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Abstract: A weakly over-penalized nonsymmetric interior penalty method for second order
elliptic boundary value problems is considered in this paper. This method is consistent,
stable for any choice of the penalty parameter and satisfies quasi-optimal error estimates in
both the energy norm and the L norm. Furthermore, there exists a simple block diagonal
preconditioner that keeps the condition number of the discrete problem at the order of
O(h™?). Both theoretical and numerical results are presented.
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1 Introduction

Let © be a convex polygonal domain in R? and f € Lo(Q). In this paper we will consider a weakly
over-penalized nonsymmetric interior penalty (WOPNIP) method for the following model problem:
Find u € H(Q) such that

/ Vu-Vvdr = | fudz Yo € Hi(Q). (1.1)
Q Q

Before introducing our new method, we first review some well-known interior penalty methods
for (1.1) to motivate our approach. Let 75 be a quasi-uniform triangulation of 2 where h is
the mesh size. We define V}, to be the discontinuous P, finite element space with respect to the
triangulation 7. That is, V, = {v € L2(Q) : vy =v|r € PI(T) VT € T,}. Also, we define
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2 S.C. Brenner and L. Owens

the jumps and means in the usual way [2, 3]. Let e be an interior edge shared by the triangles
Ty, 15 € 7,. Then we define on e,

[v] = viny + vame, (1.2)
{Vul = %(Vvl + V), (1.3)

where v; = v’Tl, Vg = ’U‘T2 and n; (resp. ng) is the unit normal of e pointing towards the outside
of T} (resp. T2). On an edge e along 992, we define

[v] = (] )m, (1.4)
Vol = (Vo)l,, (1.5)

where n is the unit normal of e pointing outside 2.

The variational problem can be solved by the symmetric interior penalty Galerkin (SIPG)
method [13, 1] and the nonsymmetric interior penalty (NIPG) method [12], which are defined as
follows.

Find uf € Vj, such that
af(uf,v} = / fvdzx Yo eV, (1.6)
Q

where

aEw)= Y /Vw de—z/{{w}} dsiZ/{{Vv}} w] ds

TeT), eely ecéy

+ 3 f1l

e€ly

&y, is the set of all the edges of 73, and 1 > 0 is a penalty parameter.
The function u; (resp. ;) in (1.6) is the NIPG (resp. SIPG) approximate solution of (1.1).
It is well-known that both methods are consistent, the NIPG method is stable for any choice of 7,
and the STPG method is stable for sufficiently large n. Furthermore, when the methods are stable,
we have [1, 12]
= il < ORIl zagen,

where

120 = a (v.0) = 32 IVollL,y +0 Y lel Il ).

TeT, ec&p

I

provided
n > mno > 0. (1.7)

From now on we assume that the penalty parameter 7 satisfies (1.7), i.e., it is bounded away from
0, and we will use C' (with or without subscript) to denote a generic positive constant independent
of f, h and n that can take different values at different occurrences.

Since the SIPG method is symmetric, it is also adjoint consistent. Consequently the Aubin-
Nitsche duality argument can be applied and we have

lu —up [, < Ch2||f||L2(Q)- (1.8)

On the other hand the NIPG method is not adjoint consistent and the analog of (1.8) does not
hold for u;.

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



A Weakly Over-Penalized Interior Penalty Method 3

To recover the quasi-optimal Ly error estimate for the NIPG approach, the following over-
penalized method was introduced in [12].

Find uj, € V}, such that
an(tp,v) = [ fodz Yo eV, (1.9)
Q

where

ap(w,v) = Z /TVw -Vudx — Z {Vw} - [v] ds + Z {Voul - [[w] ds

TeT) ecéy, € ec&y €

+ / ] - [v] ds.

ecé

The method (1.9) is stable for any n > 0 and
lu = @nllzac0) + kil = dnlla, < CR2|| £l Ly,

where ||v||a, = Van(v,v). Of course, the gain in the Lo error estimate is at the expense of
increasing the condition number of the discrete system from O(h=2) for (1.6) to O(h™*) for (1.9).

Our goal is to design an interior penalty method such that (i) it is consistent, (ii) it is stable
for any choice of the penalty parameter, (iii) it satisfies quasi-optimal error estimates in both the
energy norm and the Ly norm, and (iv) we only have to solve a system of linear equations whose
condition number is of order O(h~2). Our idea for the new scheme is based on the following
observation on the over-penalized method (1.9).

Since {Vw}} and {Vu}} are constant vectors along the edges of 7y, we can rewrite the bilinear
form as

an(w,) = Y / V- Vode— 3 / (Vo T[] ds + Y / (Vo) - T w] ds

TeT, VT ecEp Ve ec&, v ©

+Y / [w] - [o] ds,

ecéy,

where IIY is the orthogonal projection operator from Lo (e) onto Py(e). That is,
0 1
v = el vds Vv € La(e). (1.10)
€ e

Accordingly, we only need to over-penalize the integral [ II9[[w] - II?[[v]] ds. The resulting weakly
over-penalized method is:

Find uj € Vj, such that
ap(up,v) = / fodz Yo eV, (1.11)
Q

where

an(w,v) = Y /TVw~Vvda:— > [{Vwh - [vlds

TeT, ecEy V€

+ 3 [Uvo lds+ o [l mgas (112

eelp €
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4 S.C. Brenner and L. Owens

Remark 1.1. Heuristically, the WOPNIP method (1.11)—(1.12) works because the weak over-
penalization forces I1%uy, to be almost 0 and it is well-known [8] that weakly continuous P; functions
can be used to solve the Poisson problem (1.1). Also, at first glance the condition number of (1.11)
is as bad as the condition number of (1.9). However, there is a simple block diagonal preconditioner
(cf. Section 3 below) that will reduce the condition number of the system back to O(h~2).

Remark 1.2. It follows from the midpoint rule that
% = v(m.) Vv € Pi(e), (1.13)

where m. is the midpoint of the edge e. Therefore the natural nodal basis for the WOPNIP method
is associated with the midpoints of the edges of 7j,.

The rest of the paper is organized as follows. We derive quasi-optimal error estimates for the
WOPNIP method in Section 2 and construct the block diagonal preconditioner in Section 3. We
then present numerical results in Section 4 and end with some concluding remarks in Section 5.

2 Error Analysis

First we note that the solution u of (1.1) satisfies, via integration by parts,
ap(u,v) = / fvdx Yo eV, (2.1)
Q

i.e., the scheme (1.11) is consistent. Furthermore, we have the elliptic regularity estimate [10]

lull 2y < CllfllLa()- (2.2)
We will carry out the error analysis using the mesh-dependent norms || - || and || - || defined
by
ol = > IVoldum + Y el IEVoR 0 + Y — ef |3 2 [oDIZ, ), (2.3)
TeT), ecty, ecty
ol = > 1VolZym + D |3||HO [l (2.4)
TeT), ecty,

for all v € H?(Q2) + V.
It is easy to see that
Iollz = an(v,v) Yo e HX(Q) + Vi, (2.5)

i.e., the scheme (1.11) is stable for any choice of the penalty parameter.
We begin our analysis with several lemmas, where we use the notation 7, . to denote the set
of the triangles of 7}, that have e € £, as an edge.

Lemma 2.1. The bilinear form an(-,-) is bounded on H?(Y) + V3, with respect to || - ||p, i.e,
lan (w,v)| < Cllw|p|v]n Yo, w e H*(Q) + Vi, (2.6)
where the positive constant C' depends only on the minimum angle of Tp,.
Proof. Let e € &, and v € H%(Q) + V}, be arbitrary. We have
1 0 1 0 2
Do < C (Mo + 7000 = DI, o)

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



A Weakly Over-Penalized Interior Penalty Method 5

1 1
< O o)l + € D llor = Hlvrl? 2.7)
g 2 el
< (| 2L + 32 190l )
TG,Z’}L,&

where the constant C depends only on the shape of the triangles in 7} .. In the last step we have
used the trace theorem (with scaling) and the Bramble-Hilbert lemma [4, 6].
The estimate (2.6) follows from the Cauchy-Schwarz inequality, (1.7), (1.12) and (2.7):

jan(w,0)| < Y Vol o) Vol oy + D (el IV o) (el ™21l 1)

TeT, ec&y
+ 37 (el 21V} Lae)) (el 21wl o)) + > P |3IIH°H W1z o) T [0 2o e)
ec&y ec&p
1/2
< (X IV0ldar + D lellTwhi. +Z W2 + > |3||HO 1.0)
TeTy, e€ly eegh eclp
1/2
< (3 IVl +Z|e|||{{Vv}}||L2e>+Z 120 + > |3||HO ol
TeT), eclp eegh el

< Cllwlalloln:

O
It is clear from (2.3) and (2.4) that
lolle < llolln Yo € H* Q) + Vi (2.8)
Moreover, the two norms are equivalent on V.
Lemma 2.2. It holds that
[olln = ol Vv € Vi (2.9)
Proof. Let v € V3, be arbitrary. It follows from (1.2), (1.4) and an inverse estimate that
DLl EVoRZae <C D el D IVorlliye <€ Y Vol
e€En e€€,  TETh. TeT,
where the constant C' depends only on the minimum angle of 7;,. Therefore we have
[olln < Cllolln Vv € Vi
O
Lemma 2.3. It holds that
Ju—wnln < C it vl (210)
Proof. Tt follows from (1.11) and (2.1) that
ap(u —up,v) =0 Vv e V. (2.11)

Using (2.5), (2.6), (2.9) and (2.11), we find

lun — vl = an(un — v, up —v) = an(u—v,up —v) < Cllu—v|[allun — vl

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



6 S.C. Brenner and L. Owens

Therefore, we have
lun = vlln < Cllu=vln Vv €V,

and hence, in view of (2.8),

lw = unlln < flu—=vlln + o = unlln < Clu—vlln Vv € Vi,

which implies (2.10). O
Let II; be the nodal interpolation operator for the conforming P; finite element. It follows

from (2.2), a standard interpolation error estimate [7, 6] and [[u]] = [[I,u]] = 0 that
lw = Mpulln = [V (u = ) 1y0) < Chlulp) < ChlfllLy0)- (2.12)

Furthermore, by the trace theorem (with scaling) and standard interpolation estimates, we have

S eV (= M)}, < € 30 S (lu = Mol gy + Wluliocr

ec&y ec&p TET,

ec&, TeET,

which, together with (2.2), (2.3) and (2.12), implies
lu = pulln < ChI flLy0)- (2.14)
Combining (2.10) and (2.14), we have the following result for the energy error.
Theorem 2.4. It holds that

llw = unlln < ChIfllLo(e)- (2.15)
We can also measure the error in the || - || norm.
Corollary 2.5. It holds that
lu = unlln < ChI[fllLo(e)- (2.16)

Proof. From (2.9), (2.12), (2.14) and (2.15), we have

u—=wunlln < llu—aullp + [Thu — uslln
< Chl[f o) + Clpu — unlln
< Chl|fllzaco) + C(Mhu — ulln + Ju = uplln) < CR| fllry0)-

O
Finally, we can obtain an Lo error estimate by a duality argument.
Lemma 2.6. It holds that
lu = unll£o(0) < Ch(llu = unlln + [lu — unlln)- (2.17)
Proof. Let ¢ € H} () satisfy
Vv -Vodr = / (u — up)vdz Vo e Hy (). (2.18)
Q Q
Then ¢ € H?(Q),
—Ad=u—up in Q, (2.19)
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A Weakly Over-Penalized Interior Penalty Method 7

and by elliptic regularity
16l z2(0) < Cllu = unll,(0)- (2.20)

Applying (2.13) and (2.14) to ¢, we have
16 = adlln < Chllu = unl Lo, (2.21)
D eV~ 1)} 1F ) < OP?llu—unl,q)- (2.22)

e€céy,

It follows from (2.18), (2.19) and integration by parts that

Z/ (u — up) v¢>d;c_/(u—uh Yudx — Z/Vuh Vo dx

TeT, TeT,

~ [w-wpas= 3 [Tl gveas

ec&p

and hence, in view of (1.12), (2.1) and the fact that [¢]] = 0 = [[u]],

lu—unll? 0y = D /VU—uh Vo dr + Z/Uh Vol ds

TeT, ecfy
= (u—up) - Vodr — u—upll - {Vo}ds

7;;; J/ h ;2;;°/ﬂ h
—an(u—und)—2 Y / (96} - [u— un] ds (2.23)

ec&, V€
— (- d—Thd) —2 3 / (V6 - T6)} - [u— un] ds
ee&p
22 % [V [u-wlds

ecéy

We now bound each of the three terms on the right-hand side of (2.23) separately. The first
term can be bounded using (2.6) and (2.21):

an(u = un, ¢ — no) < Cllu — upl|nl|¢ — Mpolln < Chllu— unlnlu — unll,@)- (2:24)

The second term can be bounded using the Cauchy-Schwarz inequality, (1.7), (1.12), (2.20) and
(2.22):

| [Uv@ - [u—was

ecéy,
<> () v nh¢>}}||L2<e(||)/ = wnllae 025)
e€céy,
< (X Higveo-moni..)” (Z [u— )
ecly cEn

< Chllu = un| Ly llw — unlln-
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8 S.C. Brenner and L. Owens

Finally, using the Cauchy-Schwarz inequality, (1.7), (1.12), (2.21) and a standard inverse esti-
mate, we obtain

|3 [AV6)) -~ unl

ec&p €

=| > [ 0) 1w — w] ds

ec&, V€
< S PRV M6 ey 12l I — wunll e
ecfy
B 1/2 7 1/2
< (X el IV ) (D el T — w0 (2.26)
ec& e€y
9 9 1/2
<c(r 3 IV, ) " lu = unln
TeTh
1/2
<C(r? 3 196 =) Zury + IV6130] ) lu = unlln
TeTh
< Chllu = un| o) llw — unlln-
The desired result follows from (2.23)—(2.26). O

Combining Theorem 2.4, Corollary 2.5 and Lemma 2.6, we have the following result for the Lo
erTor.

Theorem 2.7. It holds that
lu = unl| Loy < CP?|| fllLy()- (2.27)

3 The Preconditioner
Let Ap, : Vi, — V]! be defined by
(Apw, vy = ap(w,v) Vo, we Vp, (3.1)

where (-, -) is the canonical bilinear form on V;/ x V. In terms of Ay, the discrete problem (1.11)
can be written as

Apun = ¢n, (3.2)
where ¢, € V), is defined by

(bn,v) = ([, U)L2(Q) Vv e V.

The preconditioner for Ay, is the operator By, : V, — V) defined by

(Brw,v) = Z / wo dz + Z S /Hg[[w]] -T0[[v] ds Vo,w € V. (3.3)
TeT) T ecéy, |€| ¢
Remark 3.1. Tt follows from a standard quadrature rule for quadratic functions that
T
wudr = 3 Z w(m)v(m) Vw,ve P(T), (3.4)
T meMr

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



A Weakly Over-Penalized Interior Penalty Method 9

where M is the set of the three midpoints of T. Furthermore from (1.2), (1.4) and (1.13) we see
that, for an interior edge e,

i 0 wi| - 0 v S
o e gl d (35)
= wi(me)v1(me) + wa(me)va(me) — wi(me)va(me) — wa(me)vi(me),

where w; = w’T‘ and v; = v’T_ for j = 1,2, and T7 and T3 are the two triangles in 7} sharing e as
J J
a common edge, and for a boundary edge e, we have

o [ ] Tl ds = wme o). (3.6)

Let Bj, be the matrix representing By, i.e.,
vIByw = (Brw,v), (3.7)

where v (resp. w) is the coordinate vector for v (resp. w) in V}, associated with the midpoints of the
edges of 7j,. In view of Remark 3.1, the matrix By, is block diagonal with 2x 2 blocks (corresponding
to the midpoints of interior edges) and 1 x 1 blocks (corresponding to the midpoints of boundary
edges). Therefore it is trivial to compute B,jl.

Let the operators Sy, N : Vi, — V]! represent the symmetric and antisymmetric part of the
bilinear form ap(-,-):

(Shw,v) = Y /TVw-Vvda:+ > #/gﬂg[[w]]-ﬂg[[v]]ds Yo,we Vi,  (3.8)

TeT), ec&y
(Npw,v) = /({{Vw}}[[v]] — {(Volt[w]) ds Vo,weVa.  (3.9)
ec&y V€

It is clear from (3.1), (3.8) and (3.9) that
B;'Ay, = B, 'S, — B, ' Ny. (3.10)

Therefore we can estimate the condition number of the preconditioned system B, L A}, by examining
the operators B;lsh and B;lNh.

Lemma 3.2. All of the eigenvalues of B;lSh are real and the minimum and mazimum eigenvalues
of B;lSh satisfy
¢ < Amin(By,'Sn) < Amax(By, 1Sh) < Ch™2, (3.11)

where ¢ and C' are positive constants that depend only on the minimum angle of T,. In particular,
we have )

Amax B7 S —

Amax(By Sn) _ -2 (3.12)

w(B S = 3 (B;'Sh) ~
min\Dp

Proof. Since the operator B, 1S}, is symmetric with respect to the inner product (By,-,-) on Vj,, all
the eigenvalues of B, 1Sy, are real, and it follows from the Raleigh quotient formula [9] that

_ Spv,v)

Amax(B; 1Sh) = <7’, 3.13

(B),"Sn) ’UGI‘I}h,a\,)‘EO} (Bpv,v) ( )
Nein(BLS)) = min  2n%Y) (3.14)
AR P vy (Bro,v) '

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



10 S.C. Brenner and L. Owens

Let v € V}, be arbitrary. By (3.3), (3.8), a standard inverse estimate and the fact that |e| = h,
we have

ShU U Z ||VU||L2(T) + Z | |3HHO HL2

TeT, ecly

<N 3 ol + 00 3 IR, ) < On-2(Buoo),
TeTh eely

which together with (3.13) implies that Amax(B;, 1Sh) < Ch™2.
In the other direction we have the following estimate from [5]:

> Wl <03 190l + 3 Il ) (3.15)

TeTh TeTh e€&p
Combining (1.7), (3.3), (3.8) and (3.15), we find

(Bhv,v) = > il Z el Z, e

TeT), eESh
<o S IVolm + Y o el ) +€ 3 o Imelell.
TeT), ecty, €€5h
S C<Sh’U, U>,
which together with (3.14) implies Amin(B;, ' Sn) > c. O

Lemma 3.3. The eigenvalues of B;lNh are purely imaginary and
|(B, ' Nyw,v)| < Ch~Y(Brw, w)"?(Bj,v,v)/? Vw,v € Vp, (3.16)

where the positive constant C' depends only on the minimum angle of Ty,. In particular, the spectral
radius of B;lNh satisfies
p(B; 'Ny) < Ch™*. (3.17)
Proof. Since the operator B, ' Nj, is antisymmetric with respect to the inner product (Bj,-,-) on
Vi, all the eigenvalues of B, ~ N}, are purely imaginary.
Using (1.7), (3.3), the Cauchy-Schwarz inequality and standard inverse estimates, we find

wylvlas| = ~H2et wh - nle| ™Y v|| ds
!ggjh/e{{v Wl d t;gh/e” Ve TR el ] |

< (X ellEvebide) (X el IR I)

eeéy, eeéy,
1/2
gc( 3 ||Vw||§2m) (Byv, v)/?
TeT),

- 1/2
< C( 3 hT2|\wII%2<T>) (Byu, v)1/2

TeT),
< Ch™Y(Byw, w)*(Byv, v)/?,

and similarly

> [Avopulds

e€céy

< Ch™Y(Bpv, v)"?(Brw, w)"/?.

O

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



A Weakly Over-Penalized Interior Penalty Method 11

We conclude from Lemma 3.2 (resp. Lemma 3.3) that B,:ls’h (resp. B,:lNh) behaves like a
second (resp. first) order differential operator. In view of (3.10), the condition number of B, ' A,
is also of order O(h™2).

4 Numerical Results
Let Q be the unit square (0,1) x (0,1) and the exact solution of (1.1) be given by
u(z,y) = zy(l —z)(1 —y).

We solved (1.1) using the WOPNIP method (with » = 0.1, 1, 10 and 100) on uniform grids
Ti,...,T7, where the length of a horizontal/vertical edge in 7y is hy = 27%, and computed the
relative errors

\/ETeTk IV (u— Uk)”i(m
[Vl L, @)

in the piecewise H' semi-norm and the relative errors

||U—Uk|\L2(Q)
HU’HLQ(Q)

in the Lo norm. The results are plotted against £ in Figure 1 and Figure 2. The error bounds
(2.15) and (2.27) are clearly visible. Furthermore the relative errors for n = 1, 10 and 100 are
eventually indistinguishable.

1

10
-~ n=0.1
O n=1
n=10
—- n=100
o B
10" o ~— 4
S
\s\\\
a ~
.
— T
o T
1 =L a
=10p e E
S N
~— o
~ .
il v ]
g N
]
10'3 I I I I I
1 2 3 4 5 6 7

Figure 1: Relative errors in the piecewise H'! semi-norm for 1 < k < 7 and n=0.1, 1, 10, and 100

We also computed the condition number x(B; 'Sy) and the spectral radius p(B; ' Ny) for
1 < k < 6, and the numbers h2k(B, *Si) and hxp(B; ' Nj) are tabulated in Table 1 and Table 2,
which clearly demonstrate the estimates (3.12) and (3.17).

© 2007 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



12 S.C. Brenner and L. Owens

10

~ - n=0.1
~
~ o n=1
\&\\ n=10
N —k— n=100
107" \\
kS (=} A E
SR
IS =
2 N S
o 10 " S 4
@) S
= o in}
N
i <. X
10°F Sl E
<
S
<
= ~
N
~
N
4 B
107 - |
N
~
e 1
10'5 L L L L L
1 2 3 4 5 6 7

Figure 2: Relative errors in the Lo norm for 1 < k£ < 7 and n=0.1, 1, 10, and 100

kln=01| n=1 n=10 | n=100
1| 24.3905 | 14.4633 | 15.3508 | 15.6675
2| 7.0297 | 4.4732 | 4.3562 | 4.3492
3| 29453 | 1.9869 | 1.8353 | 1.8180
4| 2.0616 | 1.8471 | 1.8244 | 1.8221
5| 1.8790 | 1.8289 | 1.8239 | 1.8233
6 | 1.8372 | 1.8250 | 1.8238 | 1.8237

Table 1: hir(Sk) for 1 <k <6 and n =0.1, 1, 10, 100

5 Concluding Remarks

The results in this paper can be extended to general second order elliptic boundary value problems.
They can also be extended to nonconforming meshes with hanging nodes and higher order elements.

Multigrid algorithms for the WOPNIP method can be developed using a smoother built upon
the block diagonal preconditioner in Section 3, and the quasi-optimal Lo error estimate (2.27) is
crucial for the convergence analysis of the multigrid algorithms.

These and other issues concerning the weakly over-penalized interior penalty methods will be
addressed in [11].
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1]

2]

n=01| n=1|n=10| n=100
16.3927 | 5.8987 | 1.8941 | 0.5999
17.3113 | 5.6756 | 1.8016 | 0.5699
17.7000 | 5.6513 | 1.7888 | 0.5657
17.8400 | 5.6553 | 1.7888 | 0.5657
17.8764 | 5.6565 | 1.7888 | 0.5657
17.8855 | 5.6568 | 1.7889 | 0.5657

O U | W DN =] &

Table 2: hxp(Ny) for 1 <k <6 and n =0.1, 1, 10, and 100
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