‖f‖L2(Ω).

Finally, we can obtain an L2 error estimate by a duality argument.

Lemma 2.6. It holds that

‖u − uh‖L2(Ω) ≤ Ch
(

|||u − uh|||h + ‖u − uh‖h

)

. (2.17)

Proof. Let φ ∈ H1
0 (Ω) satisfy

∫

Ω

∇v · ∇φdx =

∫

Ω

(u − uh)v dx ∀ v ∈ H1
0 (Ω). (2.18)

Then φ ∈ H2(Ω),
−∆φ = u − uh in Ω, (2.19)

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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and by elliptic regularity

‖φ‖H2(Ω) ≤ C‖u − uh‖L2(Ω). (2.20)

Applying (2.13) and (2.14) to φ, we have

‖φ − Πhφ‖h ≤ Ch‖u − uh‖L2(Ω), (2.21)
∑

e∈Eh

|e|‖{{∇(φ − Πhφ)}}‖2
L2(e)

≤ Ch2‖u − uh‖
2
L2(Ω). (2.22)

It follows from (2.18), (2.19) and integration by parts that

∑

T∈Th

∫

T

∇(u − uh) · ∇φdx =

∫

Ω

(u − uh)u dx −
∑

T∈Th

∫

T

∇uh · ∇φdx

=

∫

Ω

(u − uh)2 dx −
∑

e∈Eh

∫

e

[[uh]] · {{∇φ}} ds,

and hence, in view of (1.12), (2.1) and the fact that [[φ]] = 0 = [[u]],

‖u − uh‖
2
L2(Ω) =

∑

T∈Th

∫

T

∇(u − uh) · ∇φdx +
∑

e∈Eh

∫

e

[[uh]] · {{∇φ}} ds

=
∑

T∈Th

∫

T

∇(u − uh) · ∇φdx −
∑

e∈Eh

∫

e

[[u − uh]] · {{∇φ}} ds

= ah(u − uh, φ) − 2
∑

e∈Eh

∫

e

{{∇φ}} · [[u − uh]] ds (2.23)

= ah(u − uh, φ − Πhφ) − 2
∑

e∈Eh

∫

e

{{∇(φ − Πhφ)}} · [[u − uh]] ds

+ 2
∑

e∈Eh

∫

e

{{∇(Πhφ)}} · [[u − uh]] ds.

We now bound each of the three terms on the right-hand side of (2.23) separately. The first
term can be bounded using (2.6) and (2.21):

ah(u − uh, φ − Πhφ) ≤ C‖u − uh‖h‖φ − Πhφ‖h ≤ Ch‖u − uh‖h‖u − uh‖L2(Ω). (2.24)

The second term can be bounded using the Cauchy-Schwarz inequality, (1.7), (1.12), (2.20) and
(2.22):

∣

∣

∣

∑

e∈Eh

∫

e

{{∇(φ − Πhφ)}} · [[u − uh]] ds
∣

∣

∣

≤
∑

e∈Eh

( |e|

η

)1/2

‖{{∇(φ − Πhφ)}}‖L2(e)

( η

|e|

)1/2

‖[[u − uh]]‖L2(e) (2.25)

≤
(

∑

e∈Eh

|e|

η
‖{{∇(φ − Πhφ)}}‖2

L2(e)

)1/2( ∑

e∈Eh

η

|e|
‖[[u − uh)]]‖2

L2(e)

)1/2

≤ Ch‖u − uh‖L2(Ω)|||u − uh|||h.

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



8 S.C. Brenner and L. Owens

Finally, using the Cauchy-Schwarz inequality, (1.7), (1.12), (2.21) and a standard inverse esti-
mate, we obtain

∣

∣

∣

∑

e∈Eh

∫

e

{{∇(Πhφ)}} · [[u − uh]] ds
∣

∣

∣

=
∣

∣

∣

∑

e∈Eh

∫

e

∇(Πhφ) · Π0
e[[u − uh]] ds

∣

∣

∣

≤
∑

e∈Eh

η−1/2|e|3/2‖∇(Πhφ)‖L2(e) η1/2|e|−3/2‖Π0
e[[u − uh]]‖L2(e)

≤
(

∑

e∈Eh

η−1|e|3‖∇(Πhφ)‖2
L2(e)

)1/2( ∑

e∈Eh

η|e|−3‖Π0
e[[u − uh]]‖2

L2(e)

)1/2

(2.26)

≤ C
(

h2
∑

T∈Th

‖∇(Πhφ)‖2
L2(T )

)1/2

|||u − uh|||h

≤ C
(

h2
∑

T∈Th

[

‖∇(φ − Πhφ)‖2
L2(T ) + ‖∇φ‖2

L2(T )

])1/2

|||u − uh|||h

≤ Ch‖u − uh‖L2(Ω)|||u − uh|||h.

The desired result follows from (2.23)–(2.26).

Combining Theorem 2.4, Corollary 2.5 and Lemma 2.6, we have the following result for the L2

error.

Theorem 2.7. It holds that

‖u − uh‖L2(Ω) ≤ Ch2‖f‖L2(Ω). (2.27)

3 The Preconditioner

Let Ah : Vh −→ V ′
h be defined by

〈Ahw, v〉 = ah(w, v) ∀ v, w ∈ Vh, (3.1)

where 〈·, ·〉 is the canonical bilinear form on V ′
h × Vh. In terms of Ah, the discrete problem (1.11)

can be written as
Ahuh = φh, (3.2)

where φh ∈ V ′
h is defined by

〈φh, v〉 = (f, v)L2(Ω) ∀ v ∈ Vh.

The preconditioner for Ah is the operator Bh : Vh −→ V ′
h defined by

〈Bhw, v〉 =
∑

T∈Th

∫

T

wv dx +
∑

e∈Eh

η

|e|

∫

e

Π0
e[[w]] · Π0

e[[v]] ds ∀ v, w ∈ Vh. (3.3)

Remark 3.1. It follows from a standard quadrature rule for quadratic functions that

∫

T

wv dx =
|T |

3

∑

m∈MT

w(m)v(m) ∀w, v ∈ P1(T ), (3.4)

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



A Weakly Over-Penalized Interior Penalty Method 9

where MT is the set of the three midpoints of T . Furthermore from (1.2), (1.4) and (1.13) we see
that, for an interior edge e,

1

|e|

∫

e

Π0
e[[w]] · Π0

e[[v]] ds (3.5)

= w1(me)v1(me) + w2(me)v2(me) − w1(me)v2(me) − w2(me)v1(me),

where wj = w
∣

∣

Tj
and vj = v

∣

∣

Tj
for j = 1, 2, and T1 and T2 are the two triangles in Th sharing e as

a common edge, and for a boundary edge e, we have

1

|e|

∫

e

Π0
e[[w]] · Π0

e[[v]] ds = w(me)v(me). (3.6)

Let Bh be the matrix representing Bh, i.e.,

vT Bhw = 〈Bhw, v〉, (3.7)

where v (resp. w) is the coordinate vector for v (resp. w) in Vh associated with the midpoints of the
edges of Th. In view of Remark 3.1, the matrix Bh is block diagonal with 2×2 blocks (corresponding
to the midpoints of interior edges) and 1 × 1 blocks (corresponding to the midpoints of boundary
edges). Therefore it is trivial to compute B−1

h .
Let the operators Sh, Nh : Vh −→ V ′

h represent the symmetric and antisymmetric part of the
bilinear form ah(·, ·):

〈Shw, v〉 =
∑

T∈Th

∫

T

∇w · ∇v dx +
∑

e∈Eh

η

|e|3

∫

e

Π0
e[[w]] · Π0

e[[v]] ds ∀ v, w ∈ Vh, (3.8)

〈Nhw, v〉 =
∑

e∈Eh

∫

e

(

{{∇w}}[[v]]− {{∇v}}[[w]]
)

ds ∀ v, w ∈ Vh. (3.9)

It is clear from (3.1), (3.8) and (3.9) that

B−1
h Ah = B−1

h Sh − B−1
h Nh. (3.10)

Therefore we can estimate the condition number of the preconditioned system B−1
h Ah by examining

the operators B−1
h Sh and B−1

h Nh.

Lemma 3.2. All of the eigenvalues of B−1
h Sh are real and the minimum and maximum eigenvalues

of B−1
h Sh satisfy

c ≤ λmin(B−1
h Sh) ≤ λmax(B

−1
h Sh) ≤ Ch−2, (3.11)

where c and C are positive constants that depend only on the minimum angle of Th. In particular,

we have

κ(B−1
h Sh) =

λmax(B
−1
h Sh)

λmin(B−1
h Sh)

≤ Ch−2. (3.12)

Proof. Since the operator B−1
h Sh is symmetric with respect to the inner product 〈Bh·, ·〉 on Vh, all

the eigenvalues of B−1
h Sh are real, and it follows from the Raleigh quotient formula [9] that

λmax(B
−1
h Sh) = max

v∈Vh\{0}

〈Shv, v〉

〈Bhv, v〉
, (3.13)

λmin(B−1
h Sh) = min

v∈Vh\{0}

〈Shv, v〉

〈Bhv, v〉
. (3.14)
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Let v ∈ Vh be arbitrary. By (3.3), (3.8), a standard inverse estimate and the fact that |e| ≈ h,
we have

〈Shv, v〉 =
∑

T∈Th

‖∇v‖2
L2(T ) +

∑

e∈Eh

η

|e|3
‖Π0

e[[v]]‖2
L2(e)

≤ Ch−2
∑

T∈Th

‖v‖2
L2(T ) + Ch−2

∑

e∈Eh

η

|e|
‖Π0

e[[v]]‖2
L2(e)

≤ Ch−2〈Bhv, v〉,

which together with (3.13) implies that λmax(B
−1
h Sh) ≤ Ch−2.

In the other direction we have the following estimate from [5]:

∑

T∈Th

‖v‖2
L2(T ) ≤ C

(

∑

T∈Th

‖∇v‖2
L2(T ) +

∑

e∈Eh

1

|e|
‖[[Π0

ev]]‖2
L2(e)

)

. (3.15)

Combining (1.7), (3.3), (3.8) and (3.15), we find

〈Bhv, v〉 =
∑

T∈Th

‖v‖2
L2(T ) +

∑

e∈Eh

η

|e|
‖Π0

e[[v]]‖2
L2(e)

≤ C
(

∑

T∈Th

‖∇v‖2
L2(T ) +

∑

e∈Eh

1

|e|
‖[[Π0

ev]]‖2
L2(e)

)

+ C
∑

e∈Eh

η

|e|3
‖Π0

e[[v]]‖2
L2(e)

≤ C〈Shv, v〉,

which together with (3.14) implies λmin(B−1
h Sh) ≥ c.

Lemma 3.3. The eigenvalues of B−1
h Nh are purely imaginary and

|〈B−1
h Nhw, v〉| ≤ Ch−1〈Bhw, w〉1/2〈Bhv, v〉1/2 ∀w, v ∈ Vh, (3.16)

where the positive constant C depends only on the minimum angle of Th. In particular, the spectral

radius of B−1
h Nh satisfies

ρ(B−1
h Nh) ≤ Ch−1. (3.17)

Proof. Since the operator B−1
h Nh is antisymmetric with respect to the inner product 〈Bh·, ·〉 on

Vh, all the eigenvalues of B−1
h Nh are purely imaginary.

Using (1.7), (3.3), the Cauchy-Schwarz inequality and standard inverse estimates, we find
∣

∣

∣

∑

e∈Eh

∫

e

{{∇w}}[[v]] ds
∣

∣

∣
=

∣

∣

∣

∑

e∈Eh

∫

e

η−1/2|e|1/2{{∇w}} · η|e|−1/2Π0
e[[v]] ds

∣

∣

∣

≤
(

∑

e∈Eh

η−1|e|‖{{∇w}}‖2
L2(e)

)1/2( ∑

e∈Eh

η|e|−1‖Π0
e[[v]]‖2

L2(e)

)1/2

≤ C
(

∑

T∈Th

‖∇w‖2
L2(T )

)1/2

〈Bhv, v〉1/2

≤ C
(

∑

T∈Th

h−2
T

‖w‖2
L2(T )

)1/2

〈Bhv, v〉1/2

≤ Ch−1〈Bhw, w〉1/2〈Bhv, v〉1/2,

and similarly

∣

∣

∣

∑

e∈Eh

∫

e

{{∇v}}[[w]] ds
∣

∣

∣
≤ Ch−1〈Bhv, v〉1/2〈Bhw, w〉1/2.

c© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



A Weakly Over-Penalized Interior Penalty Method 11

We conclude from Lemma 3.2 (resp. Lemma 3.3) that B−1
h Sh (resp. B−1

h Nh) behaves like a
second (resp. first) order differential operator. In view of (3.10), the condition number of B−1

h Ah

is also of order O(h−2).

4 Numerical Results

Let Ω be the unit square (0, 1) × (0, 1) and the exact solution of (1.1) be given by

u(x, y) = xy(1 − x)(1 − y).

We solved (1.1) using the WOPNIP method (with η = 0.1, 1, 10 and 100) on uniform grids
T1, . . . , T7, where the length of a horizontal/vertical edge in Tk is hk = 2−k, and computed the
relative errors

√

∑

T∈Tk
‖∇(u − uk)‖2

L2(T )

‖∇u‖L2(Ω)

in the piecewise H1 semi-norm and the relative errors

‖u − uk‖L2(Ω)

‖u‖L2(Ω)

in the L2 norm. The results are plotted against k in Figure 1 and Figure 2. The error bounds
(2.15) and (2.27) are clearly visible. Furthermore the relative errors for η = 1, 10 and 100 are
eventually indistinguishable.
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−3

10
−2

10
−1

10
0

10
1

k

E
rr

or

η=0.1
η=1  
η=10 
η=100

Figure 1: Relative errors in the piecewise H1 semi-norm for 1 ≤ k ≤ 7 and η=0.1, 1, 10, and 100

We also computed the condition number κ(B−1
k Sk) and the spectral radius ρ(B−1

k Nk) for
1 ≤ k ≤ 6, and the numbers h2

kκ(B−1
k Sk) and hkρ(B−1

k Nk) are tabulated in Table 1 and Table 2,
which clearly demonstrate the estimates (3.12) and (3.17).
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Figure 2: Relative errors in the L2 norm for 1 ≤ k ≤ 7 and η=0.1, 1, 10, and 100

k η = 0.1 η = 1 η = 10 η = 100
1 24.3905 14.4633 15.3508 15.6675
2 7.0297 4.4732 4.3562 4.3492
3 2.9453 1.9869 1.8353 1.8180
4 2.0616 1.8471 1.8244 1.8221
5 1.8790 1.8289 1.8239 1.8233
6 1.8372 1.8250 1.8238 1.8237

Table 1: h2
kκ(Sk) for 1 ≤ k ≤ 6 and η =0.1, 1, 10, 100

5 Concluding Remarks

The results in this paper can be extended to general second order elliptic boundary value problems.
They can also be extended to nonconforming meshes with hanging nodes and higher order elements.

Multigrid algorithms for the WOPNIP method can be developed using a smoother built upon
the block diagonal preconditioner in Section 3, and the quasi-optimal L2 error estimate (2.27) is
crucial for the convergence analysis of the multigrid algorithms.

These and other issues concerning the weakly over-penalized interior penalty methods will be
addressed in [11].
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k η = 0.1 η = 1 η = 10 η = 100
1 16.3927 5.8987 1.8941 0.5999
2 17.3113 5.6756 1.8016 0.5699
3 17.7000 5.6513 1.7888 0.5657
4 17.8400 5.6553 1.7888 0.5657
5 17.8764 5.6565 1.7888 0.5657
6 17.8855 5.6568 1.7889 0.5657

Table 2: hkρ(Nk) for 1 ≤ k ≤ 6 and η =0.1, 1, 10, and 100
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