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Chapter 1

Solutions

Section 1.1

1. The rate of change in the population P (t) is the derivative P ′(t). The
Malthusian Growth Law states that the rate of change in the population is
proportional to P (t). Thus P ′(t) = kP (t), where k is the proportionality
constant. Without reference to the t variable, the differential equation
becomes P ′ = kP

3. Torricelli’s law states that the change in height, h′(t) is proportional to
the square root of the height,

√

h(t). Thus h′(t) = λ
√

h(t), where λ is
the proportionality constant.

5. The highest order derivative is y′′ so the order is 2. The standard form is
y′′ = t3/y′.

7. The highest order derivative is y′′ so the order is 2. The standard form is
y′′ = −(3y + ty′)/t2.

9. The highest order derivative is y(4) so the order is 4. Solving for y(4) gives
the standard form: y(4) = 3

√

(1− (y′′′)4)/t.

11. The highest order derivative is y′′′ so the order is 3. Solving for y′′′ gives
the standard form: y′′′ = 2y′′ − 3y′ + y.

13. The following table summarizes the needed calculations:
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4 1 Solutions

Function ty′(t) y(t)

y1(t) = 0 ty′1(t) = 0 y1(t) = 0

y2(t) = 3t ty′2(t) = 3t y2(t) = 3t

y3(t) = −5t ty′3(t) = −5t y3(t) = −5t

y4(t) = t3 ty′4(t) = 3t3 y4(t) = t3

To be a solution, the entries in the second and third columns need to be
the same. Thus y1, y2, and y3 are solutions.

15. The following table summarizes the needed calculations:

Function y′(t) 2y(t)(y(t)− 1)

y1(t) = 0 y′1(t) = 0 2y1(t)(y1(t)− 1) = 2 · 0 · (−1) = 0

y2(t) = 1 y′2(t) = 0 2y2(t)(y2(t)− 1) = 2 · 1 · 0 = 0

y3(t) = 2 y′3(t) = 0 2y3(t)(y3(t)− 1) = 2 · 2 · 1 = 4

y4(t) =
1

1−e2t y′4(t) =
2e2t

(1−e2t)2 2y4(t)(y4(t)− 1) = 2 1
1−e2t

(

1
1−e2t − 1

)

= 2 1
1−e2t

e2t

1−e2t = 2e2t

(1−e2t)2

Thus y1, y2, and y4 are solutions.

17. The following table summarizes the needed calculations:

Function 2y(t)y′(t) y2 + t− 1

y1(t) =
√

−t 2
√

−t
−1

2
√

−t
= −1 (

√

−t)2 + t− 1 = −1

y2(t) = −

√

et − t −2
√

et − t
−(et − 1)

2
√

et − t
= et − 1 (−

√

et − t)2 + t− 1 = et − 1

y3(t) =
√

t 2
√

t
1

2
√

t
= 1 (

√

t)2 + t− 1 = 2t − 1

y4(t) = −

√

−t 2(−
√

−t)
1

2
√

−t
= −1 (−

√

−t))2 + y − 1 = −1

Thus y1, y2, and y4 are solutions.

19.

y′(t) = 3ce3t

3y + 12 = 3(ce3t − 4) + 12 = 3ce3t − 12 + 12 = 3ce3t.

Note that y(t) is defined for all t ∈ R.

21.



1 Solutions 5

y′(t) =
cet

(1− cet)2

y2(t)− y(t) =
1

(1− cet)2
− 1

1− cet
=

1− (1− cet)

(1− cet)2
=

cet

(1− cet)2
.

If c ≤ 0 then the denominator 1−cet > 0 and y(t) has domain R. If c > 0
then 1 − cet = 0 if t = ln 1

c = − ln c. Thus y(t) is defined either on the
interval (−∞,− ln c) or (− ln c,∞).

23.

y′(t) =
−cet

cet − 1

−ey − 1 = −e− ln(cet−1) − 1 =
−1

cet − 1
− 1 =

−cet

cet − 1
.

Since c > 0 then y(t) is defined if and only if cet − 1 > 0. This occurs
if et > 1

t which is true if t > ln 1
c = − ln c. Thus y(t) is defined on the

interval (− ln c,∞).

25.

y′(t) = −(c− t)−2(−1) =
1

(c− t)2

y2(t) =
1

(c− t)2
.

The denominator of y(t) is 0 when t = c. Thus the two intervals where
y(t) is defined are (−∞, c) and (c,∞).

27. Integration gives y(t) = e2t

2 − t+ c.

29. Observe that t+1
t = 1 + 1

t . Integration gives y(t) = t+ ln |t|+ c.

31. We integrate two times. First, y′(t) = −2 cos 3t + c1. Second, y(t) =
− 2

3 sin 3t+ c1t+ c2.

33. From Problem 20 the general solution is y(t) = ce−t + 3t− 3. At t = 0
we get 0 = y(0) = ce0 + 3(0) − 3 = c − 3. It follows that c = 3 and
y(t) = 3e−t + 3t− 3.

35. From Problem 24 the general solution is y(t) = c(t + 1)−1. At t = 1
we get −9 = y(1) = c(1 + 1)−1 = c/2. It follows that c = −18 and
y(t) = −18(t+ 1)−1.

37. From Problem 28 the general solution is y(t) = −te−t− e−t+ c. Evalua-
tion at t = 0 gives −1 = y(0) = −1+c so c = 0. Hence y(t) = −te−t−e−t.
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Section 1.2

1. y′ = t
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3. y′ = y(y + t)
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7.
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11. We set y(y + t) = 0. We look for constant solutions to y(y + t) = 0, and
we see that y = 0 is the only constant (= equilibrium) solution.

13. The equation 1− y2 = 0 has two constant solutions: y = 1 and y = −1

15. We substitute y = at+ b into y′ = cos(t+ y) to get a = cos((a+1)t+ b).
Equality for all t means that cos((a+1)t+b) must be a constant function,
which can occur only if the coefficient of t is 0. This forces a = −1 leaving
us with the equation −1 = cos b. This implies b = (2n+1)π, where n is an
integer. Hence y = −t+ (2n+ 1)π, n ∈ Z is a family of linear solutions.

17. Implicit differentiation with respect to t gives 2yy′ − 2t− 3t2 = 0.

19. Differentiation gives y′ = 3ct2 + 2t. However, from the given function

we have ct3 = y − t2 and hence ct2 = y−t2

t . Substitution gives y′ =

3 y−t2

t + 2t = 3y
t − t.



8 1 Solutions

Section 1.3

1. separable; h(t) = 1 and g(y) = 2y(5− y)

3. First write in standard form: y′ = 1−2ty
t2 . We cannot write 1−2ty

t2 as a
product of a function of t and a function of y. It is not separable.

5. Write in standard form to get: y′ = y−2yt
t . Here we can write y−2ty

t =
y 1−2t

t . It is separable; h(t) = 1−2t
t and g(y) = y.

7. In standard form we get y′ = −2ty
t2+3y2 . We cannot write y′ = −2ty

t2+3y2 as a
product of a function of t and a function of y. It is not separable

9. In standard form we get: y′ = e−t(y3 − y) It is separable; h(t) = e−t and
g(y) = y3 − y

11. In standard form we get y′ = 1−y2

ty . Clearly, y = ±1 are equilibrium
solutions. Separating the variables gives

y

1− y2
dy =

1

t
dt.

Integrating both sides of this equation (using the substitution u = 1−y2,
du = −2y dy for the integral on the left) gives

−1

2
ln |1− y2| = ln |t|+ c.

Multiplying by −2, taking the exponential of both sides, and removing
the absolute values gives 1 − y2 = kt−2 where k is a nonzero constant.
However, when k = 0 the equation becomes 1−y2 = 0 and hence y = ±1.
By considering an arbitrary constant (which we will call c), the implicit
equation t2(1− y2) = c includes the two equilibrium solutions for c = 0.

13. The variables are already separated, so integrate both sides to get y5/5 =
t2/2 + 2t+ c, c a real constant. Simplifying gives y5 = 5

2 t
2 + 10t+ c. We

leave the answer in implicit form

15. In standard form we get y′ = (1 − y) tan t so y = 1 is a solution. Sepa-
rating variables gives dy

1−y = tan t dt. The function tan t is continuous on

the interval (−π/2, π/2) and so has an antiderivative. Integration gives
− ln |1− y| = − ln |cos t| + k1. Multiplying by −1 and exponentiating
gives |1− y| = k2 |cos t| where k2 is a positive constant. Removing the
absolute value signs gives 1−y = k3 cos t, with k3 6= 0. If we allow k3 = 0
we get the equilibrium solution y = 1. Thus the solution can be written
y = 1− c cos t, c any real constant.
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17. There are two equilibrium solutions; y = 0 and y = 4. Separating vari-

ables and using partial fractions gives 1
4

(

1
y + 1

4−y

)

dy = dt. Integrating

and simplifying gives ln
∣

∣

∣

y
4−y

∣

∣

∣ = 4t+k1 which is equivalent to y
4−y = ce4t,

c a nonzero constant. Solving for y gives y = 4ce4t

1+ce4t . When c = 0 we get
the equilibrium solution y = 0. However, there is no c which gives the
other equilibrium solution y = 4.

19. Separating variables gives dy
y2+1 = dt and integrating gives tan−1 y = t+c.

Thus y = tan(t+ c), c a real constant.

21. In standard form we get y′ = −(y+1)
y−1

1
1+t2 from which we see that y =

−1 is an equilibrium solution. Separating variables and simplifying gives
(

2
y+1 − 1

)

dy = dt
t2+1 . Integrating and simplifying gives ln(y + 1)2 − y =

tan−1 t+ c.

23. The equilibrium solution is y = 0. Separating variables gives y−2 dy =
dt
1−t . Integrating and simplifying gives y = 1

ln|1−t|+c , c real constant.

25. y = 0 is the only equilibrium solution. The equilibrium solution y(t) = 0
satisfies the initial condition y(1) = 0 so y(t) = 0 is the required solution.

27. In standard form we get y′ = −2ty so y = 0 is a solution. Separat-
ing variables and integrating gives ln |y| = −t2 + k. Solving for y gives

y = ce−t2 and allowing c = 0 gives the equilibrium solution. The initial
condition implies 4 = y(0) = ce0 = c. Thus y = 4e−t2.

29. Separating variables gives dy
y = u

u2+1 du and integrating gives ln |y| =
ln
√
u2 + 1 + k. Solving for y gives y = c

√
u2 + 1, for c 6= 0. The initial

condition gives 2 = y(0) = c. So y = 2
√
u2 + 1.

31. Since y2 + 1 ≥ 1 there are no equilibrium solutions. Separating the
variables gives

dy

y2 + 1
=

dt

t2
,

and integration of both sides gives tan−1 y = − 1
t + c. Solve for y

by applying the tangent function to both sides of the equation. Since
tan(tan−1 y) = y, we get

y(t) = tan
(

−1

t
+ c
)

.

To find c observe that
√
3 = y(1) = tan(−1 + c), which implies that

c− 1 = π/3, so c = 1 + π/3. Hence
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y(t) = tan

(

−1

t
+ 1+

π

3

)

.

To determine the maximum domain on which this solution is defined,
note that the tangent function is defined on the interval (−π/2, π/2), so
that y(t) is defined for all t satisfying

−π

2
< −1

t
+ 1 +

π

3
<

π

2
.

The first inequality is solved to give t > 6/(6 + 5π). The second
equality is solved to give t < 6/(6 − π). Thus the maximum domain
for the solution y(t) is the interval (a, b) = (6/(6 + 5π), 6/(6 − π)).
limt→b− y(t) = limt→b− tan

(

− 1
t + 1 + π

3

)

= limx→π/2− tanx = ∞.

33. Let m denote the number of Argon-40 atoms in the sample. Then 8m is
the number of Potassium-40 atoms. Let t be the age of the rock. Then
t years ago there were m + 8m = 9m atoms of Potassium-40. Hence
N(0) = 9m. On the other hand, 8m = N(t) = N(0)e−λt = 9me−λt. This

implies that 8
9 = e−λt and hence t =

− ln 8
9

λ = −τ
ln 2 ln

8
9 ≈ 212 million years

old.

35. The ambient temperature is 32◦ F, the temperature of the ice water.
From Equation (13) we get T (t) = 32 + kert. At t = 0 we get 70 =
32 + k, so k = 38 and T (t) = 32 + 38ert. After 30 minutes we have
55 = T (30) = 32+38e30r and solving for r gives r = 1

30 ln
23
38 . To find the

time t when T (t) = 45 we solve 45 = 32+ 38ert, with r as above. We get
t = 30 ln 13−ln 38

ln 23−ln 38 ≈ 64 minutes.

37. The ambient temperature is Ta = 65◦. Equation (13) gives T (t) = 65 +
kert for the temperature at time t. Since the initial temperature of the
thermometer is T (0) = 90 we get 90 = T (0) = 65 + k. Thus k = 25. The
constant r is determined from the temperature at a second time: 85 =
T (2) = 65+ 25e2r so r = 1

2 ln
4
5 . Thus T (t) = 65+ 25ert, with r = 1

2 ln
4
5 .

To answer the first question we solve the equation 75 = T (t) = 65+25ert

for t. We get t = 2 ln 2−ln 5
ln 4−ln 5 ≈ 8.2 minutes. The temperature at t = 20 is

T (20) = 65 + 25
(

4
5

)10 ≈ 67.7◦.

39. The ambient temperature is Ta = 70◦. Equation (13) gives T (t) = 70 +
kert for the temperature of the coffee at time t. We are asked to determine
the initial temperature of the coffee so T (0) is unknown. However, we have
the equations

150 = T (5) = 70 + ke5r

142 = T (6) = 70 + ke6r
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or

80 = ke5r

72 = ke4r.

Dividing the second equation by the first gives 72
80 = er so r = ln 0.9.

From the first equation we get k = 80e−5r ≈ 135.5. We now calculate
T (0) = 70 + k ≈ 205.5◦

41. Let us start time t = 0 at 1980. Then P (0) = 290. The Malthusian growth
model gives P (t) = 290ert. At t = 10 (1990) we have 370 = 290e10r

and hence r = 1
10 ln

37
29 . At t = 30 (2010) we have P (30) = 290e30r =

290
(

37
29

)3 ≈ 602.

43. We have 3P (0) = P (5) = P (0)e3r. So r = ln 3
5 . Now we solve the equation

2P (0) = P (t) = P (0)ert for t. We get t = ln 2
r = 5 ln 2

ln 3 ≈ 3.15 years.

45. In the logistics equation m = 5000 and P0 = 2000. Thus P (t) =
10,000,000

2,000+3,000e−rt = 10,000
2+3e−rt . Since P (2) = 3000 we get 3000 = 10,000

2+3e−rt . Solv-

ing this equation for r gives r = ln 3
2 . Now P (4) = 10,000

2+3e−4r = 10,000

2+3( 2
3 )

4 ≈
3857

47. We have P (0) = P0 = 400, P (3) = P1 = 700, and P (6) = P2 = 1000. Us-

ing the result of the previous problem we get m = 700(700(400+1000)−2·400·1000)
(700)2−400·1000 =

1, 400

Section 1.4

1. This equation is already in standard form with p(t) = 3. An antiderivative
of p(t) is P (t) =

∫

3 dt = 3t so the integrating factor is µ(t) = e3t. If we
multiply the differential equation y′+3y = et by µ(t), we get the equation

e3ty′ + 3e3ty = e4t,

and the left hand side of this equation is a perfect derivative, namely,
(e3ty)′. Thus, (e3ty)′ = e4t. Now take antiderivatives of both sides and
multiply by e−3t. This gives

y =
1

4
et + ce−3t

for the general solution of the equation. To find the constant c to satisfy
the initial condition y(0) = −2, substitute t = 0 into the general solution
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to get −2 = y(0) = 1
4 + c. Hence c = − 9

4 , and the solution of the initial
value problem is

y =
1

4
et − 9

4
e−3t.

3. This equation is already in standard form. In this case p(t) = −2, an
antiderivative is P (t) = −2t, and the integrating factor is µ(t) = e−2t.
Now multiply by the integrating factor to get

e−2ty′ − 2e−2ty = 1,

the left hand side of which is a perfect derivative ((e−2t)y)′. Thus
((e−2t)y)′ = 1 and taking antiderivatives of both sides gives

(e−2t)y = t+ c,

where c ∈ R is a constant. Now multiply by e2t to get y = te2t + ce2t for
the general solution. Letting t = 0 gives 4 = y(0) = c so

y = te2t + 4e2t.

5. The general solution from Problem 4 is y = et

t + c
t . Now let t = 1 to get

0 = e+ c. So c = −e and y = et

t − e
t .

7. We first put the equation in standard form and get

y′ +
1

t
y = cos(t2).

In this case p(t) = 1
t , an antiderivative is P (t) = ln t, and the integrating

factor is µ(t) = t. Now multiply by the integrating factor to get

ty′ + y = t cos(t2),

the left hand side of which is a perfect derivative (ty)′. Thus (ty)′ =
t cos(t2) and taking antiderivatives of both sides gives ty = 1

2 sin(t
2) + c

where c ∈ R is a constant. Now divide by t to get y = sin(t2)
2t + c

t . for the
general solution.

9. In this case p(t) = −3 and the integrating factor is e
∫
−3 dt = e−3t.

Now multiply to get e−3ty′ − 3e−3ty = 25e−3t cos 4t, which simplifies
to (e−3ty)′ = 25e−3t cos 4t. Now integrate both sides to get e−3ty =
(4 sin 4t − 3 cos 4t)e−3t + c, where we computed

∫

25e−3t cos 4t by parts
twice. Dividing by e−3t gives y = 4 sin 4t− 3 cos 4t+ ce3t.

11. In standard form we get z′ − 2tz = −2t3. An integrating factor is
e
∫
−2t dt = e−t2 . Thus (e−t2z)′ = −2t3e−t2 . Integrating both sides gives
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e−t2z = (t2 +1)e−t2 + c, where the integral of the right hand side is done

by parts. Now divide by the integrating factor e−t2 to get z = t2+1+cet
2

.

13. The given equation is in standard form, p(t) = cos t, an antiderivative is
P (t) = − sin t, and the integrating factor is µ(t) = e− sin t. Now multiply
by the integrating factor to get

e− sin ty′ + (cos t)e− sin ty = (cos t)e− sin t,

the left hand side of which is a perfect derivative ((e− sin t)y)′. Thus

((e− sin t)y)′ = (cos t)e− sin t

and taking antiderivatives of both sides gives (e− sin t)y = e− sin t + c
where c ∈ R is a constant. Now multiply by esin t to get y = 1 + cesin t

for the general solution. To satisfy the initial condition, 0 = y(0) =
1 + cesin 0 = 1 + c, so c = −1. Thus, the solution of the initial value
problem is y = 1− esin t

15. The given linear differential equation is in standard form, p(t) = −2
t ,

an antiderivative is P (t) = −2 ln t = ln t−2, and the integrating factor is
µ(t) = t−2. Now multiply by the integrating factor to get

t−2y′ − 2

t3
y =

t+ 1

t3
= t−2 + t−3,

the left hand side of which is a perfect derivative (t−2y)′. Thus

(t−2y)′ = t−2 + t−3

and taking antiderivatives of both sides gives (t−2)y = −t−1 − t−2

2 + c
where c ∈ R is a constant. Now multiply by t2 to and we get y = −t −
1
2 + ct−2 for the general solution. Letting t = 1 gives −3 = y(1) = −3

2 + c
so c = −3

2 and

y(t) = −t− 1

2
− 3

2
t−2.

17. The given equation is in standard form, p(t) = a, p(t) = a, an antideriva-
tive is P (t) = at, and the integrating factor is µ(t) = eat. Now multiply
by the integrating factor to get eaty′ + aeaty = e(a+b)t, the left hand side
of which is a perfect derivative (eaty)′. Thus (eaty)′ = e(a+b)t and taking
antiderivatives of both sides gives

(eat)y =
1

a+ b
e(a+b)t + c

where c ∈ R is a constant. Now multiply by e−at to get
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y =
1

a+ b
ebt + ce−at

for the general solution.

19. In standard form we get y′ − (tan t)y = sec t. In this case p(t) =
− tan t, an antiderivative is P (t) = ln cos t, and the integrating factor
is µ(t) = eP (t) = cos t. Now multiply by the integrating factor to get
(cos t)y′ − (sin t)y = 1, the left hand side of which is a perfect deriva-
tive ((cos t)y)′. Thus ((cos t)y)′ = 1 and taking antiderivatives of both
sides gives (cos t)y = t + c where c ∈ R is a constant. Now multiply by
1/ cos t = sec t and we get y = (t+ c) sec t for the general solution.

21. The given differential equation is in standard form, p(t) = −n/t, an
antiderivative is P (t) = −n ln t = ln(t−n), and the integrating factor
is µ(t) = t−n. Now multiply by the integrating factor to get t−ny′ −
nt−n−1y = et, the left hand side of which is a perfect derivative (t−ny)′.
Thus (t−ny)′ = et and taking antiderivatives of both sides gives (t−n)y =
et + c where c ∈ R is a constant. Now multiply by tn to and we get
y = tnet + ctn for the general solution.

23. Divide by t to put the equation in the standard form

y′ +
3

t
y = t.

In this case p(t) = 3/t, an antiderivative is P (t) = 3 ln t = ln(t3), and the
integrating factor is µ(t) = t3. Now multiply the standard form equation
by the integrating factor to get t3y′+3t2y = t4, the left hand side of which
is a perfect derivative (t3y)′. Thus (t3y)′ = t4 and taking antiderivatives
of both sides gives t3y = 1

5 t
5+ c where c ∈ R is a constant. Now multiply

by t−3 and we get y = 1
5 t

2+ ct−3 for the general solution. Letting t = −1
gives 2 = y(−1) = 1

5 − c so c = −9
5 and

y =
1

5
t2 − 9

5
t−3.

25. Divide by t2 to put the equation in the standard form

y′ +
2

t
y = t−2.

In this case p(t) = 2/t, an antiderivative is P (t) = 2 ln t = ln t2, and the
integrating factor is µ(t) = t2. Now multiply by the integrating factor to
get t2y′+2ty = 1, the left hand side of which is a perfect derivative (t2y)′.
Thus (t2y)′ = 1 and taking antiderivatives of both sides gives t2y = t+ c
where c ∈ R is a constant. Now multiply by t−2 to get y = 1

t + ct−2 for
the general solution. Letting t = 2 gives a = y(2) = 1

2 + c
4 so c = 4a− 2



1 Solutions 15

and

y =
1

t
+ (4a− 2)t−2.

27. Let V (t) denote the volume of fluid in the tank at time t. Initially, there
are 10 gal of brine. For each minute that passes there is a net decrease of
4− 3 = 1 gal of brine. Thus V (t) = 10− t gal.

input rate: input rate = 3
gal

min
× 1

lbs

gal
= 3

lbs

min
.

output rate: output rate = 4
gal

min
× y(t)

V (t)

lbs

gal
=

4y(t)

10− t

lbs

min
.

Since y′ = input rate−output rate, it follows that y(t) satisfies the initial
value problem

y′ = 3− 4

10− t
y(t) , y(0) = 2.

Put in standard form, this equation becomes

y′ +
4

10− t
y = 3.

The coefficient function is p(t) = 4
10−t , P (t) =

∫

p(t) dt = −4 ln(10− t) =

ln(10− t)−4, and the integrating factor is µ(t) = (10− t)−4. Multiplying
the standard form equation by the integrating factor gives

((10− t)−4y)′ = 3(10− t)−4.

Integrating and simplifying gives y = (10 − t) + c(10 − t)4. The initial
condition y(0) = 2 implies 2 = y(0) = 10 + c104 and hence c = −8/104

so

y = (10− t)− 8

104
(10− t)4.

Of course, this formula is valid for 0 ≤ t ≤ 10. After 10 minutes there is
no fluid and hence no salt in the tank.

29. Let V (t) denote the volume of fluid in the container at time t. Initially,
there are 10 L. For each minute that passes there is a net gain of 4−2 = 2
L of fluid. So V (t) = 10 + 2t. The container overflows when V (t) =
10 + 2t = 30 or t = 10 minutes.

input rate: input rate = 4
L

min
× 20

g

L
= 80

g

min
.

output rate: output rate = 2
L

min
× y(t)

10 + 2t

g

L
=

2y(t)

10 + 2t

g

min
.

Since y′ = input rate−output rate, it follows that y(t) satisfies the initial
value problem

y′ = 80− 2y

10 + 2t
, y(0) = 0.
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Simplifying and putting in standard form gives the equation

y′ +
1

5 + t
y = 80.

The coefficient function is p(t) = 1
5+t , P (t) =

∫

p(t) dt = ln(5+t), and the
integrating factor is µ(t) = 5+ t. Multiplying the standard form equation
by the integrating factor gives ((5 + t)y)′ = 80(5 + t). Integrating and
simplifying gives y = 40(5+t)+c(5+t)−1, where c is a constant. The initial
condition y(0) = 0 implies c = −1000 so y = 40(5 + t) − 1000(5 + t)−1.
At the time the container overflows t = 10 we have y(10) = 600− 1000

15 ≈
533.33 g of salt.

31. input rate: input rate = rc

output rate: output rate = rP (t)
V

Let P0 denote the amount of pollutant at time t = 0. Since P ′ =
input rate − output rate it follows that P (t) is a solution of the initial
value problem

P ′ = rc− rP (t)

V
, P (0) = P0.

Rewriting this equation in standard form gives the differential equation
P ′ + r

V P = rc. The coefficient function is p(t) = r/V and the integrating

factor is µ(t) = ert/V . Thus (e
rt
V P )′ = rce

rt
V . Integrating and simplifying

gives P (t) = cV +ke
−rt
V , where k is the constant of integration. The initial

condition P (0) = P0 implies c = P0 − cV so P (t) = cV + (P0 − cV )e
−rt
V .

(a) limt→∞ P (t) = cV.

(b) When the river is cleaned up at t = 0 we assume the input con-
centration is c = 0. The amount of pollutant is therefore given by
P (t) = P0e

−rt
V . This will reduce by 1/2 when P (t) = 1

2P0. We solve

the equation 1
2P0 = P0e

−rt
V for t and get t1/2 = V ln 2

r . Similarly, the

pollutant will reduce by 1/10 when t1/10 = V ln 10
r .

(c) Letting V and r be given as stated for each lake gives:

Lake Erie: t1/2 = 1.82 years, t1/10 = 6.05 years.

Lake Ontario: t1/2 = 5.43 years, t1/10 = 18.06 years

33. Let y1(t) and y2(t) denote the amount of salt in Tank 1 and Tank 2,
respectively, at time t. The volume of fluid at time t in Tank 1 is V1(t) =
10 + 2t and Tank 2 is V2(t) = 5 + t.

input rate for Tank 1: input rate = 4
L

min
× 10

g

L
= 40

g

min
.
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output rate for Tank 1: output rate = 2
L

min
× y1(t)

10 + 2t

g

L
=

2y(t)

10 + 2t

g

min
. The initial value problem for Tank 1 is thus

y′1 = 40− 2

10 + 2t
y1, y1(0) = 0.

Simplifying this equation and putting it in standard form gives

y′1 +
1

5 + t
y1 = 40.

The integrating factor is µ(t) = 5 + t. Thus ((5 + t)y1)
′ = 40(5 + t).

Integrating and simplifying gives y1(t) = 20(5+ t)+ c/(5+ t). The initial
condition y(0) = 0 implies c = −500 so y1 = 20(5 + t)− 500/(5 + t).

input rate for Tank 2: input rate = 2
L

min
× y1(t)

10 + 2t

g

L
= 20 −

500

(5 + t)2
g

min
.

output rate for Tank 2: output rate = 1
L

min
×y2(t)

5 + t

g

L
=

y2(t)

5 + t

g

min
.

The initial value problem for Tank 2 is thus

y′2 = 20− 500/(5 + t)2 − 1

(5 + t)
y2, y2(0) = 0.

When this equation is put in standard form we get

y′2 +
1

(5 + t)
y2 = 20− 500

(5 + t)2
.

The integrating factor is µ(t) = 5 + t. Thus

((5 + t)y2)
′ = 20(5 + t)− 500

5 + t
.

Integrating and simplifying gives

y2(t) = 10(5 + t)− 500 ln(5 + t)

5 + t
+

c

5 + t
.

The initial condition y2(0) = 0 implies c = 500 ln 5− 250 so

y2(t) = 10(5 + t)− 500 ln(5 + t)

5 + t
+

500 ln 5− 250

5 + t
.
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Section 1.5

1. In standard form we get y′ =
y2 + yt+ t2

t2
which is homogeneous since

the degrees of the numerator and denominator are each two. Let y = tv.
Then v + tv′ = v2 + v + 1 and so tv′ = v2 + 1. Separating variables gives
dv

v2 + 1
=

dt

t
. Integrating gives tan−1 v = ln |t|+ c. So v = tan(ln |t|+ c).

Substituting v = y/t gives y = t tan(ln |t| + c). The initial condition
implies 1 = y(1) = 1 · tan c = tan c and hence c = π/4. Therefore y(t) =
t tan(ln |t|+ π/4).

3. Since the numerator and denominator are homogeneous of degree 2 the
quotient is homogeneous. Let y = tv. Then v + tv′ = v2 − 4v + 6.
So tv′ = v2 − 5v + 6 = (v − 2)(v − 3). There are two equilibrium
solutions v = 2, 3. Separating the variables and using partial frac-

tions gives

(

1

v − 3
− 1

v − 2

)

dv =
dt

t
. Integrating and simplifying gives

ln

∣

∣

∣

∣

v − 3

v − 2

∣

∣

∣

∣

= ln |t| + c. Solving for v gives v =
3− 2kt

1− kt
, for k 6= 0, and so

y =
3t− 2kt2

1− kt
, for k 6= 0. When k = 0 we get v = 3 or y = 3t, which

is the same as the equilibrium solution v = 3. The equilibrium solution

v = 2 gives y = 2t. Thus we can write the solutions as y =
3t− 2kt2

1− kt
,

k ∈ R and y = 2t. The initial condition y(2) = 4 is satisfied for the linear

equation y = 2t but has no solution for the family y =
3t− 2kt2

1− kt
. Thus

y = 2t is the only solution.

5. Since the numerator and denominator are homogeneous of degree 2 the

quotient is homogeneous. Let y = tv. Then v + tv′ =
3v2 − 1

2v
. Subtract

v from both sides to get tv′ =
v2 − 1

2v
. The equilibrium solutions are

v = ±1. Separating variables gives
2v dv

v2 − 1
=

dt

t
and integrating gives

ln
∣

∣v2 − 1
∣

∣ = ln |t|+c. Exponentiating gives v2−1 = kt and by simplifying

we get v = ±
√
1 + kt. Now v = y/t so y = ±t

√
1 + kt. The equilibrium

solutions v = ±1 become y = ±t. These occur when k = 0, so are already
included in the general formula.

7. In standard form we get y′ =
y +

√

t2 − y2

t
. Since

√

(αt)2 − (αy)2 =
√

α2(t2 − y2) = α
√

t2 − y2 for α > 0 it is easy to see that y′ =

y +
√

t2 − y2

t
is homogeneous. Let y = tv. Then v + tv′ = v +

√
1− v2.
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Simplifying gives tv′ =
√
1− v2. Clearly v = ±1 are equilibrium solution.

Separating variables gives
dv√
1− v2

=
dt

t
. Integrating gives sin−1 v =

ln |t| + c and so v = sin(ln |t| + c). Now substitute v = y/t to get
y = t sin(ln |t| + c). The equilibrium solutions imply y = ±t are also
solutions.

9. Note that although y = 0 is part of the general solution it does not
satisfy the initial value. Divide both sides by y2 to get y−2y′ − y−1 = t.
Let z = y−1. Then z′ = −y−2y′. Substituting gives −z′ − z = t or
z′+z = −t. An integrating factor is et. So (etz) = −tet. Integrating both
sides gives etz = −tet+et+c, where we have used integration by parts to
compute

∫

−tet dt. Solving for z gives z = −t+1+ ce−t. Now substitute

z = y−1 and solve for y to get y =
1

−t+ 1 + ce−t
. The initial condition

implies 1 =
1

1 + c
and so c = 0. The solution is thus y =

1

1− t
.

11. Note that y = 0 is a solution. First divide both sides by y3 to get

y−3y′ + ty−2 = t. Let z = y−2. Then z′ = −2y−3y′, so
z′

−2
= y−3y′.

Substituting gives
z′

−2
+ tz = t, which in standard form is z′−2tz = −2t.

An integrating factor is e
∫
−2t dt = e−t2 , so that (e−t2z)′ = −2te−t2.

Integrating both sides gives e−t2z = e−t2 + c, where the integral of the
right hand side is done by the substitution u = −t2. Solving for z gives

z = 1 + cet
2

. Since z = y−2 we find y = ± 1√
1 + cet2

.

13. Note that y = 0 is a solution. Divide by y2 and (1 − t2) to get y−2y′ −
t

1− t2
y−1 =

5t

1− t2
. Let z = y−1. Then z′ = −y−2y′ and substituting

gives −z′ − t

1− t2
z =

5t

(1− t2)
. In standard form we get z′ +

t

1− t2
z =

−5t

1− t2
. Multiplying by the integrating factor

µ(t) = e
∫

t

1−t2
dt

= e−
1
2 ln(1−t2) = (1− t2)−1/2

gives (z(1− t2)−1/2)′ = −5t(1− t2)−3/2. Integrating gives z(1− t2)−1/2 =
−5(1− t2)−1/2 + c and hence z = −5 + c

√
1− t2. Since z = y−1 we have

y =
1

−5 + c
√
1− t2

.

15. If we divide by y we get y′+ty = ty−1 which is a Bernoulli equation with
n = −1. Note that since n < 0, y = 0 is not a solution. Dividing by y−1

gets us back to yy′ + ty2 = t. Let z = y2. Then z′ = 2yy′ so
z′

2
+ tz = t
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and in standard form we get z′ + 2tz = 2t. An integrating factor is et
2

so (et
2

z)′ = 2tet
2

. Integration gives et
2

z = et
2

+ c so z = 1 + ce−t2 .
Since z = y2 we get y = ±

√
1 + ce−t2 . The initial condition implies

−2 = y(0) = −
√
1 + c so c = 3. Therefore y = −

√
1 + 3e−t2 .

17. Note that y = 0 is a solution. First divide both sides by y3 to get

y−3y′ + y−2 = t. Let z = y−2. Then z′ = −2y−3y′. So
z′

−2
+ z = t.

In standard form we get z′−2z = −2t. An integrating factor is e
∫
−2 dt =

e−2t and hence (e−2tz)′ = −2te−2t. Integration by parts gives e−2tz =

(t +
1

2
)e−2t + c and hence z = t +

1

2
+ ce2t. Since z = y−2 we get

y = ± 1
√

t+ 1
2 + ce2t

.

19. Let z = 2t−2y+1. Then z′ = 2−2y′ and so y′ =
2− z′

2
. Substituting we

get
2− z′

2
= z−1 and in standard form we get z′ = 2− 2z−1, a separable

differential equation. Clearly, z = 1 is an equilibrium solution. Assume
for now that z 6= 1. Then separating variables and simplifying using

1/(1− z−1) = z
z−1 = 1 + 1

z−1 gives
(

1 + 1
z−1

)

dz = 2 dt. Integrating we

get z+ ln |z − 1| = 2t+ c. Now substitute z = 2t− 2y+1 and simplify to
get −2y + ln |2t− 2y| = c, c ∈ R. (We absorb the constant 1 in c.) The
equilibrium solution z = 1 becomes y = t.

21. Let z = t+ y. Then z′ = 1+ y′ and substituting we get z′ − 1 = z−2. In

standard form we get z′ =
1 + z2

z2
. Separating variables and simplifying

we get

(

1− 1

1 + z2

)

dz = dt. Integrating we get z − tan−1 z = t + c.

Now let z = t+ y and simplify to get y − tan−1(t+ y) = c, c ∈ R.

23. This is the same as Exercise 16 where the Bernoulli equation technique
there used the substitution z = y2. Here use the given substitution to
get z′ = 2yy′ + 1. Substituting we get z′ − 1 = z and in standard form
z′ = 1+z. Clearly, z = −1 is an equilibrium solution. Separating variables

gives
dz

1 + z
= dt and integrating gives ln |1 + z| = t + c, c ∈ R. Solving

for z we get z = ket − 1, where k 6= 0. Since z = y2 + t − 1 we get
y2 + t − 1 = ket − 1 and solving for y gives y = ±

√
ket − t. The case

k = 0 gives the equilibrium solutions y = ±√−t.

25. If z = ln y then z′ =
y′

y
. Divide the given differential equation by y.

Then
y′

y
+ln y = t and substitution gives z′+z = t. An integrating factor
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is et so (etz)′ = tet. Integration (by parts) gives etz = (t − 1)et + c and

so z = t− 1 + ce−t. Finally, solving for y we get y = et−1+ce−t

, c ∈ R.

Section 1.6

1. This can be written in the form M(t, y)+N(t, y)y′ = 0 where M(t, y) =
y2 + 2t and N(t, y) = 2ty. Since ∂M/∂y = 2y = ∂N/∂t, the equation is
exact, and the general solution is given implicitly by V (t, y) = c where the
function V (t, y) is determined by the solution method for exact equations.
Thus V (t, y) =

∫

(y2 +2t) dt+ φ(y) = y2t+ t2 + φ(y). The function φ(y)
satisfies

∂V

∂y
=

∂

∂y
(y2t+ t2) +

dφ

dy
= 2ty +

dφ

dy
= N(t, y) = 2ty,

so that dφ/dy = 0. Thus, V (t, y) = y2t + t2 and the solutions to the
differential equation are given implicitly by t2 + ty2 = c.

3. In this equation M = 2t2 − y and N = t+ y2. Since ∂M/∂y = −1, while
∂N/∂t = 1, the equation is not exact.

5. In this equation M = 3y − 5t and N = 2y − t. Since ∂M/∂y = 3, while
∂N/∂t = −1, the equation is not exact.

7. This can be written in the form M(t, y)+N(t, y)y′ = 0 where M(t, y) =
2ty+2t3 and N(t, y) = t2−y. Since ∂M/∂y = 2t = ∂N/∂t, the equation is
exact, and the general solution is given implicitly by V (t, y) = c where the
function V (t, y) is determined by the solution method for exact equations.
Thus V (t, y) =

∫

(2ty + 2t3) dt+ φ(y) = t2y + t4/2 + φ(y). The function
φ(y) satisfies

∂V

∂y
=

∂

∂y
(t2y + t4/2) +

dφ

dy
= t2 +

dφ

dy
= N(t, y) = t2 − y,

so that dφ/dy = −y. Hence φ(y) = −y2/2 so that V (t, y) = t2y+ t4/2−
y2/2 and the solutions to the differential equation are given implicitly by
t2y + t4/2− y2/2 = c. Multiplying by 2 and completing the square (and
replacing the constant 2c by c) gives (y − t2)2 − 2t4 = c.

9. This can be written in the form M(t, y)+N(t, y)y′ = 0 where M(t, y) =
−y and N(t, y) = y3 − t. Since ∂M/∂y = −1 = ∂N/∂t, the equation is
exact, and the general solution is given implicitly by V (t, y) = c where the
function V (t, y) is determined by the solution method for exact equations.
Thus V (t, y) =

∫

(−y) dt+φ(y) = −yt+φ(y). The function φ(y) satisfies
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∂V

∂y
=

∂

∂y
(−yt) +

dφ

dy
= −t+

dφ

dy
= N(t, y) = y3 − t,

so that dφ/dy = y3. Hence, φ(y) = y4/4 so that V (t, y) = y4/4− yt and
the solutions to the differential equation are given implicitly by y4/4 −
yt = c.

Section 1.7

1. We first change the variable t to u and write y′(u) = uy(u). Now integrate

both sides from 1 to t to get
∫ t

1
y′(u) du =

∫ t

1
uy(u) du. Now the left side

is
∫ t

1
y′(u) du = y(t)− y(1) = y(t)− 1. Thus y(t) = 1 +

∫ t

1
uy(u) du.

3. Change the variable t to u and write y′(u) =
u− y(u)

u+ y(u)
. Now integrate

both sides from 0 to t to get
∫ t

0
y′(u) du =

∫ t

0

u− y(u)

u+ y(u)
du. The left side

is y(t)− 1 so y(t) = 1 +
∫ t

0

u− y(u)

u+ y(u)
du.

5. The corresponding integral equation is y(t) = 1 +
∫ t

1
uy(u) du. We then

have

y0(t) = 1

y1(t) = 1 +

∫ t

1

u · 1 du = 1 +

(

u2

2

)∣

∣

∣

∣

t

1

= 1 +
t2

2
− 1

2
=

1 + t2

2

y2(t) = 1 +

∫ t

1

u

(

1 + u2

2

)

du = 1 +

(

u2

4
+

u4

8

)∣

∣

∣

∣

t

1

=
5

8
+

t2

4
+

t4

8

y3(t) = 1 +

∫ t

1

(

5u

8
+

u3

4
+

u5

8

)

du = 1 +

(

5u2

16
+

u4

16
+

u6

48

)∣

∣

∣

∣

t

1

=
29

48
+

5t2

16
+

t4

16
+

t6

48
.

7. The corresponding integral equation is y(t) =
∫ t

0 (u+ y2(u)) du. We then
have
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y0(t) = 0

y1(t) =

∫ t

0

(u + 0) du =
t2

2

y2(t) =

∫ t

0

(

u+

(

u2

2

)2
)

du =

∫ t

0

(

u+
u4

4

)

du =
t2

2
+

t5

20

y3(t) =

∫ t

0

(

u+

(

u2

2
+

u5

20

)2
)

du =

∫ t

0

(

u+
u4

4
+

u7

20
+

u10

400

)

du

=
t2

2
+

t5

20
+

t8

160
+

t11

4400
.

9. The corresponding integral equation is

y(t) =

∫ t

0

(1 + (u − y(u))2) du.

We then have

y0(t) = 0

y1(t) =

∫ t

0

(

1 + (u− 0)2
)

du =

(

u+
u3

3

)∣

∣

∣

∣

t

0

= t+
t3

3

y2(t) =

∫ t

0

(

1 +

(

u−
(

u+
u3

3

))2
)

du =

∫ t

0

(

1 +
u6

9

)

du

=

(

u+
u7

63

)∣

∣

∣

∣

t

0

= t+
t7

7 · 32

y3(t) =

∫ t

0

(

1 +
u14

72 · 34
)

du = t+
t15

15 · 72 · 34

y4(t) =

∫ t

0

(

1 +
u30

152 · 74 · 38
)

du = t+
t31

31 · 152 · 74 · 38

y5(t) =

∫ t

0

(

1 +
u62

312 · 154 · 78 · 316

)

du = t+
t63

63 · 312 · 154 · 78 · 316

11. The right hand side is F (t, y) =
√
y. If R is any rectangle about (1, 0)

then there are y-coordinates that are negative. Hence F is not defined on
R and Picards’ theorem does not apply.

13. The right hand side is F (t, y) =
t− y

t+ y
. Then Fy(t, y) =

−2t

(t+ y)2
. Choose

a rectangle R about (0,−1) that contains no points on the line t+ y = 0.
Then both F and Fy are continuous on R. Picard’s theorem applies and
we can conclude there is a unique solution on an interval about 0.
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15. The corresponding integral equation is y(t) = 1 +
∫ t

0
ay(u) du. We thus

have

y0(t) = 1

y1(t) = 1 +

∫ t

0

a du = 1 + at

y2(t) = 1 +

∫ t

0

a(1 + au) du = 1 +

∫ t

0

(a+ a2u) du = 1 + at+
a2t2

2

y3(t) = 1 +

∫ t

0

a

(

1 + au+
a2u2

2

)

du = 1 + at+
a2t2

2
+

a3t3

3!

...

yn(t) = 1 + at+
a2t2

2
+ · · ·+ antn

n!
.

We can write yn(t) =
∑n

k=0

aktk

k!
. We recognize this sum as the first n

terms of the Taylor series expansion for eat. Thus the limiting function
is y(t) = limn→∞ yn(t) = eat. It is straightforward to verify that it is a
solution. If F (t, y) = ay then Fy(t, y) = a. Both F and Fy are continuous
on the whole (t, y)-plane. By Picard’s theorem, Theorem 5, y(t) = eat is
the only solution to the given initial value problem.

17. Let F (t, y) = cos(t + y). Then Fy(t, y) = − sin(t + y). Let y1 and
y2 be arbitrary real numbers. Then by the mean value theorem there
is a number y0 in between y1 and y2 such that |F (t, y1)− F (t, y2)| =
|sin(t+ y0)| |y1 − y2| ≤ |y1 − y2| . It follows that F (t, y) is Lipschitz on
any strip. Theorem 10 implies there is a unique solution on all of R.

19. 1. First assume that t 6= 0. Then ty′ = 2y − t is linear and in
standard form becomes y′ − 2y/t = −1. An integrating factor is
µ(t) = e

∫
(−2/t) dt = t−2 and multiplying both sides by µ gives

t−2y′ − 2t−3y = −t−2. This simplifies to (t−2y)′ = −t−2. Now in-
tegrate to get t−2y = t−1 + c or y(t) = t+ ct2. We observe that this
solution is also valid for t = 0. Graphs are given below for various
values of c.
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t

Graph of y(t) = t+ ct3 for various c

2. Every solution satisfies y(0) = 0. There is no contradiction to Theo-

rem 5 since, in standard form, the equation is y′ =
2

t
y − 1 = F (t, y)

and F (t, y) is not continuous for t = 0.

21. No. Both y1(t) and y2(t) would be solutions to the initial value problem
y′ = F (t, y), y(0) = 0. If F (t, y) and Fy(t, y) are both continuous near
(0, 0), then the initial value problem would have a unique solution by
Theorem 5.

23. For t < 0 we have y′1(t) = 0 and for t > 0 we have y′1(t) = 3t2. For t = 0

we calculate y′1(0) = limh→0
y1(h)− y1(0)

h− 0
= limh→0

y1(h)

h
. To compute

this limit we show the left hand and right hand limits agree. We get

lim
h→0+

y1(h)

h
= lim

h→0+

h3

h
= lim

h→0+
h2 = 0

lim
h→0−

y1(h)

h
= lim

h→0+

0

h
= 0

It follows that y′1(t) =

{

0, for t < 0

3t2 for t ≥ 0
and so

ty′1(t) =

{

0, for t < 0

3t3 for t ≥ 0

On the other hand,

3y1(t) =

{

0, for t < 0

3t3 for t ≥ 0
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It follows that y1 is a solution. It is trivial to see that y2(t) is a solution.

There is no contraction to Theorem 5 since, in standard form y′ =
3

t
y =

F (t, y) has a discontinuous F (t, y) near (0, 0). So Picard’s theorem does
not even apply.

Section 2.1

1. Apply the Laplace transform to both sides of the equation. For the left
hand side we get sY (s)− 2− 4Y (s), while the right hand side is 0. Solve

for Y (s) to get Y (s) =
2

s− 4
. From this we see that y(t) = 2e4t.

3. Apply the Laplace transform to both sides of the equation. For the left
hand side we get sY (s) − 4Y (s), while the right hand side is 1/(s − 4).

Solve for Y (s) to get Y (s) =
1

(s− 4)2
. Therefore, y(t) = te4t.

5. Apply the Laplace transform to both sides of the equation. For the left
hand side we get sY (s)−2+2Y (s), while the right hand side is 3/(s−1).
Solve for Y (s) to get

Y (s) =
2

s+ 2
+

3

(s− 1)(s+ 2)
=

1

s+ 2
+

1

s− 1
.

Thus y(t) = e−2t + et.

7. Apply the Laplace transform to both sides. For the left hand side we get

L{y′′ + 3y′ + 2y} (s) = L{y′′} (s) + 3L{y′} (s) + 2L{y} (s)
= s2Y (s)− sy(0)− y′(0) + 3(sY (s)− y(0)) + 2Y (s)

= (s2 + 3s+ 2)Y (s)− 3s− 3.

Since the Laplace transform of 0 is 0, we now get

(s2 + 3s+ 2)Y (s)− 3s− 3 = 0.

Hence,

Y (s) =
3s+ 3

s2 + 3s+ 2
=

3(s+ 1)

(s+ 1)(s+ 2)
=

3

s+ 2
,

and therefore, y(t) = 3e−2t.

9. Apply the Laplace transform to both sides. For the left hand side we get
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L{y′′ + 25y} (s) = L{y′′} (s) + 25L{y} (s)
= s2Y (s)− sy(0)− y′(0) + 25Y (s)

= (s2 + 25)Y (s)− s+ 1.

We now get
(s2 + 25)Y (s)− s+ 1 = 0.

Hence,

Y (s) =
s− 1

s2 + 25
=

s

s2 + 25
− 1

5

5

s2 + 25
,

and therefore, y(t) = cos 5t− 1
5 sin 5t.

11. Apply the Laplace transform to both sides. For the left hand side we get

L{y′′ + 8y′ + 16y} (s) = L{y′′} (s) + 8L{y′} (s) + 16L{y} (s)
= s2Y (s)− sy(0)− y′(0) + 8(sY (s)− y(0)) + 16Y (s)

= (s2 + 8s+ 16)Y (s)− s− 4.

We now get
(s+ 4)2Y (s)− (s+ 4) = 0.

Hence,

Y (s) =
s+ 4

(s+ 4)2
=

1

s+ 4

and therefore y(t) = e−4t

13. Apply the Laplace transform to both sides. For the left hand side we get

L{y′′ + 4y′ + 4y} (s) = L{y′′} (s) + 4L{y′} (s) + 4L{y} (s)
= s2Y (s)− sy(0)− y′(0) + 4(sY (s)− y(0)) + 4Y (s)

= (s2 + 4s+ 4)Y (s)− 1.

Since L
{

e−2t
}

= 1/(s+ 2) we get the algebraic equation

(s+ 2)2Y (s)− 1 =
1

s+ 2
.

Hence,

Y (s) =
1

(s+ 2)2
+

1

(s+ 2)3
=

1

(s+ 2)2
+

1

2

2

(s+ 2)3

and therefore y(t) = te−2t + 1
2 t

2e−2t
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Section 2.2

1.

L{3t+ 1} (s)

=

∫ ∞

0

(3t+ 1)e−st dt

= 3

∫ ∞

0

te−st dt+

∫ ∞

0

e−st dt

= 3

(

t

−s
e−st

∣

∣

∣

∣

∞

0

+
1

s

∫ ∞

0

e−st dt

)

+
−1

s
e−st

∣

∣

∣

∣

∞

0

= 3

((

1

s

)(−1

s

)

e−st

∣

∣

∣

∣

∞

0

)

+
1

s

=
3

s2
+

1

s
.

3.

L
{

e2t − 3e−t
}

(s)

=

∫ ∞

0

e−st(e2t − 3e−t) dt

=

∫ ∞

0

e−ste2t dt− 3

∫ ∞

0

e−ste−t dt

=

∫ ∞

0

e−(s−2)t dt− 3

∫ ∞

0

e−(s+1)t dt

=
1

s− 2
− 3

s+ 1
.

5. L
{

5e2t
}

= 5L
{

e2t
}

=
5

s− 2

7. L
{

t2 − 5t+ 4
}

= L
{

t2
}

− 5L{t}+ 4L{1} =
2

s3
− 5

s2
+

4

s

9. L
{

e−3t + 7te−4t
}

= L
{

e−3t
}

+ 7L
{

te−4t
}

=
1

s+ 3
+

7

(s+ 4)2

11. L{cos 2t+ sin 2t} = L{cos 2t}+L{sin 2t} =
s

s2 + 22
+

2

s2 + 22
=

s+ 2

s2 + 4

13. L
{

(te−2t)2
}

(s) = L
{

t2e−4t
}

(s) =
2

(s+ 4)3
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15. L
{

(t+ e2t)2
}

(s) = L
{

t2 + 2te2t + e4t
}

(s) = L
{

t2
}

(s)+2L
{

te2t
}

(s)+

L
{

e4t
}

(s) =
2

s3
+

2

(s− 2)2
+

1

s− 4

17. L
{

t4

e4t

}

(s) = L
{

t4e−4t
}

(s) =
4!

(s+ 4)5
=

24

(s+ 4)5

19. L
{

te3t
}

(s) = −
(

L
{

e3t
})′

(s) = −
(

1

s− 3

)′
=

1

(s− 3)2

21. Here we use the transform derivative principle twice to get L
{

t2 sin 2t
}

(s) =

(L{sin 2t})′′ =
(

2

s2 + 4

)′′
=

( −4s

(s2 + 4)2

)′
=

12s2 − 16

(s2 + 4)3

23. L{tf(t)} (s) = −L{f(t)}′ (s) = −
(

ln

(

s2

s2 + 1

))′
=

2s

s2 + 1
− 2

s

25. L{Ei(6t)} (s) = 1

6
L{Ei(t)} (s)|s7→s/6 =

1

6

ln((s/6) + 1)

s/6
=

ln(s+ 6)− ln 6

s

27. We use the identity sin2 θ =
1

2
(1−cos 2θ). L

{

sin2 bt
}

(s) =
1

2
L{1− cos 2bt} (s) =

1

2

(

1

s
− s

s2 + 4b2

)

=
2b2

s(s2 + 4b2)
;

29. We use the identity sin at cos bt =
1

2
(sin(a+ b)t+ sin(a− b)t).

L{sin at cos bt} =
1

2
(L{sin(a+ b)t}+ L{sin(a− b)t})

=
1

2

(

a− b

s2 + (a− b)2
+

a+ b

s2 + (a+ b)2

)

.

31. L{sinh bt} =
1

2

(

L
{

ebt − e−bt
})

=
1

2

(

1

s+ b
− 1

s− b

)

=
b

s2 − b2

33. Let f(t) = sinh bt. Then f ′(t) = b cosh t and f ′′(t) = b2 sinh t. Fur-
ther, f(t)|t=0 = 0 and f ′(t)|t=0 = b. Thus b2L{sinh bt} = L{f ′′(t)} =
s2L{f(t)} − sf(0) − f ′(0) = s2L{f(t)} − b. Solving for L{f(t)} gives

L{sinh bt} =
b

s2 − b2
.

35. Let g(t) =
∫ t

0 f(u) du and note that g′(t) = f(t) and g(0) =
∫ 0

0 f(u) du =
0. Now apply the input derivative formula to g(t), to get

F (s) = L{f(t)} (s) = L{g′(t)} (s) = sL{g(t)} (s)− g(0) = sG(s).
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Solving for G(s) gives G(s) = F (s)/s.

37. Suppose f is of exponential type of order a and g is of exponential type
of order b. Then there are numbers K and L so that |f(t)| ≤ Keat and
|g(t)| ≤ Lebt. Now |f(t)g(t)| ≤ KeatLebt = KLe(a+b)t. If follows that
f + g is of exponential type of order a+ b.

39. Suppose a and K are real and |y(t)| ≤ Keat. Then y(t)e−at is bounded
by K. But

et
2

e−at = et
2−at+ a2

4 e−
a2

4

= e(t−
a
2 )

2

e−
a2

4

= eu
2

e−
a2

4 ,

where u = t− a
2 . As t approaches infinity so does u. Since limu→∞ eu

2

= ∞
it is clear that limt→∞ et

2

e−at = ∞, for all a ∈ R, and hence y(t)e−at is
not bounded. It follows that y(t) is not of exponential type.

41. y(t) is of exponential type because it is continuous and bounded. On the

other hand, y′(t) = cos(et
2

)et
2

(2t). Suppose there is a K and a so that
|y′(t)| ≤ Keat for all t ≥ 0. We need only show that there are some t for

which this inequality does not hold. Since cos et
2

oscillates between −1
and 1 let’s focus on those t for which cos et

2

= 1. This happens when et
2

is a multiple of 2π, i.e. et
2

= 2πn for some n. Thus t = tn =
√

ln(2πn).
If the inequality |y′(t)| ≤ Keat is valid for all t ≥ 0 it is valid for tn for

all n > 0. We then get the inequality 2tne
t2n ≤ Keatn . Now divide by

eatn , combine, complete the square, and simplify to get the inequality
2tne

(tn−a/2)2 ≤ Kea
2/4. Choose n so that tn > K and tn > a. Then this

last inequality is not satisfied. It follows that y′(t) is not of exponential

type. Now consider the definite integral
∫M

0
e−sty′(t) dt and compute by

parts: We get

∫ M

0

e−sty′(t) dt = y(t)e−st
∣

∣

M

0
+ s

∫ M

0

e−sty(t) dt.

Since y(t) = sin(et
2

) is bounded and y(0) = 0 it follows that

lim
M→∞

y(t)e−st
∣

∣

M

0
= 0.

Taking limits as M → ∞ in the equation above gives L{y′(t)} =
sL{y(t)}. The righthand side exists because y(t) is bounded.

(a) Show that Γ (1) = 1.
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(b) Show that Γ satisfies the recursion formula Γ (β + 1) = βΓ (β).
(Hint : Integrate by parts.)

(c) Show that Γ (n+ 1) = n! when n is a nonnegative integer.

43. Using polar coordinates x = r cos θ, y = r sin θ. Then dx dy = r dr dθ
and the domain of integration is the first quadrant of the plane, which in
polar coordinates is given by 0 ≤ θ ≤ π/2, 0 ≤ r < ∞. Thus

∫ ∞

0

∫ ∞

0

e−(x2+y2) dx dy =

∫ π/2

0

∫ ∞

0

e−r2r dr dθ

=
π

2

∫ ∞

0

e−r2r dr

=
π

2
−e−r2

2

∣

∣

∣

∣

∣

∞

0

=
π

4
.

Hence, I =
√
π/2.

Section 2.3

1.

The s− 1 -chain

5s+ 10

(s− 1)(s+ 4)

3

s− 1

2

s+ 4

3.

The s− 5 -chain

1

(s+ 2)(s− 5)

1/7

(s− 5)

−1/7

(s+ 2)
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5.

The s− 1 -chain

3s+ 1

(s− 1)(s2 + 1)

2

s− 1

−2s+ 1

s2 + 1

7.

The s+ 3 -chain

s2 + s− 3

(s+ 3)3
3

(s+ 3)3

s− 2

(s+ 3)2
−5

(s+ 3)2

1

s+ 3

1

s+ 3

0

9.

The s+ 1 -chain

s

(s+ 2)2(s+ 1)2
−1

(s+ 1)2

s+ 4

(s+ 2)2(s+ 1)

3

s+ 1

−3s− 8

(s+ 2)2
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11.

The s− 5 -chain

1

(s− 5)5(s− 6)

−1

(s− 5)5

1

(s− 5)4(s− 6)

−1

(s− 5)4

1

(s− 5)3(s− 6)

−1

(s− 5)3

1

(s− 5)2(s− 6)

−1

(s− 5)2

1

(s− 5)(s− 6)

−1

s− 5

1

s− 6

13. Use the technique of distinct linear factors (Example 5).
13/8

s− 5
− 5/8

s+ 3

15.
23

12(s− 5)
+

37

12(s+ 7)

17.
25

8(s− 7)
− 9

8(s+ 1)

19.
1

2(s+ 5)
− 1

2(s− 1)
+

1

s− 2

21.
7

(s+ 4)4

23. Use Theorem 1 to write

s2 + s− 3

(s+ 3)3
=

A1

(s+ 3)3
+

p1(s)

(s+ 3)2

where A1 =
s2 + s− 3

1

∣

∣

∣

∣

s=−3

= 3

and p1(s) =
1

s+ 3
(s2 + s− 3− (3)(1)) =

1

s+ 3
(s2 + s− 6) = s− 2

Continuing gives
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s− 2

(s+ 3)2
=

A2

(s+ 3)2
+

p2(s)

s+ 3

where A2 =
s− 2

1

∣

∣

∣

∣

s=−3

= −5

and p2(s) =
1

s+ 3
(s− 2− (−5)(1)) =

1

s+ 3
(s+ 3) = 1

Thus
s2 + s− 3

(s+ 3)3
=

3

(s+ 3)3
− 5

(s+ 3)2
+

1

s+ 3

Alternate Solution: Write s = (s+ 3)− 3 so that

s2 + s− 3

(s+ 3)3
=

((s+ 3)− 3)2 + ((s+ 3)− 3)− 3

(s− 3)3

=
(s+ 3)2 − 5(s+ 3) + 3

(s+ 3)3

=
3

(s+ 3)3
− 5

(s+ 3)2
+

1

s+ 3
.

25.
s2 − 6s+ 7

(s2 − 4s− 5)2
=

s2 − 6s+ 7

(s+ 1)2(s− 5)2
, so use Theorem 1 to compute the

(s+ 1)-chain:

s2 − 6s+ 7

(s+ 1)2(s− 5)2
=

A1

(s+ 1)2
+

p1(s)

(s+ 1)(s− 5)2

where A1 =
s2 − 6s+ 7

(s− 5)2

∣

∣

∣

∣

s=−1

=
7

18

and p1(s) =
1

s+ 1
(s2 − 6s+ 7− (7/18)(s− 5)2)

=
1

s+ 1
(11s2 − 38s− 49)/18 =

1

18
(11s− 49)

Continuing gives

1

18

11s− 49

(s+ 1)(s− 5)2
=

A2

s+ 1
+

p2(s)

(s− 5)2

where A2 =
1

18

11s− 49

(s− 5)2

∣

∣

∣

∣

s=−1

= −5/54

and p2(s) =
1

s+ 1
((11s− 49)/18− (−5/54)(s− 5)2) = (5s− 22)/54



1 Solutions 35

Thus
s2 − 6s+ 7

(s+ 1)2(s− 5)2
=

1/18

(s+ 1)2
− 5/54

s+ 1
+

(5s− 22)/54

(s− 5)2
Now either

continue with Theorem 1 or replace s with s = (s−5)+5 in the numerator

of the last fraction to finish the calculation and get
s2 − 6s+ 7

(s+ 1)2(s− 5)2
=

1

54

(

5

s− 5
+

21

(s+ 1)2
+

3

(s− 5)2
− 5

s+ 1

)

27. Use Theorem 1 to compute the (s+ 2)-chain:

s

(s+ 2)2(s+ 1)2
=

A1

(s+ 2)2
+

p1(s)

(s+ 2)(s+ 1)2

where A1 =
s

(s+ 1)2

∣

∣

∣

∣

s=−2

= −2

and p1(s) =
1

s+ 2
(s− (−2)(s+ 1)2)

=
2s2 + 5s+ 2

s+ 2
=

(2s+ 1)(s+ 1)

s+ 2
= 2s+ 1

Continuing gives

2s+ 1

(s+ 2)(s+ 1)2
=

A2

s+ 2
+

p2(s)

(s+ 1)2

where A2 =
2s+ 1

(s+ 1)2

∣

∣

∣

∣

s=−2

= −3

and p2(s) =
1

s+ 2
(2s+ 1− (−3)(s+ 1)2) = 3s+ 2

Thus
s

(s+ 2)2(s+ 1)2
=

−2

(s+ 2)2
− 3

s+ 2
+

3s+ 2

(s+ 1)2
. Now continue using

Theorem 1 or replace s by (s+1)−1 in the numerator of the last fraction

to get
s

(s+ 2)2(s+ 1)2
=

−2

(s+ 2)2
− 3

s+ 2
− 1

(s+ 1)2
+

3

s+ 1

29. Use Theorem 1 to compute the (s− 3)-chain:
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8s

(s− 1)(s− 2)(s− 3)3
=

A1

(s− 3)3
+

p1(s)

(s− 1)(s− 2)(s− 3)2

where A1 =
8s

(s− 1)(s− 2)

∣

∣

∣

∣

s=3

= 12

and p1(s) =
1

s− 3
(8s− (12)(s− 1)(s− 2))

=
−12s2 + 44s− 24

s− 3
=

(−12s+ 8)(s− 3)

s− 3
= −12s+ 8

For the second step in the (s− 3)-chain:

−12s+ 8

(s− 1)(s− 2)(s− 3)2
=

A2

(s− 3)2
+

p2(s)

(s− 1)(s− 2)(s− 3)2

where A2 =
−12s+ 8

(s− 1)(s− 2)

∣

∣

∣

∣

s=3

= −14

and p2(s) =
1

s− 3
(−12s+ 8− (−14)(s− 1)(s− 2))

=
14s2 − 54s+ 36

s− 3
=

(14s− 12)(s− 3)

s− 3
= 14s− 12

Continuing gives

14s− 12

(s− 1)(s− 2)(s− 3)2
=

A3

s− 3
+

p3(s)

(s− 1)(s− 2)

where A3 =
14s− 12

(s− 1)(s− 2)

∣

∣

∣

∣

s=3

= 15

and p3(s) =
1

s− 3
(14s− 12− (15)(s− 1)(s− 2)) = −15s+ 14

Thus
8s

(s− 1)(s− 3)(s− 3)3
=

12

(s− 3)3
− 14

(s− 3)2
+

15

s− 3
+

−15s+ 14

(s− 1)(s− 2)
.

The last fraction has a denominator with distinct linear factors so we get
8s

(s− 1)(s− 3)(s− 3)3
=

12

(s− 3)3
+

−14

(s− 3)2
+

15

s− 3
+

−16

s− 2
+

1

s− 1

31. Use Theorem 1 to compute the (s− 2)-chain:
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s

(s− 2)2(s− 3)2
=

A1

(s− 2)2
+

p1(s)

(s− 2)(s− 3)2

where A1 =
s

(s− 3)2

∣

∣

∣

∣

s=2

= 2

and p1(s) =
1

s− 2
(s− (2)(s− 3)2)

=
−2s2 + 13s− 18

s− 2
=

(−2s+ 9)(s− 2)

s− 2
= −2s+ 9

Continuing gives

−2s+ 9

(s− 2)(s− 3)2
=

A2

s− 3
+

p2(s)

(s− 3)2

where A2 =
−2s+ 9

(s− 3)2

∣

∣

∣

∣

s=2

= 5

and p2(s) =
1

s− 2
(−2s+ 9− (5)(s− 3)2) = −5s+ 18

Thus
s

(s− 2)2(s− 3)2
=

2

(s− 2)2
+

5

s− 2
+

−5s+ 18

(s− 3)2
. Now continue

using Theorem 1 or replace s by (s− 3) + 3 in the numerator of the last

fraction to get
s

(s− 2)2(s− 3)2
=

2

(s− 2)2
+

5

s− 2
+

3

(s− 3)2
− 5

s− 3

33. Apply the Laplace transform to both sides. For the left hand side we get

L{y′′ + 2y′ + y} = L{y′′}+ 2L{y′}+ L{y}
= s2Y (s)− sy(0)− y′(0) + 2(sY (s)− y(0)) + Y (s)

= (s2 + 2s+ 1)Y (s).

Since L
{

9e2t
}

=
9

s− 2
we get

Y (s) =
9

(s+ 1)2(s− 2)
.

A partial fraction decomposition gives
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The (s+ 1) -chain

9

(s+ 1)2(s− 2)

−3

(s+ 1)2

3

(s+ 1)(s− 2)

−1

s+ 1

1

(s− 2)

It follows that

Y (s) =
−3

(s+ 1)2
− 1

s+ 1
+

1

s− 2

and
y(t) = −3te−t − e−t + e2t.

35. Apply the Laplace transform to both sides. For the left hand side we get

L{y′′ − 4y′ − 5y} = L{y′′} − 4L{y′} − 5L{y}
= s2Y (s)− sy(0)− y′(0)− 4(sY (s)− y(0))− 5Y (s)

= (s2 − 4s− 5)Y (s) + s− 5.

Since L{150t} = 150/s2 we get the algebraic equation

(s2 − 4s− 5)Y (s) + s− 5 =
150

s2
.

Hence,

Y (s) =
−s+ 5

(s+ 1)(s− 5)
+

150

s2(s+ 1)(s− 5)

=
−1

s+ 1
+

150

s2(s+ 1)(s− 5)
.

For the second term we start with the s-chain to get the following partial
fraction decomposition
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The s -chain

150

s2(s+ 1)(s− 5)

−30

s2

30(s− 4)

s(s+ 1)(s− 5)

24

s

−244s+ 124

(s+ 1)(s− 5)

−25

s+ 1

1

s− 5

Thus

Y (s) =
−30

s2
+

24

s
− 26

s+ 1
+

1

s− 5

and Table 2.2 gives y(t) = −30t+ 24− 26e−t + e5t.

37. Apply the Laplace transform to both sides. For the left hand side we get

L{y′′ − 3y′ + 2y} = L{y′′} − 3L{y′}+ 2L{y}
= s2Y (s)− sy(0)− y′(0)− 3(sY (s)− y(0)) + 2Y (s)

= (s2 − 3s+ 2)Y (s)− 2s+ 3.

Since L{4} = 4/s we get the algebraic equation

(s− 1)(s− 2)Y (s)− 2s+ 3 =
4

s
.

Hence,

Y (s) =
2s− 3

(s− 1)(s− 2)
+

4

s(s− 1)(s− 2)
.

Each term has denominator a product of distinct linear terms. It is easy
to see that

2s− 3

(s− 1)(s− 2)
=

1

s− 1
+

1

s− 2

and
4

s(s− 1)(s− 2)
=

2

s
− 4

s− 1
+

2

s− 2
.

Thus

Y (s) =
2

s
+

3

s− 2
− 3

s− 1

and Table 2.2 gives y(t) = 2 + 3e2t − 3et.
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Section 2.4

1. Note that s = i is a root of s2 + 1. Applying Theorem 1 gives

1

(s2 + 1)2(s2 + 2)
=

B1s+ C1

(s2 + 1)2
+

p1(s)

(s2 + 1)(s2 + 2)

where B1i+ C1 =
1

(s2 + 2)

∣

∣

∣

∣

s=i

=
1

i2 + 2
= 1

⇒ B1 = 0 and C1 = 1

and p1(s) =
1

s2 + 1
(1− (1)(s2 + 2))

=
−s2 − 1

s2 + 1
= −1.

We now apply Theorem 1 on the remainder term
−1

(s2 + 1)(s2 + 2)
.

−1

(s2 + 1)(s2 + 2)
=

B2s+ C2

(s2 + 1)
+

p2(s)

(s2 + 2)

where B2i+ C2 =
−1

(s2 + 2)

∣

∣

∣

∣

s=i

= −1

⇒ B2 = 0 and C2 = −1

and p2(s) =
1

s2 + 1
(−1− (−1)(s2 + 2))

=
s2 + 1

s2 + 1
= 1.

Thus the (s2 + 1)-chain is

The s2 + 1 -chain

1

(s2 + 1)2(s2 + 2)

1

(s2 + 1)2

−1

(s2 + 1)(s2 + 2)

−1

(s2 + 1)

1

s2 + 2

3. Note that s =
√
3i is a root of s2 + 3. Applying Theorem 1 gives
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8s+ 8s2

(s2 + 3)3(s2 + 1)
=

B1s+ C1

(s2 + 3)3
+

p1(s)

(s2 + 3)2(s2 + 1)

where B1

√
3i+ C1 =

8s+ 8s2

(s2 + 1)

∣

∣

∣

∣

s=
√
3i

=
8
√
3i+ 8(

√
3i)2

(
√
3i)2 + 1

= −4
√
3i+ 12

⇒ B1 = −4 and C1 = 12

and p1(s) =
1

s2 + 3
(8s+ 8s2 − (−4s+ 12)(s2 + 1))

=
4s3 − 4s2 + 12s− 12

s2 + 3
= 4(s− 1).

Apply Theorem 1 a second time on the remainder term
4s− 4

(s2 + 3)2(s2 + 1)
.

4s− 4

(s2 + 3)2(s2 + 1)
=

B2s+ C2

(s2 + 3)2
+

p2(s)

(s2 + 3)(s2 + 1)

where B2

√
3i+ C2 =

4s− 4

(s2 + 1)

∣

∣

∣

∣

s=
√
3i

= −2
√
3i+ 2

⇒ B2 = −2 and C2 = 2

and p2(s) =
1

s2 + 3
(4s− 4− (−2s+ 2)(s2 + 1))

=
2s3 − 2s2 + 6s− 6

s2 + 3
= 2s− 2.

A third application of Theorem 1 on the remainder term
2s− 2

(s2 + 3)(s2 + 1)
gives

2s− 2

(s2 + 3)(s2 + 1)
=

B3s+ C3

(s2 + 3)
+

p3(s)

(s2 + 1)

where B3

√
3i+ C3 =

2s− 2

(s2 + 1)

∣

∣

∣

∣

s=
√
3i

= −
√
3i+ 1

⇒ B3 = −1 and C3 = 1

and p3(s) =
1

s2 + 3
(2s− 2− (−s+ 1)(s2 + 1))

=
s3 − s2 + 3s− 3

s2 + 3
= s− 1.

Thus the (s2 + 3)-chain is



42 1 Solutions

The s2 + 3 -chain

8s+ 8s2

(s+3)3(s2 + 1)

12− 4s

(s2 + 3)3

4(s− 1)

(s2 + 3)2(s2 + 1)

2− 2s

(s2 + 3)2

2(s− 1)

(s2 + 3)(s2 + 1)

1− s

s2 + 3

s− 1

s2 + 1

5. Note that s2 + 2s + 2 = (s + 1)2 + 1 so s = −1 ± i are the roots of
s2 + 2s + 2. We will use the root s = −1 + i for the partial fraction
algorithm. Applying Theorem 1 gives

1

(s2 + 2s+ 2)2(s2 + 2s+ 3)2
=

B1s+ C1

(s2 + 2s+ 2)2

+
p1(s)

(s2 + 2s+ 2)(s2 + 2s+ 3)2

where B1(−1 + i) + C1 =
1

(s2 + 2s+ 3)2

∣

∣

∣

∣

s=−1+i

=
1

((−1 + i)2 + 2)2
= 1

⇒ B1 = 0 and C1 = 1

and p1(s) =
1− (1)(s2 + 2s+ 3)2

s2 + 2s+ 2

=
−(s2 + 2s+ 4)(s2 + 2s+ 2)

s2 + 2s+ 2

= −(s2 + 2s+ 4).

Now apply Theorem 1 to the remainder term
−(s2 + 2s+ 4)

(s2 + 2s+ 2)(s2 + 2s+ 3)2
.
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−(s2 + 2s+ 4)

(s2 + 2s+ 2)(s2 + 2s+ 3)2
=

B2s+ C2

(s2 + 2s+ 2)
+

p2(s)

(s2 + 2s+ 3)2

where B2(−1 + i) + C2 =
−(s2 + 2s+ 4)

(s2 + 2s+ 3)

∣

∣

∣

∣

s=−1+i

= −2

⇒ B2 = 0 and C2 = −2

and p2(s) =
−(s2 + 2s+ 4)− (−2)(s2 + 2s+ 3)2

s2 + 2s+ 2

=
(2(s+ 1)2 + 5)((s+ 1)2 + 1)

s2 + 2s+ 2

= 2s2 + 4s+ 7.

Thus the (s2 + 2s+ 2)-chain is

The s2 + 2s+ 2 -chain

1

(s2 + 2s+ 2)2(s2 + 2s+ 3)2
1

(s2 + 2s+ 2)2

−(s2 + 2s+ 4)

(s2 + 2s+ 2)(s2 + 2s+ 3)2
−2

s2 + 2s+ 2

2s2 + 4s+ 7

(s2 + 2s+ 3)2

7. Use Theorem 1 of Section 2.3 to compute the (s− 3)-chain:

s

(s2 + 1)(s− 3)
=

A1

s− 3
+

p1(s)

s2 + 1

where A1 =
s

s2 + 1

∣

∣

∣

∣

s=3

=
3

10

and p1(s) =
1

s− 3
(s− (3/10)(s2 + 1)) =

1

10(s− 3)
(−3s2 + 10s− 3)

=
−3s+ 1

10

Since the remainder term
−3s+ 1

10(s2 + 1)
is already a simple partial fraction,

we conclude

s

(s2 + 1)(s− 3)
=

1

10

(

3

s− 3
+

1− 3s

s2 + 1

)

9. We compute the (s2 + 4)-chain:
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9s2

(s2 + 4)2(s2 + 1)
=

B1s+ C1

(s2 + 4)2
+

p1(s)

(s2 + 4)(s2 + 1)

where B1(2i) + C1 =
9s2

s2 + 1

∣

∣

∣

∣

s=2i

= 12

⇒ B1 = 0 and C1 = 12

and p1(s) =
1

s2 + 4
(9s2 − 12(s2 + 1)) =

−3(s2 + 4)

s2 + 4
= −3

Now compute the next term in s2 + 4-chain.

−3

(s2 + 4)(s2 + 1)
=

B2s+ C2

s2 + 4
+

p2(s)

s2 + 1

where B2(2i) + C1 =
−3

s2 + 1

∣

∣

∣

∣

s=2i

= 1

⇒ B2 = 0 and C2 = 1

and p2(s) =
1

s2 + 4
(−3− (s2 + 1))

=
−(s2 + 1)

s2 + 1
= −1.

Since the remainder term
−1

s2 + 1
is a simple partial fraction, we conclude

that the complete partial fraction decomposition is

9s2

(s2 + 4)2(s2 + 1)
=

12

(s2 + 4)2
+

1

s2 + 4
− 1

s+ 1

11. Use Theorem of Section 2.3 1 to compute the (s− 3)-chain:

2

(s2 − 6s+ 10)(s− 3)
=

A1

s− 3
+

p1(s)

(s2 − 6s+ 10)

where A1 =
2

(s2 − 6s+ 10)

∣

∣

∣

∣

s=3

= 2

and p1(s) =
1

s− 3
(2− (2)(s2 − 6s+ 10)) =

−2s2 + 12s− 18

s− 3
= −2s+ 6
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Since the remainder term
−2s+ 6

s2 − 6s+ 10
is a simple partial fraction, we con-

clude that the complete partial fraction decomposition is
2

(s2 − 6s+ 10)(s− 3)
=

2

s− 3
+

6− 2s

(s− 3)2 + 1

13. Note that s2−4s+8 = (s−2)2+2 so s = 2±2i are the roots of s2−4s+8.
We will use the root s = 2+2i to compute the (s2−4s+8)-chain. Applying
Theorem 1 gives

25

(s2 − 4s+ 8)2(s− 1)
=

B1s+ C1

(s2 − 4s+ 8)2

+
p1(s)

(s2 − 4s+ 8)(s− 1)

where B1(2 + 2i) + C1 =
25

s− 1)

∣

∣

∣

∣

s=2+2i

=
25

2i+ 1
= 5− 10i

⇒ B1 = −5 and C1 = 15

and p1(s) =
25− (−5s+ 15)(s− 1)

s2 − 4s+ 8

=
(5)(s2 − 4s+ 8)

s2 − 4s+ 8
= 5.

Now apply Theorem 1 to the remainder term
5

(s2 − 4s+ 8)(s− 1)
.

5

(s2 − 4s+ 8)(s− 1)
=

B2s+ C2

(s2 − 4s+ 8)
+

p2(s)

s− 1

where B2(2 + 2i) + C2 =
5)

s− 1

∣

∣

∣

∣

s=2+2i

= 1− 2i

⇒ B2 = −1 and C2 = 3

and p2(s) =
5− (3− s)(s− 1)

s2 − 4s+ 8

=
(1)(s2 − 4s+ 8)

s2 − 4s+ 8
= 1.
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Thus the partial fraction expansion is
25

(s2 − 4s+ 8)2(s− 1)
=

−5s+ 15

(s2 − 4s+ 8)2
+

−s+ 3

s2 − 4s+ 8
+

1

s− 1

15. Note that s2 + 4s + 5 = (s + 2)2 + 1 so s = −2 ± i are the roots of
s2+4s+5. We will use the root s = −2+ i to compute the (s2 +4s+5)-
chain. Applying Theorem 1 gives

s+ 1

(s2 + 4s+ 5)2(s2 + 4s+ 6)2
=

B1s+ C1

(s2 + 4s+ 5)2

+
p1(s)

(s2 + 4s+ 5)(s2 + 4s+ 6)2

where B1(−2 + i) + C1 =
s+ 1

(s2 + 4s+ 6)2)

∣

∣

∣

∣

s=−2+i

= −1 + i

⇒ B1 = 1 and C1 = 1

and p1(s) =
s+ 1− (s+ 1)(s2 + 4s+ 6)2

s2 + 4s+ 5

=
−(s+ 1)((s2 + 4s+ 6)2 − 1)

s2 + 4s+ 5

=
−(s+ 1)(s2 + 4s+ 7)(s2 + 4s+ 5)

s2 + 4s+ 5

= −(s+ 1)(s2 + 4s+ 7).

Now apply Theorem 1 to the remainder term
−(s+ 1)(s2 + 4s+ 7)

(s2 + 4s+ 5)(s2 + 4s+ 6)2)
.

−(s+ 1)(s2 + 4s+ 7)

(s2 + 4s+ 5)(s2 + 4s+ 6)2
=

B2s+ C2

(s2 + 4s+ 5)
+

p2(s)

(s2 + 4s+ 6)2

where B2(−2 + i) + C2 =
−(s+ 1)(s2 + 4s+ 7)

(s2 + 4s+ 6)2

∣

∣

∣

∣

s=−2+i

= 2− 2i

⇒ B2 = −2 and C2 = −2

and p2(s) =
−(s+ 1)(s2 + 4s+ 7)− (−2s− 2)(s2 + 4s+ 6)2

s2 + 4s+ 5

=
(s+ 1)(2(s2 + 4s+ 6) + 1)(s2 + 4s+ 5)

s2 + 4s+ 5

= (s+ 1)(2(s2 + 4s+ 6) + 1).

The remainder term is
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(s+ 1)(2(s2 + 4s+ 6) + 1)

(s2 + 4s+ 6)2
=

s+ 1

(s2 + 4s+ 6)2
+

2s+ 2

s2 + 4s+ 6

so the partial fraction expansion of the entire rational function is

s+ 1

(s2 + 4s+ 5)2(s2 + 4s+ 6)2
=

s+ 1

(s2 + 4s+ 6)2
+

2s+ 2

s2 + 4s+ 6

+
s+ 1

(s2 + 4s+ 5)2
− 2s+ 2

s2 + 4s+ 5

17. Apply the Laplace transform to both sides. For the left hand side we get

L{y′′ + 4y′ + 4y} = L{y′′}+ 4L{y′}+ 4L{y}
= s2Y (s)− sy(0)− y′(0) + 4(sY (s)− y(0)) + 4Y (s)

= (s2 + 4s+ 4)Y (s)− 1.

Since L{4 cos 2t} = 4s/(s2 + 4) we get the algebraic equation

(s+ 4)2Y (s)− 1 =
4s

s2 + 4
.

Hence,

Y (s) =
1

(s+ 2)2
+

4s

(s2 + 4)(s+ 2)2
.

The (s2 + 4)-chain for the second term is

The (s2 + 4)-chain

4s

(s2 + 4)(s+ 2)2
1

s2 + 4

−1

(s+ 2)2

Thus

Y (s) =
1

s2 + 4

and Table 2.2 gives y(t) = 1
2 sin 2t

19. Apply the Laplace transform to both sides. For the left hand side we get



48 1 Solutions

L{y′′ + 4y} = L{y′′}+ 4L{y}
= s2Y (s)− sy(0)− y′(0) + 4Y (s)

= (s2 + 4)Y (s)− 1.

Since L{sin 3t} = 3/(s2 + 9) we get the algebraic equation

(s2 + 4)Y (s)− 1 =
3

s2 + 9
.

Hence,

Y (s) =
1

s2 + 4
+

3

(s2 + 9)(s2 + 4)
.

Using quadratic partial fraction recursion we obtain the (s2 + 9)-chain

The (s2 + 9)-chain

3

(s2 + 9)(s2 + 4)

−3/5

s2 + 9

3/5

s2 + 4

Thus

Y (s) =
8

5

1

s2 + 4
− 3

5

1

s2 + 9
=

4

5

2

s2 + 4
− 1

5

3

s2 + 9

and Table 2.2 gives y(t) = 4
5 sin 2t− 1

5 sin 3t

Section 2.5

1. L−1 {−5/s} = −5L−1 {1/s} = −5

3. L−1

{

3

s2
− 4

s3

}

= 3L−1
{

1/s2
}

− 2L−1
{

2/s3
}

= 3t− 2t2

5. L−1

{

3s

s2 + 4

}

= 3L−1

{

s

s2 + 22

}

= 3 cos 2t
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7. First, we have s2+6s+9 = (s+3)2. Partial fractions gives
2s− 5

s2 + 6s+ 9
=

−11

(s+ 3)2
+

2

s+ 3
. So L−1

{

2s− 5

(s+ 3)2

}

= −11te−3t + 2e−3t

9.
6

s2 + 2s− 8
=

6

(s− 2)(s+ 4)
=

−1

s+ 4
+

1

s− 2
. So L−1

{

6

s2 + 2s− 8

}

=

e2t − e−4t

11.
2s2 − 5s+ 1

(s− 2)4
=

−1

(s− 2)4
+

3

(s− 2)3
+

2

(s− 2)2
. So L−1

{

2s2 − 5s+ 1

(s− 2)4

}

=

−1

6
t3e2t +

3

2
t2e2t + 2te2t

13.
4s2

(s− 1)2(s+ 1)2
=

1

(s− 1)2
+

1

s− 1
+

1

(s+ 1)2
− 1

s+ 1
. So L−1

{

4s2

(s− 1)2(s+ 1)2

}

=

tet + et + te−t − e−t

15.
8s+ 16

(s2 + 4)(s− 2)2
=

4

(s− 2)2
− 1

s− 2
+

s

s2 + 4
− 2

s2 + 4
. So L−1

{

8s+ 16

(s2 + 4)(s− 2)2

}

=

4te2t − e2t + cos 2t− sin 2t

17.
12

s2(s+ 1)(s− 2)
=

−6

s2
+
3

s
− 4

s+ 1
+

1

s− 2
. So L−1

{

12

s2(s+ 1)(s− 2)

}

=

3− 6t+ e2t − 4e−t

19. First we have s2+2s+5 = (s+1)2+4. So
2s

s2 + 2s+ 5
=

2s

(s+ 1)2 + 4
=

2(s+ 1)− 2

(s+ 1)2 + 4
= 2

s+ 1

(s+ 1)2 + 4
− 2

(s+ 1)2 + 4
. The First Translation prin-

ciple gives L−1

{

2s

s2 + 2s+ 5

}

= 2L−1

{

s+ 1

(s+ 1)2 + 4

}

−L−1

{

2

(s+ 1)2 + 4

}

=

2e−t cos 2t− e−t sin 2t

21.
s− 1

s2 − 8s+ 17
=

s− 4

(s− 4)2 + 1
+3

1

(s− 4)2 + 1
. Thus L−1

{

s− 1

s2 − 8s+ 17

}

=

e4t cos t+ 3e4t sin t

23.
s− 1

s2 − 2s+ 10
=

s− 1

(s− 1)2 + 32
. Thus L−1

{

s− 1

s2 − 2s+ 10

}

= et cos 3t

25. L−1

{

8s

(s2 + 4)2

}

= 8L−1

{

s

(s2 + 22)2

}

=
8

2 · 22 (2t sin 2t) = 2t sin 2t

27. We first complete the square s2 + 4s+ 5 = (s+ 2)2 + 1. By the transla-

tion principle we get L−1

{

2s

(s2 + 4s+ 5)2

}

= 2L−1

{

(s+ 2)− 2

((s+ 2)2 + 1)2

}

=
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2e−2t

(

L−1

{

s

(s2 + 1)2

}

− 2L−1

{

1

(s2 + 1)2

})

= 2e−2t

(

1

2
t sin t− 2(

1

2
(sin t− t cos t)

)

=

2te−2t cos t+ (t− 2)e−2t sin t

29. We first complete the square s2+8s+17 = (s+4)2+1. By the translation

principle we get L−1

{

2s

(s2 + 8s+ 17)2

}

= 2L−1

{

(s+ 4)− 4

((s+ 4)2 + 1)2

}

=

2e−4t

(

L−1

{

s

(s2 + 1)2

}

− 4L−1

{

1

(s2 + 1)2

})

= 2e−4t

(

1

2
t sin t− 4(

1

2
(sin t− t cos t)

)

=

4te−4t cos t+ (t− 4)e−4t sin t

31. We first complete the square s2 − 2s+5 = (s− 1)2 +22. By the transla-

tion principle we get L−1

{

1

(s2 − 2s+ 5)3

}

= L−1

{

1

((s− 1)2 + 22)3

}

=

et
(

L−1

{

1

(s2 + 22)3

})

= et
1

2

(

L−1

{

2

(s2 + 22)3

})

= et
1

2 · 8 · 24
(

(3− (2t)2) sin 2t− 6t cos 2t
)

=
1

256

(

(3− 4t2)et sin 2t− 6tet cos 2t
)

33. We first complete the square s2 − 8s+17 = (s− 4)2 +1. By the transla-

tion principle we get L−1

{

s− 4

(s2 − 8s+ 17)4

}

= L−1

{

s− 4

((s− 4)2 + 1)4

}

=

e4t
(

L−1

{

s

(s2 + 1)4

})

= e4t
1

48

(

(3t− t3) sin t− 3t2 cos t
)

=
1

48

(

(−t3 + 3t)e4t cos t− 3t2e4t cos t
)

35. Apply the Laplace transform to get

s2Y (s)− s+ 1 + Y (s) =
4

s2 + 1
.

Solving for Y (s) we get

Y (s) =
s− 1

s2 + 1
+

4

(s2 + 1)2
.

We use Table 2.5 to get

y(t) = cos t− sin t+ 2(sin t− t cos t) = cos t+ sin t− 2t cos t.

37. Apply the Laplace transform to get
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(s2 − 3)Y (s) = 4

(

s

s2 + 1

)′′

= 4

(

1− s2

(s2 + 1)2

)′

=
8s(s2 − 3)

(s2 + 1)3

It follows that Y (s) =
8s

(s2 + 1)3
. Table 2.5 now gives

y(t) = t sin t− t2 cos t.

39. Compute the partial fraction
1

(s− a)(s− b)
=

1/(a− b)

s− a
+

1/(b− a)

s− b
.

Then

L−1

{

1

(s− a)(s− b)

}

= L−1

{

1/(a− b)

s− a
+

1/(b− a)

s− b

}

=
eat

a− b
+

ebt

b− a
.

41. Apply the inverse Laplace transform to the partial fraction expansion

1

(s− a)(s− b)(s− c)
=

1

(a− b)(a− c)

1

s− a
+

1

(b− a)(b− c)

1

s− b
+

1

(c− a)(c− b)

1

(s− c)
.

43. Apply the inverse Laplace transform to the partial fraction expansion

s2

(s− a)(s− b)(s− c)
=

a2

(a− b)(a− c)

1

s− a
+

b2

(b − a)(b− c)

1

s− b
+

c2

(c− a)(c− b)

1

(s− c)
.

45. This is directly from Table 2.4.

47. This is directly from Table 2.4.

49. Apply the inverse Laplace transform to the partial fraction expansion

s2

(s− a)3
=

((s− a) + a)2

(s− a)3
=

1

s− a
+

2a

(s− a)2
+

a2

(s− a)3
.

Section 2.6

1. The root of q(s) is 4 with multiplicity 1. Thus Bq =
{

e4t
}
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3. q(s) = s2 +5s = s(s+5), hence the roots of q(s) are 0 and −5 each with
multiplicity 1. Thus Bq =

{

1, e−5t
}

5. q(s) = s2 − 6s+9 = (s− 3)2, hence the root of q(s) is 3 with multiplicity
2. Thus Bq =

{

e3t, te3t
}

7. q(s) = s2 − s − 6 = (s − 3)(s + 2), hence the root of q(s) are 3 and −2
each with multiplicity 1. Thus Bq =

{

e3t, e−2t
}

9. q(s) = 6s2− 11s+4 = (3s− 4)(2s− 1) so the roots are 4/3 and 1/2, each
with multiplicity 1. Hence Bq =

{

et/2, e4t/3
}

11. The quadratic formula gives roots
4±

√
12

2
= 2 ±

√
3. Hence Bq =

{

e(2+
√
3)t, e(2−

√
3)t
}

13. q(s) = 4s2 +12s+ 9 = (2s+ 3)2; so the root is −3/2 with multiplicity 2
and hence Bq =

{

e−3t/2, te−3t/2
}

15. q(s) = 4s2 +25 = 4(s2 +(5/2)2). Therefore q(s) has complex roots ± 5
2 i.

Hence Bq = {cos(5t/2), sin(5t/2)}

17. q(s) = s2 − 2s+ 5 = s2 − 2s+ 1+ 4 = (s− 1)2 + 22. Therefore q(s) has
complex roots 1± 2i. Hence Bq = {et cos 2t, et sin 2t}

19. q(s) has root −3 with multiplicity 4. Hence
Bq =

{

e−3t, te−3t, t2e−3t, t3e−3t
}

.

21. q(s) = (s− 1)3 has root 1 with multiplicity 3. Hence
Bq =

{

et, tet, t2et
}

.

23. We complete the square to get q(s) = ((s + 2)2 + 1)2. Thus q(s) has
complex root −2± i with multiplicity 2 It follows that
Bq =

{

e−2t cos t, e−2t sin t, te−2t cos t, te−2t sin t
}

.

25. The complex roots of q(s) are ±i with multiplicity 4. Thus Bq =
{

cos t, sin t, t cos t, t sin t, t2 cos t, t2 sin t, t3 cos t, t3 sin t
}

Section 2.7

1. Yes.

3. Yes;
t

et
= te−t.

5. Yes; t sin(4t− π

4
) = t(

√
2

2
sin 4t−

√
2

2
cos 4t).
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7. No.

9. No; t
1
2 is not a polynomial.

11. No.
1

sin 2t
is not in E .

13. s4 − 1 = (s2 − 1)(s2 + 1) = (s− 1)(s+ 1)(s2 + 1); The roots ate 1, −1,
and ±i each with multiplicity 1. Hence Bq = {et, e−t, cos t, sin t}.

15. The roots are 1 with multiplicity 3 and −7 with multiplicity 2. Hence
Bq =

{

et, tet, t2et, e−7t, te−7t
}

.

17. The roots are −2 with multiplicity 3 and ±2i with multiplicity 2. Hence
Bq =

{

e−2t, te−2t, t2e−2t, cos 2t, sin 2t, t cos 2t, t sin 2t
}

.

19. We must gather the roots together to get the correct multiplicity. Thus
q(s) = (s− 2)2(s+ 3)3. The roots are 2 with multiplicity 2 and −3 with
multiplicity 3. Hence Bq =

{

e2t, te2t, e−3t, te−3t, t2e−3t
}

.

21. By completing the square we may write q(s) = (s+4)2((s+3)2+4)2 The
roots are −4 with multiplicity 2 and −3± 2i with multiplicity 2. Hence
Bq =

{

e−4t, te−4t, e−3t cos 2t, e−3t sin 2t, te−3t cos 2t, te−3t sin 2t
}

.

23. First observe that s2+2s+10 = (s+1)2+32 and hence q(s) = (s−3)3((s+
1)2+32)2. The roots are 3 with multiplicity 3 and −1±3i with multiplicity
2. Thus Bq =

{

e3t, te3t, t2e3t, e−t cos 3t, e−t sin 3t, te−t cos 3t, te−t sin 3t
}

.

25. 2s3 − 5s2 + 4s− 1 = (2s− 1)(s− 1)2; hence Bq =
{

et/2, et, tet
}

27. s4+5s2+6 = (s2+3)(s2+2); hence Bq =
{

cos
√
3t, sin

√
3t, cos

√
2t, sin

√
2t
}

29. r1(s) =
p1(s)

q1(s)
with deg p1(s) < deg q1(s) and r2(s) =

p2(s)

q2(s)
with

deg p2(s) < deg q2(s). Thus, r1(s)r2(s) =
p1(s)p2(s)

q1(s)q2(s)
and

deg(p1(s)p2(s) = deg p1(s)+deg p2(s) < deg q1(s)+deg q2(s) = deg(q1(s)q2(s)).

31. If r(s) ∈ R then r(s) =
p(s)

q(s)
where deg p(s) = m < n = deg q(s). Then

r′(s) =
q(s)p′(s)− q′(s)p(s)

(q(s))2
,

and deg(q(s)p′(s) − q′(s)p(s)) ≤ max(deg(q(s)q′(s)), deg(q′(s)p(s))) =
max(n + (m − 1), (n − 1) +m) = n +m − 1 < 2n = deg(q(s))2. Hence
r′(s) is a proper rational function.
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33. By exercise 32 this is true for n = 1. Now apply induction. If n is given
and we assume the result is true for derivatives of order n − 1, then
r(n−1) ∈ Rqn but not in Rqn−1 . Another application of exercise 32 then

shows that r(n) =
(

r(n−1)
)′ ∈ Rqn+1 but not in Rqn .

35. Observe that et−t0 = e−t0et. So the translate of an exponential function
is a multiple of an exponential function. Also, if f(t) is a polynomial so is
f(t−t0). By the addition rule for cos we have cos b(t−t0) = cos bt cos bt0−
sin bt sin bt0 and similarly for sin. It follows that all these translates remain
in E . By Exercise 34 the result follows.

37. By linearity of integration it is enough to show this result for fn(t) =
tneat(c1 cos bt + c2 sin bt), where c1 and c2 are scalars. Let In(t) =
∫

fn(t) dt. First assume n = 0. Then a standard trick using integration
by parts twice gives

I0(t) : =

∫

eat(c1 cos bt+ c2 sin bt) dt

=
1

a2 + b2
((c1a− c2b) cos bt+ (c1b + c2a) sin bt)e

at.

Clearly, I0 is an exponential polynomial. Observe that I0 is of the same
form as f0. Now assume n > 0. Using integration by parts with u = tn and
dv = (c1 cos bt+ c2 sin bt) dt we have In(t) =

∫

tn(c1 cos bt+ c2 sin bt) dt =
tnI0(t)− n

∫

tn−1I0(t) dt. Since I0 ∈ E so are tnI0 and tn−1I0. By induc-
tion we have

∫

tn−1I0(t) dt ∈ E . It now follows that In ∈ E .

39. It is enough to show this for each f ∈ Bq since differentiation is linear
and Eq = Span Bq. Suppose f(t) = tneat cos bt. Then

f ′(t) = ntn−1eat cos bt− btneat sin bt+ atneat cos bt.

The derivative f ′(t) is a linear combination of the simple exponential
polynomials tn−1eat cos bt, tneat sin bt, and tneat cos bt each of which are
in Bq. Hence f ′(t) ∈ Eq. A similar argument applies to tneat sin bt.

41. Observe that et−t0 = e−t0et. So the translate of an exponential function
is a multiple of an exponential function. Also, if p(t) is a polynomial of
degree n the binomial theorem implies that p(t − t0) is a polynomial of
degree n. By the addition rule for cos we have cos b(t−t0) = cos bt cos bt0−
sin bt sin bt0 and similarly for sin. Thus if f(t) = tneat cos bt ∈ Bq then
f(t − t0) is a linear combination of terms in Bq. Since Eq = Span Bq it
follows that all translates remain in Eq.
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Section 2.8

1.

t ∗ t =

∫ t

0

x(t − x) dx

=

∫ t

0

(tx− x2) dx

=

(

t
x2

2
− x3

3

)∣

∣

∣

∣

x=t

x=0

= t
t2

2
− t3

3
=

t3

6

3.

3 ∗ sin t = sin t ∗ 3 =

∫ t

0

(sinx)(3) dx

= −3 cosx|x=t
x=0

= −3(cos t− cos 0)

= −3 cos t+ 3

5. From the Convolution table we get

sin 2t ∗ e3t =
1

32 + 22
(2e3t − 2 cos 2t− 3 sin 2t)

=
1

13
(2e3t − 2 cos 2t− 3 sin 2t).

7. From the Convolution table we get

t2 ∗ e−6t =
2

(−6)3
(e−6t − (−6− 6t+ (36t2)/2))

=
1

108
(18t2 − 6t− 6 + e−6t).

9. From the Convolution table we get

e2t ∗ e−4t =
e2t − e−4t

2− (−4)

1

6
(e2t − e−4t).
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11.

L
{

eat ∗ sin bt
}

(s) =
1

s− a

b

s2 + b2

=
1

s2 + b2

(

b

s− a
− bs+ ba

s2 + b2

)

=
1

s2 + b2
(

bL
{

eat
}

− (bL{cos bt}+ aL{sin bt})
)

Thus

eat ∗ sin bt = 1

a2 + b2
(beat − b cos bt− a sin bt).

13. First assume a 6= b. Then

L{sinat ∗ sin bt} =
a

s2 + a2
b

s2 + b2

=
1

b2 − a2

(

ab

s2 + a2
− ab

s2 + b2

)

From this it follows that

sin at ∗ sin bt = 1

b2 − a2
(b sinat− a sin bt).

Now assume a = b. Then

L{sin at ∗ sin at} =
a2

(s2 + a2)2

By Table 2.5 in Section 2.5 we get

L{sinat ∗ sinat} =
1

2a
(sin at− at cos at).

15. First assume a 6= b. Then

L{cos at ∗ cos bt} =
s

s2 + a2
s

s2 + b2

=
1

b2 − a2

( −a2

s2 + a2
+

b2

s2 + b2

)

From this it follows that

cos at ∗ cos bt = 1

b2 − a2
(−a sinat+ b sin bt).
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Now assume a = b. Then

L{cos at ∗ cos at} =
s2

(s2 + a2)2

=
1

s2 + a2
− a2

(s2 + a2)2
.

By Table 2.5 we get

L{cos at ∗ cos at} =
1

a
sin at− 1

2a
(sin at−at cosat) =

1

2a
(sin at+at cosat).

17. f(t) = t2 ∗ sin 2t so F (s) =
2

s3
2

s2 + 4
=

4

s3(s2 + 4)
.

19. f(t) = t3 ∗ e−3t so F (s) =
6

s4
1

s+ 3
=

6

s4(s+ 3)

21. f(t) = sin 2t ∗ sin 2t so F (s)
2

s2 + 22
2

s2 + 22
=

4

(s2 + 4)2

23.

L−1

{

1

s2 − 6s+ 5

}

= L−1

{

1

(s− 1)(s− 5)

}

= L−1

{

1

s− 1

}

∗ L−1

{

1

s− 5

}

= et ∗ e5t

=
et − e5t

1− 5

=
1

4
(−et + e5t)

25.

L−1

{

s

(s2 + 1)2

}

= L−1

{

1

s2 + 1

}

∗ L−1

{

s

s2 + 1

}

= sin t ∗ cos t
=

1

2
t sin t

27.
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L−1

{

2

(s− 3)(s2 + 4)

}

= L−1

{

1

s− 3

}

∗ L−1

{

2

s2 + 4

}

= e3t ∗ sin 2t
=

1

13
(2e3t − 2 cos 2t− 3 sin 2t)

29.

L−1

{

1

(s− a)(s− b)

}

= L−1

{

1

s− a

}

∗ L−1

{

1

s− b

}

= eat ∗ ebt

=
eat − ebt

a− b
.

31.

L−1

{

G(s)

s2 + 2

}

= L−1 {G(s)} ∗ L−1

{

s

s2 +
√
2
2

}

= g(t) ∗ cos(
√
2)t

=

∫ t

0

g(x) cos
√
2(t− x) dx

33. We apply the input integral principle twice:

L−1

{

1

s(s2 + 1)

}

=

∫ t

0

sinx dx

= − cosx|t0
= − cos t+ 1

L−1

{

1

s2(s2 + 1)

}

=

∫ t

0

1− cosx dx

= t− sin t dx

35. We apply the input integral principle three times:

L−1

{

1

s(s+ 3)

}

=

∫ t

0

e−3x dx

=
e−3x

−3

∣

∣

∣

∣

t

0

=
1

3
(1− e−3t).
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L−1

{

1

s2(s+ 3)

}

=
1

3

∫ t

0

1− e−3x dx

=
1

3

(

t− 1− e−3t

3

)

=
1

9
(3t− 1 + e−3t).

L−1

{

1

s3(s+ 3)

}

=
1

9

∫ t

0

3x− 1 + e−3x dx

=
1

9

(

3
t2

2
− t− e−3t − 1

3

)

=
1

54
(2 − 6t+ 9t2 − 2e−3t)

37. First, L−1

{

1

(s2 + 9)2

}

=
1

54
(sin 3t− 3t cos 3t). Thus

L−1

{

1

s(s2 + 9)2

}

=
1

54

∫ t

0

(sin 3x− 3x cos 3x) dx

=
1

54

(

−cos 3x

3
−
(

x sin 3x+
cos 3x

3

))∣

∣

∣

∣

t

0

=
1

54

(

−2 cos 3t

3
− t sin 3t+

2

3

)

=
1

162
(−2 cos 3t− 3t sin 3t+ 2).

Section 3.1

1. no, not linear.

3. no, third order.

5. no, not constant coefficient.

7. yes; (D2 − 7D + 10)(y) = 0, q(s) = s2 − 7s+ 10, homogeneous

9. yes; D2(y) = −2 + cos t, q(s) = s2, nonhomogeneous

11. (a) Let = et + 3et + 2et = 6et

(b) Le−t = e−t + 3(−e−t) + 2e−t = 0
(c) L sin t = − sin t+ 3(cos t) + 2 sin t = sin t− 3 cos t
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13. (a) L(−4 sin t) = 4 sin t+−4 sin t = 0
(b) L(3 cos t) = 3(− cos t) + 3 cos t = 0
(c) L1 = 0 + 1 = 1

15. et and e4t are homogeneous solution so yh = c1e
t+c2e

4t are homogeneous
solutions for all scalars c1 and c2. A particular solution is yp = cos 2t.
Thus y(t) = yp(t)+yh(t) = cos 2t+c1e

t+c2e
4t where c1, c2 are arbitrary

constants.

17. From Exercise 15 we have y(t) = cos 2t + c1e
t + c2e

4t. Since y′ =
−2 sin 2t+ c1e

t + 4c2e
4t we have

1 = y(0) = 1 + c1 + c2

−3 = y′(0) = c1 + 4c2,

from which follows that c1 = 1 and c2 = −1. Thus y(t) = cos 2t+et−e4t.

19. L(ert) = a(ert)′′+b(ert)′+cert = ar2ert+brert+cert = (ar2+br+c)ert

21. Let t = a be the point φ1 and φ2 are tangent. Then φ1(a) = φ2(a) and
φ′
1(a) = φ′

2(a). By the existence and uniqueness theorem φ1 = φ2.

Section 3.2

1. Suppose c1t+ c2t
2 = 0. Evaluating at t = 1 and t = 2 gives c1 + c2 = 0

and 2c1 + 4c2 = 0. The simultaneous solution is c1 = c2 = 0. It follows
that

{

t, t2
}

is linearly independent.

3. Since et+2 = ete2 is a multiple of et it follows that
{

et, et+2
}

is linearly
dependent.

5. Since ln t2 = 2 ln t and ln t5 = 5 ln t they are multiples of each other and
hence linearly dependent

7. Suppose c1t+ c2(1/t) = 0 Evaluating at t = 1 and t = 2 gives c1 + c2 = 0
and 2c1 + c2/2 = 0. The simultaneous solution is c1 = c2 = 0. It follows
that {t, 1/t} is linearly independent.

9. Suppose c1 + c2(1/t) + c3(1/t
2) = 0. Evaluating at t = 1, t = 1/2, and

t = 1/3 gives the same system as in the solution to Exercise 8 and hence
c1, c2 and c3 are zero. It follows that

{

1, 1/t, 1/t2
}

on I = (0,∞) is
linearly independent.

11. Let q(s) = s(s − 1)(s + 1). Then Bq = {1, et, e−t} which is linearly
independent.
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13. Let q(s) = (s− 1)5. Then Bq =
{

et, tet, t2et, t3et
}

. Linear independence

follows since
{

t2et, t3et, t4et
}

⊂ Bq.

15.

w(t, t ln t) = det

[

t t ln t
1 ln t+ 1

]

= t ln t+ t− t ln t = t

17.

w(t10, t20) = det

[

t10 t20

10t9 20t19

]

= 20t29 − 10t29 = 10t29

19.

w(er1t, er2t, er3t)

= det





er1t er2t er3t

r1e
r1t r2e

r2t r3e
r3t

r21e
r1t r22e

r2t r23e
r3t





= e(r1+r2+r3)t det





1 1 1
r1 r2 r3
r21 r22 r23





= e(r1+r2+r3)t((r2r
2
3 − r3r

2
2)− (r1r

2
3 − r3r

2
1) + (r1r

2
2 − r2r

2
1))

= e(r1+r2+r3)t(r3 − r1)(r3 − r2)(r2 − r1).

The last line requires a little algebra.

21.

w(1, t, t2, t3) = det









1 t t2 t3

0 1 2t 3t2

0 0 2 6t
0 0 0 6









= 12

23. Let q(s) = (s − 2)2. Then Bq =
{

e2t, te2t
}

is linearly independent. We
can equation coefficients to get

25c1 + 10c2 = 0
25c2 = 25

We thus get c2 = 1 and then c1 = −10/25 = −2/5.

25. If q(s) = s3 then Bq =
{

1, t, t2
}

is linearly independent. Thus we can
equate coefficients to get

a1 = a2
3 = a1

−a2 = −3
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It follows that a1 = 3 and a2 = 3 is the solution.

27. Observe that y′1(t) = 3t2 and y′2(t) =

{

−3t2 if t < 0

3t2 if t ≥ 0.
If t < 0

then w(y1, y2)(t) =

(

t3 −t3

3t2 −3t2

)

= 0. If t ≥ 0 then w(y1, y2)(t) =
(

t3 t3

3t2 3t2

)

= 0. It follows that the Wronskian is zero for all t ∈
(−∞,∞).

Section 3.3

1. The characteristic polynomial is q(s) = s2−s−2 = (s−2)(s+1) so Bq =
{

e2t, e−t
}

and the general solution takes the form y(t) = c1e
2t + c2e

−t,
c1, c2 ∈ R

3. The characteristic polynomial is q(s) = s2 + 10s + 24 = (s + 6)(s + 4)
so Bq =

{

e−6t, e−4t
}

and the general solution takes the form y(t) =
c1e

−6t + c2e
−4t, c1, c2 ∈ R

5. The characteristic polynomial is q(s) = s2 + 8s+ 16 = (s+ 4)2 so Bq =
{

e−4t, te−4t
}

and the general solution takes the form y(t) = c1e
−4t +

c2te
−4t, c1, c2 ∈ R

7. The characteristic polynomial is q(s) = s2 + 2s + 5 = (s + 1)2 + 4 so
Bq = {e−t cos 2t, e−t sin 2t} and the general solution takes the form y(t) =
c1e

−t cos 2t+ c2e
−t sin 2t, c1, c2 ∈ R

9. The characteristic polynomial is q(s) = s2 + 13s + 36 = (s + 9)(s + 4)
so Bq =

{

e−9t, e−4t
}

and the general solution takes the form y(t) =
c1e

−9t + c2e
−4t, c1, c2 ∈ R

11. The characteristic polynomial is q(s) = s2 + 10s + 25 = (s + 5)2 so
Bq =

{

e−5t, te−5t
}

and the general solution takes the form y(t) = c1e
−5t+

c2te
−5t, c1, c2 ∈ R

13. The characteristic polynomial is q(s) = s2 − 1 = (s− 1)(s + 1) so Bq =
{et, e−t} and the general solution takes the form y(t) = c1e

2t + c2e
−t.

The initial conditions imply that c1 + c2 = 0 and c1 − c2 = 1. Solving

gives c1 = 1/2 and c2 = −1/2. Thus y = et−e−t

2

15. The characteristic polynomial is q(s) = s2 − 10s+25 = (s− 5)2 so Bq =
{

e5t, te5t
}

and the general solution takes the form y(t) = c1e
5t + c2te

5t.
The initial conditions imply that c1 = 0 and 5c1 + c2 = 1. Solving gives
c1 = 0 and c2 = 1. Thus y = te5t
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17. Let q(s) = (s − 3)(s + 7) = s2 + 4s − 21. Then Bq =
{

e3t, e−7t
}

.

w(e3t, e−7t) = det

[

e3t e−7t

3e3t −7e−7t

]

= −10e−4t. So K = −10.

19. Let q(s) = (s− 3)2 = s2 − 6s+ 9. Then Bq =
{

e3t, te3t
}

. w(e3t, te3t) =

det

[

e3t te3t

3e3t (1 + 3t)e3t

]

= (1 + 3t)e6t − 3te6t = e6t. So K = 1.

21. Let q(s) = (s− 1)2 + 22 = s2 − 2s+ 5. Then Bq = {et cos 2t, et sin 2t}.

w(et cos 2t, et sin 2t) = det

[

et cos 2t et sin 2t
et(cos 2t− 2 sin 2t) et(sin 2t+ 2 cos 2t)

]

= e2t(sin 2t cos 2t+ 2 cos2 2t)

−e2t(cos 2t sin 2t− 2 sin2 2t)

= 2e2t.

So K = 2.

Section 3.4

1. q(s)v(s) = (s + 1)(s − 2)(s − 3) so Bqv =
{

e−t, e2t, e3t
}

while Bq =
{

e−t, e2t
}

. Since e3t is the only function in the first set but not in the
second yp(t) = a1e

3t.

3. q(s)v(s) = (s− 2)2(s− 3) so Bqv =
{

e2t, te2t, e3t
}

while Bq =
{

e2t, e3t
}

.
Since te2t is the only function in the first set but not in the second
yp(t) = a1te

2t.

5. q(s)v(s) = (s − 5)2(s2 + 25) so Bqv =
{

e5t, te5t, cos 5t, sin 5t
}

while

Bq =
{

e5t, te5t
}

. Since cos 5t and sin 5t are the only functions in the first
set that are not in the second yp(t) = a1 cos 5t+ a2 sin 5t.

7. q(s)v(s) = (s2 + 4)2 so Bqv = {cos 2t, sin 2t, t cos 2t, t sin 2t} while Bq =
{cos 2t, sin 2t}. Since t cos 2t and t sin 2t are the only functions in the first
set that are not in the second yp(t) = a1t cos 2t+ a2t sin 2t.

9. q(s)v(s) = (s2 + 4s + 5)(s − 1)2 so Bqv =
{

et, tet, e−2t cos t, e−2t sin t
}

while Bq = {et, tet}. Since e−2t cos t and e−2t sin t are the only functions
in the first set that are not in the second yp(t) = a1e

−2t cos t+a2e
−2t sin t.

11. The characteristic polynomial is q(s) = s2 − 3s − 10 = (s − 5)(s + 2).
Since L

{

7e−2t
}

= 7/(s + 2), we set v(s) = s + 2. Then q(s)v(s) =

(s − 5)(s + 2)2. Since Bqv =
{

e5t, e−2t, te−2t
}

and Bq =
{

e5t, e−2t
}

we
have yp = a1te

−2t, a test function. Substituting yp into the differential
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equation gives −a1e
−2t = 7e−t. It follows that a1 = −1. The general

solution is y = −te−2t + c1e
−2t + c2e

5t.

13. The characteristic polynomial is q(s) = s2 + 2s + 1 = (s + 1)2. Since
L{e−t} = 1/(s+1), we set v(s) = s+1. Then q(s)v(s) = (s+1)3. Since
Bqv =

{

e−t, te−t, t2e−t
}

and Bq = {e−t, te−t} we have yp = a1t
2e−t, a

test function. Substituting yp into the differential equation gives 2a1e
−t =

e−t. It follows that a1 = 1/2. The general solution is y = 1
2 t

2e−t+c1e
−t+

c2te
−t.

15. The characteristic polynomial is q(s) = s2+4s+5 = (s+2)2+1, an irre-
ducible quadratic. Since L

{

e−3t
}

= 1/(s+ 3), we set v(s) = s+ 3. Then

q(s)v(s) = ((s + 2)2 + 1)(s+ 3). Since Bqv =
{

e−2t cos t, e−2t sin t, e−3t
}

and Bq =
{

e−2t cos t, e−2t sin t
}

we have yp = a1e
−3t, a test function.

Substituting yp into the differential equation gives 2a1e
−3t = e−3t. It

follows that a1 = 1/2. The general solution is y = 1
2e

−3t + c1e
−2t cos t+

c2e
−2t sin t.

17. The characteristic polynomial is q(s) = s2 − 1 = (s − 1)(s + 1). Since
L
{

t2
}

= 2/s3, we set v(s) = s3. Then q(s)v(s) = (s− 1)(s+ 1)s3. Since

Bqv =
{

et, e−t, 1, t, t2
}

and Bq = {et, e−t} we have yp = a1 + a2t+ a3t
2,

a test function. Substituting yp into the differential equation gives 2a3 −
a1−a2t−a3t

2 = t2. Using linear independence we equate the coefficients
to get

2a3 − a1 = 0
−a2 = 0
−a3 = 1

It follows that a3 = −1, a2 = 0, and a1 = −2. The general solution is
y = −t2 − 2 + c1e

t + c2e
−t.

19. The characteristic polynomial is q(s) = s2 − 4s + 4 = (s − 2)2. Since
L
{

e2t
}

= 1/(s− 2), we set v(s) = s− 2. Then q(s)v(s) = (s− 2)3. Since

Bqv =
{

e2t, te2t, t2e2t
}

and Bq =
{

e2t, te2t
}

we have yp = a1t
2e2t, a test

function. Substituting yp into the differential equation gives 2a1e
2t = e2t.

It follows that a1 = 1/2. The general solution is y = 1
2 t

2e2t+c1e
2t+c2te

2t

21. The characteristic polynomial is q(s) = s2 + 6s + 9 = (s + 3)2. Since
L
{

25te2t
}

= 25/(s− 2)2, we set v(s) = (s − 2)2. Then q(s)v(s) = (s +

3)2(s − 2)2. Since Bqv =
{

e−3t, te−3t, e2t, te2t
}

and Bq =
{

e−3t, te−3t
}

we have yp = a1e
2t + a2te

2t, a test function. Substituting yp into the
differential equation gives (25a1 + 10a2)e

2t + 25a2te
2t = 25te2t. Linear

independence implies 25a1+10a2 = 0 and 25a2 = 25. We get a2 = 1 and
a1 = −2/5 The general solution is y = te2t − 2

5e
2t + c1e

−3t + c2te
−3t

23. The characteristic polynomial is q(s) = s2 + 6s + 13 = (s + 3)2 + 4,
an irreducible quadratic. Since L

{

e−3t cos 2t
}

= (s + 3)/((s + 3)2 +
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4), we set v(s) = (s + 3)2 + 4. Then q(s)v(s) = ((s + 3)2 + 4)2.
Since Bqv =

{

e−3t cos 2t, e−3t sin 2t, te−3t cos 2t, te−3t sin 2t
}

and Bq =
{

e−3t cos 2t, e−3t sin 2t
}

we have yp = a1te
−3t cos 2t + a2te

−3t sin 2t, a
test function. Substituting yp into the differential equation gives (after a
long calculation) −4a1e

−3t sin 2t+ 4a2e
−3t cos 2t = e−3t cos 2t. It follows

that −4a1 = 0 and 4a2 = 1. Thus a1 = 0 and a2 = 1/4. The general
solution is y = 1

4 te
−3t sin(2t) + c1e

−3t cos(2t) + c2e
−3t sin(2t).

25. The characteristic polynomial is q(s) = s2 − 5s − 6 = (s − 6)(s + 1).
Since L

{

e3t
}

= 1/(s − 3), we set v(s) = s − 3. Then q(s)v(s) = (s −
6)(s+ 1)(s− 3). Since Bqv =

{

e6t, e−t, e3t
}

and Bq =
{

e6t, e−t
}

we have
yp = a1e

3t, a test function. Substituting yp into the differential equation
gives −12a1e

3t = e3t. It follows that a1 = −1/12. The general solution is
y = −1

12 e
3t + c1e

6t + c2e
−t. Since y′ = −1

4 e3t + 6c1e
6t − c2e

−t the initial
condition imply

−1
12 + c1 + c2 = 2
−1
4 + 6c1 − c2 = 1

It is easy to calculate that c1 = 10/21 and c2 = 135/84. Thus y =
−1
12 e

3t + 10
21e

6t + 135
84 e

−t.

27. The characteristic polynomial is q(s) = s2 + 1. Since L
{

10e2t
}

=
10/(s−2), we set v(s) = s−2. Then q(s)v(s) = (s2+1)(s−2). Since Bqv =
{

cos t, sin t, e2t
}

and Bq = {cos t, sin t} we have yp = a1e
2t, a test func-

tion. Substituting yp into the differential equation gives 5a1e
2t = 10e2t

and hence a1 = 2. The general solution is y = 2e2t + c1 cos t + c2 sin t.
Since y′ = 4e2t − c1 sin t+ c2 cos t the initial conditions imply

2 + c1 = 0
4 + c2 = 0

and so c1 = −2 and c2 = −4. Thus y = 2e2t − 2 cos t− 4 sin t.

Section 3.5

1. The characteristic polynomial is q(s) = s2 − 4 = (s − 2)(s + 2) and
L
{

e−6t
}

= 1/(s+ 6). Thus

L{y} =
1

(s− 2)(s+ 2)(s+ 6)
=

1
32

s+ 6
+

p(s)

(s− 2)(s+ 2)
.

A particular solution is yp = 1
32e

−6t and the general solution is y =
1
32e

−6t + c1e
2t + c2e

−2t
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3. The characteristic polynomial is q(s) = s2 + 5s+ 6 = (s+ 2)(s+ 3) and
L
{

e−2t
}

= 1/(s+ 2). Thus

L{y} =
1

(s+ 2)2(s+ 3)
=

1

(s+ 2)2
+

p(s)

(s+ 2)(s+ 3)
.

A particular solution is yp = te−2t and the general solution is y = te−2t+
c1e

−2t + c2e
−3t

5. The characteristic polynomial is q(s) = s2 + 2s− 8 = (s− 2)(s+ 4) and
L
{

6e−4t
}

= 6/(s+ 4). Thus

L{y} =
6

(s− 2)(s+ 4)2
=

−1

(s+ 4)2
+

p(s)

(s− 2)(s+ 4)
.

A particular solution is yp = −te−4t and the general solution is y =
−te−4t + c1e

2t + c2e
−4t

7. The characteristic polynomial is q(s) = s2 + 6s + 9 = (s + 3)2 and
L
{

25e2t
}

= 25/((s− 2)2). Thus

L{y} =
25

(s− 2)2(s+ 3)2
=

1

(s− 2)2
− 2

5

1

s− 2
+

p(s)

(s+ 3)2
.

A particular solution is yp = te2t − 2
5e

2t and the general solution is
y = te2t − 2

5e
2t + c1e

−3t + c2te
−3t

9. The characteristic polynomial is q(s) = s2 − 8s+ 25 = (s − 4)2 + 9 and
L
{

36te4t sin 3t
}

= 216(s− 4)/((s− 4)2 + 9)2. Thus

L{y} =
216(s− 4)

((s− 4)2 + 9)3
.

This is a partial fraction. Table 2.5 gives y = −3t2e4t cos 3t + te4t sin 3t.
A particular solution is yp = −3t2e4t cos 3t + te4t sin 3t and the general
solution is y = −3t2e4t cos 3t+ te4t sin 3t+ c1e

4t cos 3t+ c2e
4t sin 3t

11. The characteristic polynomial is q(s) = s2 + 2s + 1 = (s + 1)2 and
L{cos t} = s/(s2 + 1). Thus

L{y} =
s

(s+ 1)2(s2 + 1)
=

1

2

1

s2 + 1
+

p(s)

(s+ 1)2
.

A particular solution is yp = 1
2 sin t and the general solution is y =

1
2 sin t+ c1e

−t + c2te
−t
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Section 3.6

1. The force is 16 lbs. A length of 6 inches is 1/2 ft. The spring constant is
k = 16/(1/2) = 32 lbs/ft.

3. The force exerted by the mass is 40 ·9.8 = 392 N. Thus k = 392/.8 = 490
N/m.

5. The force is 4 lbs and the velocity is 1/2 ft per second. So µ =
Force/velocity = 4

1/2 = 8 lbs s/ft.

7. Let x be the force. Then 100 = x/4 so x = 400 lbs.

9. The mass is m = 6. The spring constant is given by k = 2/.1 = 20. The
damping constant is µ = 0. Since no external force is mentioned we may
assume it is zero. The initial conditions are y(0) = .1 m and y′(0) = 0.
The following equation

6y′′ + 20y = 0, y(0) = .1, y′(0) = 0

represents the model for the motion of the body. The characteristic poly-

nomial is q(s) = 6s2 + 20 = 6(s2 +
√

10/3
2
). Thus y = c1 cos

√

10/3 t+

c2 sin
√

10/3 t. The initial conditions imply c1 = 1/10 and c2 = 0. Thus

y =
1

10
cos
√

10/3 t.

The motion is undamped free or simple harmonic motion. Since y is
written in the form y = A cosωt + φ we can read off the amplitude,
frequency, and phase shift; they are A = 1/10, β =

√

10/3, and φ = 0.

11. The mass is m = 16/32 = 1/2 slugs. The spring constant k is given
by k = 16/(6/12) = 32. The damping constant is given by µ = 4/2 =
2. Since no external force is mentioned we may assume it is zero. The
initial conditions are y(0) = 1 and y′(0) = 1. The following equation
1
2y

′′ +2y′ +32y = 0, y(0) = 1, y′(0) = 1 models the motion of the body.
The characteristic polynomial is q(s) = 1

2s
2+2s+32 = 1

2 (s
2+4s+64) =

1
2 ((s+ 2)2 +

√
60

2
). Thus

y = c1e
−2t cos

√
60t+ c2e

−2t sin
√
60t.

The initial conditions imply c1 = 1 and c2 = 3/
√
60. Thus

y = e−2t cos
√
60t+

3√
60

e−2t sin
√
60t.
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The discriminant of the characteristic equation is D = 22 − 4 · (1/2) ·
32 = −60 < 0 so the motion is underdamped free motion. Let A =
√

1 +
(

3√
60

)2

=
√

23/20. If tanφ = 3/
√
60 =

√
60/20 then φ ≈ .3695.

We can write

y =

√

23

20
e−2t cos(

√
60t+ φ).

13. The mass is m = 2/32 = 1/16 slug. The spring constant k is given by k =
2/(4/12) = 6 and the damping constant is µ = 0. The initial conditions
are y(0) = 0 and y′(0) = 8/12 = 2/3. The equation 1

16y
′′ + 6y = 0 or

equivalently y′′ + 96y = 0 with initial conditions y(0) = 0, y′(0) = 2/3
models the motion of the body. The characteristic polynomial is q(s) =
s2 + 96 so y = c1 cos

√
96t + c2 sin

√
96t. The initial conditions imply

c1 = 0 and c2 =
√
6

36 . Thus y =
√
6

36 sin
√
96t =

√
6

36 cos
(√

96t− π
2

)

. The
motion is undamped free or simple harmonic motion so the mass crosses
equilibrium.

15. By the quadratic formula the roots of q(s) = ms2 + µs+ k are

s =
−µ±

√

µ2 − 4mk

2m
=

−µ

2m
±
√

( µ

2m

)2

− k

m
.

If the discriminant D = µ2 − 4mk is negative then the roots are complex
and the real part is −µ

2m which is negative. If the discriminant is zero then
−µ
2m is a negative double root. If the discriminant is positive then both
roots are real and distinct. It is enough to show that the larger of the

two, r = −µ
2m +

√

(

µ
2m

)2 − k
m is negative. Let p = µ

2m +

√

(

µ
2m

)2 − k
m and

observe that it is positive. Further,

rp =

(

−µ

2m
+

√

( µ

2m

)2

− k

m

)(

µ

2m
+

√

( µ

2m

)2

− k

m

)

= − µ2

4m2
+

µ2

4m2
− k

m

= − k

m
< 0

Since p > 0 it follows the r < 0.

It follows that a solution to my′′ + µy′ + ky = 0 is of the following form

1. y = c1e
r1t + c2e

r2t where r1 and r2 are negative.
2. y = (c1 + c2t)e

rt where r is negative
3. y = c1e

αt cosβt+ c2e
αt sinβt where α is negative
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In each case limt→∞ y(t) = 0.

Section 4.1

1. yes; (D3 − 3D)y = et, order 3, q(s) = s3 − 3s, nonhomogeneous

3. no, because of the presence of y4

5. (a) L(e2t) = 8e2t − 4(2e2t) = 0
(b) L(3−2t = −8e−2t − 4(−2e−2t) = 0
(c) L(2) = 0− 4(0) = 0

7. (a) Le−t = e−t + 5e−t + 4e−t = 10e−t

(b) L cos t = cos t+ 5(− cos t) + 4 cos t = 0
(c) L sin 2t = 16 sin2t+ 5(−4 sin 2t) + 4 sin 2t = 0

9. e2t, e−2t, and 1 are homogeneous solution so yh = c1e
2t + c2e

−2t + c3 are
homogeneous solutions for all scalars c1, c2, and c3. A particular solution
is yp = te2t. Thus y(t) = yp(t) + yh(t) = te2t + c1e

2t + c2e
−2t + c3 where

c1, c2, and c3 are arbitrary constants

11. From Exercise 9 we have y(t) = yp(t)+ yh(t) = te2t+ c1e
2t+ c2e

−2t+ c3.
Since

y = te2t + c1e
2t + c2e

−2t + c3

y′ = (1 + 2t)e2t + 2c1e
2t − 2c2e

−2t

y′′ = (4 + 4t)e2t + 4c1e
2t + 4c2e

−2t

we have

2 = y(0) = c1 + c2 + c3

−1 = y′(0) = 1 + 2c1 − 2c2

16 = y′′(0) = 4 + 4c1 + 4c2,

from which follows that c1 = 1, c2 = 2, and c3 = −1. Thus y(t) =
te2t + e2t + 2e−2t − 1
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Section 4.2

1. The characteristic polynomial is q(s) = s3 − 1 = (s − 1)(s2 + s + 1) =

(s− 1)((s+ 1/2)2 + 3/4). Thus Bq =
{

et, e−
1
2 t cos

√
3
2 t, e−

1
2 t sin

√
3
2 t
}

. It

follows that y(t) = c1e
−t + c2e

− 1
2 t cos

√
3
2 t+ c3e

− 1
2 t sin

√
3
2 t

3. The characteristic polynomial is q(s) = s4 − 1 = (s2 − 1)(s2 + 1) =
(s − 1)(s + 1)(s2 + 1). Thus Bq = {et, e−t, cos t, sin t} . It follows that
y(t) = c1e

t + c2e
−t + c3 sin t+ c4 cos t

5. The characteristic polynomial is q(s) = s4 − 5s2 +4 = (s2 − 1)(s2 − 4) =
(s− 1)(s+1)(s− 2)(s+2). Thus Bq =

{

et, e−t, e2t, e−2t
}

. It follows that
y(t) = c1e

t + c2e
−t + c3e

2t + c4e
−2t

7. The characteristic polynomial is q(s) = (s + 2)(s2 + 25). Thus Bq =
{

e−2t, cos 5t, sin 5t
}

. It follows that y(t) = c1e
−2t + c2 cos 5t+ c3 sin 5t.

9. The characteristic polynomial is q(s) = (s + 3)(s − 1)(s + 3)2 = (s −
1)(s + 3)3. Thus Bq =

{

et, e−3t, te−3t, t2e−3t
}

. It follows that y(t) =
c1e

t + c2e
−3t + c3te

−3t + c4t
2e−3t.

11. The characteristic polynomial is q(s) = s4 − 1 = (s2 − 1)(s2 + 1) =
(s − 1)(s + 1)(s2 + 1). Thus Bq = {et, e−t, cos t, sin t}. It follows that
y(t) = c1e

t + c2e
−t + c3 cos t+ c4 sin t. Since

y(t) = c1e
t + c2e

−t + c3 cos t+ c4 sin t

y′(t) = c1e
t − c2e

−t − c3 sin t+ c4 cos t

y′′(t) = c1e
t + c2e

−t − c3 cos t− c4 sin t

y′′′(t) = c1e
t − c2e

−t + c3 sin t− c4 cos t

we have

−1 = y(0) = c1 + c2 + c3

6 = y′(0) = c1 − c2 + c4

−3 = y′′(0) = c1 + c2 − c3

2 = y′′′(0) = c1 − c2 − c4

from which we get c1 = 1, c2 = −3, c3 = 1, and c4 = 2. Hence y =
et − 3e−t + cos t+ 2 sin t
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Section 4.3

1. Since q(s) = s3 − s = s(s − 1)(s + 1) we have Bq = {1, et, e−t} and
since q(s)v(s) = s(s − 1)(s + 1)2 we have Bqv = {1, et, e−t, te−t}. Thus
Bqv \ Bq = {te−t} and y = cte−t is the test function.

3. q(s) = s(s − 1)(s + 1) we have Bq = {1, et, e−t} and since q(s)v(s) =
s(s−1)(s+1)(s−2) we have Bqv =

{

1, et, e−t, e2t
}

. Thus Bqv\Bq =
{

e2t
}

and y = ce2t is the test function.

5. We have q(s) = s3 − s = s(s − 1)(s + 1) and L{et} = 1
s−1 . Let v(s) =

s − 1. Then q(s)v(s) = s(s − 1)2(s + 1), Bq = {1, et, e−t} and Bqv =
{1, et, tet, e−t} and Bqv \ Bq = {tet}. It follows that y = ctet is the test
function. Since

y = ctet

y′ = c(1 + t)et

y′′ = c(2 + t)et

y′′′ = c(3 + t)et

we have c(3 + t)et − c(1 + t)et = et. Simplifying we get 2cet = et which
implies c = 1/2. It follows that y = 1

2 te
t + c1e

−t + c2e
t + c3

7. We have q(s) = s4−5s2+4 = (s2−1)(s2−4) = (s−1)(s+1)(s−2)(s+2))
and L

{

e2t
}

= 1
s−2 . Let v(s) = s− 2. Then q(s)v(s) = (s− 1)(s+ 1)(s−

2)2(s + 2), Bq =
{

et, e−t, e2t, e−2t
}

and Bqv =
{

et, e−t, e2t, te2t, e−2t
}

.

Thus Bqv \ Bq =
{

te2t
}

. It follows that y = cte2t is the test function and

y = cte2t

y′ = c(1 + 2t)e2t

y′′ = c(4 + 4t)e2t

y′′′ = c(12 + 8t)e2t

y(4) = c(32 + 16t)e2t.

Substituting into the differential equation and simplifying gives 12ce2t =
e2t. We thus get c = 1/12. It follows that y = 1

12 te
2t + c1e

t + c2e
−t +

c3e
2t + c4e

−2t

9. We have q(s) = s3 − s = s(s− 1)(s+ 1) and L{et} = 1
s−1 . Thus Y (s) =

1
s(s+1)(s−1)2 . One iteration of the partial fraction decomposition algorithm
gives
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Incomplete (s− 1)-chain

1

s(s+ 1)(s− 1)2
1/2

(s− 1)2

p(s)

s(s+ 1)(s− 1)

It follows that yp = 1
2L−1

{

1
(s−1)2

}

= 1
2 te

t and the general solution is

y = 1
2 te

t + c1e
−t + c2e

t + c3

11. We have q(s) = s(s2 + 4) and L{t} = 1
s2 . Thus Y (s) = 1

s3(s2+4) . The

partial fraction decomposition algorithm gives

Incomplete s-chain

1

s3(s2 + 4)

1/4

s3

−s/4

s2(s2 + 4)
0

−1/4

s(s2 + 4)

It follows that yp = t2

8 and the general solution is y = t2

8 +c1+c2 cos 2t+
c3 sin 2t.

13. We have q(s) = s3 − s2 + s− 1 = (s− 1)(s2 + 1) and L{4 cos t} = 4s
s2+1 .

Thus Y (s) = 4s
(s−1)(s2+1)2 . The partial fraction decomposition algorithm

gives

Incomplete s2 + 1-chain

4s

(s− 1)(s2 + 1)2
−2s+ 2

(s2 + 1)2

p(s)

(s− 1)(s2 + 1)
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It follows from Table 2.9 that yp = (−t sin t+ sin t− t cos t). But since
sin t is a homogeneous solution we can write the general solution as y =
−t(sin t+ cos t) + c1e

t + c2 cos t+ c2 sin t.

Section 4.4

1. Here L1 = D − 6 and L2 = D. It is easy to see that L = q(D), where
q(s) = s2 − 6s + 8 = (s − 2)(s − 4). Therefore y1 and y2 are linear
combinations of Bq =

{

e2t, e4t
}

. Next we recursively extend the initial
values to derivatives of order 1 to get

y1(0) = 2 y2(0) = −1
y′1(0) = 16 y′2(0) = 4

If y = c1e
2t + c2e

4t then

c1 + c2 = y(0)
2c1 + 4c2 = y′(0)

For y1 we get
c1 + c2 = 2
2c1 + 4c2 = 16

which gives c1 = −4 and c2 = 6. Thus y1(t) = −4e2t + 6e4t. For y2 we
get

c1 + c2 = −1
2c1 + 4c2 = 4

which gives c1 = −4 and c2 = 3. Thus y2(t) = −4e2t + 3e4t.

3. Here L1 = D and L2 = D. It is easy to see that L = q(D), where q(s) =
s2+4. Therefore y1 and y2 are linear combinations of Bq = {cos 2t, sin 2t}.
Next we recursively extend the initial values to derivatives of order 1 to
get

y1(0) = 1 y2(0) = −1
y′1(0) = −2 y′2(0) = 2

If y = c1 cos 2t+ c2 sin 2t then

c1 = y(0)
2c2 = y′(0)

For y1 we get
c1 = 1

2c2 = −2
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which gives c1 = 1 and c2 = −1. Thus y1(t) = cos 2t− sin 2t. For y2 we
get

c1 = −1
2c2 = 2

which gives c1 = −1 and c2 = 1. Thus and y2(t) = − cos 2t+ sin 2t.

5. Here L1 = D+4 and L2 = D2−6D+23. It is easy to see that L = q(D),
where q(s) = (s+4)(s2−6s+23)−90 = (s2−1)(s−2) = (s+1)(s−1)(s−2).
Therefore y1 and y2 are linear combinations of Bq =

{

e−t, et, e2t
}

. Next
we recursively extend the initial values to derivatives of order 2 to get

y1(0) = 0 y2(0) = 2
y′1(0) = 20 y′2(0) = 2
y′′1 (0) = −60 y′′2 (0) = −34.

If y = c1e
−t + c2e

t + c3e
2t then

c1 + c2 + c3 = y(0)
−c1 + c2 + 2c3 = y′(0)
c1 + c2 + 4c3 = y′′(0).

For y1 we get
c1 + c2 + c3 = 0
−c1 + c2 + 2c3 = 20
c1 + c2 + 4c3 = −60.

which gives c1 = −20, c2 = 40, and c3 = −20. Thus y1(t) = −20e−t +
40et − 20e2t. For y2 we get

c1 + c2 + c3 = 2
−c1 + c2 + 2c3 = 2
c1 + c2 + 4c3 = −34.

which gives c1 = −6, c2 = 20, and c3 = −12. Thus and y2(t) = −6e−t +
20et − 12e2t.

7. Here L1 = D2 + 2D + 6 and L2 = D2 − 2D + 6. It is easy to see that
L = q(D), where q(s) = (s2 + 2s+6)(s2 − 2s+ 6)− 45 = s4 + 8s2 − 9 =
(s2 − 1)(s2 + 9) = (s − 1)(s + 1)(s2 + 9). Therefore y1 and y2 are linear
combinations of Bq = {et, e−t, cos 3t, sin 3t}. Next we recursively extend
the initial values to derivatives of order 3 to get

y1(0) = 0 y2(0) = 6
y′1(0) = 0 y′2(0) = 6
y′′1 (0) = 30 y′′2 (0) = −24
y′′′1 (0) = −30 y′′′2 (0) = −84
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If y = c1e
t + c2e

−t + c3 cos 3t+ c4 sin 3t then

c1 + c2 + c3 = y(0)
c1 − c2 + 3c4 = y′(0)
c1 + c2 − 9c3 = y′′(0)
c1 − c2 − 27c4 = y′′′(0)

For y1 we get

c1 + c2 + c3 = 0
c1 − c2 + 3c4 = 0
c1 + c2 − 9c3 = 30
c1 − c2 − 27c4 = −30

which gives c1 = 0, c2 = 3, c3 = −3, and c4 = 1. Thus y1(t) = 3e−t −
3 cos 3t+ sin 3t. For y2 we get

c1 + c2 + c3 = 6
c1 − c2 + 3c4 = 6
c1 + c2 − 9c3 = −24
c1 − c2 − 27c4 = −84

which gives c1 = 0, c2 = 3, c3 = 3 and c4 = 3. Thus and y2(t) =
3e−t + 3 cos 3t+ 3 sin 3t.

9. Here a = 2, b = 1, and c = 2 and the coupled system that describes the
motion is given by

y′′1 + 3y1 = y2

y′′2 + 2y2 = 2y1.

Let L1 = D2 + 3 and L2 = D2 + 2. Then y1 and y2 a solutions to
q(D)y = 0, where q(s) = (s2+3)(s2+2)−2 = s4+5s2+4 = (s2+1)(s2+4).
Thus y1 and y2 a linear combinations of Bq = {cos t, sin t, cos 2t, sin 2t}.
Next we recursively extend the initial values to derivatives of order 3 to
get

y1(0) = 3 y2(0) = 0
y′1(0) = 3 y′2(0) = 0
y′′1 (0) = −9 y′′2 (0) = 6
y′′′1 (0) = −9 y′′′2 (0) = 6

If y = c1 cos t+ c2 sin t+ c3 cos 2t+ c4 sin 2t then

c1 + c3 = y(0)
c2 + 2c4 = y′(0)

−c1 − 4c3 = y′′(0)
−c2 − 8c4 = y′′′(0)
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For y1 we get

c1 + c3 = 3
c2 + 2c4 = 3

−c1 − 4c3 = −9
−c2 − 8c4 = −9

which gives c1 = 1, c2 = 1, c3 = 2, and c4 = 1. Thus y1(t) = cos t+sin t+
2 cos 2t+ sin 2t. For y2 we get

c1 + c3 = 0
c2 + 2c4 = 0

−c1 − 4c3 = 6
−c2 − 8c4 = 6

which gives c1 = 2, c2 = 2, c3 = −2 and c4 = −1. Thus y2(t) = 2 cos t+
2 sin t− 2 cos 2t− sin 2t.

11. 1. We begin by taking the Laplace transform of each equation above to
get

q1(s)Y1(s)− p1(s) = λ1Y2(s)

q2(s)Y2(s)− p2(s) = λ2Y1(s)

which can be rewritten:

q1(s)Y1(s)− λ1Y2(s) = p1(s)

q2(s)Y2(s)− λ2Y1(s) = p2(s).

In matrix form this becomes
(

q1(s) −λ1

−λ2 q2(s)

)(

Y1(s)
Y2(s)

)

=

(

p1(s)
p2(s)

)

2. The inverse of the coefficient matrix is

(

q1(s) −λ1

−λ2 q2(s)

)−1

=
1

q1(s)q2(s)− λ1λ2

(

q2(s) λ1

λ2 q1(s)

)

and therefore
(

Y1(s)
Y2(s)

)

=
1

q1(s)q2(s)− λ1λ2

(

q2(s) λ1

λ2 q1(s)

)(

p1(s)
p2(s)

)

=
1

q1(s)q2(s)− λ1λ2

(

p1(s)q2(s) + λ1p2(s)
p2(s)q1(s) + λ2p1(s)

)

.

13. We first take the Laplace transform of each equation to get
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sY1(s)− 2− Y1 = −2Y2(s)

sY2(s)− (−2)− Y2(s) = 2Y1(s).

We associate the Y1 and Y2. In matrix form we get

(

s− 1 2
−2 s− 1

)(

Y1(s)
Y2(s)

)

=

(

2
−2

)

.

By matrix inversion we get

(

Y1(s)
Y2(s)

)

=

(

s− 1 2
−2 s− 1

)−1(
2

−2

)

=
1

(s− 1)2 + 4

(

s− 1 −2
2 s− 1

)(

2
−2

)

=
1

(s− 1)2 + 4

(

2s+ 2
−2s+ 6

)

=

(

2(s−1)+4
(s−1)2+22

−2(s−1)+4
(s−1)2+22

)

We now get by Laplace inversion

(

y1(t)
y2(t)

)

=

(

2et cos 2t+ 2et sin 2t
−2et cos 2t+ 2et sin 2t

)

.

15. We first take the Laplace transform of each equation to get

sY1(s)− 1 + 2Y1 = 5Y2(s)

s2Y2(s)− 3− 2(sY2(s)) + 5Y2(s) = 2Y1(s).

We associate the Y1 and Y2. In matrix form we get

(

s+ 2 −5
−2 s2 − 2s+ 5

)(

Y1(s)
Y2(s)

)

=

(

1
3

)

.

By matrix inversion we get

(

Y1(s)
Y2(s)

)

=

(

s+ 2 −5
−2 s2 − 2s+ 5

)−1(
1
3

)

=
1

s3 + s

(

s2 − 2s+ 5 5
2 s+ 2

)(

1
3

)

=
1

s(s2 + 1)

(

s2 − 2s+ 20
3s+ 8

)

=

(20
s − 19 s

s2+1 − 2 1
s2+1

8
s − 8 s

s2+1 + 3 1
s2+1

)

We now get by Laplace inversion
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(

y1(t)
y2(t)

)

=

(

20− 19 cos t− 2 sin t
8− 8 cos t+ 3 sin t

)

.

Section 4.5

1. The only characteristic mode is e−5t. Thus the zero-input response is
y(t) = ce−5t. The initial condition a = y(0) = 10 implies c = 10. Thus
y(t) = 10e−5t, The characteristic value is −5, to the left of the imaginary
axis. Hence the system is stable.

3. The characteristic polynomial is q(s) = s2 − 4s+ 3 = (s− 3)(s− 1). The
characteristic modes is

{

et, e3t
}

. Thus y(t) = c1e
t + c2e

3t. The initial
condition a = (2, 4) = (y(0), y′(0)) implies c1 = 1 and c2 = 1. Thus the
zero-input response is y(t) = et+e3t. The characteristic value are 1, 3 and
both lie to the right of the imaginary axis. Hence the system is unstable.

5. The characteristic polynomial is q(s) = s2 + 4s + 5 = (s + 2)2 + 1. The
characteristic modes are

{

e−2t cos t, e−2t sin t
}

. Thus y(t) = c1e
−2t cos t+

c2e
−2t sin t. The initial condition a = (0, 1) = (y(0), y′(0)) implies c1 =

0 and c2 = 1. Thus the zero-input response is y(t) = e−2t sin t. The
characteristic value are −2 + i,−2 − i and both lie to the left of the
imaginary axis. Hence the system is stable.

7. The characteristic polynomial is q(s) = s2 + 6s + 9 = (s + 3)2. The
characteristic modes are

{

e−3t, te−3t
}

. Thus y(t) = c1e
−3t+ c2te

−3t. The
initial condition a = (1, 1) = (y(0), y′(0)) implies c1 = 1 and c2 = 4. Thus
the zero-input response is y(t) = e−3t + 4te−3t. The characteristic value
is −3 with multiplicity 2 lies to the left of the imaginary axis. Hence the
system is stable.

9. The characteristic polynomial is q(s) = s2 − 2s + 2 = (s − 1)2 + 1.
The characteristic modes are {et cos t, et sin t}. Thus y(t) = c1e

t cos t +
c2e

t sin t. The initial condition a = (1, 2) = (y(0), y′(0)) implies c1 = 1
and c2 = 1. Thus the zero-input response is y(t) = et cos t+ et sin t. The
characteristic values are {1 + i, 1− i} and lie to the right of the imaginary
axis. Hence the system is unstable.

11. The characteristic polynomial is q(s) = (s+1)(s2+1). The characteristic
modes are {e−t, cos t, sin t}. Thus y(t) = c1e

−t+c2 cos t+c3 sin t. The ini-
tial condition a = (1,−1, 1) = (y(0), y′(0), y′′(0)) implies c1 = 1, c2 = 0,
and c3 = 0. Thus the zero-input response is y(t) = e−t. The characteristic
value are −1, i, and −i. The system is then marginally stable.
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13. The characteristic mode is e−t so y(t) = ce−t. For the unit impulse we
have y(0) = 1 and this implies c = 1. Thus y(t) = e−t

15. The characteristic polynomial is q(s) = s2− 4 = (s− 2)(s+2) and hence
the characteristic modes are

{

e2t, e−2t
}

. Hence, y(t) = c1e
2t + c2e

−2t.
For the unit impulse we have y(0) = 0 and y′(0) = 1 and this implies
c1 = 1/4 and c2 = −1/4 . Thus y(t) = 1

4e
2t − 1

4e
−2t.

17. The characteristic polynomial is q(s) = s3+s = s(s2+1). The character-
istic modes are {1, cos 2t, sin 2t}. For the unit impulse we have y(0) = 0,
y′(0) = 0, and y′′(0) = 1 and this implies c1 = 1, c2 = −1 and c3 = 0.
Thus y(t) = 1− cos(t).

19. Since f is bounded there is an M such that |f(t)| ≤ M for all t ≥ 0. We
then have

∣

∣tkeαt cosβt ∗ f(t)
∣

∣ =

∣

∣

∣

∣

∫ t

0

xkeλx cosβxf(t− x) dx

∣

∣

∣

∣

≤
∫ t

0

xkeαx |f(t− x)| dx

≤ M

∫ t

0

xkeαx dx

= M(C + p(t)eαt),

where C and p(t) are as in Exercise 18, which also implies that tkeαt cosβt∗
f is bounded. The argument for tkeαt sinβt ∗ f is the same.

Section 5.1

1. No, it is not linear because of the presence of the product y′y.

3. yes, nonhomogeneous, yes

5. yes, nonhomogeneous, no

7. yes, nonhomogeneous, no

9. No, it is not linear because of the presence of sin y.

11. yes, homogeneous, no

13. 1. L(1t ) = t2(2t−3) + t(−t−2)− t−1 = (2− 1− 1)t−1 = 0
2. L(1) = t2(0) + t(0)− 1 = −1
3. L(t) = t2(0) + t(1)− t = 0
4. L(tr) = t2r(r − 1)tr−2 + t(rtr−1)− tr = (r2 − 1)tr
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15. y′p = C(2t− t2)e−t and y′′p = C(t2 − 4t+ 2)e−t. Thus

t2y′′p + ty′p − yp = C(t3 − 4t2 + 2t)e−t + C(−t3 + 3t2 − 2t)e−t + C(−t2)e−t

= C(−2t2)e−t

The equation C(−2t2)e−t = t2e−t implies C = −1
2 .

17. If y = e−t then y′ = −e−t and y′′ = e−t so that Ly = (t − 1)e−t −
t(−e−t)+e−t = 2te−t. Parts (1) follows. If y = et then Ly = (t−1)(et)−
t(et)+(et) = 0. It follows that y = et is a solution to Ly = 0. If y = t then
y′ = 1 and y′′ = 0. Thus Ly = (t−1)(0)−t(1)+t = 0. Part (2) now follows.
By linearity every function of the form y(t) = e−t+c1e

t+c2t is a solution
to Ly = 2te−t, where c1 and c2 are constants. If we want a solution to
L(y) = 2te−t with y(0) = a and y′(0) = b, then we need to solve for c1
and c2: Since y(t) = e−t + c1e

t + c2t we have y′(t) = −e−t + c1e
t + c2.

Hence,

a = y(0) = 1 + c1

b = y′(0) = −1 + c1 + c2.

These equations give c1 = a− 1 and c2 = b− a+ 2. Particular choices of
a and b give the answers for Part (3).

(3)a. y(t) = e−t − et + 2t

(3)b. y(t) = e−t + (0)et + (1)t = e−t + t

(3)c. y(t) = e−t +−et + 3t

(3)d. y(t) = e−t + (a− 1)et + (b − a+ 2)t

19. Write the equation in the standard form:

y′′ +
3

t
y′ − 1

t2
y = t2.

The forcing function is continuous on R while the coefficient functions,
3
t and − 1

t2 , are continuous except at t = 0. Thus the largest intervals of
common continuity are (0, ∞) and (−∞, 0). Since the initial conditions
are given at t0 = −1 it follows from Theorem 6 that the interval (−∞, 0)
is the largest interval with a unique solution.

21. Write the equation in the standard form:

y′′ +
y

sin t
=

cos t

sin t
.
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The intervals of continuity are of the form (kπ, (k + 1)π), k ∈ Z. Since
t0 = π

2 it follows that the maximal interval for a unique solution is (0, π).

23. The common interval of continuity of the coefficient functions is (3, ∞)
and t0 = 10 is in this interval.

25. The initial condition occurs at t = 0 which is precisely where a2(t) = t2

has a zero. Theorem 6 does not apply.

27. The assumptions say that y1(t0) = y2(t0) and y′1(t0) = y′2(t0). Both y1
and y2 therefore satisfies the same initial conditions. By the uniqueness
part of Theorem 6 y1 = y2.

Section 5.2

1. dependent; 2t and 5t are multiples of each other.

3. independent; If c1 ln t + c2t ln t = 0 then evaluating at t = e and t = e2

gives c1 + ec2 = 0 and 2c1 + 2e2c2 = 0. These equations imply that c1
and c2 are both zero so {ln t, t ln t} is linearly independent.

5. independent, If c1 ln 2t+ c2 ln 5t = 0 then evaluating at t = 1 and t = e
gives (ln 2)c1 + (ln 5)c2 = 0 and (1 + ln 2)c1 + (ln 5 + 1)c2 = 0. These
equations imply that c1 and c2 are both zero so {ln t, t ln t} is linearly
independent.

7. f ′
1(t) = et − 1 and f ′′

2 (t) = et. Thus (t − 1)f ′′
1 − tf ′

1 + f1 = (t − 1)(et)−
t(et− 1)+ et− t = 0. Similarly, f ′

2(t) = 1 and f ′′
2 (t) = 0. Thus (t− 1)f ′′

2 −
tf ′

2 + f2 = −t(1) + t = 0. Now,

w(t) =

∣

∣

∣

∣

et − t t
et − 1 1

∣

∣

∣

∣

= et − t− (et − 1)t = (1− t)et.

On the other hand the coefficient function of y′ in the standard form of
the differential equation is a1(t) = − t

t−1 = −1 − 1
t−1 Integrating gives

∫ t

0 −1− 1
x−1 dx = −x− ln |x− 1| |t0 = −t+ln(1− t), (since x−1 < 0) and

e−
∫

t

0
a1(x) dx = et(1 − t). At t = 0 we have w(1) = 1 so Abel’s formula

is verified. It follows from Proposition 4 that f1 and f2 are linearly inde-
pendent. By Theorem 2 the solution set is {c1(et − t) + c2t : c1, c2 ∈ R}

9. f ′
1(t) =

−2 sin(2 ln t)
t , f ′′

1 (t) =
2 sin(2 ln t)−4 cos(2 ln t)

t2 , f ′
2(t) =

2 cos(2 ln t)
t , and

f ′′
2 (t) = −4 sin(2 ln t)−2 cos(2 ln t)

t2 . Thus t2f ′′
1 + tf ′

1 + 4f1 = 2 sin(2 ln t) −
4 cos(2 ln t)− 2 sin(2 ln t) + 4 cos(2 ln t) = 0. Similarly, t2f ′′

2 + tf ′
2 + 4f2 =

−4 sin(2 ln t)− 2 cos(2 ln t) + 2 cos(2 ln t) + 4 sin(2 ln t) = 0. Now,
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w(t) =

∣

∣

∣

∣

∣

cos(2 ln t) sin(2 ln t)
−2 sin(2 ln t)

t

2 cos(2 ln t)

t

∣

∣

∣

∣

∣

=
4

t
.

On the other hand the coefficient function of y′ in the standard form of
the differential equation is a1(t) =

1
t Integrating gives

∫ t

1
1
x dx = ln t and

e−
∫

t

0
a1(x) dx = 1/t. At t = 1 we have w(1) = 1 so Abel’s formula is veri-

fied. It follows from Proposition 4 that f1 and f2 are linearly independent.
By Theorem 2 the solution set is {c1 cos(2 ln t) + c2 sin(2 ln t) : c1, c2 ∈ R}

11. 1. Suppose at3 + b
∣

∣t3
∣

∣ = 0 on (−∞,∞). Then for t = 1 and t = −1 we
get

a+ b = 0

−a+ b = 0.

These equations imply a = b = 0. So y1 and y2 are linearly indepen-
dent.

2. Observe that y′1(t) = 3t2 and y′2(t) =

{

−3t2 if t < 0

3t2 if t ≥ 0.
If t < 0

then w(y1, y2)(t) =

(

t3 −t3

3t2 −3t2

)

= 0. If t ≥ 0 then w(y1, y2)(t) =
(

t3 t3

3t2 3t2

)

= 0. It follows that the Wronskian is zero for all t ∈
(−∞,∞).

3. The condition that the coefficient function a2(t) be nonzero in Theo-
rem 2 and Proposition 4 is essential. Here the coefficient function, t2,
of y′′ is zero at t = 0, so Proposition 4 does not apply on (−∞,∞).
The largest open intervals on which t2 is nonzero are (−∞, 0) and
(0,∞). On each of these intervals y1 and y2 are linearly dependent.

4. Consider the cases t < 0 and t ≥ 0. The verification is then straight-
forward.

5. Again the condition that the coefficient function a2(t) be nonzero is
essential. The Uniqueness and Existence theorem does not apply.

Section 5.3

1. The indicial polynomial is Q(s) = s2 + s− 2 = (s+ 2)(s− 1). There are
two distinct roots 1 and −2. The fundamental set is

{

t, t−2
}

. The general
solution is y(t) = c1t+ c2t

−2.
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3. The indicial polynomial is Q(s) = 9s2 − 6s+ 1 = (3s− 1)2. There is one

root, 1/3, with multiplicity 2. The fundamental set is
{

t
1
3 , t

1
3 ln t

}

. The

general solution is y(t) = c1t
1
3 + c2t

1
3 ln t.

5. The indicial polynomial is Q(s) = 4s2 − 4s+ 1 = (2s− 1)2. The root is
1
2 with multiplicity 2. The fundamental set is

{

t
1
2 , t

1
2 ln t

}

. The general

solution is y(t) = c1t
1
2 + c2t

1
2 ln t.

7. The indicial polynomial is Q(s) = s2 + 6s+ 9 = (s+ 3)2. The root is −3
with multiplicity 2. The fundamental set is

{

t−3, t−3 ln t
}

. The general
solution is y(t) = c1t

−3 + c2t
−3 ln t.

9. The indicial polynomial is Q(s) = s2 − 4 = (s− 2)(s+ 2). There are two
distinct roots, 2 and −2. The fundamental set is

{

t2, t−2
}

. The general
solution is y(t) = c1t

2 + c2t
−2.

11. The indicial polynomial is Q(s) = s2 − 4s + 13 = (s − 2)2 + 9. There
are two complex roots, 2 + 3i and 2 − 3i. The fundamental set is
{

t2 cos(3 ln t), t2 sin(3 ln t)
}

. The general solution is y(t) = c1t
2 cos(3 ln t)+

c2t
2 sin(3 ln t).

13. The indicial polynomial is Q(s) = 4s2 − 4s+1 = (2s− 1)(2s− 1). There

is a double root, r = 1
2 . The fundamental set is

{

t
1
2 , t

1
2 ln t

}

. The general

solution is y(t) = c1t
1
2 + c2t

1
2 ln t. The initial conditions imply

c1 = 2
1

2
c1 + c2 = 0.

Thus c1 = 2 and c2 = −1. Hence y = 2t1/2 − t1/2 ln t

15. The coefficient functions for the given equation in standard form are
a1(t) = −4/t and a2(t) = 6/t2 both of which are not defined at the initial
condition t0 = 0. Thus the uniqueness and existence theorem does not
guarantee a solution. In fact, the condition that y′(0) exist presupposes
that y is defined near t = 0. For t positive the indicial polynomial is
Q(s) = s2 − 5s + 6 = (s − 6)(s + 1) and therefore y(t) = c1t

6 + c2t
−1.

The only way that y can be extended to t = 0 is that c2 = 0. In this case
y(t) = c1t

6 cannot satisfy the given initial conditions. Thus, no solution
is possible.
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Section 5.4

1. By L’Hospital’s rule limt→0
ebt−eat

t = b − a. So Theorem 4 applies and
gives

L
{

ebt − eat

t

}

(s) =

∫ ∞

s

1

σ − b
− 1

σ − a
dσ

= lim
M→∞

ln

(

M − b

M − a

)

− ln

(

s− b

s− a

)

= ln

(

s− a

s− b

)

3. Apply L’Hospital’s rule twice to get lim
t→∞

2
cos bt− cos at

t2
= a2 − b2. Now

use Exercise 2 to get

L
{

2
cos bt− cos at

t2

}

(s) =

∫ ∞

s

ln

(

σ2 + a2

σ2 + b2

)

dσ

= lim
M→∞

(

∫ M

s

ln(σ2 + a2) dσ −
∫ M

s

ln(σ2 + b2) dσ

)

.

We now use two facts from calculus:

1.
∫

ln(x2 + a2) dx = x ln(x2 + a2)− 2x+ 2a tan−1(x/a) + C

2. lim
x→∞

x ln
(

x2+a2

x2+b2

)

= 0

The first fact is shown by integration by parts and the second fact is
shown by L’Hospitals rule. We now get (after some simplifications)

L
{

2
cos bt− cos at

t2

}

(s) = s ln

(

s2 + b2

s2 + a2

)

+ 2a tan−1
(a

s

)

− 2b tan−1

(

b

s

)

5. Applying the Laplace transform we get

Y ′ +
3s+ 2

s2 + s
Y =

2y0
s2 + s

.

The integrating factor is I = s2(s + 1); we get Y (s) = y0

s+1 + C
s2(s+1) .

Laplace inversion gives

y(t) = y0e
−t + C(t− 1 + e−t)

= (y0 + C)e−t + C(t− 1).

Let c1 = C and c2 = y0 + C to get y(t) = c1e
−t + c2(t− 1).
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7. Applying the Laplace transform we get Y ′(s) =
−y0

(s+ 2)2
and therefore

Y (s) =
y0

s+ 2
+C. However, since lims→∞ Y (s) = 0 we must have C = 0.

Hence y(t) = y0e
−2t.

9. Applying the Laplace transform we get Y ′(s) +
6s

s2 + 1
Y (s) = 0. An

integrating factor is I = (s2 + 1)3. We then get Y (s) =
C

(s2 + 1)3
, and

y(t) = (C/8)
(

(3− t2) sin t− 3t cos t
)

11. Apply the Laplace transform to get Y ′(s) =
−y0

s(s− 1)
= y0

(

1

s
− 1

s− 1

)

.

Then Y (s) = y0 ln

(

s

s− 1

)

+ C. Take C = 0 since lims→∞ Y (s) = 0.

Hence y(t) = y0
et − 1

t
.

13. Apply the Laplace transform, simplify, and get Y ′(s) =
−y0

(s2 − 5s+ 6)
=

y0

(

1

s− 2
− 1

s− 3

)

. Then Y (s) = y0 ln

(

s− 2

s− 3

)

+C. Take C = 0. Then

y(t) = y0

(

e3t − e2t

t

)

.

15. Apply the Laplace transform, simplify, and get Y ′(s) =
−sy0

s(s2 + 1)
−

2y1
s(s2 + 1

= −y0
1

s2 + 1
− 2y1

(

1

s
− s

s2 + 1

)

. Integrating gives Y (s) =

−y0 tan
−1(s)+y1 ln

(

s2 + 1

s2

)

+C. Since lims→∞ Y (s) = 0 we must have

C = y0
π

2
and hence Y (s) = y0 tan

−1

(

1

s

)

+ y1 ln

(

s2 + 1

s2

)

. Therefore

y(t) = y0
sin t

t
+ 2y1

1− cos t

t

17. We use the formula

dn

dtn
(f(t)g(t)) =

n
∑

k=0

(

n

k

)

dk

dtk
f(t) · dn−k

dtn−k
g(t).

Observe that
dk

dtk
e−t = (−1)ke−t

and
dn−k

dtn−k
tn = n(n− 1) · · · (k + 1)tk.
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It now follows that

1

n!
et

dn

dtn
(e−ttn)

=
1

n!
et

n
∑

k=0

(

n

k

)

dk

dtk
e−t d

n−k

dtn−k
tn

= et
n
∑

k=0

(

n

k

)

(−1)ke−tn(n− 1) · · · (k + 1)

n!
tk

=

n
∑

k=0

(−1)k
(

n

k

)

tk

k!

= ℓn(t).

21. Hint: Take the Laplace transform of each side. Use the previous exercise
and the binomial theorem.

23. We compute the Laplace transform of both sides. We’ll do a piece at a
time.

L{(2n+ 1)ℓn} (s)

= (2n+ 1)
(s− 1)n

sn+1

=
(s− 1)n−1

sn+2
(2n+ 1)(s(s− 1)).

L{−tℓn} (s)

=

(

(s− 1)n

sn+1

)′

=
(s− 1)n−1

sn+2
(n+ 1− s).

−nL{ℓn−1} (s)

= −n
(s− 1)n−1

sn

=
(s− 1)n−1

sn+2
(−ns2).

We have written each so that the common factor is
(s− 1)n−1

sn+2
. The

coefficients are
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n+ 1− s+ (2n+ 1)(s(s− 1))− ns2

= (n+ 1)(s2 − 2s+ 1)

= (n+ 1)(s− 1)2

The right hand side is now

1

n+ 1

(

(n+ 1)(s− 1)2
(s− 1)n−1

sn+2

)

=
(s− 1)n+1

sn+2

= L{ℓn+1} (s).

Taking the inverse Laplace transform completes the verification.

25. First of all
∫∞
0

e−tℓn(t) dt = L{ℓn} (1) = 0. Thus

∫ ∞

t

e−xℓn(x) dt

= −
∫ t

0

e−xℓn(x) dx

= −e−t

∫ ∞

0

et−xℓn(x) dx

= −e−t(et ∗ ℓn(t)).

By the convolution theorem

L
{

et ∗ ℓn
}

(s)

=
1

s− 1

(s− 1)n

sn+1

=
(s− 1)n−1

sn+1

=
(s− 1)n−1

sn

(

1− s− 1

s

)

=
(s− 1)n−1

sn
− (s− 1)n

sn+1

= L−1 {ℓn−1(t)} − L−1 {ℓn(t)} .

It follows by inversion that et ∗ ℓn = ℓn−1 − ℓn and substituting this
formula into the previous calculation gives the needed result.
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Section 5.5

1. Let y2(t) = t2u(t). Then t4u′′ + t3u′ = 0, which gives u′ = t−1 and
u(t) = ln t. Substituting gives y2(t) = t2 ln t. The general solution can be
written y(t) = c1t

2 + c2t
2 ln t.

3. Let y2(t) = t
1
2u(t). Then 4t

5
2u′′ + 4t

3
2u′ = 0 leads to u′ = 1/t and hence

u(t) = ln t. Thus y2(t) =
√
t ln t. The general solution can be written

y(t) = c1
√
t+ c2

√
t ln t.

5. Let y2(t) = tu(t). Then u satisfies t3u′′ − t3u′ = 0. Thus u′ = et and
u = et. It follows that y2(t) = tet is a second independent solution. The
general solution can be written y(t) = c1t+ c2te

t.

7. Let y2(t) = u(t) sin t2. Then u(t) satisfies t sin t2u′′+(4t2 cos t2−sin t2)u′ =

0 and hence
u′′

u′ =
1

t
−4t

cos t2

sin t2
. It follows that u′ = t csc2 t2 and therefore

u(t) = −1
2 cot t2. We now get y2(t) =

−1
2 cos t2. The general solution can

be written y(t) = c1 sin t
2 + c2 cos t

2.

9. Let y2(t) = u(t) tan t. Then u′′ tan t + 2u′ sec2 t = 0 which gives u′ =
cot2 t = csc2 t − 1. Hence u = − cot t − t and y2(t) = −1 − t tan t. The
general solution can be written y(t) = c1 tan t+ c2(1 + t tan t).

11. The functions tan t and sec t are continuous except at points of the
form π

2 + 2nπ, n ∈ Z. We will work in the interval (−π/2, π/2).
Let y2(t) = u(t) tan t. Then u′′ tan t + u′(tan2 t + 2) = 0 and hence
u′′

u′
= − tan t − 2 cot t. It follows that ln |u′| = ln |cos t| − 2 ln |sin t| and

thus u′ = cos t sin−2 t. Further u(t) = −1
sin t and we have y2(t) = − sec t.

The general solution can be written y(t) = c1 tan t+ c2 sec t.

13. Let y2 = u sin 2t
1+cos 2t . Then u(t) satisfies u′′ sin 2t+4u′ = 0 and hence u′′

u′
=

−4 csc 2t. We now get lnu′ = 2 ln |csc 2t+ cot 2t|. Thus u′ = (csc 2t +
cot 2t)2 = csc2 2t+ 2 csc 2t cot 2t+ cot2 2t = 2 csc2 2t+ 2 csc 2t cot 2t− 1.
By integrating we get u = − cot 2t − csc 2t − t = − 1+cos 2t

sin 2t − t. It now

follows that y2 = −1 − t sin 2t
1+cos 2t . The general solution can be written

y(t) = c1
sin 2t

1+cos 2t + c2

(

1 + t sin 2t
1+cos 2t

)

.

15. Let y2(t) = (1− t2)u(t). Substitution gives (1− t2)2u′′ − 4t(1− t2)u′ = 0

and hence u′′

u′
= −2 −2t

1−t2 . From this we get u′ = 1
(1−t2)2 . Integrating u′ by

partial fractions give u = 1
2

t
1−t2 + 1

4 ln
(

1+t
1−t

)

and hence

y2(t) =
1

2
t+

1

4
(1 − t2) ln

(

1 + t

1− t

)

.
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The general solution can be written

y = c1(1− t2) + c2

(

1

2
t+

1

4
(1− t2) ln

(

1 + t

1− t

))

.

Section 5.6

1. sin t and cos t form a fundamental set for the homogeneous solutions. Let
yp(t) = u1 cos t+ u2 sin t. Then the matrix equation
(

cos t sin t
− sin t cos t

)(

u′
1

u′
2

)

=

(

0
sin t

)

implies u′
1(t) = − sin2 t = 1

2 (cos 2t − 1)

and u′
2(t) = cos t sin t = 1

2 (sin 2t). Integration give u1(t) = 1
4 (sin(2t) −

2t) = 1
2 (sin t cos t − t) and u2(t) = −1

4 cos 2t = −1
4 (2 cos 2t − 1). This

implies yp(t) =
1
4 sin t − 1

2 t cos t. Since 1
4 sin t is a homogeneous solution

we can write the general solution in the form y(t) = −1
2 t cos t+ c1 cos t+

c2 sin t. We observe that a particular solution is the imaginary part of a so-
lution to y′′+y = eit. We use the incomplete partial fraction method and

get Y (s) = 1
(s−i)2(s+i) . This can be written Y (s) = 1

2i
1

(s−i)2 + p(s)
(s−i)(s+i) .

From this we get yp(t) = Im
(

1
2iL−1{ 1

(s−i)2 }
)

= Im −i
2 teit = −1

2 t cos t.

The general solution is y(t) = −1
2 t cos t+ c1 cos t+ c2 sin t.

3. The functions et cos 2t and et sin 2t form a fundamental set. Let yp(t) =
c1e

t cos 2t+ c2e
t sin 2t. Then the matrix equation

W (et cos 2t, et sin 2t)

(

u′
1

u′
2

)

=

(

0
et

)

implies that u′
1(t) = −1

2 sin 2t and

u′
2(t) = 1

2 cos 2t. Hence, u1(t) = 1
4cos2t and u2(t) = 1

4 sin 2t. From this

we get yp(t) = 1
4e

t cos2 2t + 1
4e

t sin2 2t = 1
4e

t. On the other hand, the
method of undetermined coefficients implies that a particular solution
is of the form yp(t) = Cet. Substitution gives 4Cet = et and hence
C = 1

4 . It follows that yp(t) =
1
4e

t. Furthermore, the general solution is
y(t) = 1

4e
t + c1e

t cos 2t+ c2e
t sin 2t.

5. A fundamental set is
{

et, e2t
}

. The matrix equation
(

et e2t

et 2e2t

)(

u′
1

u′
2

)

=

(

0
e3t

)

implies u′
1(t) = −e2t and u′

2(t) = et. Hence

u1(t) = −1
2 e2t, u2(t) = et, and yp(t) = −1

2 e2tet + ete2t = 1
2e

3t. The
general solution is y(t) = 1

2e
3t+c1e

t+c2e
2t. The method of undetermined

coefficients implies that a particular solution is of the form yp = Ce3t.
Substitution gives 2Ce3t = 3e3t and hence C = 1

2 . The general solution
is as above.
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7. A fundamental set is {et, tet}. The matrix equation
(

et tet

et et + tet

)(

u′
1

u′
2

)

=

(

0
et

t

)

implies u′
1(t) = −1 and u′

2(t) =
1
t . Hence,

u1(t) = −t, u2(t) = ln t, and yp(t) = −tet + t ln tet. Since −tet is a
homogeneous solution we can write the general solution as y(t) = t ln tet+
c1e

t + c2te
t.

9. The associated homogeneous equation is Cauchy-Euler with indicial equa-
tion s2−3s+2 = (s−2)(s−1). It follows that

{

t, t2
}

forms a fundamental
set. We put the given equation is standard form to get y′′− 2

t y
′+ 2

t2 y = t2.
Thus f(t) = t2. The matrix equation
(

t t2

1 2t

)(

u′
1

u′
2

)

=

(

0
t2

)

implies u′
1(t) = −t2 and u′

2(t) = t. Hence

u1(t) =
−t3

3 , u2(t) =
t2

2 , and yp(t) =
−t3

3 t+ t2

2 t
2 = t4

6 . It follows that the

general solution is y(t) = t4

6 + c1t+ c2t
2.

11. The homogeneous equation is Cauchy-Euler with indicial equation s2 −
2s + 1 = (s − 1)2. It follows that {t, t ln t} is a fundamental set. After
writing in standard form we see the forcing function f(t) is 1

t . The matrix
equation
(

t t ln t
1 ln t+ 1

)(

u′
1

u′
2

)

=

(

0
1
t

)

implies u′
1(t) =

− ln t
t and u′

2(t) =
1
t . Hence

u1(t) = − ln2 t
2 , u2(t) = ln t, and yp(t) = −t

2 ln2 t + t ln2 t = t
2 ln

2 t. The

general solution is y(t) = t
2 ln

2 t+ c1t+ c2t ln t.

13. The matrix equation
(

tan t sec t
sec2 t sec t tan t

)(

u′
1

u′
2

)

=

(

0
t

)

implies u′
1(t) = t and u′

2(t) = −t sin t.

Hence u1(t) =
t2

2 , u2(t) = t cos t − sin t, and yp(t) =
t2

2 tan t + (t cos t −
sin t) sec t = t2

2 tan t+ t− tan t. Since tan t is a homogeneous solution we

can write the general solution as y(t) = t2

2 tan t+ t+ c1 tan t+ c2 sec t.

15. After put in standard form the forcing function f is 4t4. The matrix
equation
(

cos t2 sin t2

−2t sin t2 2t cos 2t

)(

u′
1

u′
2

)

=

(

0
4t4

)

implies u′
1(t) = −2t3 sin t2 and

u′
2(t) = 2t3 cos t2. Integration by parts gives u1(t) = t2 cos t2 − sin t2 and

u2(t) = t2 sin t2+cos t2. Hence yp(t) = t2 cos2 t2−cos t2 sin t2+t2 sin2 t2+
cos t2 sin t2 = t2. The general solution is y(t) = t2 + c1 cos t

2 + c2 sin t
2.

17. Let a and t be in the interval I. Let z1 and z2 be the definite integrals
defined as follows:
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z1(t) =

∫ t

a

−y2(x)f(x)

w(y1, y2)(x)
dx

z2(t) =

∫ t

a

y1(x)f(x)

w(y1, y2)(x)
dx.

These definite integrals determine the constant of integration in Theorem
1 so that z1(a) = z2(a) = 0. It follows that

yp(t) = z1(t)y1(t) + z2(t) + y2(t)

=

∫ t

a

−y2(x)y1(t)f(x)

w(y1, y2)(x)
dx+

∫ t

a

y1(x)y2(t)f(x)

w(y1, y2)(x)

=

∫ t

a

(y1(x)y2(t)− y2(x)y1(t))

w(y1, y2)(x)
f(x) dx

=

∫ t

a

∣

∣

∣

∣

y1(x) y2(x)
y1(t) y2(t)

∣

∣

∣

∣

∣

∣

∣

∣

y1(x) y2(x)
y′1(x) y′2(x)

∣

∣

∣

∣

f(x) dx.

19. Let y1(t) = e−at and y2(t) = eat. Then {y1, y2} is a fundamental set. We
have
∣

∣

∣

∣

y1(x) y2(x)
y1(t) y2(t)

∣

∣

∣

∣

= e−axeat−eaxe−at = ea(t−x)−e−a(t−x) = 2 sinh(a(t−x))

and

w(y1, y2)(x) =

∣

∣

∣

∣

e−at eat

−ae−at aeat

∣

∣

∣

∣

= 2a.

Thus

yp(t) =

∫ t

0

2 sinha(t− x)

2a
f(x) dx

=
1

a
f(t) ∗ sinh at.

Applying the Laplace transform to y′′ − a2y = f , with initial conditions
y(0) = y′(0) = 0, gives s2Y (s)− a2Y (s) = F (s). Solving for Y (s) we get

Y (s) =
F (s)

s2 − a2
=

1

a

a

s2 − a2
F (s).

The convolution theorem gives a particular solution

yp(t) =
1

a
sinh at ∗ f(t).
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21. Let y1(t) = eat and y2(t) = ebt. Then {y1, y2} is a fundamental set. We
have

∣

∣

∣

∣

y1(x) y2(x)
y1(t) y2(t)

∣

∣

∣

∣

= eaxebt − ebxeat = eax+bt − ebx+at

and

w(y1, y2)(x) =

∣

∣

∣

∣

eax ebx

aeax bebx

∣

∣

∣

∣

= (b− a)e(a+b)x.

Thus

yp(t) =

∫ t

0

eax+bt − ebx+at

(b− a)e(a+b)x
f(x) dx

=
1

b − a

∫ t

0

(eb(t−x) − ea(t−x))f(x) dx

=
1

b − a
f(t) ∗ (ebt − eat).

Applying the Laplace transform to y′′ − (a+ b)y′ + aby = f , with initial
conditions y(0) = y′(0) = 0, gives s2Y (s)−(a+b)sY (s)+abY (s) = F (s).
Solving for Y (s) we get

Y (s) =
F (s)

(s− a)(s− b)
=

1

a− b

(

1

s− a
− 1

s− b

)

F (s).

The convolution theorem gives a particular solution

yp(t) =
1

a− b
(eat − ebt) ∗ f(t).

Section 6.1

1. Graph (c)

3. Graph (e)

5. Graph (f)

7. Graph (h)

9.
∫ 5

0
f(t) dt =

∫ 2

0
(t2 − 4) dt+

∫ 3

2
0 dt+

∫ 5

3
(−t+ 3) dt =

(

t3/3− 4t
)∣

∣

2

0
+ 0+

(

−t2/2 + 3t
)∣

∣

5

3
= (8/3− 8) + (−25/2 + 15)− (−9/2 + 9) = −22/3.

11.
∫ 2π

0
|sinx| dx =

∫ π

0
sinx dx +

∫ 2π

π
− sinx dx = − cosx|π0 + cosx|2ππ = 4.
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13.
∫ 5

2
f(t) dt =

∫ 3

2
(3 − t) dt+

∫ 4

3
2(t− 3) dt+

∫ 6

4
2 dt = 1/2 + 1 + 4 = 11/2

15.
∫ 6

0
f(u) du =

∫ 1

0
u du+

∫ 2

1
(2 − u) du+

∫ 6

2
1 du = 1/2 + 1/2 + 4 = 5.

17. A is true since y(t) satisfies the differential equation on each subinterval.
B is true since the left and right limits agree at t = 2. C is not true since
y(0) = 1 6= 2.

19. A is true since y(t) satisfies the differential equation on each subinterval.
B is false since limt→2− y(t) = 1 + e−8 while limt→2+ y(t) = 1. C is false
since B is false.

21. A is true since y(t) satisfies the differential equation on each subinterval.
B is true since limt→1− y(t) = −2e + e2 = limt→1+ y(t). C is false since
limt→1− y′(t) = −3e+2e2 while limt→1+ y′(t) = 3e2 − 2e. D is false since
C is false.

23. A is true since y(t) satisfies the differential equation on each subinterval.
B is true since limt→1− y(t) = −2e + e2 = limt→1+ y(t). C is true since
limt→1− y′(t) = −3e+2e2 = limt→1+ y′(t). D is true since y(0) = y′(0) =
0.

25. The general solution of y′ − y = 1 on the interval [0, 2) is found by
using the integrating factor e−t. The general solution is y(t) = −1 + cet

and the initial condition y(0) = 0 gives c = 1, so that y(t) = −1 + et for
t ∈ [0, 2). Continuity of y(t) at t = 2 will then give y(2) = limt→2− y(t) =
−1 + e2, which will provide the initial condition for the next interval
[2, 4). The general solution of y′ − y = −1 on [2, 4) is y(t) = 1 + ket.
Thus −1 + e2 = y(2) = 1 + ke2 and solve for k to get k = −2e−2 + 1,
so that y(t) = 1 + (−2e−2 + 1)et for t ∈ [2, 4). Continuity will then give
y(4) = 1 + (−2e−2 + 1)e4, which will provide the initial condition for
the next interval [4, ∞). The general solution to y′ − y = 0 on [4, ∞)
is y(t) = bet and the constant b is obtained from the initial condition
be4 = y(4) = 1 + (−2e−2 + 1)e4, which gives b = e−4 − 2e−2 + 1, so
that y(t) = (e−4 − 2e−2 + 1)et for t ∈ [4, ∞). Putting these three pieces
together, we find that the solution is

y(t) =











−1 + et if 0 ≤ t < 2,

1− 2et−2 + et if 2 ≤ t < 4

et−4 − 2et−2 + et if 4 ≤ t < ∞.

27. The general solution of y′ − y = f(t) on any interval is found by using
the integrating factor e−t. The general solution on the interval [0, 1)
is y(t) = aet and since the initial condition is y(0) = 0, the solution on
[0, 1) is y(t) = 0. Continuity then given y(1) = 0, which will be the initial
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condition for the interval [1, 2). The general solution of y′ − y = t− 1 on
the interval [1, 2) is y(t) = −t + bet and the initial condition y(1) = 0
gives 0 = −1+be1 so that b = e−1. Thus y(t) = −t+e−1et = −t+et−1 for
t ∈ [0, 2). Continuity of y(t) at t = 2 will then give y(2) = limt→2− y(t) =
−2 + e1, which will provide the initial condition for the next interval
[2, 3). The general solution of y′− y = 3− t on [2, 3) is y(t) = t− 2+ cet.
Thus −2 + e1 = y(2) = ce2 and solve for c to get c = −2e−2 + e−1, so
that y(t) = t− 2 + (−2e−2 + e−1)et = t− 2− 2et−2 + et−1 for t ∈ [2, 3).
Continuity will then give y(3) = 1−2e1+e2, which will provide the initial
condition for the next interval [3, ∞). The general solution to y′ − y = 0
on [4, ∞) is y(t) = ket and the constant k is obtained from the initial
condition ke3 = y(3) = 1 − 2e1 + e2, which gives c = e−3 − 2e−2 + e−1,
so that y(t) = (e−3 − 2e−2 + e−1)et = et−3 − 2et−2 + et−1 for t ∈ [3, ∞).
Putting these three pieces together, we find that the solution is

y(t) =



















0 if 0 ≤ t < 1,

−t+ et−1 if 1 ≤ t < 2,

t− 2− 2et−2 + et−1 if 2 ≤ t < 3

et−3 − 2et−2 + et−1 if 3 ≤ t < ∞.

29. The characteristic polynomial of the equation y′′ − y = f(t) is s2 − 1 =
(s−1)(s+1) so the homogeneous equation has the solution yh(t) = aet+
be−t for constants a and b. On the interval [0, 1] the equation y′′ − y = t
has a particular solution yp(t) = −t so the general solution has the form
y(t) = −t+ aet + be−t. The initial conditions give 0 = y(0) = a + b and
1 = y′(0) = −1+a−b. Solving gives a = 1, b = −1 so y(t) = −t+et−e−t

on [0, 1). By continuity it follows that y(1) = −1 + e1 − e−1 and y′(1) =
−1 + e1 + e−1 and these constitute the initial values for the equation
y′′ − y = 0 on the interval [1, ∞). The general solution on this interval is
y(t) = aet+be−t and at t = 1 we get y(1) = ae1+be−1 = −1+e1−e−1 and
y′(1) = ae1− be−1 = −1+ e1+ e−1. Solving for a and b gives a = 1− e−1

and b = −1 so that y(t) = (1 − e−1)et − e−t = et − et−1 − e−1. Putting
the two pieces together gives

y(t) =

{

−t+ et − e−t if 0 ≤ t < 1,

et − et−1 − e−1 1 ≤ t < ∞.

33. 1. |f(t)| = |sin(1/t)| ≤ 1 for all t 6= 0, while |f(0)| = |0| = 0 ≤ 1.
2. It is enough to observe that limt→0+ does not exist. But letting tn =

1
nπ gives f(tn) = sinnπ = 0 for all positive integers n, while letting
tn = 2

(4n+1)π gives f(tn) = sin(1/tn) = sin((4n+1)π/2) = sin(2nπ+
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π
2 ) = 1 so there is one sequence tn → 0 with f(tn) → 0 while another
sequence tn → 0 with f(tn) → 1 so f(t) cannot be continuous at 0.

3. To be piecewise continuous, f(t) would have to have a limit at t
approaches 0 from above, and this is not true as shown in part 2.

Section 6.2

1. f(t) = 3h(t− 2)− h(t− 5) =











0 if t < 2,

3 if 2 ≤ t < 5,

2 if t ≥ 5.

Thus, the graph is

0

1

2

3

0 1 2 3 4 5 6 7 8
t

y

3. This function is g(t − 1)h(t − 1) where g(t) = t, so the graph of f(t) is
the graph of g(t) = t translated 1 unit to the right and then truncated at
t = 1, with the graph before t = 1 replaced by the line y = 0. Thus the
graph is

0

1

2

0 1 2 3
t

y

5. This function is just t2 truncated at t = 2, with the graph before t = 2
replaced by the line y = 0. Thus the graph is

0

2

4

6

8

0 1 2 3
t

y

where the dashed line is the part of the t2 graph that has been truncated.
It is only shown for emphasis and it is not part of the graph.
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7. This is the function cos 2t shifted π units to the right and then truncated
at t = π. The graph is

0

1

−1

π 2π 3π
t

y

9. (a) (t− 2)χ[2,∞)(t); (b) (t− 2)h(t− 2);
(c) L{(t− 2)h(t− 2)} = e−2sL{t} = e−2s/s2.

11. (a) (t+ 2)χ[2,∞)(t); (b) (t+ 2)h(t− 2);

(c) L{(t+ 2)h(t− 2)} = e−2sL{(t+ 2) + 2} = e−2s

(

1

s2
+

4

s

)

.

13. (a) t2χ[4,∞)(t); (b) t2h(t− 4);

(c) L
{

t2h(t− 4)
}

= e−4sL
{

(t+ 4)2
}

= e−4sL
{

t2 + 8t+ 16
}

= e−4s

(

2

s3
+

8

s2
+

16

s

)

.

15. (a) (t− 4)2χ[2,∞)(t); (b) (t− 4)2h(t− 2);

(c) L
{

(t− 4)2h(t− 2)
}

= e−2sL
{

((t+ 2)− 4)2
}

= e−2sL
{

t2 − 4t+ 4
}

= e−2s

(

2

s3
− 4

s2
+

4

s

)

.

17. (a) etχ[4,∞)(t); (b) eth(t− 4);

(c) L{eth(t− 4)} = e−4sL
{

et+4
}

= e−4se4L{et}
= e−4(s−1) 1

s− 1
.

19. (a) tetχ[4,∞)(t); (b) teth(t− 4);

(c) L{teth(t− 4)} = e−4sL
{

(t+ 4)et+4
}

= e−4se4L{tet + 4et}
= e−4(s−1)

(

1

(s− 1)2
+

4

s− 1

)

.

21. (a) tχ[0,1)(t) + (2− t)χ[1,∞)(t); (b) t+ (2 − 2t)h(t− 1);
(c) L{t+ (2 − 2t)h(t− 1)} = L{t}+ e−sL{(2− 2(t+ 1))}
= L{t}+ e−sL{−2t} =

1

s2
− 2e−s

s2
.

23. (a) t2χ[0, 2)(t) + 4χ[2, 3)(t) + (7− t)χ[3,∞)(t);
(b) t2 + (4− t2)h(t− 2) + (3− t)h(t− 3);
(c) L

{

t2 + (4− t2)h(t− 2) + (3− t)h(t− 3)
}
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= L
{

t2
}

+ e−2sL
{

4− (t+ 2)2
}

+ e−3sL{3− (t+ 3)}

=
2

s3
− e−2s

(

2

s3
+

4

s2

)

− e−3s

s2
.

25. (a)
∑∞

n=0(t− n)χ[n,n+1)(t);
(b) t−∑∞

n=1 h(t− n);
(c) L{t−∑∞

n=1 h(t− n)} = L{t} −∑∞
n=1 L{h(t− n)}

=
1

s2
−∑∞

n=1

e−ns

s
=

1

s2
− 1

s

∑∞
n=1 (e

−s)
n

=
1

s2
− e−s

s(1− e−s)
.

27. (a)
∑∞

n=0(2n+ 1− t)χ[2n,2n+2)(t); (b) −(t+ 1) + 2
∑∞

n=0 h(t− 2n);

(c) − 1

s2
− 1

s
+

2

s(1− e−2s)
.

29. L−1

{

e−3s

s2

}

= h(t− 3) L−1

{

1

s2

}∣

∣

∣

∣

t→t−3

= h(t− 3) (t)|t→t−3 = (t− 3)h(t− 3) =

{

0 if 0 ≤ t < 3,

t− 3 if t ≥ 3.

31. L−1

{

e−πs

s2 + 1

}

= h(t− π) L−1

{

1

s2 + 1

}∣

∣

∣

∣

t→t−π

= h(t− π) (sin t)|t→t−π = h(t− π) sin(t− π)

=

{

0 if 0 ≤ t < π,

sin(t− π) if t ≥ π
=

{

0 if 0 ≤ t < π,

− sin t if t ≥ π.

33. L−1

{

e−πs

s2 + 2s+ 5

}

= h(t− π) L−1

{

1

s2 + 2s+ 5

}∣

∣

∣

∣

t→t−π

= h(t− π) L−1

{

1

(s+ 1)2 + 22

}∣

∣

∣

∣

t→t−π

= h(t− π) (12e
−t sin 2t)

∣

∣

t→t−π

= 1
2e

−(t−π) sin 2(t− π)h(t− π) =

{

0 if 0 ≤ t < π,
1
2e

−(t−π) sin 2t if t ≥ π.

35. L−1

{

e−2s

s2 + 4

}

= h(t− 2) L−1

{

1

s2 + 4

}∣

∣

∣

∣

t→t−2

= h(t− 2) (12 sin 2t)
∣

∣

t→t−2
= 1

2h(t− 2) sin 2(t− 2)

=

{

0 if 0 ≤ t < 2,
1
2 sin 2(t− 2) if t ≥ 2.
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37. L−1

{

se−4s

s2 + 3s+ 2

}

= h(t− 4) L−1

{

s

s2 + 3s+ 2

}∣

∣

∣

∣

t→t−4

= h(t− 4) L−1

{

2

s+ 2
− 1

s+ 1

}∣

∣

∣

∣

t→t−4

= h(t− 4) (2e−2t − e−t)
∣

∣

t→t−4
= h(t− 4)

(

2e−2(t−4) − e−(t−4)
)

=

{

0 if 0 ≤ t < 4,

2e−2(t−4) − e−(t−4) if t ≥ 4.

39. L−1

{

1− e−5s

s2

}

= L−1

{

1

s2

}

− h(t− 5) L−1

{

1

s2

}∣

∣

∣

∣

t→t−5

= t− h(t− 5) (t)|t→t−5 = t− (t− 5)h(t− 5) =

{

t if 0 ≤ t < 5,

5 if t ≥ 5.

41. L−1

{

e−πs 2s+ 1

s2 + 6s+ 13

}

= h(t− π)L−1

{

2s+ 1

s2 + 6s+ 13

}∣

∣

∣

∣

t→t−π

= h(t− π) L−1

{

2(s+ 3)− 5

(s+ 3)2 + 22

}∣

∣

∣

∣

t→t−π

= h(t− π) L−1

{

2(s+ 3)

(s+ 3)2 + 22

}∣

∣

∣

∣

t→t−π

+ h(t− π) L−1

{ −5

(s+ 3)2 + 22

}∣

∣

∣

∣

t→t−π

= h(t− π) (2e−3t cos 2t− 5
2e

−3t sin 2t)
∣

∣

t→t−π

= h(t− π)e−3(t−π)
(

2 cos 2(t− π)− 5
2 sin 2(t− π)

)

=

{

0 if 0 ≤ t < π,

e−3(t−π)
(

2 cos 2t− 5
2 sin 2t

)

if t ≥ π.

43. Let b > 0. Since f1 and f2 are piecewise continuous on [0,∞) they
only have finitely many jump discontinuities on [0, b). It follows that
f1+ cf2 have only finitely many jump on [0, b). Thus f1+ cf2 is piecewise
continuous on [0,∞).

Section 6.3

1. We write the forcing function as f(t) = 3h(t− 1). Applying the Laplace
transform, partial fractions, and simplifying gives

Y (s) =
−3

s(s+ 2)
e−s =

−3

2

(

1

s
− 1

s+ 2

)

e−s.

Laplace inversion now gives
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y = −3

2
h(t− 1)

(

1− e−2(t−1)
)

=

{

0 if 0 ≤ t < 1

− 3
2

(

1− e−2(t−1)
)

if 1 ≤ t < ∞ .

3. We write the forcing function as f(t) = 2χ[2,3) = 2h(t − 2) − 2h(t − 3).
Applying the Laplace transform, partial fractions, and simplifying gives

Y (s) =
2

s(s− 3)

(

e−2s − e−3s
)

=
2

3

(

1

s− 3
− 1

s

)

(

e−2s − e−3s
)

.

Laplace inversion now gives

y =
2

3

((

e3(t−2) − 1
)

h(t− 2)−
(

e3(t−3) − 1
)

h(t− 3)
)

=











0 if 0 ≤ t < 2
2
3

(

e3(t−2) − 1
)

if 2 ≤ t < 3
2
3

(

e3(t−2) − e3(t−3)
)

if 3 ≤ t < ∞
.

5. We write the forcing function as

f(t) = 12etχ[0,1) + 12eχ[1,∞)

= 12et − 12(et − e)h(t− 1).

Applying the Laplace transform, partial fractions, and simplifying gives

Y (s) =
2

s− 4
+

12

(s− 1)(s− 4)
− e−s

(

12e

(s− 1)(s− 4)
− 12e

s(s+ 4)

)

=
6

s− 4
− 4

s− 1
− e−se

( −4

s− 1
+

1

s− 4
+

3

s

)

.

Laplace inversion now gives

y = 6e4t − 4et − e
(

−4et−1 + e4(t−1) + 3
)

h(t− 1)

= 6e4t − 4et + 4eth(t− 1)− e4t−3h(t− 1)− 3eh(t− 1)

=

{

6e4t − 4et if 0 ≤ t < 1

6e4t − e4t−3 − 3e if 1 ≤ t < ∞ .

7. Applying the Laplace transform, partial fractions, and simplifying gives
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Y (s) =
e−3s

s(s2 + 9)

=
1

9

(

1

s
− s

s2 + 9

)

e−3s.

Laplace inversion now gives

y =
1

9
(1− cos 3(t− 3))h(t− 3) =

{

0 if 0 ≤ t < 3
1
9 (1− cos 3(t− 3)) if 3 ≤ t < ∞ .

9. Write the forcing function as f(t) = 6χ[1,3) = 6h(t− 1)− 6h(t− 3). Now
apply the Laplace transform, partial fractions, and simplify to get

Y (s) =
6

s(s+ 2)(s+ 3)

(

e−s − e−3s
)

=

(

1

s
− 3

s+ 2
+

2

s+ 3

)

(

e−s − e−3s
)

Now we take the inverse Laplace transform and simplify to get

y =
(

1− 3e−2(t−1) + 2e−3(t−1)
)

h(t− 1)

−
(

1− 3e−2(t−3) + 2e−3(t−3)
)

h(t− 3)

=











0 if 0 ≤ t < 1

1− 3e−2(t−1) + 2e−3(t−1) if 1 ≤ t < 3

3e−2(t−3) − 3e−2(t−1) − 2e−3(t−3) + 2e−3(t−1) if 3 ≤ t < ∞

11. Apply the Laplace transform, partial fractions, and simplify to get

Y (s) =
1

(s+ 1)2
+

1

s(s+ 1)2
e−3s

=
1

(s+ 1)2
+

(

− 1

(s+ 1)2
− 1

s+ 1
+

1

s

)

e−3s

Laplace inversion gives

y = te−t +
(

−(t− 3)e−(t−3) − e−(t−3) + 1
)

h(t− 3)

= te−t +
(

1− (t− 2)e−(t−3)
)

h(t− 3)

=

{

te−t if 0 ≤ t < 3

1 + te−t − (t− 2)e−(t−3) if 3 ≤ t < ∞ .
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13. For the first three minutes, source one adds salt at a rate of 1 lb
gal

·2 gal

min
=

2 lbs
min

. and after that source two takes over and adds salt at a rate of

5 lb
gal

· 2 gal

min
= 10 lbs

min
. Thus the rate at which salt is being added is given

by the function

f(t) =

{

2 if 0 ≤ t < 3

10 if 3 ≤ t < ∞.

= 2χ[0,3) + 10χ[3,∞)

= 2(1− h(t− 3)) + 10(h(t− 3))

= 2 + 8h(t− 3).

The output rate of salt is given by y(t)
4 · 2 = y(t)

2 lbs/min. We are thus
led to the differential equation

y′ +
1

2
y(t) = 2 + 8h(t− 3), y(0) = 0.

We take the Laplace transform of both sides and use partial fractions to
get

Y (s) =
2

s(s+ 1/2)
+

8e−3s

s(s+ 1/2)

=
4

s
− 4

s+ 1/2
+ e−3s

(

16

s
− 16

s+ 1/2

)

.

Laplace inversion now gives

y(t) = 4− 4e
−t
2 + 16h(t− 3)− 16e

−(t−3)
2 h(t− 3)

=

{

4− 4e
−t
2 if 0 ≤ t < 3

20− 4e
−t
2 − 16e

−(t−3)
2 if t ≥ 3.

.

15. For the first two minutes, source one adds salt at a rate of 1 kg
L
· 3 L

min
=

3 kg
min

. Thereafter source two takes over for two minutes but the input rate
of salt is 0. Thereafter source on take over again and adds salt to the tank
at a rate of 3 kg

min
. Thus the rate at which salt is being added is given by

the function

f(t) =











3 if 0 ≤ t < 2

0 if 2 ≤ t < 4

3 if 4 ≤ t < ∞.

= 3χ[0,2) + 3χ[4,∞)

= 3(1− h(t− 2) + h(t− 4)).
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The output rate of salt is given by y(t)
10 · 3 = 3

10y(t) kg/min. We are thus
led to the differential equation

y′ +
3

10
y(t) = 3(1− h(t− 2) + h(t− 4)), y(0) = 2.

We take the Laplace transform of both sides, simplify, and use partial
fractions to get

Y (s) =
2

s+ 3/10
+

3

s(s+ 3/10)
(1− e−2s + e−4s)

=
10

s
− 8

s+ 3/10
+

(

10

s
− 10

s+ 3/10

)

(e−4s − e−2s).

Laplace inversion now gives

y(t) = 10− 8e−3t/10 −
(

10− 10e−3(t−2)/10
)

h(t− 2)

+
(

10− 10e−3(t−4)/10
)

h(t− 4)

=











10− 8e−3t/10 if 0 ≤ t < 2

10e−3(t−2)/10 − 8e−3t/10 if 2 ≤ t < 4

10− 8e−3t/10 + 10e−3(t−2)/10 − 10e−3(t−4)/10 if 4 ≤ t < ∞
.

Section 6.4

1. Take the Laplace transform, solve for Y (s), and simplify to get Y (s) =
e−s

s+2 . Laplace inversion then gives

y = e−2(t−1)h(t− 1)

=

{

0 if 0 ≤ t < 1

e−2(t−1) if 1 ≤ t < ∞ .

3. Take the Laplace transform, solve for Y (s), and simplify to get Y (s) =
2

s−4 + e−4s

s−4 . Laplace inversion then gives

y = 2e4t + e4(t−4)h(t− 4)

=

{

2e4t if 0 ≤ t < 4

2e4t + e4(t−4) if 4 ≤ t < ∞ .
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5. We begin by taking the Laplace transform of each side and simplifying

to get Y (s) = 1
s2+4 + e−πs

s2+4 . Laplace inversion then gives

y =
1

2
sin 2t+

1

2
sin 2(t− π)h(t− π)

=
1

2
sin 2t+

1

2
sin(2t)h(t− π)

=

{

sin 2t
2 if 0 ≤ t < π

sin 2t if π ≤ t < ∞ .

7. Apply the Laplace transform, partial fractions, and simplify to get

Y (s) =
s+ 3

(s+ 1)(s+ 3)
+

2e−2s

(s+ 1)(s+ 3)

=
1

s+ 1
+

(

1

s+ 1
− 1

s+ 3

)

e−2s.

Laplace inversion gives

y = e−t +
(

e−(t−2) − e−3(t−2)
)

h(t− 2)

=

{

e−t if 0 ≤ t < 2

e−t + e−(t−2) − e−3(t−2) if 2 ≤ t < ∞ .

9. Take the Laplace transform, apply partial fractions, and simplify to get

Y (s) = − s+ 1

(s+ 2)2
+

3

(s+ 2)2
e−s

=
1

(s+ 2)2
− 1

s+ 2
+

3

(s+ 2)2
e−s.

Laplace inversion now gives

y = te−2t − e−2t + 3(t− 1)e−2(t−1)h(t− 1)

=

{

te−2t − e−2t if 0 ≤ t < 1

te−2t − e−2t + 3(t− 1)e−2(t−1) if 1 ≤ t < ∞ .

11. The input rate of salt is 6 + 4δ3 while the output rate is 3 y(t)
12 . We thus

have the differential equation y′ + 1
4y = 6 + 4δ3, y(0) = 0. Take the

Laplace transform, apply partial fractions, and simplify to get
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Y (s) =
6

s(s+ 1/4)
+

4

s+ 1/4
e−3s

=
24

s
− 24

s+ 1/4
+

4

s+ 1/4
e−3s.

Laplace inversion now gives

y = 24− 24e−
1
4 t + 4e−

1
4 (t−3)h(t− 3)

=

{

24− 24e−
1
4 t if 0 ≤ t < 3

24− 24e−
1
4 t + 4e−

1
4 (t−3) if 3 ≤ t < ∞ .

13. Clearly, y(0) = 0. The input rate is δ0+δ2+δ4+δ6 while the output rate is

y. We are thus led to the differential equation y′+y =
∑3

k=0 δ2k, y(0) =
0. Take the Laplace transform and solve for Y (s) to get

Y (s) =

3
∑

k=0

e−2ks

s+ 1
.

Laplace inversion gives

y =

3
∑

k=0

e−(t−2k)h(t− 2k)

=



















e−t if 0 ≤ t < 2

e−t + e−(t−2) if 2 ≤ t < 4

e−t + e−(t−2) + e−(t−4) if 4 ≤ t < 6

e−t + e−(t−2) + e−(t−4) + e−(t−6) if 6 ≤ t < ∞

.

Using the formula 1 + r + r2 + · · ·+ rn = 1−rn+1

1−r we get

y(6) =
3
∑

k=0

e−(6−2k) =
3
∑

k=0

e−2k =
3
∑

k=0

(e−2)k

=
1−

(

e−2
)4

1− e−2
= 1.156 lb.

15. The mass is m = 2. The spring constant k is given by k = 8/1 = 8.
The damping constant is given by µ = 8/1 = 8. The external force is
2δ4. The initial conditions are y(0) = .1 and y′(0) = .05. The equation
2y′′ + 8y′ + 8y = 2δ4, y(0) = .1, y′(0) = .05 models the motion of
the body. Divide by two to get y′′ + 4y′ + 4y = δ4. Apply the Laplace
transform to get
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Y (s) =
.1

s+ 2
+

1

(s+ 2)2
e−4s.

Laplace inversion now gives

y =
1

10
e−2t + (t− 4)e−2(t−4)h(t− 4)

=

{

1
10e

−2t if 0 ≤ t < 4
1
10e

−2t + (t− 4)e−2(t−4) if 4 ≤ t < ∞ .

17. Clearly m = 1, µ = 0, and k = 1. The forcing function is δ0 + δπ + · · ·+
δ5π =

∑5
k=0 δπk. The differential equation that describes the motion is

y′′ + y =
5
∑

k=0

δπk.

Apply the Laplace transform to get

Y (s) =

5
∑

k=0

e−πks

s2 + 1
.

Laplace inversion now gives

y =

5
∑

k=0

(sin(t− πk))h(t− πk)

=

5
∑

k=0

(−1)k(sin t)h(t− πk)

=







































sin t if 0 ≤ t < π

0 if π ≤ t < 2π

sin t if 2π ≤ t < 3π

0 if 3π ≤ t < 4π

sin t if 4π ≤ t < 5π

0 if 5π ≤ t < ∞

.

The graph is given below.

0

1

−1

π 2π 3π 4π 5π 6π
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At t = 0 the hammer imparts a velocity to the system causing harmonic
motion. At t = π the hammer strikes in precisely the right way to stop
the motion. Then at t = 2π the process repeats.

19. The value of y(t) at t = c for y given by Exercise 18 is y0e
−ac. Thus the

differential equation we need to solve is y′+ay = 0, y(c) = y0e
−ac+k, on

the interval [c,∞). We get the general solution y(t) = be−at. The initial
condition implies be−ac = y0e

−ac + k. Solving for b gives b = y0 + keac.
Thus

y = y0e
−at + ke−a(t−c),

on the interval [c,∞).

Section 6.5

1. F (s) = 1
s−1 and G(s) = 1

s − e−s

s . Thus F (s)G(s) = 1
(s−1)s − e−s

(s−1)s . Par-

tial fractions gives F (s)G(s) =
(

1
s−1 − 1

s

)

−
(

1
s−1 − 1

s

)

e−s and Laplace

inversion gives

f ∗ g(t) = et − 1−
(

et−1 − 1
)

h(t− 1)

=

{

et − 1 if 0 ≤ t < 1

et − et−1 if 1 ≤ t < ∞ .

3. F (s) = e−sL{t+ 1} =
(

1
s2 + 1

s

)

e−s and G(s) = 1
s

(

e−3s − e−4s
)

. Thus

F (s)G(s) =

(

1

s3
+

1

s2

)

(

e−4s − e−5s
)

Laplace inversion now gives

f ∗ g =

(

(t− 4)2

2
+ (t− 4)

)

h(t− 4)−
(

(t− 5)2

2
+ (t− 5)

)

h(t− 5)

=











0 if 0 ≤ t < 4
(t−4)2

2 + (t− 4) if 4 ≤ t < 5

t− 7/2 if 5 ≤ t < ∞
.

5. F (s) = 1
s − 1

se
−2s and G(s) = 1

s − 1
se

−2s. Thus

F (s)G(s) =
1

s2
(

1− 2e−2s + e−4s
)
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Laplace inversion now gives

f ∗ g = t− 2(t− 2)h(t− 2) + (t− 4)h(t− 4)

=











t if 0 ≤ t < 2

−t+ 4 if 2 ≤ t < 4

0 if 4 ≤ t < ∞
.

7.

sin t ∗ (δ0 + δπ) = sin t+ sin(t− π)h(t− π)

= sin t− (sin t)h(t− π)

=

{

sin t if 0 ≤ t < π

0 if π ≤ t < ∞ .

9. The unit impulse response function is ζ(t) = L−1
{

1
s−3

}

= e3t. The

homogeneous solution is yh = 2e3t. Observe that Yp(s) = 1
s−3

e−2s

s =

1
3

(

1
s−3 − 1

s

)

e−2s. It follows that the particular solution is

yp = ζ ∗ (h(t− 2))

= L−1 {Yp(s)}

=
1

3

(

e3(t−2) − 1
)

h(t− 2).

and

y = yh + yp

= 2e3t +
1

3

(

e3(t−2) − 1
)

h(t− 2)

=

{

2e3t if 0 ≤ t < ∞
2e3t + 1

3

(

e3(t−2) − 1
)

if 1 ≤ t < ∞ .

11. The unit impulse response function is ζ(t) = L−1
{

1
s+8

}

= e−8t. The

homogeneous solution is yh = −2e−8t. The particular solution is yp =
ζ ∗ χ[3,5). Observe that
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Yp(s) = L{yp}

=
1

s+ 8

(

e−3s

s
− e−5s

s

)

=
1

8

(

1

s
− 1

s+ 8

)

(

e−3s − e−5s
)

.

It follows that

yp = L−1 {Yp(s)}

=
1

8

(

1− e−8(t−3)
)

h(t− 3)− 1

8

(

1− e−8(t−5)
)

h(t− 5).

and

y = yh + yp

= −2e−8t +
1

8

(

1− e−8(t−3)
)

h(t− 3)− 1

8

(

1− e−8(t−5)
)

h(t− 5)

=











−2e−8t if 0 ≤ t < 3

−2e−8t + 1
8

(

1− e−8(t−3)
)

if 3 ≤ t < 5

−2e−8t + 1
8

(

e−8(t−5) − e−8(t−3)
)

if 5 ≤ t < ∞

13. The unit impulse response function is ζ(t) = L−1
{

1
s2+9

}

= 1
3 sin 3t. The

homogeneous solution is yh = cos 3t. For the particular solution yp we
have

yp =
1

3
sin 3t ∗ χ[0,2π)

=
1

3

∫ t

0

sin(3(t− u))χ[0,2π) du

=
1

3

{∫ t

0 sin(3(t− u)) du if 0 ≤ t < 2π
∫ 2π

0
sin(3(t− u)) du if 2π ≤ t < ∞

=
1

9

{

1− cos 3t if 0 ≤ t < 2π

0 if 2π ≤ t < ∞ .

15. Let y be the homogenous solution to q(D)y = 0 with the given initial
conditions. Observe that

L
{

Dky
}

=

{

skY (s) if k < n

snY (s)− 1/an if k = n
.

and thus
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L
{

akD
ky
}

=

{

aks
kY (s) if k < n

ans
nY (s)− 1 if k = n

.

Therefore L{q(D)y} = q(s)Y (s)− 1 = 0 from which we get

Y (s) =
1

q(s)
.

Hence y = ζ is the unit impulse response function.

17. Suppose a0ζ+ a1ζ
′+ · · ·+ an−1ζ

(n−1) = 0. Apply the Laplace transform
and use Exercise 16 to get

a0 + a1s+ · · · an−1s
n−1

q(s)
= 0.

It follows that the numerator must be identically 0 and hence the coef-
ficients ak = 0, for each k. Thus

{

ζ, ζ′, . . . , ζ(n−1)
}

is linearly indepen-
dent.

19. This follows from Exercises 17 and 18.

21. By the input derivative formula we get

L
{

Dky
}

= skY (s)− sk−1y0 − · · · − yk−1 = skY (s)−
k−1
∑

l=0

slyk−1−l,

for k ≥ 1. It follows that

L{q(D)y} = q(s)Y (s)−
n
∑

k=1

k−1
∑

l=0

aks
lyk−1−l.

Therefore

Y (s) =
n
∑

k=1

k−1
∑

l=0

ak
sl

q(s)
yk−1−l.

Laplace inversion and Exercise 15 give

y(t) =

n
∑

k=1

k−1
∑

l=0

akζ
(l)yk−l−1.

Reversing the order of the sum gives
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y(t) =

n−1
∑

l=0

(

n
∑

k=l+1

akyk−l−1

)

ζ(l)

=

n−1
∑

l=0

(

n−l−1
∑

k=0

ak+l+1yk

)

ζ(l),

where in the second line and second sum we shifted k to k + l + 1. It
follows that the coefficients are given by

cl =

n−l−1
∑

k=0

ak+l+1yk.

23. We have q(s) = s2 − 2s + 1 = (s − 1)2 and the unit impulse response

function is ζ = L−1
{

1
(s−1)2

}

= tet. To compute c0 we write

1 −2 1
2 −3

and get c0 = −2 · 2 + 1 · (−3) = −7. For c1 we consider

1 −2 1
2 −3

and get c1 = 1 · 2 = 2. It follows from Exercise 21 that

y = c0ζ + c1ζ
′

= −7tet + 2(et + tet)

= 2et − 5tet.

25. We have q(s) = s3 + s = s(s2 + 1). Partial fractions give 1
s(s2+1) =

1
s − s

s2+1 . Thus ζ = L−1 {q(s)} = 1− cos t. To compute c0 we write

0 1 0 1
1 0 4

and get c0 = 1 + 4 = 5. For c1 we consider

0 1 0 1
1 0 4

and get c1 = 0. For c2 we consider
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0 1 0 1
1 0 4

and get c2 = 1. It follows from Exercise 21 that

y = c0ζ + c1ζ
′ + c2ζ

′′

= 5(1− cos t) + 0(sin t) + 1(cos t)

= 5− 4 cos t.

Section 6.6

1.

∞
∑

n=0

(t− n)2χ[n,n+1)(t) = (< t >1)
2.

3.

∞
∑

n=0

n2χ[3n,3(n+1))(t) =
1

9

∞
∑

n=0

(3n)2χ[3n,3(n+1))(t)

=
1

9
([t]3)

2.

5.

∞
∑

n=0

(t+ n)χ[2n,2(n+1))(t) =
∞
∑

n=0

(t− 2n+
3

2
2n)χ[2n,2(n+1))(t)

= < t >2 +
3

2
[t]2.

7.

L{f(< t >3)} =
1

1− e−3s
L
{

et − eth(t− 3)
}

=
1

1− e−3s

(

1

s− 1
− e−3sL

{

et+3
}

)

=
1

1− e−3s

(

1

s− 1
− e−3se3

s− 1

)

=
1− e−3(s−1)

1− e−3s

1

s− 1
.
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9.

L{f(< t >2p)} =
1

1− e−2ps

(
∫ 2p

0

e−stf(t) dt

)

=
1

1− e−2ps

(
∫ p

0

e−st dt−
∫ 2p

p

e−st dt

)

=
1

1− e−2ps

(

e−ps − 1

−s
+

e−2ps − e−ps

s

)

=
(1− e−ps)

2

1− e−2ps

1

s

=
1− e−ps

1 + e−ps

1

s
.

11. Since < t >p= t− [t]p we have [t]p = t− < t >p. Hence

L{[t]p} = L{t} − L{< t >p}

=
1

s2
− 1

s2

(

1− spe−ps

1− e−ps

)

=
pe−ps

s (1− e−ps)

=
p

s (eps − 1)

13. On the interval [2n, 2n+ 2) we have f(t) = e−2n thus

f(t) =
∞
∑

n=0

e−2nχ[2n,2n+2)(t).

We now have
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L{f([t]2)} =
∞
∑

n=0

e−2n

(

e−2ns − e−(2n+2)s

s

)

=

∞
∑

n=0

e−2ne−2ns 1− e−2s

s

=
1− e−2s

s

∞
∑

n=0

e−2n(s+1)

=
1− e−2s

s

∞
∑

n=0

(

e−2(s+1)
)n

=
1− e−2s

s

1

1− e−2(s+1)

=
1− e−2s

1− e−2(s+1)

1

s

15.

L{f([t]p)} =

∞
∑

n=0

f(np)L{χ[np,(n+1)p)}

=

∞
∑

n=0

f(np)
e−nps − e−(n+1)ps

s

=
1− e−ps

s

∞
∑

n=0

f(np)e−nps.

17. Let F (s) = 1−e−4(s−2)

(1−e−4s)(s−2) . We first write

F (s) =
∞
∑

n=0

1− e−4(s−2)

s− 2
e−4ns

=

∞
∑

n=0

e−4ns − e8e−4(n+1)s

s− 2

Laplace inversion now gives
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L−1 {F (s)} =
∞
∑

n=0

e2(t−4n)h(t− 4n)− e8e2(t−4(n+1))h(t− 4(n+ 1))

=

∞
∑

n=0

e2(t−4n) (h(t− 4n)− h(t− 4(n+ 1)))

= e2t
∞
∑

n=0

e−2(4n)χ[4n,4(n+1))

= e2te−2[t]4 = e2(t−[t]4) = e2<t>4 .

19.

L−1{F (s)} =
∞
∑

n=0

(−1)nL−1

{

e−pns

s+ a

}

=

∞
∑

n=0

(−1)ne−a(t−pn)h(t− pn)

= e−at
∞
∑

N=0

N
∑

n=0

(−1)neapnχ[N,(N+1)p)

= e−at
∞
∑

N=0

1− (−eap)N+1

1−−eap

= e−at
∞
∑

N=0

1− (−1)N+1ea(N+1)p

1 + eap

= e−at







1+ea(N+1)p

1+eap if t ∈ [Np, (N + 1)p), (N even)

1−ea(N+1)p

1+eap if t ∈ [Np, (N + 1)p), (N odd)

= e−at





1 + (−1)
[t]p
p ea([t]p+p)

1 + eap



 .

Section 6.7

1. On the interval [0, 2) the input rate is 2 · 4 = 8 lbs salt per minute.
On the interval [2, 4) the input rate is 1 · 4 = 4 lbs salt per minute.
The input function f(t) is periodic with period 4. We can thus write

f(t) = 4 + 4 sw2(t). The output rate is y(t)
10 · 4. The resulting differential

equation that models this problem is
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y′ +
4

10
y = 4 + 4 sw2(t), y(0) = 0.

Taking the Laplace transform and simplifying gives

Y (s) =
4

s(s+ 2
5 )

+
4

s(s+ 2
5 )

1

1 + e−2s
.

Partial fractions gives

4

s(s+ 2
5 )

=
10

s
− 10

s+ 2
5

and hence

Y (s) =
10

s
− 10

s+ 2
5

+
10

s

1

1 + e−2s
− 10

s+ 2
5

1

1 + e−2s
.

Let

Y1(s) =
10

s
− 10

s+ 2
5

Y2(s) =
10

s

1

1 + e−2s

Y3(s) =
10

s+ 2
5

1

1 + e−2s
.

Example 6.6.2 and Exercise 6.6.19 are useful for taking the inverse
Laplace transforms of Y2 and Y3. We get

y1(t) = 10− 10e
−2t
5

y2(t) = 10 sw2(t)

y3(t) =
10e

−2t
5

1 + e
4
5

(

1 + e
4
5

{

e
4N
5 if t ∈ [2N, 2(N + 1)), N even

−e
4N
5 if t ∈ [2N, 2(N + 1)), N odd

)

=
10e

−2t
5

1 + e
4
5

(

1 + e
4
5 (−1)[t/2]1e

2
5 [t]2

)

.

It now follows that

y(t) = y1(t) + y2(t)− y3(t)

= 10− 10e
−2t
5 + 10 sw2(t)−

10e
−2t
5

1 + e
4
5

(

1 + e
4
5 (−1)[t/2]1e

2
5 [t]2

)

When t = 2N and N is even then
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y(2N) = 20− 10e
−2
5 2N − 10

e
−2
5 2N

1 + e
4
5

(

1 + e
4
5 e

2
52N

)

.

Continuing y(2N) to all t ≥ 0 gives

l(t) = 20− 10e
−2
5 t − 10

e
−2
5 t

1 + e
4
5

(

1 + e
4
5 e

2
5 t
)

,

a function whose graph bounds the graph of y from below. In a similar
way for t = 2N , N odd, we get

u(t) = 10− 10e
−2
5 t − 10

e
−2
5 t

1 + e
4
5

(

1− e
4
5 e

2
5 t
)

,

whose graph bounds the graph of y from above. Now observe that

lim
t→∞

l(t) = 20− 10e
4
5

1 + e
4
5

≈ 13.10 and lim
t→∞

u(t) = 10 +
10e

4
5

1 + e
4
5

≈ 16.9

Thus the amount of salt fluctuates from 13.10 pounds to 16.90 pounds in
the long term.

3. The input function is 5
∑∞

n=1 δ2n = 5δ0(< t >2). and therefore the dif-
ferential equation that models this system is

y′ +
1

2
y = 5δ0(< t >2), y(0) = 0.

By Proposition 6.6.6 the Laplace transform gives

Y (s) =
5

s+ 1
2

1

1− e−2s
.

By Theorem 6.6.7 Laplace inversion gives

y(t) = 5

∞
∑

N=0

(

N
∑

n=0

e−
1
2 (t−2n)

)

χ[2N,2(N+1))

= 5e−
1
2 t

∞
∑

N=0

eN+1 − 1

e− 1
χ[2N,2(N+1))

= 5e−
1
2 t
e

1
2 [t]2+1 − 1

e− 1
.

The solution is sandwiched in between a lower and upper curve. The
upper curve, u(t), is obtained by setting t = 2m to be an even integer in
the formula for the solution and then continuing it to all reals. We obtain
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u(2m) = 5e−
1
22m

e
1
2 [2m]2+1 − 1

e − 1
= 5e−

1
22m

e
1
22m+1 − 1

e − 1
.

Thus

u(t) = 5e−
1
2 t
e

1
2 t+1 − 1

e− 1
= 5

e− e−
1
2 t

e− 1
.

In a similar way, the lower curve, l(t), is obtained by setting t = 2(m+1)−

( slightly less than the even integer 2(m+1)) and continuing to all reals.
We obtain

l(t) = 5
1− e−

1
2 t

e− 1
.

An easy calculation gives

limt→∞ u(t) = 5 e
e−1 ≃ 7.91 and limt→∞ l(t) = 5 1

e−1 ≃ 2.91.

This means that the salt fluctuation in the tank varies between 2.91 and
7.91 pounds for large values of t.

5. Let y(t) be the number of allegators at time t measured in months. We
assume the Malthusian growth model y′ = ry. Thus y(t) = y(0)ert =
3000ert. To determine the growth rate r we know y(−12) = 2500 (12
months earlier there were 2500 allegators). Thus 2500 = 3000e−12r and
hence r = 1

12 ln
6
5 . The elite force of Cajun allegator hunters instanta-

neously remove 40 allegators at the beginning of each month. This can
be modeled by 40(δ0+δ1+ · · · ) = 40δ0(< t >1). The mathematical model
is thus

y′ = ry − 40δ0(< t >1), y(0) = 3000,

where r = 1
12 ln

6
5 . We apply the Laplace transform and use Proposition

6.6.6 to get

Y (s) =
3000

s− r
− 40

1

s− r

1

1− e−s
.

Let

Y1(s) =
3000

s− r

Y2(s) = 40
1

s− r

1

1− e−s

Then Y (s) = Y1(s) + Y2(s). We use Theorem 6.6.7 to get
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y1(t) = 3000ert

y2(t) = 40

∞
∑

N=0

(

N
∑

n=0

er(t−n)

)

χ[N,N+1)

= 40ert
∞
∑

N=0

1− e−r(N+1)

1− e−r
χ[N,N+1)

= 40
ert − e−r([t]1−t+1)

1− e−r
.

It follows now that

y(t) = y1(t)− y2(t)

= 3000ert − 40
ert − e−r([t]1−t+1)

1− e−r
.

To determine the population at the beginning of 5 years = 60months we
compute

y(60) = 3000e60r − 40
e60r − e−r

1− e−r

= 7464.96− 3988.16

≈ 3477

Section 6.8

1. Since cβ =
√
2 is not an odd multiple of π we get

y(t) = 2
(

2 sw1(t)− (−1)[t]1(cos < t >1 −α sin < t >1)
)

−2 (cos t+ α sin t)) ,

where α = − sin
√
2

1+cos
√
2
. Since βc

π = 2
π is irrational the motion is non periodic

3. Since cβ = 2π is not an odd multiple of π we get

y(t) =
1

π2

(

2 sw2(t)− (−1)[t/2]1 cosπ < t >2 − cosπt
)

=
1

π2

(

2 sw2(t)− cosπt
(

(−1)[t/2]1 + 1
))

,

where we have used the identity cosπ < t >2= cosπt. Since βc
π = 2 is

rational the motion is periodic.
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5. Since cβ = π is an odd multiple of π we get y(t) = 2
π2 (sw1(t)− [t]1 cosπt− cosπt).

Resonance occurs.

7. Since cβ = π is not a multiple of 2π and γ = 0 we get

y(t) = sin t+ sin < t >π

+ (1 + (−1)[t/π]1) sin t,

where we have used sin < t >π= (−1)[t/π]1 sin t. Since βc
2π = 1

2 is rational
the motion is periodic.

9. Since cβ = 1 is not a multiple of 2π and γ = − sin 1
1−cos 1 we get

y(t) = sin t+ γ cos t+ sin < t >1 −γ cos < t >1,

where γ = − sin 1
1−cos 1 . Since βc

2π = 1
2π is not rational the motion is non

periodic.

11. Since βc = 2π we get

y(t) = 2(sin t)(1 + [t/2π]1).

Resonance occurs.

13. First we have

N
∑

n=0

(

eiθ
)n

=

N
∑

n=0

einθ

=
N
∑

n=0

cosnθ + i sinnθ

=

N
∑

n=0

cosnθ + i

N
∑

n=0

sinnθ.

On the other hand,

N
∑

n=0

(

eiθ
)n

=
ei(N+1)θ − 1

eiθ − 1

=
cos(N + 1)θ − 1 + i sin(N + 1)θ

cos θ − 1 + i sin θ

=
cos(N + 1)θ − 1 + i sin(N + 1)θ

cos θ − 1 + i sin θ
· cos θ − 1− i sin θ

cos θ − 1− i sin θ

The product of the denominators simplifies to 2 − 2 cos θ. The product
of the numerators has a real and imaginary part. Call them R and I,
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respectively. Then

R = (cos((N + 1)θ)− 1)(cos θ − 1) + sin((N + 1)θ) sin θ

= cos((N + 1)θ) cos θ + sin((N + 1)θ) sin θ − cos(N + 1)θ − cos θ + 1

= cos(Nθ)− cos(Nθ) cos θ + sin(Nθ) sin θ − cos θ + 1

= (cos(Nθ) + 1)(1− cos θ) + sin(Nθ) sin θ

and

I = sin((N + 1)θ)(cos θ − 1)− sin θ(cos((N + 1)θ)− 1)

= sin((N + 1)θ) cos θ − sin((N + 1)θ) + sin θ − cos((N + 1)θ) sin θ

= sin(Nθ)− sin(Nθ) cos θ − cos(Nθ) sin θ + sin θ

= sin(Nθ)(1 − cos θ) + sin θ(1− cos(Nθ)).

Equating real and imaginary parts and simplifying now gives

N
∑

n=0

cosnθ =
R

2− 2 cos θ

=
(cos(Nθ) + 1)(1− cos θ) + sin(Nθ) sin θ

2− 2 cos θ

=
1

2
(1 + cosNθ + γ sinNθ)

and

N
∑

n=0

sinnθ =
I

2− 2 cos θ

=
sin(Nθ)(1 − cos θ) + sin θ(1− cos(Nθ))

2− 2 cos θ

=
1

2
(sinNθ + γ(1− cosNθ))

15. Let

R(v) =

N
∑

n=0

cosnv =
1

2
(1 + cosNv + γ sinNv) = Re

N
∑

n=0

einv

I(v) =
N
∑

n=0

sinnv =
1

2
(sinNv + γ(1− cosNv)) = Im

N
∑

n=0

einv,

as in Exercise 13. Now
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N
∑

n=0

cos(u+ nv) = Re

N
∑

n=0

ei(u+nv)

= Re

(

eiu
N
∑

n=0

einv

)

= Re ((cosu+ i sinu)(R(v) + iI(v)))

= (cosu)R(v)− (sinu)I(v)

=
1

2
(cosu+ cosu cosNv + γ cosu sinNv)

−1

2
(sinu sinNv + γ(sinu− sinu cosNv))

=
1

2
(cosu+ cos(u+Nv) + γ(− sinu+ sin(u+Nv)) .

Similarly,

N
∑

n=0

sin(u + nv) = Im

N
∑

n=0

ei(u+nv)

= Im

(

eiu
N
∑

n=0

einv

)

= Im ((cosu+ i sinu)(R(v) + iI(v)))

= (sinu)R(v) + (cosu)I(v)

=
1

2
(sinu+ sinu cosNv + γ sinu sinNv)

+
1

2
(cosu sinNv + γ(cosu− cosu cosNv))

=
1

2
(sinu+ sin(u+Nv) + γ(cosu− cos(u+Nv))) .

Section 7.1

1. The ratio test gives (n+1)2

n2 → 1. R = 1.

3. The ratio test gives 2nn!
2n+1(n+1)! =

1
2(n+1) → 0. R = ∞.

5. The ratio test gives (n+1)!
n! = n+ 1 → ∞. R = 0.

7. t is a factor in this series which we factor out to get t
∞
∑

n=0

(−1)nt2n

(2n)! . Since

t is a polynomial its presence will not change the radius of convergence.
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Let u = t2 in the new powers series to get
∞
∑

n=0

(−1)nun

(2n)! . The ratio test

gives
∣

∣

∣

(−1)n+1(2n)!
(−1)n(2n+2)!

∣

∣

∣ = 1
(2n+1)(2n+2) → 0. The radius of convergence in u

and hence t is ∞.

9. The expression in the denominator can be written 1·3·5···(2n+1)
1 = 1·2·3·4···(2n+1)

2·4···2n =

(2n+1)!
2n(1·2·3···n) =

(2n+1)!
2nn! and the given power series is

∞
∑

n=0

(n!)22ntn

(2n+1)! . The ratio

test gives ((n+1)!)22n+1(2n+1)!
(n!)22n(2n+3)! = (n+1)22

(2n+3)(2n+2) → 1
2 . R = 2.

11. Use the geometric series to get 1
t−a = −1

a
1

1− t
a

= −1
a

∞
∑

n=0

(

t
a

)n
=

−
∞
∑

n=0

tn

an+1 .

13. sin t
t = 1

t

∞
∑

n=0

(−1)nt2n+1

(2n+1)! =
∞
∑

n=0

(−1)nt2n

(2n+1)! .

15. Recall that tan−1 t =
∫

1
1+t2 dt. Using the result of Exercise 10 we get

tan−1 t =
∞
∑

n=0

∫

(−1)nt2n dt+ C =
∞
∑

n=0

(−1)n t2n+1

2n+1 + C. Since tan−1 0 = 0

it follows that C = 0. Thus tan−1 t =
∞
∑

n=0
(−1)n t2n+1

2n+1 .

17. Since tan t is odd we can write tan t =
∞
∑

n=0
d2n+1t

2n+1 and hence sin t =

cos t
∞
∑

n=0
d2n+1t

2n+1. Writing out a few terms gives t − t3

3! +
t5

5! − · · · =

(1− t2

2! +
t4

4! − · · · )(d1t+ d3t
3 + d5t5 · · · ). Collecting like powers of t gives

the following recursion relations

d1 = 1

d3 −
d1
2!

=
−1

3!

d5 −
d3
2!

+
d1
4!

=
1

5!

d7 −
d5
2!

+
d3
4!

− d1
6!

=
−1

7!
.

Solving these equations gives
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d1 = 1

d3 =
1

3

d5 =
2

15

d7 =
17

315
.

Thus tan t = 1 + 1
3 t

3 + 2
15 t

5 + 17
315 t

7 + · · · .

19. et sin t = (1+ t+ t2

2! +
t3

3! +
t4

4! + · · · )(t− t3

3! +
t5

5! −· · · ) = t+(1)t2 +(−1
3! +

1
2! )t

3 + (−1
3! + 1

3!)t
4 + ( 1

5! − 1
2!

1
3! +

1
4! )t

5 · · · = t+ t2 + 1
3 t

3 − 1
30 t

5.

21. The ratio test gives infinite radius of convergence. Let f(t) be the func-
tion defined by the given power series. Then

f(t) =
∞
∑

n=0

(−1)n
n+ 1

n!
tn

=

∞
∑

n=0

(−1)n
(

n

n!
+

1

n!

)

tn

=

∞
∑

n=1

(−1)n
1

(n− 1)!
tn +

∞
∑

n=0

(−1)n
1

n!
tn

= t

∞
∑

n=0

(−1)n+1 t
n

n!
+

∞
∑

n=0

(−t)n

n!

= −te−t + e−t

23. It is easy to check that the interval of convergence is (−1, 1). Let f(t) be
the function defined by the given power series. Then

∫

f(t) dt =

∞
∑

n=0

(n+ 1)
tn+1

n+ 1
+ c

= t

∞
∑

n=0

tn + c

=
t

1− t
+ c.

Differentiation gives

f(t) =
1

(1− t)2
.
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25. It is not hard to see that the interval of convergence is (−1, 1). Let f(t)
be the given power series. A partial fraction decomposition gives

1

(2n+ 1)(2n− 1)
=

1

2

(

1

2n− 1
− 1

2n+ 1

)

.

Therefore

f(t) =
1

2

∞
∑

n=0

t2n+1

2n− 1
− 1

2

∞
∑

n=0

t2n+1

2n+ 1
.

Let f1(t) =
∑∞

n=0
t2n+1

2n−1 and f2(t) =
∑∞

n=0
t2n+1

2n+1 . Then f1(t) = −t +
t2

2 ln 1+t
1−t by Exercise 24. Observe that f2(0) = 0 and

f ′
2(t) =

∞
∑

n=0

t2n

=
1

1− t2
=

1

2

1

1 + t
+

1

2

1

1− t
.

Integration and the fact that f2(0) = 0 gives f2(t) =
1
2 ln

1+t
1−t . It follows

now that

f(t) =
1

2
(f1(t)− f2(t))

=
1

2

(

−t+
t2

2
ln

1 + t

1− t
− 1

2
ln

1 + t

1− t

)

=
−t

2
+

t2 − 1

4
ln

1 + t

1− t
.

27. The binomial theorem: (a+ b)n =
∑n

k=0

(

n
k

)

akbn−k.

29. The ratio cn+1

cn
is 1

2 if n is even and 2 if n is odd. Thus lim
n→∞

∣

∣

∣

cn+1

cn

∣

∣

∣ does

not exist. The ratio test does not apply. The root test gives that n
√
cn is

1 if n is odd and n
√
2 if n is even. As n approaches ∞ both even and odd

terms approach 1. It follows that the radius of convergence is 1.

31. Suppose f (n)(t) = e
−1
t pn(

1
t ) where pn is a polynomial. Then f (n+1)(t) =

e
−1
t

(

1
t2

)

pn(
1
t )+p′n(

1
t )
(−1

t2

)

e
−1
t = e

−1
t pn+1(

1
t ), where pn+1(x) = x2(pn(x)−

p′n(x)). By mathematical induction it follows that f (n)(t) = e
−1
t pn

(

1
t

)

for all n = 1, 2, . . ..

33. Since f(t) = 0 for t ≤ 0 clearly lim
t→0−

f (n)(t) = 0 The previous problems

imply that the right hand limits are also zero. Thus f (n)(0) exist and is
0.
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Section 7.2

1. Let y(t) =
∞
∑

n=0
cnt

n. Then cn+2 = cn
(n+2)(n+1) . Consider even and odd

cases to get c2n = c0
(2n)! and c2n+1 = c1

(2n+1)! . Thus y(t) = c0
∞
∑

n=0

t2n

(2n)! +

c1
∞
∑

n=0

t2n+1

(2n+1)! = c0 cosh t+ c1 sinh t. (see Example 7.1.7) We observe that

the characteristic polynomial is s2 − 1 = (s − 1)(s + 1) so {et, e−t} is

a fundamental set. But cosh t = et+e−t

2 and sinh t = et−e−t

2 ; the set
{cosh t, sinh t} is also a fundamental set.

3. Let y(t) =
∞
∑

n=0
cnt

n. Then cn+2(n + 2)(n + 1) + k2cn = 0 or cn+2 =

− k2cn
(n+2)(n+1) . We consider first the even case.

n = 0 c2 = −k2c0
(2·1

n = 2 c4 = −k2c2
4·3 = k4c0

4!

n = 4 c6 = −k6c0
6!

...
...

From this it follows that c2n = (−1)n k2nc0
(2n)! . The odd case is similar. We

get c2n+1 = (−1)n k2n+1

(2n+1)! . The power series expansion becomes

y(t) =

∞
∑

n=0

cnt
n

= c0

∞
∑

n=0

(−1)n
k2nt2n

(2n)!

+ c1

∞
∑

n=0

(−1)n
k2n+1t2n+1

(2n+ 1)!

= c0 cos kt+ c1 sin kt.

5. Let y(t) =
∞
∑

n=0
cnt

n. Then the recurrence relation is

(n+ 2)(n+ 1)cn+2 − (n− 2)(n+ 1)cn = 0

or

cn+2 =
n− 2

n+ 2
cn.
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Since there is a difference of two in the indices we consider the even and
odd case. We consider first the even case.

n = 0 c2 = −c0

n = 2 c4 = 0
4c2 = 0

n = 4 c6 = 2
6c4 = 0

...
...

It follows that c2n = 0 for all n = 2, 3, . . .. Thus

∞
∑

n=0

c2nt
2n = c0 + c2t

2 + 0t4 + · · ·

= c0(1 − t2)

and hence y0(t) = 1− t2. We now consider the odd case.

n = 1 c3 = −1
3 c1

n = 3 c5 = 1
5c3 = − 1

5·3c1
n = 5 c7 = 3

7c5 = − 1
7·5c1

n = 7 c9 = 5
9c5 = − 1

9·7c1
...

...

From this we see that c2n+1 = −c1
(2n+1)(2n−1) . Thus

∞
∑

n=0

c2n+1t
2n+1 = −c1

∞
∑

n=0

t2n+1

(2n+ 1)(2n− 1)

and hence y1(t) = −
∞
∑

n=0

t2n+1

(2n+1)(2n−1) . By Exercise 7.1.25 we can write y1

as

y1(t) =
t

2
− t2 − 1

4
ln

(

1 + t

1− t

)

.

The general solution is

y(t) = c0(1− t2)− c1

(

t

2
+

t2 − 1

4
ln

(

1− t

1 + t

))

.

(See also Exercise 5.5.15.)

7. Let y(t) =
∞
∑

n=0
cnt

n. Then the recurrence relation is

cn+2 =
2

n+ 2
cn+1 −

n− 1

(n+ 2)(n+ 1)
cn.
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For the first several terms we get

n = 0 c2 = 0c1 +
1
2c0 = 1

2!c0

n = 1 c3 = 1
2c2 − 0 = 1

3!c0

n = 2 c4 = 2
4c3 − 1

4·3c2 = 1
4!c0

n = 3 c5 = 3
5c4 − 2

5·4c3 = 3
5!c0 − 2

5!c0 = 1
5!c0

...
...

In general,

cn =
1

n!
c0, n = 2, 3, . . . .

We now get

y(t) =

∞
∑

n=0

cnt
n

= c0 + c1t+

∞
∑

n=2

cnt
n

= (c1 − c0)t+ c0 + c0t+ c0

∞
∑

n=2

tn

n!

= (c1 − c0)t+ c0e
t

= c0(e
t − t) + c1t.

9. Let y(t) =
∞
∑

n=0
cnt

n. Then the recurrence relation is

cn+2 = − (n− 2)(n− 3)

(n+ 2)(n+ 1)
cn.

The even case gives:

n = 0 c2 = − 6
2c0 = −3c0

n = 2 c4 = 0

n = 4 c6 = 0

...
...

Hence

∞
∑

n=0

c2nt
2n = c0 + c2t

2 = c0(1− 3t2).

The odd case gives
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n = 1 c3 = − 1
3c1

n = 3 c5 = 0

n = 5 c7 = 0

...
...

Hence

∞
∑

n=0

c2n+1t
2n+1 = c1t+ c3t

3 = c1(t−
t3

3
).

The general solution is

y(t) = c0(1− 3t2) + c1(t−
t3

3
).

11. Let n be an integer. Then einx = (eix)n. By Euler’s formula this is

(cos x+ i sinx)n = cosnx+ i sinnx.

13. By de Moivre’s formula sin(n + 1)x is the imaginary part of (cos x +
i sinx)n+1. The binomial theorem gives

cos(n+ 1)x+ i sin(n+ 1)x = (cosx+ i sinx)n+1

=

n+1
∑

k=0

(

n+ 1

k

)

cosn+1−k xik sink x

Only the odd powers of i contribute to the imaginary part. It follows that

sin(n+ 1)x = Im

⌊n
2 ⌋
∑

j=0

(

n+ 1

2j + 1

)

cosn+1−(2j+1) x(i2j+1) sin2j+1 x

=

⌊n
2 ⌋
∑

j=0

(−1)j
(

n+ 1

2j + 1

)

cosn−2j x(1− cos2 x)j sinx,

where we use the greatest integer function ⌊x⌋ to denote the greatest inte-
ger less than or equal to x. Now replace t = cosx and using the definition

sinxUn(cosx) = sin(n + 1)x to get Un(t) =
∑⌊n

2 ⌋
j=0 (−1)j

(

n+1
2j+1

)

tn−2j(1 −
t2)j . It follows that sinnx is a product of sinx and a polynomial in cosx.

15. We have
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sin((n+2)x) = sin((n+1)x+x) = sin((n+1)x) cosx+cos((n+1)x) sinx

and hence

(sinx)Un+1(cosx) = (sinx)Un(x) cos x+ (sinx)Tn+1(cosx).

Now divide by sinx and let t = cosx. We get

Un+1(t) = tUn(t) + Tn+1(t).

17. By using the sum and difference formula it is easy to verify the following
trigonometric identity:

2 sina cos b = sin(a+ b) + sin(a− b).

Let a = (n+ 1)x and b = x. Then

2 cosx sin(n+ 1)x = sin((n+ 2)x) + sin(nx)

and hence

2(cosx)Un(cos x)/ sinx = Un+1(cosx)/ sinx+ Un−1(cos x)/ sinx.

Now cancel out sinx and let t = cosx.

19. By using the sum and difference formula it is easy to verify the following
trigonometric identity:

2 sina sin b = cos(b − a)− cos(a+ b).

Let a = x and b = nx. Then

2 sinx sinnx = cos((n− 1)x)− cos((n+ 1)x)

and hence
2Un−1(cos x) = Tn−1(cosx)− Tn+1(cosx).

Now let t = cosx, replace n by n+ 1, and divide by 2.

Section 7.3

1. The function t
1−t2 is analytic except at t = 1 and t = −1. The function

1
1+t is analytic except at t = −1. It follows that t = 1 and t = −1 are

the only singular points. Observe that (t − 1)
(

t
1−t2

)

= −t
1+t is analytic
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at 1 and (t− 1)2
(

1
1+t

)

is analytic at t = 1. It follows that 1 is a regular

singular point. Also observe that (t+ 1)
(

t
1−t2

)

= t
1−t is analytic at −1

and (t + 1)2
(

1
1+t

)

= (1 + t) is analytic at t = −1. It follows that −1 is

a regular singular point. Thus 1 and −1 are regular points.

3. Both 3t(1 − t) and 1−et

t are analytic. There are no singular points and
hence no regular points.

5. We first write it in standard form: y′′ + 1−t
t y′ +4y = 0. While the coeffi-

cient of y is analytic the coefficient of y′ is 1−t
t is analytic except at t = 0.

It follows that t = 0 is a singular point. Observe that t
(

1−t
t

)

= 1 − t is
analytic and 4t2 is too. It follows that t = 0 is a regular point.

7. The indicial equation is q(s) = s(s−1)+2s = s2+s = s(s+1) The expo-
nents of singularity are 0 and −1. Theorem 2 guarantees one Frobenius
solution but there could be two.

9. In standard form the equation is t2y′′ + t(1− t)y′ +λty = 0. The indicial
equation is q(s) = s(s − 1) + s = s2 The exponent of singularity is 0
with multiplicity 2. Theorem 2 guarantees that there is one Frobenius
solution. The other has a logarithmic term.

11. y1(t) =
∞
∑

n=0

(−1)nt2n

(2n+1)! = 1
t

∞
∑

n=0

(−1)nt2n

(2n)! = 1
t sin t. y2 is done similarly.

13. Let y(t) = t−2v(t). Then y′(t) = −2t−3v(t) + t−2v′(t) and y′′(t) =
6t−4v(t)− 4t−3v′(t) + t−2v′′(t). From which we get

t2y′′ = 6t−2v(t)− 4t−1v′(t) + v′′(t)

5ty′ = −10t−2v(t) + 5t−1v′(t)

4y = 4t−2v(t).

Adding these terms and remembering that we are assuming the y is a
solution we get

0 = t−1v′(t) + v′′(t).

From this we get v′′

v′
= −1

t . Integrating we get ln v′(t) = − ln t and hence
v′(t) = 1

t . Integrating again gives v(t) = ln t. It follows that y(t) = t−2 ln t
is a second independent solution. The indicial polynomial is q(s) = s(s−
1)+5s+4 = (s−2)2. Case 3 of the theorem guarantees that one solution
is a Frobenius solution and the other has logarithmic term.

In each case below we let y = tr
∑∞

n=0 cnt
n where we assume c0 6= 0 and

r is the exponent of singularity.



1 Solutions 131

15. Indicial polynomial: p(s) = s(s− 3); exponents of singularity s = 0 and
s = 3.

n = 0 c0(r)(r − 3) = 0
n = 1 c1(r − 2)(r + 1) = 0
n ≥ 1 cn(n+ r)(n+ r − 3) = −cn−1

r=3:
n odd cn = 0

n = 2m c2m = 3c0
(−1)m(2m+2)

(2m+3)!

y(t) = 3c0
∑∞

m=0
(−1)m(2m+2)t2m+3

(2m+3)! = 3c0(sin t− t cos t).

r=0: One is lead to the equation 0c3 = 0 and we can take c3 = 0. Thus

n odd cn = 0

n = 2m c2m = c0
(−1)m+1(2m−1)

(2m)!

y(t) = c0
∑∞

m=0
(−1)m+1(2m−1)t2m

(2m)! = c0(t sin t+ cos t).

General Solution: y = c1(sin t− t cos t) + c2(t sin t+ cos t).

17. Indicial polynomial: p(s) = (s − 1)2; exponents of singularity s = 1,
multiplicity 2. There is one Frobenius solution.

r = 1 : Let y(t) =
∑∞

n=0 cnt
n+1. Then

n ≥ 1 n2cn − ncn−1 = 0.

This is easy to solve. We get cn = 1
n!c0 and hence

y(t) = c0

∞
∑

n=0

1

n!
tn+1 = c0te

t.

Logarithmic Solution: Let y1(t) = tet. The second independent solu-
tion is necessarily of the form

y(t) = y1(t) ln t+

∞
∑

n=0

cnt
n+1.

Substitution into the differential equation leads to

t2et +

∞
∑

n=1

(n2cn − ncn−1)t
n+1 = 0.

We write out the power series for t2et and add corresponding coefficients
to get
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n2cn − ncn−1 +
1

(n− 1)!
.

The following list is a straightforward verification:

n = 1 c1 = −1

n = 2 c2 = −1
2

(

1 + 1
2

)

n = 3 c3 = −1
3!

(

1 + 1
2 + 1

3

)

n = 4 c4 = −1
4!

(

1 + 1
2 + 1

3 + 1
4

)

.

Let sn = 1 + 1
2 + · · ·+ 1

n . Then an easy argument gives that

cn =
−sn
n!

.

We now have a second independent solution

y2(t) = tet ln t− t
∞
∑

n=1

snt
n

n!
.

General Solution:

y = c1te
t + c2

(

tet ln t− t

∞
∑

n=1

snt
n

n!

)

.

19. Indicial polynomial: p(s) = (s− 2)(s+1); exponents of singularity s = 2
and s = −1.

n = 0 c0(r − 2)(r + 1) = 0
n ≥ 1 cn(n+ r − 2)(n+ r + 1) = −cn−1(n+ r − 1)

r=2:

cn = 6c0
(−1)n(n+ 1)

(n+ 3)!
, n ≥ 1

y(t) = 6c0
∑∞

n=0
(−1)n(n+1)tn

(n+3)! = 6c0

(

(t+2)e−t

t + t−2
t

)

.

r=-1: The recursion relation becomes cn(n − 3)(n) = cn−1(n − 2) = 0.
Thus

n = 1 c1 = − c0
2

n = 2 c2 = 0
n = 3 0c3 = 0

We can take c3 = 0 and then cn = 0 for all n ≥ 2. We now have y(t) =
c0t

−1(1 − t
2 ) =

c0
2

(

2−t
t

)

.

General Solution: y = c1
2−t
t + c2

(t+2)e−t

t .
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21. Indicial polynomial: p(s) = s(s− 2); exponents of singularity r = 0 and
r = 2.

n = 0 c0r(r − 2) = 0
n ≥ 1 cn(n+ r)(n + r − 2) = −cn−1(n+ r − 3)

r=2: The recursion relation becomes cn = − n−1
n(n+2)cn−1. For n = 1 we

see that c1 = 0 and hence cn = 0 for all n ≥ 1. It follows that y(t) = c0t
2

is a solution.

r=0: The recursion relation becomes cn(n)(n − 2) = −cn−1(n− 3) = 0.
Thus

n = 1 −c1 = − c0
−2

n = 2 0c2 = −2c0 ⇒⇐
The n = 2 case implies an inconsistency in the recursion relation since
c0 6= 0. Since y1(t) = t2 is a Frobenius solution a second independent
solution can be written in the form

y(t) = t2 ln t+

∞
∑

n=0

cnt
n.

Substitution leads to

t3 + 2t2 + (−c1 − 2c0)t+

∞
∑

n=2

(cn(n)(n− 2) + cn−1(n− 3))tn = 0

and the following relations:

n = 1 −c1 − 2c0 = 0
n = 2 2− c1 = 0
n = 3 1 + 3c3 = 0
n ≥ 4 n(n− 2)cn + (n− 3)cn−3 = 0.

We now have c0 = −1, c1 = 2, c3 = −1/3. c2 can be arbitrary so we choose

c2 = 0, and cn = −(n−3)cn−1

n(n−2) , for n ≥ 4. A straightforward calculation
gives

cn =
2(−1)n

n!(n− 2)
.

A second independent solution is

y2(t) = t2 ln t+

(

−1 + 2t− t3

3
+

∞
∑

n=4

2(−1)ntn

n!(n− 2)

)

.

General Solution: y = c1t
2 + c2y2(t).
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23. Indicial polynomial: p(s) = (s2+1); exponents of singularity r = ±i. Let
r = i (the case r = −i gives equivalent results). The recursion relation
that arises from y(t) =

∑∞
n=0 cnt

n+i is cn((n + i)2 + 1) − cn−1((n− 2 +
i)2 + 1) = 0 and hence

cn =
(n− 2)(n− 2 + 2i)

n(n+ 2i)
cn−1.

A straightforward calculation gives the first few terms as follows:

n = 1 c1 = 1−2i
1+2ic0

n = 2 c2 = 0

n = 3 c3 = 0

and hence cn = 0 for all n ≥ 2. Therefore y(t) = c0(t
i +

(

1−2i
1+2i

)

t1+i).

Since t > 0 we can write ti = ei ln t = cos ln t+i sin ln t, by Euler’s formula.
Separating the real and imaginary parts we get two independent solutions

y1(t) = −3 cos ln t− 4 sin ln t+ 5t cos ln t

y2(t) = −3 sin ln t+ 4 cos ln t+ 5t sin ln t.

25. Indicial polynomial: p(s) = (s2+1); exponents of singularity r = ±i. Let
r = i (the case r = −i gives equivalent results). The recursion relation
that arises from y(t) =

∑∞
n=0 cnt

n+i is

n = 1 c1 = c0
n ≥ 2 cn((n+ i)2 + 1) + cn−1(−2n− 2i+ 1) + cn−2 = 0

A straightforward calculation gives the first few terms as follows:

n = 1 c1 = c0
n = 2 c2 = 1

2!c0
n = 3 c3 = 1

3!c0
n = 4 c4 = 1

4!c0.

An easy induction argument gives

cn =
1

n!
c0.

We now get
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y(t) =
∞
∑

n=0

cntn+i

= c0

∞
∑

n=0

tn+i

n!

= c0t
iet.

Since t > 0 we can write ti = ei ln t = cos ln t+i sin ln t, by Euler’s formula.
Now separating the real and imaginary parts we get two independent
solutions

y1(t) = et cos ln t and y2(t) = et sin ln t.

Section 7.4

1. Let

y(t) = t2k+1
∞
∑

n=0

cnt
n =

∞
∑

n=0

cnt
n+2k+1

Then

ty′′(t) =

∞
∑

n=0

(n+ 2k)(n+ 2k + 1)cnt
n+2k

2ity′(t) =

∞
∑

n=1

2i(n+ 2k)cn−1t
n+2k

−2ky′(t) =

∞
∑

n=0

−2k(n+ 2k + 1)cnt
n+2k

−2iky(t) =
∞
∑

n=1

−2ikcn−1t
n+2k

By assumption the sum of the series is zero. The n = 0 terms in the first
and third sum give (2k)(2k+1)c0−2k(2k+1)c0 = 0. Thus we can start all
the series at n = 1. For n ≥ 1 we get n(n+2k+1)cn+2i(n+ k)cn−1 = 0
which implies

cn =
−2i(n+ k)

n(n+ 2k + 1)
cn−1.

Since c0 6= 0 it follows from this recursion relation that cn 6= 0 for all
n ≥ 0. Therefore the Frobenius solution y(t) is not a polynomial.

3. Since differentiation respects the real and imaginary parts of complex-
valued functions we have
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Bk(t) = Re(bk(t)e
it)

B′
k(t) = Re((bk(t)e

it)′) = Re((b′k(t) + ibk(t))e
it)

B′′
k (t) = Re((b′′k(t) + 2ib′k(t)− bk(t))e

it).

It follows now from Proposition 4 that

0 = t2B′′
k (t)− 2ktB′

k(t) + (t2 + 2k)Bk(t)

= t2 Re(bk(t)e
it)′′ − 2ktRe(bk(t)e

it)′ + (t2 + 2k)Re(bk(t)e
it)

= Re((t2(b′′k(t) + 2ib′k(t)− bk(t)) − 2kt(b′k(t) + ibk(t)) + (t2 + 2k)bk(t))e
it)

= Re
(

(t2b′′k(t) + 2t(it− k)b′k(t)− 2k(it− 1)bk(t))e
it
)

.

Apply Lemma 6 to get

t2b′′k(t) + 2t(it− k)b′k(t)− 2k(it− 1)bk(t) = 0.

5. Let g(t) = L−1

{

s

(s2 − 1)k

}

. Then

L{tg(t)} = − d

ds
(L{g(t)}) = − d

ds

(

s

(s2 − 1)k

)

= − (s2 − 1)k − 2ks2(s2 − 1)k−1

(s2 − 1)2k

=
2ks2 − (s2 − 1)

(s2 − 1)k+1
=

(2k − 1)(s2 − 1) + 2k

(s2 − 1)k+1

=
2k − 1

(s2 − 1)k
+

2k

(s2 − 1)k+1
.

Divide by 2k, solve for the second term in the last line, and apply the
inverse Laplace transform to get

L−1

{

1

(s2 − 1)k+1

}

=
t

2k
g(t)− (2k − 1)

2k
L−1

{

1

(s2 − 1)k

}

=
t

2k
L−1

{

s

(s2 − 1)k

}

− (2k − 1)

2k
L−1

{

1

(s2 − 1)k

}

.

By the definition of Ck and Dk we get

1

2kk!
Ck(t) =

t

2kk!
Dk−1(t)−

2k − 1

2kk!
Ck−1(t).

Simplifying gives the result.
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7. Multiply the equation in Exercise 5 by t and use the formula in Exercise
4 to get Dk+1(t) = t2Dk−1 − (2k− 1)Dk(t). Now shift k and the formula
follows.

9. By the Input Derivative Principle we have

1

2kk!
L{C′

k(t)} =
1

2kk!
(sL{Ck(t)} − Ck(0))

=
s

(s2 − 1)k+1

=
1

2kk!
L{Dk(t)} .

Laplace inversion gives the first formula. In a similar way the Input
Derivative Principle gives

1

2kk!
L{D′

k(t)} =
1

2kk!
(sL{Dk(t)} −Dk(0))

=
s2

(s2 − 1)k+1

=
s2 − 1

(s2 − 1)k+1
+

1

(s2 − 1)k+1

=
1

(s2 − 1)k
+

1

(s2 − 1)k+1

=
1

2k−1(k − 1)!
L{Ck−1(t)} +

1

2kk!
L{Ck(t)} .

Simplifying and Laplace inversion gives the result.

11. Since s2 − 1 = (s − 1)(s+ 1) it follows that 1
(s2−1)k+1 is an s− 1 -chain

and an s + 1 -chain, each of length k + 1. Hence there are constants αn

and βn so that

1

(s2 − 1)k+1
=

k+1
∑

n=1

αn

(s− 1)n
+

βn

(s+ 1)n
.

Now replace s by −s. The left-hand side does not change so we get

1

(s2 − 1)k+1

=

k+1
∑

n=1

αn

(−s− 1)n
+

βn

(−s+ 1)n

=
k+1
∑

n=1

αn(−1)n

(s+ 1)n
+

βn(−1)n

(s− 1)n
.
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It follows now by the uniqueness of partial fraction decompositions that

βn = (−1)nαn.

Laplace inversion now gives

L−1

{

1

(s2 − 1)k+1

}

=

k+1
∑

n=1

αn
tn−1

(n− 1)!
et + αn(−1)n

tn−1

(n− 1)!
e−t

=

k+1
∑

n=1

αn
tn−1

(n− 1)!
et − αn

(−t)n−1

(n− 1)!
e−t

Let f(t) =
∑k+1

n=1 αn
tn−1

(n−1)! . Then

L−1

{

1

(s2 − 1)k+1

}

= f(t)et − f(−t)e−t.

Up to the constant 2kk!, the polynomial f(t) is ck(t). A similar argument
gives the second part of the problem.

13. 1. It is easy to see from the definition of ck and Exercise 5 that ck
satisfies

ck+2(t) = t2ck(t)− (2k + 3)ck+1(t)

and therefore ck+2(0) = −(2k+3)ck+1(0). An easy check gives c1(t) =
t−1
2 and thus c1(0) =

−1
2 . Recursively we get

c1(0) =
−1
2 c3(0) = −5c2(0) =

−5·3
2

c2(0) = −3c1(0) =
3
2 c4(0) = 7c3(0) =

7·5·3
2

Inductively, we get

ck(0) =
(−1)k

2
(2k − 1) · (2k − 3) · (2k − 5) · · · 1

=
(−1)k

2

(2k)!

2kk!

=
(−1)k(2k)!

2k+1k!
.

2. From Exercise 4 it is easy to see that dk(t) = tck−1 and so d′k(0) =

ck−1(0) =
(−1)k−1(2(k−1))!

2k(k−1)!
.

15. Merely put the previous calculations together.
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Section 8.1

1. B + C =





1 1
−1 7
0 3



, B − C =





1 −3
5 −1

−2 1



, and 2B − 3C =





2 −8
13 −6
−5 1





3. A(B + C) = AB +AC =

[

3 4
1 13

]

, (B + C)A =





3 −1 7
3 1 25
5 0 12





5. AB =





6 4 −1 −8
0 2 −8 2
2 −1 9 −5





7. CA =









8 0
4 −5
8 14
10 11









9. ABC =





8 9 −48
4 0 −48

−2 3 40



 .

15.





0 0 1
3 −5 −1
0 0 5





17. (a) Choose, for example, A =

[

0 1
0 0

]

and B =

[

0 0
1 0

]

.

(b) (A+B)2 = A2 + 2AB +B2 precisely when AB = BA.

19. Bn =

[

1 n
0 1

]

21. (a)

[

0 1
1 0

]

A =

[

v2
v1

]

; the two rows of A are switched. (b)

[

1 c
0 1

]

A =
[

v1 + cv2
v2

]

; to the first row is added c times the second row while the

second row is unchanged, (c) to the second row is added c times the first
row while the first row is unchanged. (d) the first row is multiplied by a
while the second row is unchanged, (e) the second row is multiplied by a
while the first row is unchanged.

23.
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F (θ1)F (θ2)

=

[

cosh θ1 sinh θ1
sinh θ1 cosh θ1

] [

cosh θ2 sinh θ2
sinh θ2 cosh θ2

]

=

[

cosh θ1 cosh θ2 + sinh θ1 sinh θ2 cosh θ1 sinh θ2 + sinh θ1 cosh θ2
sinh θ1 cosh θ2 + cosh θ1 sinh θ2 sinh θ1 sinh θ2 + cosh θ1 cosh θ2

]

=

[

cosh(θ1 + θ2) sinh(θ1 + θ2)
sinh(θ1 + θ2) cosh(θ1 + θ2)

]

= F (θ1 + θ2),

We used the addition formulas for sinh and cosh in the second line.

Section 8.2

1. A =









1 4 3
1 1 −1
2 0 1
0 1 −1









, x =





x
y
z



, b =









2
4
1
6









, and [A|b] =









1 4 3 2
1 1 −1 4
2 0 1 1
0 1 −1 6









.

3.

x1 − x3 + 4x4 + 3x5 = 2
5x1 + 3x2 − 3x3 − x4 − 3x5 = 1
3x1 − 2x2 + 8x3 + 4x4 − 3x5 = 3

−8x1 + 2x2 + 2x4 + x5 = −4

5. RREF

7. m2(1/2)(A) =





0 1 0 3
0 0 1 3
0 0 0 0





9. t1,3(−3)(A) =





1 0 1 0 3
0 1 3 4 1
0 0 0 0 0





11.





1 0 0 −11 −8
0 1 0 −4 −2
0 0 1 9 6





13.









1 2 0 0 3
0 0 1 0 2
0 0 0 1 0
0 0 0 0 0








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15.













1 0 2
0 1 1
0 0 0
0 0 0
0 0 0













17.





1 4 0 0 3
0 0 1 0 1
0 0 0 1 3





19.





x
y
z



 =





−1
1
0



+ α





−3
1
5



, α ∈ R

21.

[

x
y

]

= α

[

−2
1

]

, α ∈ R

23.





x
y
z



 =





14/3
1/3

−2/3





25.





0
3
4



+ α





1
0
0



, α ∈ R

27. ∅

29.











−1
0
1











31.























−34
−40
39
1























33. The equation





5
−1
4



 = a





1
1
2



+ b





1
−1
0



 has solution a = 2 and b = 3. By

Proposition 7





5
−1
4



 is a solution.
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35. If xi is the solution set for Ax = bi then x1 =





−7/2
7/2

−3/2



, x2 =





−3/2
3/2

−1/2



,

and x3 =





7
−6
3



.

Section 8.3

1.

[

4 −1
−3 1

]

3. not invertible

5. not invertible

7.





−6 5 13
5 −4 −11

−1 1 3





9.









−29 39/2 −22 13
7 −9/2 5 −3

−22 29/2 −17 10
9 −6 7 −4









11.









0 0 −1 1
1 0 0 0
0 1 1 −1

−1 −1 0 1









13. x = A−1
b =

[

4 −1
−3 1

] [

2
3

]

=

[

5
−3

]

15. x = A−1
b = 1

10





−2 4 4
−2 −1 4
−6 2 2









−2
1
2



 = 1
10





16
11
18





17. x = A−1
b = 1

2









−58 39 −44 26
14 −9 10 −6

−44 29 −34 20
18 −12 14 −8

















1
0

−1
2









=









19
−4
15
−6









19. (At)−1 = (A−1)t

21. F (θ)−1 = F (−θ)
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Section 8.4

1. 1

3. 10

5. −21

7. 2

9. 0

11. 1
s2−6s+8

[

s− 3 1
1 s− 3

]

s = 2, 4

13. 1
(s−1)3





(s− 1)2 3 s− 1
0 (s− 1)2 0
0 3(s− 1) (s− 1)2



 s = 1

15. 1
s3+s2+4s+4





s2 + s 4s+ 4 0
−s− 1 s2 + s 0
s− 4 4s+ 4 s2 + 4



 s = −1,±2i

17. no inverse

19. 1
8





4 −4 4
−1 3 −1
−5 −1 3





21. 1
6





2 −98 9502
0 3 −297
0 0 6





23. 1
15









55 −95 44 −171
50 −85 40 −150
70 −125 59 −216
65 −115 52 −198









25. detA = 1, detA(1,b) = det

[

2 1
3 4

]

= 5, and detA(2,b) = det

[

1 2
3 3

]

=

−3. It follows that x1 = 5/1 = 5 and x2 = −3/1 = −3
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27. detA = −10, detA(1,b) = det





−2 0 −2
1 −2 0
2 2 −1



 = −16, detA(2,b) =

det





1 −2 −2
2 1 0
1 2 −1



 = −11, and detA(3,b) = det





1 0 −2
2 −2 1
1 2 2



 = −18. It

follows that x1 = 16/10, x2 = 11/10, and x3 = 18/10.

Section 8.5

1. The characteristic polynomial is cA(s) = (s − 1)(s− 2). The eigenvalues

are thus s = 1, 2. The eigenspaces are E1 = Span

{[

0
1

]}

and E2 =

Span

{[

1
−1

]}

.

3. The characteristic polynomial is cA(s) = s2 − 2s+1 = (s− 1)2. The only

eigenvalue is s = 1. The eigenspace is E1 = Span

{[

1
−1

]}

.

5. The characteristic polynomial is cA(s) = s2+2s−3 = (s+3)(s−1). The

eigenvalues are thus s = −3, 1. The eigenspaces are E−3 = Span

{[

1
−1

]}

and E1 = Span

{[

−3
2

]}

.

7. The characteristic polynomial is cA(s) = s2 + 2s + 10 = (s + 1)2 + 32.
The eigenvalues are thus s = −1 ± 3i. The eigenspaces are E−1+3i =

Span

{[

7 + i
10

]}

and E−1−3i = Span

{[

7− i
10

]}

.

9. The eigenvalues are s = −2, 3. E−2 = Span











1
2
0



 ,





0
1
1











, E3 =

Span











1
0

−1











,

11. The eigenvalues are s = 0, 2, 3. E0 = NS(A) = Span











0
2
1











, E2 =

Span











2
2
1











, E3 = Span











0
1
1










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13. We write cA(s) = (s − 2)((s − 2)2 + 1) to see that the eigenvalues are

s = 2, 2 ± i. E2 = Span











2
3
1











, E2+i = Span











−4 + 3i
4 + 2i

5











, E2−i =

Span











−4− 3i
4− 2i

5











Section 9.2

1. nonlinear, because of the presence of the product y1y2.

3. We may write the system in the form

y′ =

[

sin t 0
1 cos t

]

y.

It is linear and homogeneous, but not constant coefficient.

5. We write the system in the form

y′ =









1 0 0 0
2 0 0 1
0 0 0 1
0 1 2 0









y.

It is linear, constant coefficient, and homogeneous.

7. First note that y1(0) = 0 and y2(0) = 1, so the initial condition is satis-
fied. Then

y′(t) =

[

y′1(t)
y′2(t)

]

=

[

et − 3e3t

2et − 3e3t

]

while
[

5 −2
4 −1

]

y(t) =

[

5(et − e3t)− 2(2et − e3t)
4(et − e3t)− (2et − e3t)

]

=

[

et − 3e3t

2et − 3e3t

]

.

Thus y′(t) =

[

5 −2
4 −1

]

y(t), as required.

9. First note that y1(0) = 1 and y2(0) = 3, so the initial condition is satis-
fied. Then
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y′(t) =

[

y′1(t)
y′2(t)

]

=

[

−e−t + et + tet

−3e−t + et + tet

]

while
[

2 −1
3 −2

] [

e−t + tet

3e−t + tet

]

+

[

et

et

]

=

[

2e−t + 2tet − 3e−t − tet + et

3e−t + 3tet − 6e−t − 2tet + et

]

=

[

−e−t + tet + et

−3e−t + tet + et

]

.

Thus y′(t) =

[

2 −1
3 −2

]

y(t) +

[

et

et

]

, as required.

In solutions, 11–15, y =

[

y1
y2

]

=

[

y
y′

]

.

11. Let y1 = y and y2 = y′. Then y′1 = y′ = y2 and y′2 = y′′ = −5y′ − 6y +

e2t = −6y1− 5y2 + e2t. Letting y =

[

y1
y2

]

, this can be expressed in vector

form as

y′ =

[

0 1
−6 −5

]

y +

[

0
e2t

]

, y(0) =

[

1
−2

]

.

13. Let y1 = y and y2 = y′. Then y′1 = y′ = y2 and y′2 = y′′ = k2y +

A cosωt = k2y1 + A cosωt. Letting y =

[

y1
y2

]

, this can be expressed in

vector form as

y′ =

[

0 1
k2 0

]

y +

[

0
A cosωt

]

, y(0) =

[

0
0

]

.

15. Let y1 = y and y2 = y′. Then y′1 = y′ = y2 and y′2 = y′′ = − 2
t y

′ − 1
t2 y =

− 1
t2 y1 − 2

t y2. Letting y =

[

y1
y2

]

, this can be expressed in vector form as

y′ =

[

0 1
− 1

t2 − 2
t

]

y, y(1) =

[

−2
3

]

.

17. A′(t) =

[

−3e−3t 1
2t 2e2t

]

19. y′(t) =





1
2t
t−1





21. v′(t) =
[−2e−2t 2t

t2+1 −3 sin 3t
]
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23. 1
4

[

e2 − e−2 e2 + e−2 − 2
2− e2 − e−2 e2 − e−2

]

25.

[

4 8
12 16

]

27.

[

1
s

1
s2

2
s3

1
s−2

]

29.

[

3!
s4

2s
(s2+1)2

1
(s+1)2

2−s
s3

s−3
s2−6s+13

3
s

]

31. 2
s2−1

[

1 −1
−1 1

]

33.
[

1 2t 3t2
]

35. We have







2s

s2 − 1

2

s2 − 1
2

s2 − 1

2s

s2 − 1






=







1

s+ 1
+

1

s− 1

−1

s+ 1
+

1

s− 1
−1

s+ 1
+

1

s− 1

1

s+ 1
+

1

s− 1






. Laplace

inversion gives

[

et + e−t et − e−t

et − e−t et + e−t

]

Section 9.3

1.

A =

[

1 0
0 −2

]

A2 =

[

1 0
0 4

]

A3 =

[

1 0
0 −8

]

...

An =

[

1 0
0 (−2)n

]

.

It follows now that
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eAt = I +At+
A2

2!
t2 +

A3

3!
t3 + · · ·

=

[

1 0
0 1

]

+

[

t 0
0 −2t

]

+
1

2!

[

t2 0
0 (−2t)2

]

+ · · ·+ 1

n!

[

tn 0
0 (−2t)n

]

+ · · ·

=

[

et 0
0 e−2t

]

.

3.

A =

[

0 1
1 0

]

A2 =

[

1 0
0 1

]

= I

A3 =

[

0 1
1 0

]

= A

It follows now that An = I if n is even and An = A if n is odd. Thus

eAt = I +At+
A2

2!
t2 +

A3

3!
t3 + · · ·

= I +At+ I
t2

2!
+A

t3

3!
+ I

t4

4!
+A

t5

5!
+ · · ·

= I

(

1 +
t2

2!
+

t4

4!
+ · · ·

)

+A

(

t+
t3

3!
+

t5

5!
+ · · ·

)

= I cosh t+A sinh t

=

[

cosh t sinh t
sinh t cosh t

]

.

5.

A =

[

1 1
1 1

]

A2 =

[

2 2
2 2

]

A3 =

[

4 4
4 4

]

...

An =

[

2n−1 2n−1

2n−1 2n−1

]

.

It follows now that
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eAt = I +At+
A2

2!
t2 +

A3

3!
t3 + · · ·

=

[

1 0
0 1

]

+

[

t t
t t

]

+
1

2!

[

2t2 2t2

2t2 2t2

]

+ · · ·+ 1

n!

[

2n−1tn 2n−1tn

2n−1tn 2n−1tn

]

+ · · ·

The (1, 1) entry is

1 +

∞
∑

n=1

2n−1tn

n!
= 1 +

1

2

∞
∑

n=1

(2t)n

n!

=
1

2
+

1

2

∞
∑

n=0

(2t)n

n!

=
1

2
+

1

2
e2t

The (1, 2) entry is

0 +
∞
∑

n=1

2n−1tn

n!
=

1

2

∞
∑

n=1

(2t)n

n!

= −1

2
+

1

2

∞
∑

n=0

(2t)n

n!

= −1

2
+

1

2
e2t

Since the (1, 1) entry and the (2, 2) entry are equal and the (1, 2) entry
and the (2, 1) entry are equal we have

eAt =

[

1
2 + 1

2e
2t − 1

2 + 1
2e

2t

− 1
2 + 1

2e
2t 1

2 + 1
2e

2t

]

7.
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A =





0 1 0
−1 0 0
0 0 2





A2 =





−1 0 0
0 −1 0
0 0 4





A3 =





0 −1 0
1 0 0
0 0 8





A4 =





1 0 0
0 1 0
0 0 16





A5 =





0 1 0
−1 0 0
0 0 32





The (1, 1) entry and the (2, 2) entry of eAt are equal and are

cos t = 1− t2

2!
+

t4

4!
− · · · .

The (1, 2) entry and the (2, 1) entry of eAt have opposite signs. The (2, 1)
entry is

sin t = t− t3

3!
+

t5

5!
− · · · .

The (3, 3) entry is

e2t = 1 + 2t+
(2t)2

2!
+ · · · .

All other entries are zero thus

eAt =





cos t sin t 0
− sin t cos t 0

0 0 e2t





9. The characteristic polynomial is cA(s) = s(s − 3) and sI − A =
[

s− 1 1
2 s− 2

]

. Thus (sI − A)−1 =

[

s−2
s(s−3)

−1
s(s−3)

−2
s(s−3)

s−1
s(s−3)

]

. A partial fraction

decomposition of each entry gives

(sI −A)−1 =
1

s

[

2
3

1
3

2
3

1
3

]

+
1

s− 3

[

1
3 − 1

3

− 2
3

2
3

]

.
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Thus eAt = L−1(sI −A)−1 =

[

2
3 + 1

3e
3t 1

3 − 1
3e

3t

2
3 − 2

3e
3t 1

3 + 2
3e

3t

]

11. The characteristic polynomial is cA(s) = (s−3)(s+1)+5 = s2−2s+2 =

(s − 1)2 + 1 and sI − A =

[

s− 3 −5
1 s+ 1

]

. Thus the resolvent matrix is

(sI −A)−1 =

[

s+1
(s−1)2+1

5
(s−1)2+1

−1
(s−1)2+1

s−3
(s−1)2+1

]

which we write as

(sI −A)−1 =

[

s−1
(s−1)2+1

5
(s−1)2+1

−1
(s−1)2+1

s−1
(s−1)2+1

]

+

[

2
(s−1)2+1 0

0 −2
(s−1)2+1

]

.

Therefore

eAt =

[

et cos t+ 2et sin t 5et sin t
−et sin t et cos t− 2et sin t

]

13. The characteristic polynomial is cA(s) = s3 and sI−A =





s −1 −1
0 s −1
0 0 s



.

Thus (sI −A)−1 =







1
s

1
s2

s+1
s3

0 1
s

1
s2

0 0 1
s






and eAt =







1 t t+ t2

2

0 1 t
0 0 1







15. Let M =

[

0 1
−1 0

]

and N = 2. Then by Example 6 eMt =

[

cos t sin t
− sin t cos t

]

.

Thus

eAt =

[

eMt 0
0 eNt

]

=





cos t sin t 0
− sin t cos t 0

0 0 e2t



 .

Section 9.4

1. The characteristic matrix and characteristic polynomial are

sI −A =

[

s− 2 1
−1 s

]

and cA(s) = s2 − 2s+ 1 = (s− 1)2.
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The characteristic polynomial has root 1 with multiplicity 2.

The standard basis of EcA is BcA = {et, tet}. It follows that

eAt = Met +Ntet.

Differentiating we obtain

AeAt = Met +N(et + tet)

= (M +N)et +Ntet.

Now, evaluate each equation at t = 0 to obtain:

I = M

A = M +N.

from which we get

M = I

N = A− I.

Thus,

eAt = Iet + (A− I)tet

=

[

1 0
0 1

]

et +

[

1 −1
1 −1

]

tet

=

[

et + tet −tet

tet et − tet

]

3. cA(s) = (s− 2)(s+ 2)+ 4 = s2. Thus BcA = {1, t} and Fulmer’s method
gives

eAt = M1 +M2t.

Differentiating and evaluating at t = 0 gives

M1 = I

M2 = A.

Thus

eAt =

[

1 + 2t t

−4t 1− 2t

]

.

5. The characteristic polynomial is cA(s) = s2 − 2s+ 2 = (s− 1)2 + 1. The
standard basis of EcA is BcA = {et cos t, et sin t}. It follows that
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eAt = Met cos t+Net sin t.

Differentiating and evaluating at t = 0 gives

I = M

A = M +N.

from which we get

M = I

N = A− I.

Thus,

eAt = Iet cos t+ (A− I)et sin t

=

[

et cos t 0
0 et cos t

]

+

[

3et sin t −10et sin t
et sin t −3et sin t

]

=

[

et cos t+ 3et sin t −10et sin t
et sin t et cos t− 3et sin t

]

7. The characteristic polynomial is cA(s) = s2 − 4 and has roots −2, 2. The
standard basis of EcA is BcA =

{

e2t, e−2t
}

. It follows that

eAt = Me2t +Ne−2t.

Differentiating and evaluating at t = 0 gives

I = M +N

A = 2M − 2N.

from which we get

M =
1

4
(A+ 2I)

N = −1

4
(A− 2I).

Thus,
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eAt =
1

4
(A+ 2I)e2t − 1

4
(A− 2I)e−2t

=
1

4

[

−7 11
−7 11

]

e2t − 1

4

[

−11 11
−7 7

]

e−2t

=
1

4

[

−7e2t + 11e−2t 11e2t − 11e−2t

−7e2t + 7e−2t 11e2t − 7e−2t

]

9. The characteristic polynomial is cA(s) = s2 − 4s+ 13 = ((s − 2)2 + 32).
The standard basis of EcA is BcA =

{

e2t cos 3t, e2t sin 3t
}

. It follows that

eAt = Me2t cos 3t+Ne2t sin 3t.

Differentiating and evaluating at t = 0 gives

I = M

A = 2M + 3N.

from which we get

M = I

N =
1

3
(A− 2I) =

[

8 13
−5 −8

]

.

Thus,

eAt = Ie2t cos 3t+
1

3
(A− I)e2t sin 3t

=

[

e2t cos 3t 0
0 e2t cos 3t

]

+

[

8e2t sin 3t 13e2t sin 3t
−5e2t sin 3t −8e2t sin 3t

]

=

[

e2t cos 3t+ 8e2t sin 3t 13e2t sin 3t
−5e2t sin 3t e2t cos 3t− 8e2t sin 3t

]

11. The characteristic polynomial is cA(s) = (s+ 2)2. The standard basis is
BcA =

{

e−2t, te−2t
}

. It follows that

eAt = Me−2t +Nte−2t.

Differentiating and evaluating at t = 0 gives

I = M

A = −2M +N.

from which we get
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M = I

N = A+ 2I =

[

−1 1
−1 1

]

.

Thus,

eAt = Ie−2t + (A+ 2I)te−2t

=

[

e−2t 0
0 e−2t

]

+

[

−te−2t te−2t

−te−2t te−2t

]

=

[

e−2t − te−2t te−2t

−te−2t e−2t + te−2t

]

13. In this case BcA = {1, et, e−t}. It follows that

eAt = M +Net + Pe−t.

Differentiating and evaluating at t = 0 gives

M +N + P = I

N − P = A

N + P = A2

from which we get

M = I −A2

N =
A2 +A

2

P =
A2 −A

2
.

Thus,

eAt = M +Net + Pe−t

=





2 0 −1
0 0 0
2 0 −1



+





0 0 0
0 1 0
0 0 0



 et +





−1 0 1
0 0 0

−2 0 2



 e−t

=





2− e−t 0 −1 + e−t

0 et 0
2− 2e−t 0 −1 + 2e−t





15. The standard basis of EcA is

BcA =
{

et, et cos t, et sin t
}

.
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Therefore
eAt = Met +Net sin t+ Pet cos t.

Differentiating twice and simplifying we get the system:

eAt = Met +Net sin t+ Pet cos t

AeAt = Met + (N − P )et sin t+ (N + P )et cos t

A2eAt = Met − 2Pet sin t+ 2Net cos t.

Now evaluating at t = 0 gives

I = M + P

A = M +N + P

A2 = M + 2N

and solving gives

N = A− I

M = A2 − 2A+ 2I

P = −A2 + 2A− I.

A straightforward calculation gives A2 =





1
2 −1 1

2
2 0 −2
1
2 1 1

2



 and

N =





0 − 1
2 0

1 0 −1
0 1

2 0



 , M =





1
2 0 1

2
0 0 0
1
2 0 1

2



 , and P =





1
2 0 − 1

2
0 1 0

− 1
2 0 1

2



 .

Hence,

eAt =





1
2 0 1

2
0 0 0
1
2 0 1

2



 et +





0 − 1
2 0

1 0 −1
0 1

2 0



 et sin t+





1
2 0 − 1

2
0 1 0

− 1
2 0 1

2



 et cos t

=
1

2





et + et cos t −et sin t et − et cos t
2et sin t 2et cos t −2et sin t

et − et cos t et sin t et + et cos t



 .

17. In this case BcA = {et, cos 2t, sin 2t}. It follows that

eAt = Met +N cos 2t+ P sin 2t.

Differentiating twice and evaluating at t = 0 gives
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M +N = I

M + 2P = A

M − 4N = A2

from which we get

M =
A2 + 4I

5
=





−1 0 1
0 0 0

−2 0 2





N =
I −A2

5
=





2 0 −1
0 1 0
2 0 −1





P =
−A2 + 5A− 4I

10
=





0 −1 0
2 0 −1
0 −1 0



 .

Thus,

eAt = Met +N cos 2t+ P sin 2t

=





−1 0 1
0 0 0

−2 0 2



 et +





2 0 −1
0 1 0
2 0 −1



 cos 2t+





0 −1 0
2 0 −1
0 −1 0



 sin 2t

=





−et + 2 cos 2t − sin 2t et − cos 2t
2 sin 2t cos 2t − sin 2t

−2et + 2 cos 2t − sin 2t 2et − cos 2t





19. In this case BcA = {cos t, sin t, t cos t, t sin t}. It follows that

eAt = M cos t+N sin t+ Pt cos t+Qt sin t.

Differentiating three times and evaluating at t = 0 gives

M = I

N + P = A

−M + 2Q = A2

−N − 3P = A3

from which we get
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M = I =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









N =
A(A2 + 3I)

2
=









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









P =
−A(A2 + I)

2
=









−1 0 1 0
0 −1 0 1

−1 0 1 0
0 −1 0 1









Q =
A2 + I

2
=









0 −1 0 1
1 0 −1 0
0 −1 0 1
1 0 −1 0









.

Thus,

eAt = M cos t+N sin t+ Pt cos t+Qt sin t

=









cos t− t cos t sin t− t sin t t cos t t sin t
− sin t+ t sin t cos t− t cos t −t sin t t cos t

−t cos t −t sin t cos t+ t cos t sin t+ t sin t
t sin t −t cos t − sin t− t sin t cos t+ t cos t









.

21. The standard basis is BcA = {ert, tert} so that eAt = Mert + Ntert.
Fulmer’s method gives

I = M

A = rM +N

which are easily solved to give

M = I and N = (A− rI).

Hence,
eAt = Iert + (A− rI)tert = (I + (A− rI)t) ert. (1)
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Section 9.5

1. It is easy to see that eAt =

[

e−t 0
0 e3t

]

. Thus

y(t) =

[

e−t 0
0 e3t

] [

1
−2

]

=

[

e−t

−2e3t

]

.

3. The characteristic polynomial is cA(s) = (s− 2)2. Thus BcA =
{

e2t, te2t
}

and
eAt = M1e

2t +M2te
2t.

Differentiating and evaluating at t = 0 gives

I = M1

A = 2M1 +M2.

and hence M1 = I and M2 = A− 2I. We thus get eAt =

[

e2t te2t

0 e2t

]

and

y(t) =

[

e2t te2t

0 e2t

] [

−1
2

]

=

[

−e2t + 2te2t

2e2t

]

5. The characteristic polynomial is cA(s) = s2 − 1 = (s + 1)(s − 1). Thus
BcA = {e−t, et} and

eAt = M1e
−t +M2e

t.

Differentiating and evaluating at t = 0 gives

I = M1 +M2

A = −M1 +M2.

and hence M1 = 1
2 (−A + I) and M2 = 1

2 (A + I). We thus get eAt =

1
2

[

3et − e−t −et + e−t

3et − 3e−t −et + 3e−t

]

and

y(t) =
1

2

[

3et − e−t −et + e−t

3et − 3e−t −et + 3e−t

] [

1
3

]

=

[

e−t

3e−t

]

.

7. The characteristic polynomial is cA(s) = (s − 1)2. Thus BcA = {et, tet}
and

eAt = M1e
t +M2te

t.

Differentiating and evaluating at t = 0 gives
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I = M1

A = M1 +M2.

and hence M1 = I and M2 = A−I. We thus get eAt =

[

et + 2tet −4tet

tet et − 2tet

]

and y(t) =

[

et + 2tet −4tet

tet et − 2tet

] [

1
1

]

=

[

et − 2tet

et − tet

]

9. The characteristic polynomial is cA(s) = (s + 1)(s2 + 4). Thus BcA =
{e−t, cos 2t, sin 2t} and

eAt = M1e
−t +M2 cos 2t+M3 sin 2t.

Differentiating and evaluating at t = 0 gives

I = M1 +M2

A = −M1 + 2M3

A2 = M1 − 4M2.

and hence

M1 =
1

5
(A2 + 4I) =





0 0 0
0 0 0

−1 0 1





M2 = −1

5
(A2 − I) =





1 0 0
0 1 0
1 0 0





M3 =
1

10
(A2 + 5A+ 4I) =





0 2 0
−1/2 0 0

0 2 0



 .

We thus get eAt =





cos 2t 2 sin 2t 0
− 1

2 sin 2t cos 2t 0

−e−t + cos 2t 2 sin 2t e−t



 and hence

y(t) =





cos 2t 2 sin 2t 0
− 1

2 sin 2t cos 2t 0

−e−t + cos 2t 2 sin 2t e−t









2
1
2



 =





2 cos 2t+ 2 sin 2t
cos 2t− sin 2t

2 cos 2t+ 2 sin 2t





11. A straightforward calculation gives

eAt = e−t cos 2t

[

1 0
0 1

]

+ e−t sin 2t

[

0 1
−1 0

]

It follows that
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yh(t) = eAty0

=

(

e−t cos 2t

[

1 0
0 1

]

+ e−t sin 2t

[

0 1
−1 0

])[

1
0

]

=

[

e−t cos 2t
−e−t sin 2t

]

.

and

yp = eAt ∗ f(t)

=

(

e−t cos 2t

[

1 0
0 1

]

+ e−t sin 2t

[

0 1
−1 0

])

∗
[

5
0

]

= e−t cos 2t ∗ 1
[

5
0

]

+ e−t sin 2t ∗ 1
[

0
−5

]

= (1− e−t cos 2t+ 2e−t sin 2t)

[

1
0

]

+ (2− 2e−t cos 2t− e−t sin 2t)

[

0
−1

]

=

[

1− e−t cos 2t+ 2e−t sin 2t
−2 + 2e−t cos 2t+ e−t sin 2t

]

.

It now follows that

y(t) = yh + yp

=

[

1 + 2e−t sin 2t
−2 + 2e−t cos 2t

]

13. A straightforward calculation gives

eAt = e−t cos 2t

[

1 0
0 1

]

+ e−t sin 2t

[

0 −2
1/2 0

]

It follows that

yh(t) = eAty0

=

(

e−t cos 2t

[

1 0
0 1

]

+ e−t sin 2t

[

0 −2
1/2 0

])[

2
−1

]

= e−t cos 2t

[

2
−1

]

+ e−t sin 2t

[

2
1

]

and
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yp = eAt ∗ f(t)

=

(

e−t cos 2t

[

1 0
0 1

]

+ e−t sin 2t

[

0 −2
1/2 0

])

∗
[

4
1

]

= ((e−t cos 2t) ∗ 1)
[

4
1

]

+ ((e−t sin 2t) ∗ 1)
[

−2
2

]

=
1

5

(

1− e−t cos 2t+ 2e−t sin 2t
)

[

4
1

]

+
1

5

(

2− 2e−t cos 2t− e−t sin 2t
)

[

−2
2

]

=

[

2e−t sin 2t
1− e−t cos 2t

]

.

It now follows that

y(t) = yh + yp

= e−t cos 2t

[

2
−1

]

+ e−t sin 2t

[

2
1

]

+

[

2e−t sin 2t
1− e−t cos 2t

]

=

[

2e−t cos 2t+ 4e−t sin 2t
1 + e−t sin 2t− 2e−t cos 2t

]

.

15. A straightforward calculation gives

eAt = et
[

1 0
0 1

]

+ tet
[

4 2
−8 −4

]

It follows that

yh(t) = eAty0

=

(

et
[

1 0
0 1

]

+ tet
[

4 2
−8 −4

])[

0
1

]

=

[

2tet

et − 4tet

]

and

yp = eAt ∗ f(t)

=

(

et
[

1 0
0 1

]

+ tet
[

4 2
−8 −4

])

∗ t
[

1
−2

]

= et ∗ t
[

1
−2

]

= (et − t− 1)

[

1
−2

]

.

It now follows that
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y(t) = yh + yp

=

[

2tet

et − 4tet

]

+ (et − t− 1)

[

1
−2

]

=

[

2tet + et − t− 1
−4tet − et + 2t+ 2

]

17. A straightforward calculation gives

eAt = et





1 0 0
−1 1 1
1 0 0



+ tet





−1 1 1
0 0 0

−1 1 1



+ e2t





0 0 0
1 0 −1

−1 0 1





Clearly

yh(t) =





0
0
0





while

yp(t) = eAt ∗ f(t)

=



et





1 0 0
−1 1 1
1 0 0



+ tet





−1 1 1
0 0 0

−1 1 1



+ e2t





0 0 0
1 0 −1

−1 0 1







 ∗ e2t




1
1

−1





= (et ∗ e2t)





1
−1
1



+ (tet ∗ e2t)





−1
0

−1



+ (e2t ∗ e2t)





0
2

−2





= (e2t − et)





1
−1
1



+ (e2t − tet − et)





−1
0

−1



+ te2t





0
2

−2





=





tet

2te2t − e2t + et

−2te2t + tet





It now follows that

y(t) = yh + yp =





tet

2te2t − e2t + et

−2te2t + tet





19. y1 and y2 are related to each other as follows:
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y′1 = 2− 2y1

y′2 = 2y1 − y2

with initial conditions y1(0) = 4 and y2(0) = 0. Let A =

[

−2 0
2 −1

]

,

f (t) =

[

2
0

]

, and y(0) =

[

4
0

]

. We need to solve the system y′ = Ay + f ,

y(0) =

[

4
0

]

. It is easy to check that

eAt =

[

0 0
2 1

]

e−t +

[

1 0
−2 0

]

e−2t.

It follows that

yh(t) =

([

0 0
2 1

]

e−t +

[

1 0
−2 0

]

e−2t

)[

4
0

]

=

[

0
8

]

e−t +

[

4
−8

]

e−2t

and

yp = eAt ∗
[

2
0

]

= (e−t ∗ 1)
[

0 0
2 1

] [

2
0

]

+ (e−2t ∗ 1)
[

1 0
−2 0

] [

2
0

]

= (1− e−t)

[

0
4

]

+ (1− e−2t)

[

1
−2

]

=

[

1
2

]

+

[

0
−4

]

e−t +

[

−1
2

]

e−2t.

It now follows that

y(t) = yh(t) + yp(t)

=

[

1
2

]

+

[

0
4

]

e−t +

[

3
−6

]

e−2t.

The concentration of salt in Tank 2 is 1/2 if y2(t) = 1. We thus solve
y2(t) = 1, i.e. 2 + 4e−t − 6e−2t = 1 for t. Let x = e−t. Then −6x2 +

4x + 1 = 0. The quadratic formula gives x = 2±
√
10

6 . Since x > 0 we

have e−t = x = 2+
√
10

6 . Solving for t we get t = − ln
(

2+
√
10

6

)

= 0.1504

minutes or 9.02 seconds.

21. y1 and y2 are related to each other as follows:

y′1 = 2 + 3y2 − 5y1

y′2 = 2 + 5y1 − 7y2
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with initial conditions y1(0) = 0 and y2(0) = 0. Let A =

[

−5 3
5 −7

]

,

f (t) =

[

2
2

]

, and y(0) =

[

0
0

]

. We need to solve the system y′ = Ay + f ,

y(0) =

[

0
0

]

. It is easy to check that

eAt =
e−2t

8

[

5 3
5 3

]

+
e−10t

8

[

3 −3
−5 5

]

.

Clearly yh = 0 while

y(t) = yp(t) = eAt ∗ f(t)

=

(

e−2t

8

[

5 3
5 3

]

+
e−10t

8

[

3 −3
−5 5

])

∗ 1
[

2
2

]

=
e−2t ∗ 1

8

[

16
16

]

= (1 − e−2t)

[

1
1

]

Thus

y1(t) = 1− e−2t

y2(t) = 1− e−2t.

Section 9.6

1. The characteristic polynomial is cA(s) = s2−1 = (s+1)(s−1). There are
two distinct eigenvalues, λ1 = −1 and λ2 = 1. An easy calculation give

that v1 =

[

1
−1

]

is an eigenvector with eigenvalue −1 and v2 =

[

3
−1

]

is an

eigenvector with eigenvalue 1. Let P =

[

1 3
−1 −1

]

. Then J = P−1AP =
[

−1 0
0 1

]

. Since there is a distinct positive and negative real eigenvalue

the critical point is a saddle.

3. The characteristic polynomial is cA(s) = s2+4s+5 = (s+2)2+1 and has

complex roots −2± i. A calculation gives an eigenvector v =

[

−3− i
5

]

for
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−2 − i. Let v1 =

[

−3
5

]

and v2 =

[

−1
0

]

. Let P =
[

v1 v2
]

=

[

−3 −1
5 0

]

,

Then J = P−1AP =

[

−2 −1
1 −2

]

and the origin is a stable spiral node.

5. In this case A is of type J3 with positive eigenvalue 2. The origin is an
unstable star node.

7. The characteristic polynomial is cA(s) = s2−6s+8 = (s−2)(s−4). There
are two distinct eigenvalues, λ1 = 2 and λ2 = 4. An easy calculation gives

that v1 =

[

1
−1

]

is an eigenvector with eigenvalue 2 and v2 =

[

3
−1

]

is an

eigenvector with eigenvalue 4. Let P =

[

1 3
−1 −1

]

. Then J = P−1AP =
[

2 0
0 4

]

. Since both eigenvalues are positive the origin is an unstable node.

9. The characteristic polynomial is cA(s) = s2 − 2s + 5 = (s − 1)2 + 22.

So 1 ± 2i are the eigenvalues. An eigenvector for 1 − 2i is

[

−1 + i
4

]

. Let

P =

[

−1 1
4 0

]

. Then J = P−1AP =

[

1 −2
2 1

]

. The origin is an unstable

star node.

11. Let (x, y) be a point on the P (L). Suppose P−1 =

[

a b
c d

]

. Let

[

u
v

]

=

P−1

[

x
y

]

=

[

ax+ by
cx+ dy

]

. Then (u, v) is on L and so

0 = Du+ Ev + F

= D(ax+ by) + E(cx+ dy) + F

= (Da+ Ec)x+ (Db+ Ed)y + F

= D′x+ E′y + F,

where (D′, E′) = (Da+Ec,Db+Ed) = (D,E)P−1. It follows that (x, y)
satisfies the equation of a line. A line goes through the origin if and only
if F = 0. If the equation for L has F = 0 then the above calculation
shows the equation for P (L) does too.

13. Let C be the graph of a power curve in the (u, v) plane and P (C) the
transform of C. Let (x, y) be a point of P (C) and (u, v) the point on

C such that P

[

u
v

]

=

[

x
y

]

. If P−1 =

[

a b
c d

]

then

[

u
v

]

=

[

ax+ by
cx+ dy

]

.

Replace u and v in the equation Au + Bv = (Cu + Dv)p by ax + by
and cx + dy, respectively. We then get (Aa + Bc)x + (Ab + Bd)y =
((Ca+Dc)x+ (Cb+Dd)y)p. Thus P (C) is the graph of a power curve.



1 Solutions 167

15. The characteristic polynomial takes the form cA(s) = s2−(trA)s+detA.
Let λ = trA. Since detA = 0 we have cA(s) = s2 − λs = s(s− λ). Now
consider two cases:

λ 6= 0: In this case A has two distinct eigenvalues, 0 and λ. Let v1 be an
eigenvector with eigenvalue 0 and v2 an eigenvector with eigenvalue
λ. Then v1 and v2 are linearly independent. If P =

[

v1 v2
]

then P
is invertible and

AP =
[

Av1 Av2
]

=
[

0 λv2
]

=
[

v1 v2
]

[

0 0
0 λ

]

= PJ1.

Now multiply both sides on the left by P−1 to get that P−1AP = J1.
λ = 0: In this case cA(s) = s2. Since A is not zero there must be a vector v1

that is not an eigenvector. Let v2 = Av1. Then v2 is an eigenvector
with eigenvalue 0 since, by the Cayley-Hamilton theorem,

Av2 = A2v1 = 0.

Now let P =
[

v1 v2
]

. Then

AP = A
[

v1 v2
]

=
[

Av1 Av2
]

=
[

v2 0
]

=
[

v1 v2
]

[

0 0
1 0

]

= P

[

0 0
1 0

]

.

Now multiply both sides on the left by P−1 to get that P−1AP = J2.

17. If c =

[

c1
c2

]

then the equation J2c = 0 implies c1 = 0. It follows that

each point on the v-axis is an equilibrium point. Now assume c1 6= 0.

The solution to w′ = J2w, w(0) =

[

c1
c2

]

is u(t) = c1 and v(t) = tc1 + c2.

The path (u(t), v(t)) = (c1, c2) + t(0, c1), t ∈ R, is a vertical line that
passes through the initial condition (c1, c2) and points upward if c1 > 0
and downward it c1 < 0. The phase portrait is given below:
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19. It is not difficult to see that eAt = I + tA. Let v1 be an eigenvector. By
Lemma 9.5.9, eAtv1 = v1. So each eigenvector is an equilibrium point.
Let v be a vector that is not an eigenvector. By the Cayley-Hamilton
theorem A2v = 0 so Av is an eigenvector. Furthermore eAtv = v + tAv.
The trajectory is a line parallel to Av going through v.

21. Assume c1 > 0 and thus x > 0 (the case where c1 < 0 is similar). We

have y′ =
lnx/c1

λ
+

1

λ
+

c2
c1

. It follows that lim
x→0+

y′ = −∞ if λ > 0 and

lim
x→0+

y′ = ∞ if λ < 0.

23. y′′ =
1

λx
and the result follows.

Section 9.7

1. Observe that Φ′(t) =

[

−e−t 2e2t

−e−t 8e2t

]

=

[

−2 1
−4 3

] [

e−t e2t

e−t 4e2t

]

= A(t)Φ(t).

Also, detΦ(t) = 4et − et = 3et 6= 0. Thus Φ(t) is a fundamental matrix.
The general solution can be written in the form y(t) = Φ(t)c, where

c =

[

c1
c2

]

is a constant vector. The initial condition implies y(0) = Φ(0)c

or
[

1
−2

]

=

[

1 1
1 4

] [

c1
c2

]

=

[

c1 + c2
c1 + 4c2

]

.

Solving for c we get c1 = 2 and c2 = −1. It follows that

y(t) = Φ(t)c = 2

[

e−t

e−t

]

−
[

e2t

4e2t

]

=

[

2e−t − e2t

2e−t − 4e2t

]

.

The standard fundamental matrix at t = 0 is

Ψ (t) = Φ(t)Φ(0)−1 =

[

e−t e2t

e−t 4e2t

] [

1 1
1 4

]−1

=
1

3

[

e−t e2t

e−t 4e2t

] [

4 −1
−1 1

]

=
1

3

[

4e−t − e2t −e−t + e2t

4e−t − 4e2t −e−t + 4e2t

]

.

3. Observe that



1 Solutions 169

Φ′(t) =

[

t cos(t2/2) −t sin(t2/2)
−t sin(t2/2) − cos(t2/2)

]

=

[

0 t
−t 0

] [

sin(t2/2) cos(t2/2)
cos(t2/2) − sin(t2/2)

]

= A(t)Φ(t).

Also, detΦ(t) = − sin2(t2/2) − cos2(t2/2) = −1 6= 0. Thus Φ(t) is a
fundamental matrix. The general solution can be written in the form

y(t) = Φ(t)c, where c =

[

c1
c2

]

is a constant vector. The initial condition

implies y(0) = Φ(0)c or

[

1
0

]

=

[

0 1
1 0

] [

c1
c2

]

=

[

c2
c1

]

.

Thus c1 = 0 and c2 = 1. It follows that

y(t) = Φ(t)c = 0

[

sin(t2/2)
cos(t2/2)

]

+

[

cos(t2/2)
− sin(t2/2)

]

=

[

cos(t2/2)
− sin(t2/2)

]

.

The standard fundamental matrix at t = 0 is

Ψ (t) = Φ(t)Φ(0)−1 =

[

sin(t2/2) cos(t2/2)
cos(t2/2) − sin(t2/2)

] [

0 1
1 0

]−1

=

[

sin(t2/2) cos(t2/2)
cos(t2/2) − sin(t2/2)

] [

0 1
1 0

]

=

[

cos(t2/2) sin(t2/2)
− sin(t2/2) cos(t2/2)

]

.

5. Observe that

Φ′(t) =

[

− cos t+ t sin t − sin t− t cos t
sin t+ t cos t − cos t+ t sin t

]

=

[

1/t 1
−1 1/t

] [

−t cos t −t sin t
t sin t −t cos t

]

= A(t)Φ(t).

Also, detΦ(t) = t2 cos2 t+ t2 sin2 t = t2 6= 0. Thus Φ(t) is a fundamental
matrix. The general solution can be written in the form y(t) = Φ(t)c,

where c =

[

c1
c2

]

is a constant vector. The initial condition implies y(π) =

Φ(π)c or
[

1
−1

]

=

[

π 0
0 π

] [

c1
c2

]

=

[

πc1
πc2

]

.
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Thus c1 = 1/π and c2 = −1/π. It follows that

y(t) = Φ(t)c =
1

π

[

−t cos t
t sin t

]

− 1

π

[

−t sin t
−t cos t

]

=
t

π

[

− cos t+ sin t
cos t+ sin t

]

.

The standard fundamental matrix at t = π is

Ψ (t) = Φ(t)Φ(π)−1 =

[

−t cos t −t sin t
t sin t −t cos t

] [

π 0
0 π

]−1

=
1

π

[

−t cos t −t sin t
t sin t −t cos t

]

.

7. Observe that

Φ′(t) =

[

0 tet

0 et

]

=

[

1 1
1/t 1/t

] [

1 (t− 1)et

−1 et

]

= A(t)Φ(t).

Also, detΦ(t) = et+tet−et = tet 6= 0. Thus Φ(t) is a fundamental matrix.
The general solution can be written in the form y(t) = Φ(t)c, where

c =

[

c1
c2

]

is a constant vector. The initial condition implies y(0) = Φ(0)c

or
[

−3
4

]

=

[

1 0
−1 e

] [

c1
c2

]

=

[

c1
−c1 + ec2

]

.

Thus c1 = −3 and c2 = 1/e. It follows that

y(t) = Φ(t)c = −3

[

1
−1

]

+
1

e

[

(t− 1)et

et

]

=

[

(t− 1)et−1 − 3
et−1 + 3

]

.

The standard fundamental matrix at t = 0 is

Ψ (t) = Φ(t)Φ(0)−1 =

[

1 (t− 1)et

−1 et

] [

1 0
−1 e

]−1

=
1

e

[

1 (t− 1)et

−1 et

] [

e 0
1 1

]

=
1

e

[

e+ (t− 1)et (t− 1)et

−e+ et et

]

=

[

1 + (t− 1)et−1 (t− 1)et−1

−1 + et−1 et−1

]

.
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9. Let A =

[

0 −1
1 2

]

. Then A(t) =
1

t
A. We first compute eAu. The charac-

teristic polynomial, cA(s) is

cA(s) = det (sI −A) = det

[

s 1
−1 s− 2

]

= s2 − 2s+ 1 = (s− 1)2.

It follows that BcA = {eu, ueu}. Using Fulmer’s method we have eAu =
euM1 + ueuM2. Differentiating and evaluating at u = 0 gives

I = M1

A = M1 +M2.

It follows that M1 = I =

[

1 0
0 1

]

and M2 = A− I =

[

−1 −1
1 1

]

. Thus

eAu = eu
[

1 0
0 1

]

+ ueu
[

−1 −1
1 1

]

.

Since ln t is an antiderivative of 1
t and ln 1 = 0 we have by Proposition

12

Ψ (t) = eln t

[

1 0
0 1

]

+ (ln t)eln t

[

−1 −1
1 1

]

=

[

t− t ln t −t ln t
t ln t t+ t ln t

]

,

is the standard fundamental matrix for y′(t) = A(t)y(t) at t = 1. The
homogeneous solution is given by

yh(t) = Ψ (t)y(1)

=

[

t− t ln t −t ln t
t ln t t+ t ln t

] [

2
0

]

=

[

2t− 2t ln t
2t ln t

]

.

The particular solution is given by

yp(t) = Ψ (t)

∫ t

1

Ψ (u)−1f(u) du

=

[

t− t ln t −t ln t
t ln t t+ t ln t

] ∫ t

1

1

u

[

1 + lnu lnu
− lnu 1− lnu

] [

1
−1

]

du

=

[

t− t ln t −t ln t
t ln t t+ t ln t

]

ln t

[

1
−1

]

du

= t ln t

[

1
−1

]
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It follows that

y(t) = yh(t) + yp(t) =

[

2t− 2t ln t
2t ln t

]

+

[

t ln t
−t ln t

]

=

[

2t− t ln t
t ln t

]

.

11. Let A =

[

3 5
−1 −3

]

. Then A(t) = sec(t)A. The characteristic polynomial

of A is cA(s) = s2 − 4 = (s− 2)(s+ 2). Hence BcA =
{

e2t, e−2t
}

and

eAu = M1e
2u +M2e

−2u.

Differentiating and evaluating at u = 0 give the equations I = M1 +M2

and A = 2M1 − 2M2. It follows that

M1 =
1

4

[

5 5
−1 −1

]

and M2 =
1

4

[

−1 −5
1 5

]

and

eAu =
1

4

[

5e2u − e−2u 5e2u − 5e−2u

−e2u + e−2u −e2u + 5e−2u

]

.

If b(t) =
∫ t

0
secu du = ln |sec t+ tan t| then Ψ (t) = eAb(t). If X = (sec t+

tan t)2 then X−1 = (sec t− tan t)2 and

Ψ (t) =
1

4







5X − 1

X
5X − 5

1

X

−X +
1

X
−X + 5

1

X







=

[

sec2 t+ 3 sec t tan t+ tan2 t 5 sec t tan t
− sec t tan t sec2 t− 3 sec t tan t+ tan2 t

]

.

From this it follows that the homogeneous solution is

yh(t) +

[

sec2 t+ 3 sec t tan t+ tan2 t 5 sec t tan t
− sec t tan t sec2 t− 3 sec t tan t+ tan2 t

] [

2
1

]

=

[

2 sec2 t+ 11 sec t tan t+ 2 tan2 t
sec2 t− 5 sec t tan t+ tan2 t

]

Since the forcing function f is identically zero the particular solution is
zero. Hence y = yh.

13. Let v1(t) and v2(t) denote the volume of brine in Tank 1 and Tank
2, respectively. Then v1(t) = v2(t) = 2 − t. The following differential
equations describe the system
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y′1(t) = − 3

2− t
y1(t) +

1

2− t
y2(t) + 6

y′2(t) =
1

2− t
y1(t)−

3

2− t
y2(t) + 0,

with initial conditions y1(0) = 0 and y2(0) = 20. In matrix form, y′(t) =
A(t)y(t) + f(t), we have

A(t) =

[

−3/(2− t) 1/(2− t)
1/(2− t) −3/(2− t)

]

, f(t) =

[

6
0

]

, y(0) =

[

0
20

]

.

Let a(t) =
−1

2− t
. Then we can write A(t) = a(t)A where

A =

[

3 −1
−1 3

]

.

The characteristic polynomial is cA(s) = s2 − 6s + 8 = (s − 2)(s − 4).
We now have BcA =

{

e2t, e4t
}

It follows that eAu = M1e
2u + M2e

4u.
Differentiating and setting u = 0 we get

I = M1 +M2

A = 2M1 + 4M2.

An easy calculation gives

M1 =
1

2
(4I −A) =

1

2

[

1 1
1 1

]

M2 =
1

2
(A− 2I) =

1

2

[

1 −1
−1 1

]

and

eAu =
e2u

2

[

1 1
1 1

]

+
e4u

2

[

1 −1
−1 1

]

.

Let b(t) =
∫ t

0
a(u) du =

∫ t

0

−1

2− u
du = ln 2−t

2 . Then the standard funda-

mental matrix is

Ψ (t) = eAu|u=b(t) =
(2 − t)2

8

[

1 1
1 1

]

+
(2 − t)4

32

[

1 −1
−1 1

]

.

For the homogeneous solution we have
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yh(t) = Ψ (t)y(0)

=
(2− t)2

8

[

1 1
1 1

] [

0
20

]

+
(2− t)4

32

[

1 −1
−1 1

] [

0
20

]

=
(2− t)2

2

[

5
5

]

+
(2− t)4

8

[

−5
5

]

.

For the particular solution straightforward calculations give

Ψ−1(u) =
2

(2− u)4

[

(2 − u)2 + 4 (2 − u)2 − 4
(2− u)2 − 4 (2 − u)2 + 4

]

,

Ψ−1f (u) =
2

(2− u)4

[

(2− u)2 + 4 (2− u)2 − 4
(2− u)2 − 4 (2− u)2 + 4

] [

6
0

]

=
12

(2− u)4

[

(2− u)2 + 4
(2− u)2 − 4

]

= 12

[

(2− u)−2 + 4(2− u)−4

(2− u)−2 − 4(2− u)−4

]

,

and

∫ t

0

Ψ−1(u)f(u) du =
4

(2 − t)3

[

3(2− t)2 + 4
3(2− t)2 − 4

]

−
[

8
4

]

.

Finally, we get

yp(t) = Ψ (t)

∫ t

0

Ψ−1(u)f(u) du

=

(

(2− t)2

8

[

1 1
1 1

]

+
(2 − t)4

32

[

1 −1
−1 1

])∫ t

0

Ψ−1(u)f (u) du

= (2− t)

[

4
2

]

− (2− t)2

2

[

3
3

]

− (2− t)4

8

[

1
−1

]

.

We now add the homogeneous and particular solutions together and sim-
plify to get

y(t) = yh + yp

= (2 − t)

[

4
2

]

+ (2 − t)2
[

1
1

]

+
(2− t)4

4

[

−3
3

]

.

We now get
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y1(t) = 4(2− t) + (2− t)2 − 3

4
(2− t)4

y2(t) = 2(2− t) + (2− t)2 +
3

4
(2− t)3.

The amount of fluid in each tank after 1 minute is v1(1) = v2(1) = 1.
Thus the concentrations (grams/L) of salt in Tank 1 is y1(1)/1 and in
Tank 2 is y2(1)/1, i.e.

y1(1)

1
=

17

4
and

y2(1)

1
=

15

4
.
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