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Chapter 1
Solutions

SECTION 1.1

11

13

. The rate of change in the population P(t) is the derivative P’(t). The

Malthusian Growth Law states that the rate of change in the population is
proportional to P(t). Thus P’'(t) = kP(t), where k is the proportionality
constant. Without reference to the t variable, the differential equation
becomes P’ = kP

. Torricelli’s law states that the change in height, h'(¢) is proportional to

the square root of the height, \/h(t). Thus /() = A\/h(t), where X is
the proportionality constant.

. The highest order derivative is y” so the order is 2. The standard form is

y// — tS/y/.

The highest order derivative is ¢ so the order is 2. The standard form is
y'=—Ey+ty)/t*

. The highest order derivative is y(*) so the order is 4. Solving for y* gives

the standard form: y*) = /(1 — (y")4)/t.

. The highest order derivative is y"” so the order is 3. Solving for y"" gives
the standard form: v = 2y" — 3y’ +v.

. The following table summarizes the needed calculations:
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Function ty' (1) y(t)
yi(t) = tyr(t) =0 yi(t) =0
yo(t) = 3t tys(t) = 3t ya(t) = 3t
y3(t) = =5t tyhs(t) = —bt y3(t) = —5t
ya(t) =t tyy(t) = 3t° ya(t) =t

To be a solution, the entries in the second and third columns need to be
the same. Thus y1, y2, and y3 are solutions.

. The following table summarizes the needed calculations:

Function y'(t) 2y(t)(y(t) — 1)

yi(t) =0 yi(t) =0 21(t)(y (1) = 1) =2-0-(-1) =

y2(t) = Ya(t) =0 2y2(t)(y2(t) = 1) =2-1-0=

ys(t) =2 ys(t) =0 2ys(t)(ys(t) —1)=2-2-1=

nt) = 2o v = 2 2O — 1) = 212 (2 - 1)
- 21—16% 1i2et2t (1322;)2

Thus y1, y2, and y4 are solutions.

. The following table summarizes the needed calculations:

Function 2y(t)y' (t) Y2 +t—1

yi(t) = vV—t 2\/—7% :t—l (V=) +t—1=-1

ya(t) = — /T 4@%:@_1 (VT2 4 t—1=el—1
1

ys(t) = vVt 2%2—ﬁ=1 V)P +t-1=2t-1

ya(t) = —v/—=t 2(=v=1) =-1 (—V=t)2+y—1=-1

Thus y1, y2, and y4 are solutions.

y'(t) = 3ce
3y+12 = 3(ce® —4) +12 = 3ce® — 12+ 12 = 3ce?’.

Note that y(t) is defined for all t € R.
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23.

25.

27.

29.

31.

33.

35.

37.

cet

/
t) = —m—=
y'(t) A=)
1 1 1—(1—ce) cet

(1—cet)2 1—cet (1 —cet)? (1 —cet)?’

If ¢ < 0 then the denominator 1 —ce* > 0 and y(¢) has domain R. If ¢ > 0
then 1 —ce! = 0if t = Ind = —Inc. Thus y(t) is defined either on the
interval (—oo, —Inc) or (—Inc, 00).

—cet

!
t) = ——
y'(t) o
. -1 —cet
Y1 = _—ln(ce—l)_1: 1= i
€ ¢ cet —1 cet —1

Since ¢ > 0 then y(t) is defined if and only if ce! — 1 > 0. This occurs
if e/ > 1 which is true if ¢ > In2 = —Inc. Thus y(t) is defined on the
interval (—1In ¢, 00).

yi(t) = DL
The denominator of y(t) is 0 when ¢ = ¢. Thus the two intervals where
y(t) is defined are (—oo, ¢) and (¢, 00).
Integration gives y(t) = % —t+ec
Observe that £+ =1+ 1. Integration gives y(t) =t + In[t| + c.

We integrate two times. First, y'(t) = —2cos3t + ¢;1. Second, y(t) =
—% sin 3t + c1t + co.

From Problem 20 the general solution is y(t) = ce™t + 3t —3. At t =0
we get 0 = y(0) = ce® + 3(0) — 3 = ¢ — 3. It follows that ¢ = 3 and
y(t) = 3e~" + 3t — 3.

From Problem 24 the general solution is y(t) = c(t +1)7* At t = 1
we get —9 = y(1) = ¢(1+ 1)~ = ¢/2. It follows that ¢ = —18 and
y(t) = —18(t+ 1)~ 1.

From Problem 28 the general solution is y(t) = —te™* — e~ + ¢. Evalua-
tion at t = 0 gives —1 = y(0) = —1+cso ¢ = 0. Hence y(t) = —te "t —e .
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SECTION 1.2
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11. We set y(y +t) = 0. We look for constant solutions to y(y +t) = 0, and
we see that y = 0 is the only constant (= equilibrium) solution.

13. The equation 1 — % = 0 has two constant solutions: y =1 and y = —1

15. We substitute y = at + b into y’ = cos(t +y) to get a = cos((a+ 1)t +b).
Equality for all ¢ means that cos((a+1)t+b) must be a constant function,
which can occur only if the coefficient of ¢ is 0. This forces a = —1 leaving
us with the equation —1 = cosb. This implies b = (2n+1)m, where n is an
integer. Hence y = —t 4+ (2n + 1)7, n € Z is a family of linear solutions.

17. Implicit differentiation with respect to ¢ gives 2yy’ — 2t — 3t2 = 0.

19. Differentiation gives y' = 3ct? + 2t. However, from the given function
2
we have ct®> = y — t? and hence ct?> = Y. Substitution gives y' =

3u=t pop =3 ¢
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SECTION 1.3

11.

13.

15.

. First write in standard form: ¢y =

. separable; h(t) = 1 and g(y) = 2y(5 — y)

1-2t .19t
=~. We cannot write ~—z

product of a function of ¢ and a function of y. It is not separable.

as a

. Write in standard form to get: y' = U—T%t Here we can write ”_T%” =

y1=2L Tt is separable; h(t) = 1=2L and g(y) = y.

In standard form we get ¢y’ = t;f—;# We cannot write ¢y = t;f—ézg as a

product of a function of ¢ and a function of y. It is not separable

. In standard form we get: y' = e~!(y3 — y) It is separable; h(t) = e~ and
9y) =y’ —y
In standard form we get y' = 1;;’2. Clearly, y = %1 are equilibrium

solutions. Separating the variables gives

Y 1
dy = —dt.
1—92 Y75

Integrating both sides of this equation (using the substitution u = 1 —y?,
du = —2y dy for the integral on the left) gives

1
—§1n|1 — % =In|t| +ec.

Multiplying by —2, taking the exponential of both sides, and removing
the absolute values gives 1 — y? = kt~2 where k is a nonzero constant.
However, when k = 0 the equation becomes 1 —%? = 0 and hence y = +1.
By considering an arbitrary constant (which we will call ¢), the implicit
equation t%(1 — y?) = ¢ includes the two equilibrium solutions for ¢ = 0.

The variables are already separated, so integrate both sides to get y°/5 =
t2/2 + 2t + ¢, ¢ a real constant. Simplifying gives y° = th + 10t + c. We
leave the answer in implicit form

In standard form we get y' = (1 — y) tant so y = 1 is a solution. Sepa-
rating variables gives ﬁ—y = tant dt. The function tant is continuous on
the interval (—7/2, 7/2) and so has an antiderivative. Integration gives
—In|l1 —y| = —Injcost| + k. Multiplying by —1 and exponentiating
gives |1 — y| = ko |cost| where ko is a positive constant. Removing the
absolute value signs gives 1 —y = ks cost, with ks # 0. If we allow k3 =0
we get the equilibrium solution y = 1. Thus the solution can be written

y =1 — ccost, c any real constant.
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17.

19.

21.

23.

25.

27.

29.

31.

There are two equilibrium solutions; y = 0 and y = 4. Separating vari-

ables and using partial fractions gives % (% + ﬁ) dy = dt. Integrating

and simplifying gives In ‘ﬁ—y‘ = 4t + k; which is equivalent to ﬁ = ce®t,
¢ a nonzero constant. Solving for y gives y = %. When ¢ = 0 we get
the equilibrium solution y = 0. However, there is no ¢ which gives the
other equilibrium solution y = 4.

Separating variables gives = dt and integrating gives tan~! y = t+c.

dy
y2+1
Thus y = tan(t + ¢), ¢ a real constant.
—(y+1) 1

In standard form we get 3’ = — T T from which we see that y =

—1 is an equilibrium solution. Separating variables and simplifying gives

(% — 1) dy = %. Integrating and simplifying gives In(y +1)? —y =

tan~1t + c.

The equilibrium solution is y = 0. Separating variables gives y~2dy =
%. Integrating and simplifying gives y = wi=iTe © real constant.

y = 0 is the only equilibrium solution. The equilibrium solution y(¢) =0
satisfies the initial condition y(1) = 0 so y(t) = 0 is the required solution.

In standard form we get yy' = —2ty so y = 0 is a solution. Separat-
ing variables and integrating gives In |y| = —t% + k. Solving for y gives
Yy = ce™ and allowing ¢ = 0 gives the equilibrium solution. The initial

condition implies 4 = y(0) = ce® = ¢. Thus y = 4e~*".

Separating variables gives % = u;fH du and integrating gives In|y| =

Invu2 + 1+ k. Solving for y gives y = cvu2 + 1, for ¢ # 0. The initial
condition gives 2 = y(0) = ¢. So y = 2vu? + 1.

Since y> + 1 > 1 there are no equilibrium solutions. Separating the
variables gives

dy  dt

y2+1 2’
and integration of both sides gives tan~ !y = —% + ¢. Solve for y
by applying the tangent function to both sides of the equation. Since

tan(tan !

y) =y, we get
1
y(t) = tan(—g +c).

To find ¢ observe that v/3 = y(1) = tan(—1 + ¢), which implies that
c—1=mn/3,s0 c=1+7/3. Hence
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33.

35.

37.

39.

1 Solutions

() =t L4l
y(t) = tan " 5 )

To determine the maximum domain on which this solution is defined,
note that the tangent function is defined on the interval (—m/2, 7/2), so
that y(t) is defined for all ¢ satisfying

The first inequality is solved to give ¢ > 6/(6 + 57). The second
equality is solved to give t < 6/(6 — 7). Thus the maximum domain
for the solution y(t) is the interval (a, b) = (6/(6 + 57), 6/(6 — m)).
lim; ;- y(t) = lim;_,;- tan (—% +14 %) =lim,_, /- tanz = oco.

Let m denote the number of Argon-40 atoms in the sample. Then 8m is
the number of Potassium-40 atoms. Let ¢ be the age of the rock. Then
t years ago there were m + 8m = 9m atoms of Potassium-40. Hence
N(0) = 9m. On the other hand, 8m = N(t) = N(0)e* = 9me~*. This

. _ —In8  _
implies that % = e ™M and hence t = ;\]9 =5

old.

In % =~ 212 million years

The ambient temperature is 32° F, the temperature of the ice water.
From Equation (13) we get T'(t) = 32 + ke™. At t = 0 we get 70 =
32+ k, so k = 38 and T(t) = 32 + 38e™. After 30 minutes we have
55 = T'(30) = 32+ 38¢3°" and solving for r gives r = 55 In 22. To find the
time ¢ when T'(t) = 45 we solve 45 = 32 + 38¢", with r as above. We get

_ In13—1n38 :
t = 305551055 ~ 64 minutes.

The ambient temperature is T, = 65°. Equation (13) gives T'(t) = 65 +
ke™t for the temperature at time ¢. Since the initial temperature of the
thermometer is 7'(0) = 90 we get 90 = T'(0) = 65 + k. Thus k = 25. The
constant r is determined from the temperature at a second time: 85 =
T(2) = 65+ 25¢*" sor = $In2. Thus T(t) = 65+ 25¢"", with r = 1 In 3.
To answer the first question we solve the equation 75 = T'(t) = 65+ 25¢"*

for t. We get t = 2%22:{22 ~ 8.2 minutes. The temperature at ¢ = 20 is

T(20) = 65 + 25 (4)"" ~ 67.7°.

The ambient temperature is T, = 70°. Equation (13) gives T'(t) = 70 +
ke™ for the temperature of the coffee at time ¢. We are asked to determine
the initial temperature of the coffee so T'(0) is unknown. However, we have
the equations

150 =T(5) = 70+ ke""
142=T(6) = 70+ keS"
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41.

43.

45.

47.

or
80 = keo"
72 = ke'.

Dividing the second equation by the first gives ;—3 =e¢e" sor = 1n0.9.

From the first equation we get k = 80e™®" ~ 135.5. We now calculate
T(0) =70+ k =~ 205.5°

Let us start time ¢ = 0 at 1980. Then P(0) = 290. The Malthusian growth
model gives P(t) = 290e™. At ¢t = 10 (1990) we have 370 = 290e'°"
and hence r = £ In 37 At ¢ = 30 (2010) we have P(30) = 290e%'" =
290 (22)° ~ 602.

We have 3P(0) = P(5) = P(0)e". Sor = 122, Now we solve the equation
2P(0) = P(t) = P(0)e" for t. We get t = 112 = 3102 ~ 3 15 years.

T In3

In the logistics equation m = 5000 and Py, = 2000. Thus P(t) =

10,000,000 _ 10,000 q: _ _ 10,000
5 00043,000e=7 = T13e-77" Since P(2) = 3000 we get 3000 = 53— SOlv-

ing this equation for r gives r = In % Now P(4) = 2103729% = 2«1037?2(;4 =~
3
3857

We have P(0) = Py = 400, P(3) = P, = 700, and P(6) = P, = 1000. Us-

700(700(400+1000) —2-400-1000)

ing the result of the previous problem we get m = (700)7—200-1000
1,400

SECTION 1.4

1.

This equation is already in standard form with p(¢) = 3. An antiderivative
of p(t) is P(t) = [3dt = 3t so the integrating factor is pu(t) = €*. If we
multiply the differential equation y'+3y = e’ by u(t), we get the equation

3yl 4 363ty — oM,

and the left hand side of this equation is a perfect derivative, namely,
(e3ty)’. Thus, (e3ty)’ = e?’. Now take antiderivatives of both sides and
multiply by e=3f. This gives

_ 1y —3t
y—4e + ce

for the general solution of the equation. To find the constant ¢ to satisfy
the initial condition y(0) = —2, substitute ¢ = 0 into the general solution
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11.

1 Solutions

9

to get —2 = y(0) = 1 + c. Hence ¢ = —3, and the solution of the initial

value problem is

L 9 —a
=-¢' —-e "
YTat g
. This equation is already in standard form. In this case p(t) = —2, an
antiderivative is P(t) = —2t, and the integrating factor is u(t) = e~ 2.

Now multiply by the integrating factor to get

e—2t —2t

y' —2e My =1,

the left hand side of which is a perfect derivative ((e=2!)y)’. Thus
((e72Y)y)’ = 1 and taking antiderivatives of both sides gives

(efzt)y =t+ec,

where ¢ € R is a constant. Now multiply by e to get y = te + ce?* for
the general solution. Letting ¢ = 0 gives 4 = y(0) = ¢ so

y = te?’ + 4e?.

. The general solution from Problem 4 is y = 6—: + 7. Now let £ =1 to get

et
t

0O=e+c Soc=—eandy=

€
T

We first put the equation in standard form and get
/ 1 2
Yy + V= cos(t”).

In this case p(t) = %, an antiderivative is P(t) = Int, and the integrating

factor is p(t) = t. Now multiply by the integrating factor to get
ty' 4+ 1y = tcos(t?),

the left hand side of which is a perfect derivative (ty)’. Thus (ty) =
tcos(t?) and taking antiderivatives of both sides gives ty = 3sin(t?) + ¢
sin(t?)

where ¢ € R is a constant. Now divide by ¢ to get y = ——~ + {. for the
general solution.
. In this case p(t) = —3 and the integrating factor is e/ ~3dt = =3,

Now multiply to get e 3ty — 3e~3'y = 25e 3" cos4t, which simplifies

to (e73y) = 25e73!cos4t. Now integrate both sides to get e 3ty =
(4sin4t — 3cos4t)e 3 + ¢, where we computed [ 25¢~3f cos4t by parts
twice. Dividing by e 3! gives y = 4sin4t — 3 cos 4t + ce>.

In standard form we get 2z’ — 2tz = —2t3. An integrating factor is
N 2 2 2
el ~2tdt — o=t° Thus (e7* 2)’ = —2t3%e* . Integrating both sides gives
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13.

15.

17.

e ¥z = (t2+1)e " + ¢, where the integral of the right hand side is done
by parts. Now divide by the integrating factor e =% to get z = t2+1+ce! .

The given equation is in standard form, p(t) = cost, an antiderivative is
P(t) = —sint, and the integrating factor is u(t) = e~ "%, Now multiply
by the integrating factor to get

e—sinty/ 4 (Cost)e—sinty _ (COSt)e_Sint,
the left hand side of which is a perfect derivative ((e~"%)y)’. Thus
((67 sint)y)/ _ (COSt)67 sint

and taking antiderivatives of both sides gives (e~ s"t)y = e~ snt 4 ¢
where ¢ € R is a constant. Now multiply by e*"? to get y = 1 4 cesin?
for the general solution. To satisfy the initial condition, 0 = y(0) =
1+ ces™0 = 1+ ¢, s0 ¢c = —1. Thus, the solution of the initial value
problem is y = 1 — eSin?

The given linear differential equation is in standard form, p(t) = %2,

an antiderivative is P(t) = —2Int = Int~2, and the integrating factor is
u(t) = t=2. Now multiply by the integrating factor to get

2 41

By T T T IR

t72y/ _
the left hand side of which is a perfect derivative (t~2y)’. Thus
(thy)/ — t—2 4 t73

and taking antiderivatives of both sides gives (¢t 2)y = —t~! — g +c
where ¢ € R is a constant. Now multiply by t? to and we get y = —t —
% + ct~2 for the general solution. Letting t = 1 gives —3 = y(1) = %3 +c
so ¢ = %3 and

The given equation is in standard form, p(t) = a, p(t) = a, an antideriva-
tive is P(t) = at, and the integrating factor is u(t) = e**. Now multiply
by the integrating factor to get e®y’ + aey = (@0t the left hand side
of which is a perfect derivative (e%'y)’. Thus (e*y)’ = e(@+?)* and taking
antiderivatives of both sides gives

a 1 a
(e*)y = me( e

where ¢ € R is a constant. Now multiply by e~%* to get
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19.

21.

23.

25.

1 Solutions

1
a+b

y = ebiE + Cefat

for the general solution.

In standard form we get 3’ — (tant)y = sect. In this case p(t) =
—tant, an antiderivative is P(t) = Incost, and the integrating factor
is u(t) = e’® = cost. Now multiply by the integrating factor to get
(cost)y’ — (sint)y = 1, the left hand side of which is a perfect deriva-
tive ((cost)y)’. Thus ((cost)y)’ = 1 and taking antiderivatives of both
sides gives (cost)y = t + ¢ where ¢ € R is a constant. Now multiply by
1/ cost = sect and we get y = (t + ¢) sect for the general solution.

The given differential equation is in standard form, p(t) = —n/t, an
antiderivative is P(t) = —nlnt = In(¢™"), and the integrating factor
is p(t) = t~™. Now multiply by the integrating factor to get t "y’ —
nt~""ly = e’ the left hand side of which is a perfect derivative (t~"y)’.
Thus (¢t~ "y)’ = e’ and taking antiderivatives of both sides gives (t~")y =
e! + ¢ where ¢ € R is a constant. Now multiply by " to and we get
y = t"et 4 ct™ for the general solution.

Divide by t to put the equation in the standard form
, 3

In this case p(t) = 3/t, an antiderivative is P(t) = 3Int = In(#3), and the
integrating factor is u(t) = t3. Now multiply the standard form equation
by the integrating factor to get t3y’+3t%y = t*, the left hand side of which
is a perfect derivative (t3y)’. Thus (t3y)’ = t* and taking antiderivatives
of both sides gives t3y = %t5 + ¢ where ¢ € R is a constant. Now multiply
by t~% and we get y = £1? + ¢t~ for the general solution. Letting ¢ = —1

gives 2=y(-1) =1 —csoc==2 and
1, 9. 4
=2 2473,

5 5

Divide by t? to put the equation in the standard form
2
yHgy=t7

In this case p(t) = 2/t, an antiderivative is P(t) = 2Int = Int?, and the
integrating factor is u(t) = 2. Now multiply by the integrating factor to
get t2y’ +2ty = 1, the left hand side of which is a perfect derivative (t?y)’.
Thus (t?y)’ = 1 and taking antiderivatives of both sides gives t?y =t + ¢
where ¢ € R is a constant. Now multiply by ¢~2 to get y = 1 + ¢t~ for
the general solution. Letting ¢ = 2 gives a = y(2) = 1 4+ £ so ¢ = 4a — 2
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27.

29.

and .
y=-+ (4a — 2)t™2.

Let V (t) denote the volume of fluid in the tank at time ¢. Initially, there
are 10 gal of brine. For each minute that passes there is a net decrease of
4 —3 =1 gal of brine. Thus V(¢) = 10 — ¢ gal.
gal lbs lbs
3 — X 1 —= 0.
min gal min
1 t) 1b dy(t) 1b

output rate: output rate =4 & X y( ) 28 = y( ) —S

min V() gal 10 —¢ min
Since y’ = input rate—output rate, it follows that y(t) satisfies the initial
value problem

input rate: input rate =

4
I — R — =
Y =3-15—7v@®, w0 =2

Put in standard form, this equation becomes

4
!
=3
T

The coefficient function is p(t) = o, P(t) = [ p(t)dt = —4In(10—t) =
In(10 — ¢)=%, and the integrating factor is u(t) = (10 — ¢)~*. Multiplying
the standard form equation by the integrating factor gives

(10 —t)y) = 3(10 — )%,

Integrating and simplifying gives y = (10 — t) + ¢(10 — ¢)*. The initial
condition y(0) = 2 implies 2 = y(0) = 10 + ¢10* and hence ¢ = —8/10*
S0

8 4

Of course, this formula is valid for 0 < ¢ < 10. After 10 minutes there is
no fluid and hence no salt in the tank.

Let V() denote the volume of fluid in the container at time ¢. Initially,
there are 10 L. For each minute that passes there is a net gain of 4—2 = 2
L of fluid. So V(t) = 10 + 2¢. The container overflows when V(t) =
10 + 2¢ = 30 or ¢ = 10 minutes.

L
input rate: input rate=4 — x 20 & _ 80 i
min L min
L y@) g _ 2y(t) g

output rate: output rate =2 — x = = —_
min 10+ 2t L 10 4+ 2¢ min

Since y' = input rate—output rate, it follows that y(¢) satisfies the initial
value problem

2y
r_ _
y =80 TR y(0) = 0.
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33.

1 Solutions

Simplifying and putting in standard form gives the equation

1
Y+ 5T Y= 80.

The coefficient function is p(t) = g5, P(t) = [ p(t) dt = In(5+t), and the
integrating factor is p(t) = 5+t. Multlplylng the standard form equation
by the integrating factor gives ((5 + ¢)y)’ = 80(5 + t). Integrating and
simplifying gives y = 40(5+t)+c(5+t) !, where cis a constant. The initial
condition y(0) = 0 implies ¢ = —1000 so y = 40(5 + t) — 1000(5 + ¢)~!
At the time the container overflows ¢ = 10 we have y(10) = 600 — 192 ~
533.33 g of salt.

input rate: input rate =rc

. _ P
output rate: output rate =r-—~

Let Py denote the amount of pollutant at time ¢ = 0. Since P’ =
input rate — output rate it follows that P(t) is a solution of the initial
value problem

P =rc— —2

Rewriting this equation in standard form gives the differential equation
P’ + - P = rc. The coefficient function is p(t) = r/V and the integrating

factor is p(t) = e"*/V. Thus (eTVtP)' = rceV . Integrating and simplifying
gives P(t) = cV+ ke, where k is the constant of integration. The initial
condition P(0) = Py implies ¢ = Py — ¢V so P(t) = ¢V + (Py — ¢V )e V.
(a) limyo P(t) = cV.

(b) When the river is cleaned up at ¢ = 0 we assume the input con-
centration is ¢ = 0. The amount of pollutant is therefore given by
P(t) = Pyev . This will reduce by 1/2 when P(t) = +P,. We solve
the equation %Pg = Poef?M for ¢ and get t1,5 = Vh‘TQ. Similarly, the
pollutant will reduce by 1/10 when t; ;9 = VI“%.

(c) Letting V and r be given as stated for each lake gives:

Lake Erie: ¢/, = 1.82 years, t1,19 = 6.05 years.

Lake Ontario: t; /o = 5.43 years, t,,19 = 18.06 years

Let y1(t) and y2(t) denote the amount of salt in Tank 1 and Tank 2,
respectively, at time ¢. The volume of fluid at time ¢ in Tank 1 is Vi (t) =
10 + 2t and Tank 2 is Va(t) = 5 + .

L
input rate for Tank 1: input rate = 4 — x 10 =2 & _ =40 — &
L min’
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output rate for Tank 1: output rate = 2 — x

2y(t
y(®) i The initial value problem for Tank 1 is thus
10 + 2t min

2
% METTAR A

Simplifying this equation and putting it in standard form gives

!

1
—1y1 = 40.
Y1+ 5+ty1

The integrating factor is u(t) = 5+ ¢t. Thus ((5 + t)y1) = 40(5 + t).
Integrating and simplifying gives y1(t) = 20(5+1t) + ¢/(5 +t). The initial
condition y(0) = 0 implies ¢ = —500 so y; = 20(5 +¢) — 500/(5 + t).

L t
input rate for Tank 2: input rate = 2 — X () g _ —
min 104+2t L
500 g
(5+t)? min’
t t

output rate for Tank 2: output rate =1 — X v2(t) s _ v2(t) i

5+¢tL 5+t min

The initial value problem for Tank 2 is thus

1
[ =20— ) E—— =0.
o =20 =500/(+0)° = s 2(0) = 0

When this equation is put in standard form we get

500

! S —

1
———1yo =20 .
Rt I G+1)?
The integrating factor is u(t) = 5+ t. Thus

(5 + t)ya)! = 20(5 + 1) — 55%015

Integrating and simplifying gives

5001In(5 +¢) c

) =10(5+ 1) — :
v2(t) (5+1) 5+t 5+t

The initial condition y2(0) = 0 implies ¢ = 5001n 5 — 250 so

500In(5 +¢)  5001n5 — 250
5+t 5+t '

Ya(t) = 10(5 +t) —
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SECTION 1.5

2 t t2

1. In standard form we get y' = % which is homogeneous since
the degrees of the numerator and denominator are each two. Let y = tv.
Then v +tv' = v2 + v + 1 and so tv’ = v? + 1. Separating variables gives

dv dt . . —1

o Integrating gives tan™' v = In |t| + ¢. So v = tan(ln [t| + ¢).
v
Substituting v = y/t gives y = ttan(ln [t| + ¢). The initial condition
implies 1 = y(1) = 1 - tanc = tanc and hence ¢ = w/4. Therefore y(t) =
ttan(In |t + 7w/4).

3. Since the numerator and denominator are homogeneous of degree 2 the
quotient is homogeneous. Let y = tv. Then v + tv/ = v? — 4v + 6.
So tv' = v? —5v+6 = (v — 2)(v — 3). There are two equilibrium

solutions v = 2,3. Separating the variables and using partial frac-
. . 1 1 dt . R .
tions gives | —— — dv = —. Integrating and simplifying gives
v—3 v—2 t
_ 3 — 2kt
In |2 = In|t| 4 ¢. Solving for v gives v = , for k #£ 0, and so
v—2 1—kt
3t — 2kt?
y:ﬁ,fork;é0.Whenk:Owegetvz?)ory:?)t,which
is the same as the equilibrium solution v = 3. The equilibrium solution
3t — 2kt?
v = 2 gives y = 2t. Thus we can write the solutions as y = EEEyTa
k € R and y = 2t. The initial condition y(2) = 4 is satisfied for the linear
3t — 2kt?
equation y = 2¢ but has no solution for the family y = T Thus

y = 2t is the only solution.

5. Since the numerator and denominator are homogeneous of degree 2 the

30 —1
quotient is homogeneous. Let y = tv. Then v + tv' = . Subtract
v
2 _
v from both sides to get tv' = Y 5 The equilibrium solutions are
v
2v dv dt
v = =£1. Separating variables gives — 1= 7 and integrating gives
02 —

In [v? — 1| = In |t|+c. Exponentiating gives v>—1 = kt and by simplifying
we get v = +v/1 + kt. Now v = y/t so y = +tv/1 + kt. The equilibrium
solutions v = +1 become y = +t. These occur when k = 0, so are already
included in the general formula.

/12 — q)2
7. In standard form we get ¢y = y—i—fy Since /(at)? — (ay)? =
Va2(t2 —y?) = ay/t2—y? for a > 0 it is easy to see that 3y’ =

/12 — q)2
y—i—fy is homogeneous. Let y = tv. Then v + tv' = v + V1 — v2.
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11.

13.

15.

Simplifying gives tv’ = v/1 — v2. Clearly v = %1 are equilibrium solution.
d dt

Separating variables gives % =7 Integrating gives sin™'v =
—v

In|t| + ¢ and so v = sin(In|t| + ¢). Now substitute v = y/t to get

y = tsin(In|t] + ¢). The equilibrium solutions imply y = =+t are also

solutions.

Note that although y = 0 is part of the general solution it does not
satisfy the initial value. Divide both sides by y? to get y =2y’ —y~! = t.
Let z = y~!. Then 2/ = —y~2y’. Substituting gives —2’ — z = t or
2’ +2z = —t. An integrating factor is e’. So (e'z) = —te'. Integrating both
sides gives ez = —te! + ' + ¢, where we have used integration by parts to
compute [ —te' dt. Solving for z gives z = —t + 1+ ce*. Now substitute

I and solve for y to get y = ——————— . The initial condition

—t4+14cet

1
and so ¢ = 0. The solution is thus y = T—¢

2=y

1
implies 1 = T+ e

Note that y = 0 is a solution. First divide both sides by 3% to get
!
y 3y +ty 2 =t Let 2 = y2. Then 2/ = -2y 3y, so 2—2 = ¢y 3y,

!/
Substituting gives Z—2 +tz = t, which in standard form is 2’ — 2tz = —2t.

An integrating factor is e/ ~269 = ¢~ 5o that (e %' z) = —2te .

Integrating both sides gives ez =t 4 ¢, where the integral of the

right hand side is done by the substitution u = —t2. Solving for z gives

1
V1 cet®’

Note that y = 0 is a solution. Divide by y2 and (1 — t2) to get y_2y' —
t 5t
T y~ ! = 1t_ o Let ;t: y~t. Then 2’ = —y 2y’ and substituting

1ot T 1—e)

T—g Multiplying by the integrating factor

z=1+cet. Since z = y~2 we find y = +

gives —2' . In standard form we get 2’ + z=

1—¢2

p(t) = of ThE A _ —Lin(1—t?) _ (1- t2)_1/2

gives (z(1—1%)"1/2) = —5t(1 —12)~3/2. Integrating gives z(1—12)"1/2 =
—5(1 —t?)71/2 4 ¢ and hence z = =5+ ¢v/1 — t2. Since z = y~! we have
1

Ve i

If we divide by y we get v/ +ty = ty~
n = —1. Note that since n < 0, y = 0 is not a solution. Dividing by y~
!

! which is a Bernoulli equation with

1

gets us back to yy’ + ty? = t. Let z = y2. Then 2’ = 23y’ so % +tz=1t
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17.

19.

21.

23.

25.

1 Solutions

and 1n standard form we get 2/ + 2tz = 2t. An mtegratlng factor is et

so (e’z) = 2te . Integration gives et z = =’ +cs0z=1+ce?.
Since z = y? we get y = £V 1+ ce~*°. The initial condition implies
-2 =y(0) = =1+ ¢ so ¢ = 3. Therefore y = —v/1 + 3e~**.

Note that y = 0 is a solution. First divide both sides by 3> to get
!/

y’gy’ + y’2 =1t. Let z = y72. Then 2/ = _2y*3y’_ So Z_2 4Lz =t

In standard form we get 2z’ — 2z = —2t. An integrating factor is e/ ~29 =

e~2" and hence (e~2'z)" = —2te~2!. Integration by parts gives e~z =
1

t+ =)e 2 + c and hence z = t + ~ + ce?!. Since z = y~2 we get

( 2 ) Y g

1
i+ g+ ce?

Let 2 = 2t—2y+1. Then 2/ = 2—2y’ and so 3y =

/

y==

/

—z
. Substituting we

get = 2z~ ! and in standard form we get 2/ = 2 — 227!, a separable

differential equation. Clearly, z = 1 is an equilibrium solution. Assume
for now that z # 1. Then separating variables and simplifying using
(-2 = =
get z+1n|z — 1| = 2¢ + ¢. Now substitute z = 2¢t — 2y + 1 and simplify to

get —2y + In |2t — 2y| = ¢, ¢ € R. (We absorb the constant 1 in ¢.) The
equilibrium solution z = 1 becomes y = t.

(1 + —) dz = 2 dt. Integrating we

Let z =t +y. Then 2’ = 1+’ and substituting we get 2/ —1 =272 In
2

standard form we get 2’ = . Separating variables and simplifying

1
we get (1 — —— | dz = dt. Integrating we get z —tan™'z = t + c.
1422
Now let z =t + y and simplify to get y — tan=*(t +y) = ¢, c € R.

This is the same as Exercise 16 where the Bernoulli equation technique
there used the substitution z = y2. Here use the given substitution to
get 2/ = 2yy’ + 1. Substituting we get 2/ — 1 = z and in standard form
2" = 1+2z. Clearly, z = —1 is an equilibrium solution. Separating variables

gives = dt and integrating gives In|1 + z| =t + ¢, ¢ € R. Solving

dz
1+=2
for z we get z = ket — 1, where k # 0. Since z = y? +t — 1 we get
y> 4+t —1 = ke! — 1 and solving for y gives y = £vket —t. The case
k = 0 gives the equilibrium solutions y = 4+/—t.
/

If 2z = Iny then 2’ = Y_. Divide the given differential equation by y.
(Y
/

Then © +1Iny = ¢ and substitution gives 2z’ 4+ z = t. An integrating factor
Y
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t t

is e! so (efz) = te!. Integration (by parts) gives e’z = (t — 1)e! + ¢ and

s0 z=1t— 1+ ce"t. Finally, solving for y we get y = e!=1+c¢ " ¢ € R.

SECTION 1.6

1. This can be written in the form M(¢, y)+ N (¢, y)y' = 0 where M (¢, y) =
y? + 2t and N(t, y) = 2ty. Since OM /0y = 2y = ON/0t, the equation is
exact, and the general solution is given implicitly by V (¢, y) = ¢ where the
function V (¢, y) is determined by the solution method for exact equations.
Thus V (¢, y) = [(y? +2t) dt + ¢(y) = y*t +t* + ¢(y). The function ¢(y)
satisfies

ov. 9, , 5y do do

= (Pt +t - =9t — =N(t =2t

oy~ ay W) g, =y o = Nt y) = 2ty,
so that d¢/dy = 0. Thus, V (¢, y) = y*t + t? and the solutions to the
differential equation are given implicitly by 2 + ty? = c.

3. In this equation M = 2t? —y and N = t + 4. Since M /dy = —1, while
ON/0t = 1, the equation is not exact.

5. In this equation M = 3y — 5t and N = 2y — ¢. Since M /dy = 3, while
ON/0t = —1, the equation is not exact.

7. This can be written in the form M (¢, y)+ N (t, y)y' = 0 where M (¢, y) =
2ty+2t3 and N (t, y) = t?—y. Since IM /0y = 2t = ON/Ot, the equation is
exact, and the general solution is given implicitly by V (¢, y) = ¢ where the
function V (¢, y) is determined by the solution method for exact equations.
Thus V (¢, y) = [(2ty + 2t3) dt + ¢(y) = t>y + t*/2 + ¢(y). The function
o(y) satisfies

%—Z = %(t2y+t4/2)+ % =>4 % =N(t,y) =t —y,
so that d¢/dy = —y. Hence ¢(y) = —y2/2 so that V(t, y) = t2y +t*/2 —
y?/2 and the solutions to the differential equation are given implicitly by
t2y +t*/2 — y?/2 = c. Multiplying by 2 and completing the square (and
replacing the constant 2c by ¢) gives (y — t2)? — 2t* = c.

9. This can be written in the form M (¢, y)+ N (¢, y)y' = 0 where M (¢, y) =
—y and N(t, y) = y> — t. Since IM /9y = —1 = ON/Ot, the equation is
exact, and the general solution is given implicitly by V (¢, y) = ¢ where the
function V (¢, y) is determined by the solution method for exact equations.
Thus V (¢, y) = [(—y) dt + ¢(y) = —yt+ ¢(y). The function ¢(y) satisfies
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ov._ 0 d¢ d¢

- - L = t+ L =Nt y) =9yt
3y 5y(y)+dy +dy (t,y) =y" —t,

so that d¢/dy = y®. Hence, ¢(y) = y*/4 so that V (¢, y) = y*/4 — yt and
the solutions to the differential equation are given implicitly by y*/4 —
yt = c.

SECTION 1.7

1. We first change the variable ¢ to u and write y "(u ) = uy(u). Now integrate

both 51des from 1 to t to get fl u) du = fl uy(u) du. Now the left side
is fl u)du =y(t) —y(l) = y(t ) - 1. Thus y(t) =1+ flt uy(u) du.
3. Change the variable ¢ to uw and write y'(u) = n E ; Now integrate
u+y(u
both sides from 0 to t to get fo u) du = f " u§ u. The left side
u+y(u
: (U)
isy(t)—1soy(t)=1+ 7du
()= 1soy(t) =1+ J; b
5. The corresponding integral equation is y(t) = 1 + flt uy(u) du. We then
have
yo(t) =1
t 2\ |t 2 2
] t 1 1+t
y1(t) +/1 U U + (2> ) + 5 3 9
¢ 2 2 4\ |t 2 4
1+u U U 5 t
) =1 du=1+ (= +2 )] =24+ 42
ya2(t) +/1u(2)u +(4+8>1 sT1713

) 1+/t 5u+u3+u5 d 14 52+u4+u6
= _— _— _— u JE— RN
vs A\ TT TR 16 ' 16 ' 48|,

7. The corresponding integral equation is y(¢ fo u+ y?(u)) du. We then
have



1 Solutions 23
yo(t) =0
yi(t)
t 2\ 2
u
o= [ (2
0 2
t w2 ud\ 2
t) = — + —
ys(t) /0 u -+ ( 5 + 20>
t2 t5 t8 tll

2 T390 160 T 1400
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9. The corresponding integral equation is

y(t) = / (14 (u— y(u))?) du.

We then have

NS

(V)

=

Il
O\A

+

—

+
N
I
|
N
I
+
w| 8,
~
~_

[V
~_

Q

Ny

Il
O\A
N

[

4
ol &,
~_—

Q

Ny

u’ 4 t’
S T — S
63/, 73
t 14 15
u t
t) = 1+ —F | du=t+ ———
ys(t) /O<+72.34) LT PR
t 230 $31
t) = 14+ ———F | du=t+ -—5—=—==
Ya(t) /O(+152.74.38> Y Jr31-152-74~38
t 62 63
u t
t) = 1 du=1t
ys(t) /O<+312,154,78.316) w +63.312.154.78.316

11. The right hand side is F'(t, y) = /y. If R is any rectangle about (1,0)
then there are y-coordinates that are negative. Hence F' is not defined on
R and Picards’ theorem does not apply.

5- Choose

(t+y)

a rectangle R about (0, —1) that contains no points on the line t+y = 0.
Then both F' and Fy, are continuous on R. Picard’s theorem applies and
we can conclude there is a unique solution on an interval about 0.

t —
13. The right hand side is F'(¢, y) = t—l——y Then Fy(t, y) =
)
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15.

17.

19.

1 Solutions

The corresponding integral equation is y(t) = 1 + fg ay(u) du. We thus
have

Yo(t) = 1

¢
n(t) = 1+/adu:1+at
0

t ¢ 242
t

ya(t) = 1+/ a(l—i—au)duzl—i—/(a+a2u)du=1+at+a7

0 0

t 2,2 242 343
t

ys(t) = 1+/a ltau+ ) du=1+at+—— + <
0 2 2 3!

a’t? a™t"

n!

aktk

We can write y,(t) = >, _, - We recognize this sum as the first n

terms of the Taylor series expansion for e%t. Thus the limiting function

is y(t) = lim, o0 Yn(t) = €. It is straightforward to verify that it is a

solution. If F'(t, y) = ay then Fy (¢, y) = a. Both F and F), are continuous
at ;3

on the whole (¢, y)-plane. By Picard’s theorem, Theorem 5, y(t) = e is
the only solution to the given initial value problem.

Let F(t, y) = cos(t + y). Then Fy(t, y) = —sin(t + y). Let y; and
1o be arbitrary real numbers. Then by the mean value theorem there
is a number yo in between y; and y2 such that |F(¢t,y1) — F(¢,y2)] =
[sin(t + yo)| lyr — y2| < |y1 — yo|. It follows that F(¢, y) is Lipschitz on
any strip. Theorem 10 implies there is a unique solution on all of R.

1. First assume that ¢ # 0. Then ty’ = 2y — ¢t is linear and in
standard form becomes y’ — 2y/t = —1. An integrating factor is
pt) = e/(=2/0dt — =2 and multiplying both sides by u gives
t=2y’ — 2t73y = —t~2. This simplifies to (t~2y)’ = —t~2. Now in-
tegrate to get t=2y =t~ + c or y(t) =t + ct?. We observe that this
solution is also valid for ¢ = 0. Graphs are given below for various
values of c.
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Graph of y(t) =t + ct? for various ¢

2. Every solution satisfies y(0) = 0. There is no contradiction to Theo-
2
rem 5 since, in standard form, the equation is 3’ = e 1=F(,vy)

and F(t, y) is not continuous for ¢ = 0.

21. No. Both y;(t) and y2(t) would be solutions to the initial value problem
y = F(t, y), y(0) = 0. If F(¢, y) and F, (¢, y) are both continuous near
(0,0), then the initial value problem would have a unique solution by
Theorem 5.

23. For t < 0 we have y{(t) = 0 and for ¢ > 0 we have y|(t) = 3t>. For t =0

yih) =5 (0) _ y1(h)

we calculate y(0) = limp, o my_o 5 To compute

this limit we show the left hand ana right hand limits agree. We get

Y1 (h) h3

= lim — = lim A2=0
hi%h h hi%h h h—lgl*
. yl(h) .
higl* h hi%h h
0 fort <0
It follows that yj(t) = < ort <Y and so
3t2 fort>0

0 fort <0
t / t — 9
n(t) {3t3 fort >0

On the other hand,

0 fort <0
3y (t) =4
() {3t3 for t > 0
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It follows that y; is a solution. It is trivial to see that ys(t) is a solution.
There is no contraction to Theorem 5 since, in standard form ¢y’ = —y =

F(t, y) has a discontinuous F(¢, y) near (0,0). So Picard’s theorem does
not even apply.

SECTION 2.1

1. Apply the Laplace transform to both sides of the equation. For the left
hand side we get sY (s) — 2 — 4Y (s), while the right hand side is 0. Solve

2
for Y(s) to get Y(s) = p—t From this we see that y(t) = 2e*t.
5 —

3. Apply the Laplace transform to both sides of the equation. For the left
hand side we get sY'(s) — 4Y (s), while the right hand side is 1/(s — 4).
Solve for Y (s) to get Y(s) = GoaE Therefore, y(t) = tet’.

5 —

5. Apply the Laplace transform to both sides of the equation. For the left
hand side we get sY (s) —2+2Y(s), while the right hand side is 3/(s—1).
Solve for Y (s) to get

2 3 1 1

Y(S):s+2+(s—1)(s+2) :s+2+s—1'

Thus y(t) = e~ 2t + €.

7. Apply the Laplace transform to both sides. For the left hand side we get

Ly +3y" + 2y} (s) = L{y"}(s)+3L{y'}(s) +2L{y}(5)

= s°Y(s) = sy(0) — y/'(0) + 3(sY (s) — y(0)) + 2V (s)

= (s?+35+2)V(s) —3s— 3.
Since the Laplace transform of 0 is 0, we now get
(52 +35+2)Y(s) =35 —3=0.

Hence,
3s+3 3(s+1) 3

Y(s) = = =
() s2+435+2 (s+1)(s+2) s+2°

and therefore, y(t) = 3e~2L.

9. Apply the Laplace transform to both sides. For the left hand side we get
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11.

13.

LA{y" +25y}(s) = L{y"}(s) +25L{y}(s)
= s2Y(s) — sy(0) — y'(0) + 25Y ()
(s +25)Y(s) — s+ 1.
We now get
(s> +25)Y(s) —s+1=0.

Hence,
s—1 s 1 5
Y = = —_ =
)= Frm  Frm 2+

and therefore, y(t) = cos 5t — 1 sin 5t.

Apply the Laplace transform to both sides. For the left hand side we get
L{y"+8y" +16y}(s) = L{y"}(s)+8L{y'}(s) +16L{y}(s)

$2Y(5) — sy(0) — 3/ (0) + 8(Y () — y(0)) + 16V (s)
(s> + 85+ 16)Y (s) — s — 4.

We now get
(s +4)%Y(s) — (s +4) =0.
Hence,
s+4 1
Y = - =
() (s+4)2 s+4

and therefore y(t) = e~ %

Apply the Laplace transform to both sides. For the left hand side we get
LAY +4y" +4y}(s) = L{y"}(s) +4L{y'} (s) +4L{y} (s)

s7Y (s) — sy(0) — y/(0) + 4(sY (s) — y(0)) +4Y (s)
(s +4s+4)Y(s) — 1.

Since £ {e™?} =1/(s+ 2) we get the algebraic equation

1
2)2Y(s) — 1= .
(-2 () = 1= —
Hence,
1 1 1 1 2
Y = = —
= GrE e 6T 26T 2P

and therefore y(t) = te™%" + 1t%e 2
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SECTION 2.2

1.
L{3t+1}(s)
= / (3t +1)e st dt
0
= 3/ te*stdt+/ e *tdt
0 0
— 3 <iest + 1/ efst dt> + __lefst
—S o SJo s 0
() )
s s 0 s
_ 3,1
82 s
3.
L{e* —3e7"}(s)
= / e S (e? —3e7t) dt
0
= / e ste?t dt—3/ e Stetdt
0 0
— / e—(s—2)t di — 3/ e—(s-i—l)t dt
0 0
1 3
s5—2 s+1
5. L{5e*'} =5L{e*} = 5
§—2
2 2 2 5 4
7. L{t?—5t+4} =L {t }—5L{t}+4ﬁ{1}zs_3_8_2+;
9. L{e ¥ 4Tt} = L{eT3} + 7L {te™ ¥} = SN
s+3  (s+4)?
2 2
11. L{cos2t+sin2t} = L{cos2t}+L {sin 2t} = 5y st

s24+22 52422 5244

13. L{(te )2} (s) = L {t?e 4} (s) =

(s +4)3
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15. L{(t+¢)2} (s) = L{t? + 2te? + et} (s) = L {12} (s)+2L {te®} (s)+
y 2 2 1
£ie }(S):§+(s—2)2+s—4

4 4! 4
17. E{%} (5) = £{#e™ "} 0) = (g = (534)5

19. L{te®} (s)=— (L {egt})/(s) == <si3> = (3—13)2

21. Here we use the transform derivative principle twice to get £ {¢?sin 2t} (s) =
(C {sin21))” 2\ —4s \' 125> - 16
sin =] = =
s2+4 (s2 +4)2 (s2+4)3

S

23.c{tf(t)}(s)=—£{f(t)}'(s)=—(hl( : )): & _g

s24+1 5241

1In((s/6) +1) _In(s+6)—In6

6 s/6 s

26, L{BI(60}(5) = 5 L{EIO} ()]s =

1 1
27. We use the identity sin? § = 5(1—cos 20). £ {sin*bt} (s) = 55 {1 — cos2bt} (s) =

1/1 S B 262 '
2 \s  s24+4b2)  s(s2+4b2)’

1
29. We use the identity sin at cos bt = 3 (sin(a + b)t + sin(a — b)t).

1
L{sinatcosbt} = 3 (L {sin(a + b)t} + L {sin(a — b)t})
_ 1 a—> n a+b
o2\ 82+(a—b)2 24+ (a+b)2)’
. 1 bt bty L 1 b
31.£{smhbt}—2(£{e e })—2 ey o) e S

33. Let f(t) = sinhbt. Then f/(t) = bcosht and f”(t) = b*sinht. Fur-
ther, f(t)lt=o = 0 and f’(t)|t=0 = b. Thus b2L {sinh bt} = L{f"(t)} =
sS2LL{f(t)} — sf(0) — f'(0) = s2L{f(t)} — b. Solving for L{f(t)} gives
L {sinhbt} = ﬁ

35. Let g(t) = fg f(u) du and note that ¢'(t) = f(t) and g(0) = foo f(u)du =
0. Now apply the input derivative formula to g(¢), to get

F(s) = L{F (1)} (s) = L{g' (D)} (s) = sL{g(t)} (s) — 9(0) = sG(5).
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37.

39.

41.

1 Solutions

Solving for G(s) gives G(s) = F(s)/s.

Suppose [ is of exponential type of order a and g is of exponential type

of order b. Then there are numbers K and L so that |f(t)| < Ke® and
lg(t)| < Le®. Now |f(t)g(t)] < Ke®Le® = KLel@ Dt If follows that
f + g is of exponential type of order a + b.

Suppose a and K are real and |y(t)] < Ke®. Then y(t)e” % is bounded
by K. But

2 2 a? a?
et efat — et 7at+T677
2 2
elt=3) e 1
2 a2
= e e T,

where u = t—§. As t approaches infinity so does u. Since limy, o v’ = 0o

it is clear that limy_,.0 e e~ = oo, for all a € R, and hence y(t)e=! is

not bounded. It follows that y(¢) is not of exponential type.

y(t) is of exponential type because it is continuous and bounded. On the
other hand, y/(t) = cos(e!’)e!” (2t). Suppose there is a K and a so that
ly'(t)| < Ke® for all t > 0. We need only show that there are some ¢ for
which this inequality does not hold. Since cos et oscillates between —1
and 1 let’s focus on those ¢ for which cose!” = 1. This happens when et
is a multiple of 2, i.e. e/’ = 27n for some n. Thus t = t,, = V/In(27n).
If the inequality |y/(t)| < Ke® is valid for all ¢ > 0 it is valid for ¢, for
all n > 0. We then get the inequality 2¢,etn < Ke. Now divide by
e%n  combine, complete the square, and simplify to get the inequality
2, eltn=a/2* < [ea®/4 Choose n so that ¢, > K and t,, > a. Then this
last inequality is not satisfied. It follows that y/(¢) is not of exponential
type. Now consider the definite integral fOM e~ sty (t) dt and compute by
parts: We get

M o M
/ e Sty (t)dt = y(t)e_5t|0 + s/ e Sty(t) dt.
0 0

Since y(t) = sin(e!’) is bounded and y(0) = 0 it follows that

lim y(t)e

—_st|M
M—o0 S‘O =0

Taking limits as M — oo in the equation above gives L{y'(t)} =
sL{y(t)}. The righthand side exists because y(t) is bounded.

(a) Show that I'(1) = 1.
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(b) Show that I satisfies the recursion formula I'(5 + 1) = SI'(B).

(Hint: Integrate by parts.)

(¢) Show that I'(n + 1) = n! when n is a nonnegative integer.

43. Using polar coordinates x = rcosf, y = rsinf. Then dxdy = rdrdf
and the domain of integration is the first quadrant of the plane, which in
polar coordinates is given by 0 < 0 < 7/2, 0 < r < co. Thus

/OO /OO 67(12+y2) daj dy
0 0

Hence, I = \/m/2.

SECTION 2.3

The s — 1 -chain

5s 4+ 10 3
Ll G-D+4) | s-1
2
s+4

The s — 5 -chain

1 1/7
3.1 512)(s-5) (s—5)
—1/7
(s+2)

/2 e R
/ / e " rdrdf
0 0
E/ e " rdr

2 Jo

00
_T2

2

e

T T
2 4’
0
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The s — 1 -chain

3s+1 2
(s—1)(s2+1) s—1
—2s+1
s2+1
The s + 3 -chain
s2+s—3 3
(s +3)3 (s+3)3
s—2 -5
(s +3)2 (s + 3)2
1 1
s+3 s+3
0
The s + 1 -chain
s -1
(s+2)2(s+1)2 (s 4 1)2
s+4 3
(s+2)%(s+1) s+1
—35—8
(s +2)2

1 Solutions
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The s — 5 -chain
1 -1
(s —5)%(s—6) (s —5)°
1 -1
(s —5)4(s—6) (s—5)4
1 -1
) G=5p3Gs-6) | (s—59
1 -1
(s —5)%(s—6) (s —5)2
1 -1
(s—5)(s—6) s—5
1
s—6

13. Use the technique of distinct linear factors (Example 5).
13/8  5/8

s—5 s +3
23 37
15.
2(s—5)  12(s +7)
17, 25 9
8(s—7) 8(s+1)
1 1 1
19. —
2(5+5) 26-1) s—2
7
21, ———
(s+4)*
23. Use Theorem 1 to write
sP+s—-3 Aq n p1(8)
(s+3)3  (s+3)3 (s+ 3)2
2 _
where A; = w =
1 s=-—3
and (s) = ! (s* +s5—-3-(3)(1)) = ! (s> +5—6)=5—2
p1 T s+3 T s+3 B

Continuing gives
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25.

1 Solutions

5—2 _ Ag<_ n p2(s)
(s+3)2 (s+3)2 5+3
where Ay = s—2 =-5
1 s=—3 \
and pa(s) = ——(s— 2 (-5)(1)) = ——(s+3)
n s) = —-2— (- = s =
P2 3—1—38 s+ 3
s24+s5—3 3 5 1
Th _ _
U T 3E T (5437 (5437 s+3

Alternate Solution:

Write s = (s + 3) — 3 so that

s2+s—3  ((s+3)—3)2+((s+3)—3)—3
(s+3)3 (s —3)3
(s +3)?-5(s+3)+3
N (s +3)3
3 5 1
- (s+3)3_(s+3)2+s+3'
s2—6s+7 s2—6s+7

(s2—4s—5)2  (s+1)%(s—5)2’

(s + 1)-chain:

s2—6s+7

(s +1)%(s —5)2

where A;

and  pi(s)

Continuing gives

so use Theorem 1 to compute the

A pi(s)
(s +1)2 (s+1)(s—5)2
B 52 —6s+7 N7
ICETIE T

S

1 ) 1
(115 = 385 — 49)/18 = (115 — 49)

1 11s —49 Ay p2(s)
BGIDE-52 s+l = (s—5)
1 11s—49
where Ay = T rEHE L = —5/54
and  p2(s) = (115 — 49)/18 — (—=5/54)(s — 5)%) = (5s — 22)/54

s+1
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2 _ _
i 56547 1/18  5/54  (5s—22)/54

= — N ith
(s+1)%(s—5)2 (s+1)2 s+1 (s —5)2 oW erther

continue with Theorem 1 or replace s with s = (s—5)+5 in the numerator

2 6s+7
of the last fraction to finish the calculation and get i St

1 5 n 21 n 3 5
54 \s—5 (s+1)2 (s—=5)? s+1

27. Use Theorem 1 to compute the (s + 2)-chain:

s _ Ay . p1(s)
(s+2)3(s+1)2 (s +2)2 (s+2)(s+1)2
here A 5 2
W = _— —
! (s+1)2|,_ ,
1
d = — (=2 1)
and pifs) = 50— (Hs+1?)
252 +5
_ 288+ s+2:(25+1)(s+1):28+1
s+2 s+ 2
Continuing gives
2s+1 _ pa(s
G+2)(s+12 S+Nl
2 1
where A, = S+
S+1 s=—2
1
and pa(s) = s—|—2 (2s4+1—(=3)(s+1)}) =3s+2
Thus S -2 3 3s+2

(s+1)2(s—5)2

= - .N ti i
(+22(6+1)2 (s+2)2 S+2+ 5+ 1) ow continue using
Theorem 1 or replace s by (s+1) — 1 in the numerator of the last fraction

S -2 3 1 3
to get =

(s+22(s+1)2  (s+2)2 s+2 (s+1)2 e
29. Use Theorem 1 to compute the (s — 3)-chain:
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8s _ Ay n P1(s) T~
G-DG-2(-37 (-3 G-1)(s—2)(s—3)°
8s
where Al = m - =12
1

and pi(s) = —(8s—(12/Ts — 1)(s - 2))

—12s% +44s — 24 (=125 4 8)(s — 3)

5—3 5s—3 st
For the second step in the (s — 3)-chain:
—125s+38 B As P2(s) T N
(s—1)(s—2)(s—3)2  (s—3)2 (s—1)(s—2)(s—3)
where Ay = ﬂ =14
(s=1)(s —2)|,_4
1
and pa(s) = Tg(—l?s +8—(—14)(s —1)(s —2))
2 _ _ _
_ 145" —54s4+36 (14s — 12)(s — 3) _ 145 219
s—3 s—3
Continuing gives
14s — 12 As p3(s)

(s—1)(s—2)(s—3)2  s—3 (s=1)(s—2)

145 — 12
where Ay = ——— = =15
(s=1)(s=2)|,_4
1
and ps3(s) = 3(145 —12—(15)(s —1)(s —2)) = —15s+ 14
12 14 1 -1 14
Thus 8s _ B n 5 5s +

G-D(-3)(5-3° (5-37° (-32 5-3 (-1(s-2)
The last fraction has a denominator with distinct linear factors so we get
8s 12 -14 15 —16 1

(s—l)(s—3)(s—3)3:(s—3)3+(3—3)2+s—3+3—2+s—1

31. Use Theorem 1 to compute the (s — 2)-chain:
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s _ Ay p1(s)
(s —2)2(s —3)2 (s —2)2 (s —2)(s —3)?
where A; = i

and pi(s) = siQ(S_ (2)(3—3) )
—252+13s—18 (—25+9)(s—2)

s—2 s—2 st
Continuing gives
—254+9 B
(s—2)(s—32 \
—2 9
where Ay = st
1
and po(s) = —2 2s+9 )= —5s+18
2 5 -5 18
Thus > = + + S+ . Now continue

(s —2)2(s —3)2 (s—2)2  s-2 (s —3)2
using Theorem 1 or replace s by (s — 3) + 3 in the numerator of the last

2
fraction to get > = + b 4 3 __9
(s—2)2(s—3)?2 (s—2)2 s—-2 (s—3)2 s-3

33. Apply the Laplace transform to both sides. For the left hand side we get

L{y"}+2L{y'} + L{y}
= 7Y (s) —sy(0) — ¢y'(0) + 2(sY (s) — y(0)) + Y (s)
(s> + 25+ 1)Y(s).

L{y" +2y +y}

9
Since £ {9¢*} = PRl get
s —

e

A partial fraction decomposition gives
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35.

1 Solutions

The (s + 1) -chain
-3
(s+1)2(s—2) (s+1)2
3 -1
(s+1)(s—2) s+1
1
(s —2)
It follows that
-3 1 1

Y(s) = —
() (s+1)2 s+1+s—2

and
y(t) = —3te™ ! —e ! + .

Apply the Laplace transform to both sides. For the left hand side we get

L{y" —4y' =5y} = L{y"}—4L{y'} —5L{y}
= s°Y(s) — sy(0) — y'(0) — 4(sY (s) — y(0)) — 5Y (s)
= (s =45 —5)Y(s) +s— 5.

Since £ {150t} = 150/s? we get the algebraic equation

150
(2 =45 —5)Y(s) +5—5 = -
Hence,
—5+5 150
Y =
6) = GFDe-5 T FE+DG-3)

-1 n 150
s+1  s2(s+1)(s—5)

For the second term we start with the s-chain to get the following partial
fraction decomposition
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The s -chain
150 -30
s2(s+1)(s—5) s
30(s —4) 24
s(s+1)(s —5) s
—244s + 124 —25
(s+1)(s—5) s+1
1
s§s—5
Thus

_ =30 24 26 1

52 + s s+1 s5-5
and Table 2.2 gives y(t) = —30t + 24 — 26e " + €.

Y (s)

37. Apply the Laplace transform to both sides. For the left hand side we get
L{y"} =3L{y'} +2L{y}

= s°Y(s) = sy(0) — y'(0) = 3(sY(s) — y(0)) +2Y (s)
(s =35 +2)Y(s) — 25 + 3.

L{y" =3y + 2y}

Since L {4} = 4/s we get the algebraic equation
4
(s=1)(s—2)Y(s) —2s+3 = 5

Hence,
25 —3 4

G-1D(-2 T ss-D-2)
Each term has denominator a product of distinct linear terms. It is easy
to see that

Y(s) =

26-3 1, 1
(s—1)(s—2) s—1 s—2
and
42 4o
s(s—1(s—2) s s—1 s5-2
Thus

Y(s) = 3 3

2
s s—2 s-—1
and Table 2.2 gives y(t) = 2 + 32! — 3¢’.
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SECTION 2.4

1. Note that s =i is a root of s? + 1. Applying Theorem 1 gives

. Bis+(h p1(s)
(82 +1)%(s2+2) (s2+41)2  (s2+1)(s2+2)
here Bji+ C 71 —1 1
wher (2 = — J—
v (s2+2)|,_, ©#+2
= B1:O andC’lzl
1
d = ——(1—=(1)(s*+2
and pis) = 70— +2)
2
s2+1
-1

We now apply Theorem 1 on the remainder term m

-1 _ Bas+ 0y p2(s)
(s24+1)(s2+2)  (s24+1)  (s2+2)
. -1
where Bgl+02 = m . = —
= Bg:OandC'Qz—l
1
d = ——(—1—(=1)(s*+2
and pa(s) = (=1 (=1)(s*+2)
2
_ 52—1-1 1
s+ 1

Thus the (s + 1)-chain is

The s2 + 1 -chain
1 1
F+12(+2) | (P+1?
-1 -1
(s24+1)(s*>+2) (s2+1)
1
s2 42

3. Note that s = v/3i is a root of s + 3. Applying Theorem 1 gives
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8s + 852 B Bis+Cy p1(s)
(2 +3P(2+1) (2437 (P +3)2(s2+ 1)
2 ; \2
where BB 40, = DSSl SVEIAS(VE)R
(s> +1) |, vm (v3i)2 4+ 1
= —4V3i412

= B =-4 and C7 = 12

1
and  pi(s) = m(&s +8s% — (—4s + 12)(s* + 1))
4s® — 4s* +12s — 12
= —4(s—1).
5243 (s = 1)
4s — 4

Apply Theorem 1 a second time on the remainder term 21322+ 1) .

45 —4 B Bys+ O3 p2(s)
(s2+3)%(s2 +1) B (s2+3)2  (s2+3)(s>+1)
) 4s —4 )
where Bg\/gz + Cy = — = —2V3i+2

(s2+1)|,— 3
= By = —2and Cy =2

1
and  pa(s) = m(45—4—(—25+2)(52+1))
23_22 _
_ S j+68 6:23—2.
5443
25 — 2

A third application of Theorem 1 on the remainder term m

gives
28 — 2 - B3S + C3 p3(8)
(s2+3)(s?2+1) N (s2+3)  (s2+1)
. 25 — 2 )
where B3V3i + Cs = S = V3i+1

(S2+1) s=/3i
= B3;=—-1land C3=1
1

and ps(s) = —S2+3(2$—2—(—$+1)($2+1))
s3—524+35—3
= —:S—l.
s2+3

Thus the (s + 3)-chain is
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The 52 + 3 -chain
85 + 852 12 — 4s
(st3)3(s2+1) (s2+3)3
4(s—1) 2—2s
(s24+3)2(s2+1) (s2+3)2
2(s—1) 1-—s5
(s24+3)(s?+1) s2+3
s—1
241
5. Note that s> 4+25s+2 = (s +1)2 +1s0 s = —1 + i are the roots of
52 + 25 + 2. We will use the root s = —1 + ¢ for the partial fraction
algorithm. Applying Theorem 1 gives
1 B Bis+ Cy
(s + 25+ 2)%(s2 + 2s + 3)? B (s?2 + 25+ 2)?

p1(s)

(s2 4+ 254 2)(s%2 425+ 3)2

1

(s2+2s+3)2| __1,
S
((=1+14)2+2)2
= Bi=0 and(C; =1
1—(1)(s* 4+ 2s+3)?

s24+2s42
—(s% +2s+4)(s*> +2s+2)

s2 42542

—(s* + 25+ 4).

where Bi(—141i)+ C4 =

and  pi(s) =

—(s2+2s+4)
(82 +2s+2)(s2 + 25+ 3)%

Now apply Theorem 1 to the remainder term
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—(s?+2s+4) _ Bss + Oy p2(s)
(52 4+ 25 + 2)(s2 + 25 + 3)2 N (s24+25+2)  (s2+25+3)2
—(s2+254+4
where Ba(—1+1) + Cy = —(s 2544 = -2

(2 +25+3) |,—_i4,

—  By=0and Cp = —2
—(s?2+2s+4) — (=2)(s® + 25+ 3)?
s2+2s42
(2(s+1)?+5)((s+1)2+1)
s24+2s5+2

= 25% +4s+ 7.

and  pa(s) =

Thus the (s2 4 2s + 2)-chain is

The s + 2s + 2 -chain

1 1
(s2 4 25+ 2)2(s2 + 2s + 3)2 (s24+2s+2)2
—(s2+2s+4) -2
(s2 +2s5+2)(s2+ 25+ 3)2 s242s+2
252 +4s+ 7
(s2+2s+3)2

7. Use Theorem 1 of Section 2.3 to compute the (s — 3)-chain:

s _ A n p1(8)
(s2+1)(s—3) s—3 s24+1
s 3
h Al = —— = —
where 1 o 10
1
d = —(3/10)(s* +1)) = ———— (35> +10s — 3
and pus) = (s (3/10)(s% + 1)) = [ (<857 105 — 3
_ —3s+1
N 10
Since the remainder term ﬂ is already a simple partial fraction
10(s2 +1) Y piep ’

we conclude
S - 1 3 + 1—3s
(s2+1)(s—3) 10\s—3 s2+1

9. We compute the (s* + 4)-chain:
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952 - B1$ + 01 + pl(s)
(s2+4)2(s2+1)  (s2+4)2 (s2+4)(s2+1)
952

where B1 (21) + Cl = =12

s?+ 1]y
= B =0 and01:12
—3(s%+4)

s24+4

1
and pi(s) = o 4(952 —12(s* +1)) =

= -3

Now compute the next term in s + 4-chain.

—3 BQS + OQ pQ(S)
(s24+4)(s?+1) s24+4 s2+1

where By(2i)+Cy = =1

and  po(s) = S7(=3-(s"+1))

1
Since the remainder term 251 is a simple partial fraction, we conclude
S

that the complete partial fraction decomposition is

952 12 1 1

22 +1) (2142 214 s+l

11. Use Theorem of Section 2.3 1 to compute the (s — 3)-chain:

2 _ Al + pl(S)
(s2 —6s+10)(s —3) s—3 (s2 —6s+ 10)
here A 2 2
W = - =
! (52 =65+ 10)|,_5
1 9 —2s2 + 125 — 18
and pi(s) = P (2—-(2)(s* —6s+10)) = ———3

= —25+6
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Since the remainder term

2 6 —2s
s—3 (s—3)2%2+1

13. Note that s —45+8 = (s—2)?+2 so0 s = 2+2i are the roots of s* —4s+8.
We will use the root s = 2+2i to compute the (s2—4s+8)-chain. Applying

Theorem 1 gives

25

—25+6

s2 — 654+ 10

clude that the complete partial fraction decomposition is

(s2 —4s+8)%(s—1)

where

and

Now apply Theorem 1 to the remainder term

B1(2+2i)+Cy

pi(s)

2

45

is a simple partial fraction, we con-

Bis+Cy
(s —4s+8)?
pi(s)

L ey PRy

25
s —
.25 =5—10
2i+1
Bl =-5 and Cl =15
25 — (=55 + 15)(s — 1)
s2 —4s+8
(5)(s? — 4s + 8)
s2 —4s+8

1) s=2+421

5.

5
(s2—4s+8)(s—1)

5 _ Bas+ 0 p2(s)

(s2—4s+8)(s—1)  (s2—4s+8) s—1

. 5) .

where By(2+2i)+Cy = =1-2
§ = Llmoya

and  pa(s)

= By=—1land Cy =3
5—(B8—=s)(s—1)
2

—4s+8
B (1)(s® — 45+ 8)
B s2 —4s+8

= 1.

(2 —6s+10)(s—3)
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25 —b5s+ 15
Thus the partial fraction expansion is EE P T = € _84:+ I
—s+3 1

52—4s+8+s—1

15. Note that s> +4s+5 = (s +2)2+ 1 so s = —2 i are the roots of
52 +4s+5. We will use the root s = —2+i to compute the (s? +4s+ 5)-
chain. Applying Theorem 1 gives

s+ 1 Bis+ Cy

(s24+45s+5)2(s2+45+6)2 (s> +4s+5)2

pi(s)
(s2 4+ 4s+5)(s2 + 45+ 6)2

s+1
(s2+4s+6)2) o2t
-1+
= B;=1 andClzl
s+1—(s+1)(s*+4s+6)?

where By(—-2+41) +C4

and pi(s) = T ds 5
(s +1)((s*+4s+6)2 — 1)
B s24+4s+5
= (s+1)(s*+4s+T)(s* +4s+5)
B s2+4s+5

= —(s+1)(s*+45+7).

—(s+1)(s®+4s+7)
(s24+4s+5)(s2 +4s+6)2)

Now apply Theorem 1 to the remainder term

—(s+1)(s>+4s+7)  Bys+(y p2(s)
(2 +4s+5)(s2 +4s5+6)2  (s2+4s+5)  (s2+4s+6)2

. —(s+ (s + 45 +7) -

here Bo(—2 Cy = .

where Ba(—2+1) + Cy (52 4+ 45+ 6)2 s=—24i '
= By =-2and Oy = -2

—(s+1)(s®> +4s+7) — (=25 — 2)(s® + 45 + 6)?

and - pa(s) = s2+4s+5

(s+1)(2(s* +4s+6) + 1)(s* +4s+5)
s24+4s5+5
= (s+1)(2(s* +4s5+6) +1).

The remainder term is
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(s+1)(2(s* +4s+6) + 1) s+1 25 +2

(52 + 45+ 6)2 _(82+4s+6)2+82+43+6

so the partial fraction expansion of the entire rational function is

s+1 _ s+1 2s+2
(2 +45+5)2(s2 +4s5+6)2  (s2+4s5+6)2  s2+4s5+6
s+1 25+ 2

+(82+4s+5)2 824+ 4s+5

17. Apply the Laplace transform to both sides. For the left hand side we get
Ly +4y +4y} = L{'Y+4L{y} +4L{y}

s (s) — sy(0) — y/(0) + 4(sY (s) — y(0)) +4Y (s)
(s +4s+4)Y(s) — 1.

Since £ {4cos2t} = 4s/(s* + 4) we get the algebraic equation

4s
2 _
(s+4)°Y(s)—1= R
Hence,
1 4s
Y(s) = .
(s) 12’ T G122

The (s% + 4)-chain for the second term is

The (s? + 4)-chain

4s 1
(s2 4+ 4)(s + 2)2 s24+4
-1
(s +2)2
Thus 1
Y =53

and Table 2.2 gives y(t) = £ sin2¢

19. Apply the Laplace transform to both sides. For the left hand side we get
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L{y"}+4L{y}

= 7Y (s) — sy(0) — y'(0) +4Y ()
(s +4)Y(s) — 1.

L{y" + 4y}

Since £ {sin3t} = 3/(s> +9) we get the algebraic equation

(82 +4)Y(s) —1=

Hence,
1 3

2rd (P02 1A

Using quadratic partial fraction recursion we obtain the (s? 4+ 9)-chain

Y(s) =

The (s + 9)-chain

3 ~3/5
(s24+9)(s2+4) s2+9
3/5
s2+4+4

Thus
8 1 3 1 4 2 1 3

:5324—4_5324—9:332—1—4_332—}—9

and Table 2.2 gives y(t) = 2sin2t — 2 sin 3¢

Y (s)

SECTION 2.5
1. L71{-5/s} = -5L71{1/s} = -5

3. L7} {3 - i} =3L71{1/s?} —2£71{2/s3} =3t — 22

s2 3

5. L7 {323i4} = 3L {S”L?} = 3cos2t
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i 2 2 . . . 25 -5
7. First, we have s*+6s+9 = (s+3)°. Partial fractions gives —— =
s24+6s+9
—11 25 -5

2
Grag Tsys 0L {(s+3)2

9 6 = 0 _ + L So £t _ 6
T s2425—8 (s—2)(s+4) s+4 s-—2 s2+2s—8

o2t _ o4t

2s2 —5s5+1 —1 3 2 252 —5s5+1
11- = . S E_l —_— =
G20 (-2 (-27 (522" { (s—2)
—1 3
6 t382t + §t282t + 2t82t

} = —11te 3t 4 2¢=3

452 1 1 1 1 452

B oGy (s—1)2+s—1+(s+1)2‘s+1's‘)£1{(3—1)2(s+1)2

tet + et +te t —et

8s+ 16 4 1 s 2 8s+ 16
15. = - - .So Lt

s° 4+ s — s — s — s< + s° 4+

244 2)2 2)2 2jL2 4 s2+4+4

4te?t — 2t 4 cos 2t — sin 2t

12 —6 3 4 1 12
17— 2.7 L S R
$2(s+1)(s—2) 32+s s+1+ S0 L™ {52(s+1)(s—2)}

3—6t+e2t —4et

2s _ 2s _
s2+2s+5  (s+1)2+4

19. First we have s> +2s+5 = (s+1)?+4. So

2 1 2 1 2
(s+1) - —9_° + . The First Translation prin-

(s+1)2+ (s+1)2+4 (s+1)2+4

+1 2
| op-1)__STL \_pa)_ 2
ciple gives £~ {32+23+5} L {(s+1)2+4} L {(s+1)2+4

2¢e tcos2t — e tsin 2t
s—1 s—4 1

s—1
= 3 CThus 71— = = % —
s2 —8s+ 17 (5—4)2+1+ (s—4)2+1 e {52—85+17}
e** cost 4 3e*tsint

21.

s—1 s—1 s—1
23. - CThus £-14 — =0 U cteosat
225110 (s—1)2+32 ° {32—2s+10} @ cos

8s S 8
—1 _ —1 _ . o .
25. L {7(82 1 } =8L { EETHE } =55 (2tsin2t) = 2tsin 2t
27. We first complete the square s? +4s +5 = (s + 2)? 4 1. By the transla-

—1 - — -1 e =
tion principle we get £ { 21451 5)2 } 2L { (122117 }

s2+4)(s—2)2

|
|
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29.

31.

33.

35.

1 Solutions

22 (c—l {ﬁ} Yo {ﬁ}) =22 (%tsint - 2(%(sint - tcost)) =

2te=? cost + (t — 2)e ! sint

We first complete the square s?+8s+17 = (s+4)%+1. By the translation

o 2s (s+4)—4
principle we get L {(52 Ny 17)2} L {((s T42+ 1)2}

—at [ p—1 s -1 1 a1 Lo _
2e (E {m}-é‘:ﬁ {m}) = 2e (EtSIHt—él(E(Slnt—tcost)) =
dte=4 cost + (t — 4)e *sint
We first complete the square s> —2s+5 = (s — 1)? + 22, By the transla-

1 1
. . . —1 _ r—1 —
tion principle we get £ {m =L m } =

() - ()

— ot 2) o
=€y g ((3 = (2t)?) sin 2t — 6t cos 2t)

= 3% ((3 — 4t2)e’ sin 2t — 6te’ cos 2t)

We first complete the square s2 —8s+ 17 = (s — 4)% + 1. By the transla-
tion principle we get £71 _s=4 L1 e S
PHRCIDie we e (2 —8s+ 114 [ (CEEES

( { 4}>—e 418 ((3t — t3)sint — 3t2 cos t)
418

Apply the Laplace transform to get

—t3 + 3t)e4t cost — 3t%e* cost)

$2Y(s) —s+14+Y(s) =

Solving for Y'(s) we get

We use Table 2.5 to get

y(t) = cost —sint + 2(sint — tcost) = cost + sint — 2t cost.

37. Apply the Laplace transform to get
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s24+1
_ 4 1—s2 Y\
(52 41)2
_ 8s(s* —3)
o (s2+1)3
8s .
It follows that Y (s) = m Table 2.5 now gives

y(t) = tsint — t? cost.

39. Compute the partial fraction L = 1/(a=b) + /b~ a)_
(s —a)(s—b) s—a s—b
Then

£ {m} —£ {1/&;()) + 1/£b—_ba)} B aeitb * be—bta'

41. Apply the inverse Laplace transform to the partial fraction expansion

1 1 1 1 1 1 1

(s—a)(s—D)(s—c) - (a—b)(a—c)s—a+(b—a)(b—c)s—b+(c—a)(c—b) (s—c¢)

43. Apply the inverse Laplace transform to the partial fraction expansion

52 a? 1 b2 1 2 1

G-a-b(-0 (@—ha-Ccs—a b-—a)b-—0s=b c—a)c=b (-0

45. This is directly from Table 2.4.
47. This is directly from Table 2.4.
49. Apply the inverse Laplace transform to the partial fraction expansion

2 ((s—a)+a)? 1 2a a?
(s—a)3  (s—a)d _s—a+(s—a)2+(s—a)3'

SECTION 2.6

1. The root of ¢(s) is 4 with multiplicity 1. Thus B, = {e4t}
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11.

13.

15.

17.

19.

21.

23.

25

1 Solutions

. q(s) = s> +5s = s(s+5), hence the roots of ¢(s) are 0 and —5 each with

multiplicity 1. Thus B, = {1, e}

. q(s) = s> —6s5+9 = (s—3)?, hence the root of ¢(s) is 3 with multiplicity

2. Thus B, = {e3t, te3t}

q(s) = 82 —s—6 = (s — 3)(s + 2), hence the root of ¢(s) are 3 and —2
each with multiplicity 1. Thus By = {3, e72'}

. q(s) =652 —11s+4 = (3s—4)(2s — 1) so the roots are 4/3 and 1/2, each

with multiplicity 1. Hence B, = {e'/?, e/3}

44++/12
2

The quadratic formula gives roots

{e(2+\/§)t7 6(27\/3)15}

= 2 + /3. Hence B, =

q(s) = 4s5® + 125+ 9 = (25 + 3)?; so the root is —3/2 with multiplicity 2
and hence B, = {6—315/2, te—3t/2}

q(s) = 4s* + 25 = 4(s? + (5/2)?). Therefore g(s) has complex roots 3.
Hence B, = {cos(5t/2), sin(5t/2)}

q(s) =82 —25+5=252—2s+1+4 = (s—1)?+ 22 Therefore ¢(s) has
complex roots 1+ 2i. Hence B, = {e’ cos 2t, e’ sin 2t}

q(s) has root —3 with multiplicity 4. Hence

By = {e73 te=3t 1273t 3¢3).

q(s) = (s — 1) has root 1 with multiplicity 3. Hence
By = {et,tet,tht}.

We complete the square to get g(s) = ((s + 2) + 1)2. Thus ¢(s) has
complex root —2 4 ¢ with multiplicity 2 It follows that
By = {e ' cost,e * sint, te~* cost,te * sint}.

. The complex roots of ¢(s) are +i with multiplicity 4. Thus B, =
{cost, sint, tcost, tsint, t?cost, t2sint, t3 cost, t3 sint}

SECTION 2.7

1.

3.

5.

Yes.
t

Yes; — = te™".
e

2 2
Yes; tsin(4¢ — %) = t(g sin 4t — g cos4t).
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7. No.

9. No; ¢7 is not a polynomial.

11. No isnot in &.

13. s*—1=(s2—-1)(s2+1) = (s — 1)(s + 1)(s® + 1); The roots ate 1, —1,
and £¢ each with multiplicity 1. Hence By = {e, e, cost, sint}.

15. The roots are 1 with multiplicity 3 and —7 with multiplicity 2. Hence
By = {€', te!, t?e', e7 7", te” "},

17. The roots are —2 with multiplicity 3 and £2¢ with multiplicity 2. Hence
By = {e 2, te=? 272" cos2t, sin2t, tcos2t, tsin2t}.

19. We must gather the roots together to get the correct multiplicity. Thus
q(s) = (s — 2)%(s + 3)3. The roots are 2 with multiplicity 2 and —3 with
multiplicity 3. Hence B, = {e%, te?, e73, te=3, t2e =3},

21. By completing the square we may write q(s) = (s+4)%((s+3)?+4)? The
roots are —4 with multiplicity 2 and —3 + 2¢ with multiplicity 2. Hence
By = {e ™, te™*, e~ cos2t, e ' sin 2t, te 3" cos 2t, te 3" sin 2t }.

23. First observe that s>+2s+10 = (s+1)?+32 and hence ¢(s) = (s—3)3((s+
1)2+32)2. The roots are 3 with multiplicity 3 and —143i with multiplicity
2. Thus By = {3, te®, t?e3, e7' cos 3t, e ' sin3t, te ' cos 3¢, te " sin 3t }.

25. 253 — 55> +4s — 1= (25 — 1)(s — 1)?; hence B, = {e*/?, ¢t, te'}

27. s*4+55%4+6 = (s%+3)(s2+2); hence B, = {cos V/3t, sin V/3t, cos V/2t, sin \/it}

_ n) wi e s e s) and ra(s) = pa(s) wi
29. 7i(s) = q1(s) th degpi(s) < degqu(s) and rofs) q2(s) th
degpa(s) < degqa(s). Thus, ri(s)ra(s) = % and

deg(p1(s)pz2(s) = degpi(s)+degpa(s) < degqi(s)+degga(s) = deg(qi(s)gz(s))-

31. If r(s) € R then r(s) = p(s) where degp(s) = m < n = degq(s). Then

q(s)

and deg(q(s)p'(s) — ¢'(s)p(s)) < max(deg(q(s)q'(s)), deg(q’
max(n+(m—1),(n—1)+m)=n+m—1 < 2n = deg(q(
r’(s) is a proper rational function.

(s)p(s))) =

)2. Hence
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33.

35.

37.

39.

41.

1 Solutions

By exercise 32 this is true for n = 1. Now apply induction. If n is given
and we assume the result is true for derivatives of order n — 1, then
r(n=1) ¢ R4 but not in R4n-1. Another application of exercise 32 then

shows that (") = (r("_l))/ € Rgn+1 but not in Rygn.

Observe that e~ = e~ tet, So the translate of an exponential function
is a multiple of an exponential function. Also, if f(¢) is a polynomial so is
f(t—1to). By the addition rule for cos we have cosb(t—tg) = cos bt cos btg—
sin bt sin bty and similarly for sin. It follows that all these translates remain
in £. By Exercise 34 the result follows.

By linearity of integration it is enough to show this result for f,(t) =
t"e%(cy cosbt + casinbt), where c¢; and cy are scalars. Let I,(t) =
[ fn(t) dt. First assume n = 0. Then a standard trick using integration
by parts twice gives

I(t): = / e (cy cosbt + co sin bt) dt
1
= w2 R ((cra — cab) cosbt + (c1b + coa) sin bt)e™.

Clearly, Iy is an exponential polynomial. Observe that I is of the same
form as fo. Now assume n > 0. Using integration by parts with v = ¢ and
dv = (c1 cos bt + g sin bt) dt we have I, (t) = [ t"(cq cosbt + cosinbt) dt =
t"Io(t) —n [ t""1Iy(t) dt. Since Iy € € so are t"Iy and t"~'I. By induc-
tion we have [ ¢"1Iy(t)dt € €. It now follows that I,, € £.

It is enough to show this for each f € B, since differentiation is linear
and &, = Span B,. Suppose f(t) = t"e cosbt. Then

f(t) = nt" e cos bt — bt"e™ sin bt + at™e™ cos bt.

The derivative f/(t) is a linear combination of the simple exponential
polynomials t"~1e® cos bt, t"e% sinbt, and t"e® cos bt each of which are
in B,. Hence f'(t) € &;. A similar argument applies to t" e sin bt.

Observe that e~ = e¢~%e?. So the translate of an exponential function

is a multiple of an exponential function. Also, if p(t) is a polynomial of
degree n the binomial theorem implies that p(t — to) is a polynomial of
degree n. By the addition rule for cos we have cos b(t—ty) = cos bt cos bto—
sinbtsin bty and similarly for sin. Thus if f(¢) = t"e* cosbt € B, then
f(t —to) is a linear combination of terms in B,. Since £, = Span By it
follows that all translates remain in &;.
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SECTION 2.8

1.
t
txt = /:C(t—:v)d:v
0
¢
= /(tx—:z:Q)dx
0
2 23\ [
59
2 3 x=0
U A
T2 7376
3.

t
3xsint =sint*3 = /(sin:v)(?))dac
0

= —3cosz|’Z]
= —3(cost — cos0)
= —3cost+3
5. From the Convolution table we get
: 3t 1 3t .
sin 2t x e>* = 32+22(2e — 2cos 2t — 3sin 2t)
1
= ﬁ(2e?’t — 2cos2t — 3sin 2t).
7. From the Convolution table we get
2
t2xe 0 = CoF (e7% — (=6 — 6t + (36t%)/2))
1
= —(I8t" =6t —-6+¢ ).
(18 2—6t—6+e
9. From the Convolution table we get
2 -4t
o2t g o4t — € €
2—(-4)



56

11.

1 b
s —a 82+ b2

B 1 b bs + ba
o242 \s—a s2+0D2

1

L {e" xsinbt} (s)

1 Solutions

T 2rp (bL {e™} — (bL{cosbt} + aL {sinbt}))
Thus .
e xsinbt = m(be“t — bcosbt — asinbt).

13. First assume a # b. Then

a b
S2+a282+b2

B 1 ab ab
T 2 \s2+a2 242

L {sinat * sin bt }

From this it follows that

1
ﬁ(bsinat — asin bt).
-a

sin at * sin bt =

Now assume a = b. Then

CL2

E{Sin at * sin at} = m
S a

By Table 2.5 in Section 2.5 we get
: : 1.
L {sinat *xsinat} = % (sinat — at cos at).
a

15. First assume a # b. Then

S S
S2+(L2S2+b2

_ 1 —a? n b2
T2 —a2 \ 2442 s2+402

L{cosat x cosbt} =

From this it follows that

1
cos at * cos bt = m(—a sinat + bsin bt).
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17.

19.

21.

23.

25.

27.

Now assume a = b. Then

L {cosat x cosat}

By Table 2.5 we get

2

B s
= @rap

_ 1 a?

T 242 o (52+a2)2'

57

1 1 1
L{cosat x cosat} = ; sin at— % (sinat—at cosat) = % (sin at+at cos at).

f(t) =t* xsin2t so F(s) =

ft)=t3xe 3" s0 F(s) =

2 4

S214 s3(s2+4)
6

1 6

Ss+3 st(s+3)

f(t) = sin 2t x sin 2¢ so F(s)

1
e
{52—68+5

i)

|

2 2 4

52 422 52 4 22

BRCETAE

1 S
L1 YA g——
{s2+1}* {s2+1
sint % cost

1t't
—tsin
2

|
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cHammea) = s )

= &3 xsin2t
1
= (2e3" — 2 cos 2t — 3sin 2t)

29.

31.

1 [ G(s) | —1 S

L {32+2} = LT {G(9)}* L {m}
= g(t) * cos(V2)t
= /Og(:v)cosx/i(t—x)dx

33. We apply the input integral principle twice:

- = d
L {8(82 0 | sin z dx

= —cos:c|8
= —cost+1
£t L /tl cosxd
—_ = - zdz
s2(s2+1) 0
= t—sintdz

35. We apply the input integral principle three times:

ek} = e

t

8731

-3

0
1
= g(l — efgt).
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g} - e
= - —e x
s2(s +3) 3 Jo
1 1 —e 3
= —|t—-
3 3
Lise 14 e
= —(3t— e
9

37. First, £~} {( L

SECTION 3.1

—

no, not linear.

no, third order.

yes; (D? —

© X3 o o®

11.

s249)2

no, not constant coefficient.

yes; D*(y) = —2 4 cost, q(s) = 52,

54

1
= —(sin 3t — 3t cos 3t). Thus
54

t
(sin 3z — 3x cos 3z) dx

t
cos 3T

1

54 (_ 3
1 2 cos 3t
54 (_ 3

1
ﬁ(_Z cos 3t — 3t sin 3t + 2).

— (w sin 3x +

cos 3z
3

2
—tsin3t + =
sin ot + 3)

0

7D +10)(y) = 0, q(s) = s*> — 7s + 10, homogeneous

nonhomogeneous

a) Let = et + 3et + 2et = 6et
(a)

(b) Let=et+3(—et) +2e =0

(¢) Lsint = —sint + 3(cost) + 2sint = sint — 3cost

59
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13.

15.

17.

19.

21.

1 Solutions

(a) L(—4sint) =4sint+ —4sint =0

(b) L(3cost) = 3(—cost)+3cost =0

() L1=0+1=1

e! and e*! are homogeneous solution so i = cjef+coett are homogeneous
solutions for all scalars ¢; and cy. A particular solution is y, = cos2t.
Thus y(t) = y,(t) +yn(t) = cos 2t +ciel + coe*® where ¢, cq are arbitrary
constants.

From Exercise 15 we have y(t) = cos2t + cie? + ce*!. Since 3y =
—25sin 2t + c1et + 4coet we have

1=90) = 14+c+c
-3=9(0) = ¢+ 4co,

from which follows that ¢; = 1 and ¢ = —1. Thus y(t) = cos 2t + e’ — .
L(e™) = a(e™)” 4+ b(e™) +ce™ = ar?e" +bre" +ce™ = (ar? +br+c)e"t

Let ¢t = a be the point ¢; and ¢o are tangent. Then ¢;(a) = ¢2(a) and
@ (a) = ¢h(a). By the existence and uniqueness theorem ¢; = ¢s.

SECTION 3.2

11.

. Since e

. Suppose c1t + cot? = 0. Evaluating at t = 1 and t = 2 gives ¢; +¢2 =0

and 2¢; + 4¢o = 0. The simultaneous solution is ¢; = ¢o = 0. It follows
that {¢,t?} is linearly independent.

2 = ete? is a multiple of e’ it follows that {e’,e’*?} is linearly

dependent.

. Since Int?2 = 2Int and Int® = 51Int they are multiples of each other and

hence linearly dependent

Suppose ¢1t+ ca(1/t) = 0 Evaluating at t =1 and ¢t = 2 gives ¢y +c¢2 =0
and 2¢1 4 ¢2/2 = 0. The simultaneous solution is ¢; = ¢o = 0. It follows
that {¢,1/t} is linearly independent.

. Suppose c; + ¢c2(1/t) + c3(1/t?) = 0. Evaluating at t = 1, t = 1/2, and

t = 1/3 gives the same system as in the solution to Exercise 8 and hence
c1, ¢z and cg are zero. It follows that {1,1/t,1/t*} on I = (0,00) is
linearly independent.

Let q(s) = s(s — 1)(s + 1). Then B, = {1,e’,e~*} which is linearly
independent.
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13. Let g(s) = (s — 1)°. Then B, = {€', te’, t?¢’, t3¢'}. Linear independence
follows since {t%e’, 3¢’ te'} C B,.

15.
t  tlnt
w(t,tInt) = det [1 Int 4+ J =tlnt+t—tlnt=t
17.
(t19,42%) = det LN 20t*% — 10t* = 10¢*°
W= 100 20019 T -
19.

w(erlt, e’l‘zt, e’l‘gt)

e’l"lt er2t er3t
= det |rett roemt rgemst
r%e”t T%e”t Tge”t
1 1 1
= €(T1+T2+T3)t det T To T3
r? ri r?

e(MFre o)t (por2 _par2) — (rir2 — rgr?) + (1173 — ror?))

e(”+r2+”)t(r3 —r1)(rs —ra)(re —r1).

The last line requires a little algebra.

21.
1t 2 ¢
0 1 2t 3t2
2 413\ _
w(l,t,t%,t%) = det 00 2 6 =12
00 0O 6

23. Let q(s) = (s — 2)%. Then B, = {e*,te*} is linearly independent. We
can equation coeflicients to get

25¢c1 + 10ce = 0
25¢cy = 25

We thus get ¢ = 1 and then ¢; = —10/25 = —2/5.

25. If ¢(s) = s® then B, = {1,t,t2} is linearly independent. Thus we can
equate coefficients to get

aq = a2
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1 Solutions
It follows that a; = 3 and ay = 3 is the solution.

-3t2  if t<0

27. Observe that y;(t) = 3t and yh(t) = Ift <0

3t2 if +>0.

t3 —tB
then w(y1,y2)(t) = (3152 —3t2) = 0. If t > 0 then w(yy,y2)(t) =

3t* 3t?
(—00, 00).

3 3
( ¢ ! ) = 0. It follows that the Wronskian is zero for all ¢t €

SECTION 3.3

11.

13.

15.

. The characteristic polynomial is ¢(s) = s* —s—2 = (s—2)(s+1) so B, =

{e?,e7'} and the general solution takes the form y(t) = cie* + coe™,

c1,c0 €R

. The characteristic polynomial is q(s) = s + 10s + 24 = (s + 6)(s + 4)

so B, = {e7% e} and the general solution takes the form y(t) =
Cle_ﬁt + 026_4t, c1,c0 €R

. The characteristic polynomial is ¢(s) = s> + 8s+ 16 = (s + 4)? so B, =

{e=* te=*} and the general solution takes the form y(t) = cre™* +
02t674t, c1,c0 €R

The characteristic polynomial is g(s) = s> +2s+5 = (s + 1) + 4 so
B, = {e "t cos2t,e " sin 2t} and the general solution takes the form y(t) =
cre"tcos2t + coe tsin2t, c1,c0 €R

. The characteristic polynomial is q(s) = s? + 135 + 36 = (s + 9)(s + 4

so By = {e_gt,e_4t} and the general solution takes the form y(t) =
cre”® +coe ™ ci,c0 € R

The characteristic polynomial is ¢q(s) = s? + 10s + 25 = (s + 5)? so
By = {e75,te~®'} and the general solution takes the form y(t) = c1e '+
cote % c1,c0 €R

The characteristic polynomial is g(s) = s> —1 = (s — 1)(s + 1) so B, =
{et,e7!} and the general solution takes the form y(t) = ci1€?' + coe™.
The initial conditions imply that ¢; + co = 0 and ¢; — ¢c; = 1. Solving

gives ¢ = 1/2 and ¢g = —1/2. Thus y = et_;it

The characteristic polynomial is g(s) = s? — 10s+25 = (s — 5)% so B, =
{e",te’"} and the general solution takes the form y(t) = c1e® + cate.
The initial conditions imply that ¢; = 0 and 5¢; + c2 = 1. Solving gives
c1 =0 and ¢y = 1. Thus y = te’
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17. Let gq(s) = (s = 3)(s + 7) = s? + 4s — 21. Then B, = {e3, e~ "},

3t —7t
w(e®, e ) = det [ ¢ ¢ } = —10e~*. So K = —10.

3e3t T Tt
19. Let g(s) = (s —3)* = s — 654+ 9. Then By = {3, te3}. w(e*, te) =

e3t te?)t
det {36315 (1+ 3t)€3t] = (1 + 3t)et — 3teb = 6. So K = 1.

21. Let g(s) = (s — 1) + 22 = s* — 25 + 5. Then B, = {e’ cos 2t, e’ sin 2t}.
e’ cos 2t el sin 2t
cos2t — 2sin2t) ef(sin 2t + 2 cos 2t)
= e?(sin 2t cos 2t + 2 cos® 2t)
—e?!(cos 2t sin 2t — 2sin? 2t)

= 2%,

w(e' cos2t, el sin2t) = det Lt(

So K = 2.

SECTION 3.4

1. q(s)v(s) = (s 4+ 1)(s — 2)(s — 3) so By = {e7", e*, e} while B, =
{e~*, e*}. Since €% is the only function in the first set but not in the
second y,(t) = aje®.

3. q(s)v(s) = (s —2)*(s—3) s0 Byy = {th, te?t, e‘o’t} while B, = {th, e3t}.
Since te?' is the only function in the first set but not in the second
yp(t) = arte?.

5. q(s)u(s) = (s — 5)%(s® + 25) so By, = {e”, te’, cosbt, sin5t} while
By = {e, te’'}. Since cos 5t and sin 5t are the only functions in the first
set that are not in the second y,(t) = a1 cos 5t + ag sin 5¢.

7. q(s)v(s) = (s* +4)? so By, = {cos2t, sin2t, t cos 2t, tsin 2t} while B, =
{cos 2t, sin 2t}. Since t cos 2t and ¢ sin 2¢ are the only functions in the first
set that are not in the second y,(t) = a1t cos 2t + aqt sin 2t.

9. g(s)v(s) = (s* +4s+5)(s — 1) so By, = {€, te’, e ' cost, e * sint}
while B, = {e', te'}. Since ™' cost and e~ sint are the only functions
in the first set that are not in the second y,(t) = a1e 2! cost+aze™?' sint.

11. The characteristic polynomial is g(s) = s* — 3s — 10 = (s — 5)(s + 2).
Since £ {7e72'} = 7/(s + 2), we set v(s) = s+ 2. Then g(s)v(s) =
(s — 5)(s + 2)% Since By, = {™, e % te7?'} and B, = {e°",e '} we
have y, = aijte™2!, a test function. Substituting y, into the differential
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1 Solutions

equation gives —aje ™2 = Te~t. It follows that a; = —1. The general
solution is y = —te ™2 4 cre 2 + cpe™.

The characteristic polynomial is g(s) = s? + 2s + 1 = (s + 1)2. Since
L{e 7t} =1/(s+1), we set v(s) = s+ 1. Then g(s)v(s) = (s + 1)3. Since
Bgw = {e7t,te7!, %"} and B, = {e~',te”'} we have y, = ait’e”", a
test function. Substituting v, into the differential equation gives 2a;e~* =
e~'. It follows that a; = 1/2. The general solution is y = 1t%e ™' +cre '+
CQteit.

The characteristic polynomial is q(s) = s +4s+5 = (s+2)2+1, an irre-
ducible quadratic. Since £ {e™3'} =1/(s+ 3), we set v(s) = s+ 3. Then
a(s)v(s) = ((s +2)* + 1)(s + 3). Since By, = {e ' cost,e ? sint,e 3"}
and By = {e % cost,e *sint} we have y, = aje 3, a test function.
Substituting y, into the differential equation gives 2a;e™3" = e™3. It
follows that a; = 1/2. The general solution is y = 1e73! + c1e™* cost +
coe 2t sint.
The characteristic polynomial is g(s) = s> — 1 = (s — 1)(s + 1). Since
L{t?} =2/s% we set v(s) = s3. Then q(s)v(s) = (s — 1)(s + 1)s*. Since
By = {et,e’t, l,t,tz} and B, = {e',e™'} we have y, = a1 + ast + ast?,
a test function. Substituting y, into the differential equation gives 2a3 —
a1 — ast — ast? = t2. Using linear independence we equate the coefficients
to get
2(13 —ay =
—ay
—az =

0
0
1

It follows that a3 = —1, as = 0, and a; = —2. The general solution is
y=—t2—2+cret + et

The characteristic polynomial is ¢(s) = s2 — 4s +4 = (s — 2)2. Since
L{e*} =1/(s—2), we set v(s) = s — 2. Then ¢(s)v(s) = (s — 2)*. Since
Bgo = {e*,te* t?e*'} and B, = {€*,te*} we have y, = a1t?e?, a test
function. Substituting y, into the differential equation gives 2a;e*" = e?".
It follows that a; = 1/2. The general solution is y = $t%e* +cye? +cate?

The characteristic polynomial is g(s) = s? + 6s + 9 = (s + 3)%. Since
L{25te*'} = 25/(s — 2)%, we set v(s) = (s — 2)%. Then g(s)v(s) = (s +
3)%(s — 2)%. Since By, = {efgt,tefgt,ezt,tezt} and By = {e’3t,te’3t}
we have y, = a1e® + aste?, a test function. Substituting y, into the
differential equation gives (25a; + 10az)e?® + 25aste? = 25te?!. Linear
independence implies 25a1 + 10a2 = 0 and 25as = 25. We get as = 1 and
a1 = —2/5 The general solution is y = te?* — 2 + ce™% + cote™!

The characteristic polynomial is g(s) = s + 6s + 13 = (s + 3)% + 4,
an irreducible quadratic. Since £{e 3" cos2t} = (s + 3)/((s + 3)? +
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25.

27.

4), we set v(s) = (s + 3)? + 4. Then q(s)v(s) = ((s + 3)* + 4)2.
Since By, = {e 3" cos2t,e 3 sin2t, te 3 cos 2t,te 3 sin2t} and B, =
{e=3"cos2t,e3'sin2t} we have y, = arte 3 cos2t + aste 3'sin2t, a
test function. Substituting y, into the differential equation gives (after a
long calculation) —4aje=3! sin 2t + 4aze =3t cos 2t = e =3t cos 2t. It follows
that —4a; = 0 and 4as = 1. Thus a1 = 0 and as = 1/4. The general
solution is y = 1te ™3 sin(2t) + c1e =% cos(2t) + cae 3 sin(2t).

The characteristic polynomial is g(s) = s> —5s — 6 = (s — 6)(s + 1).
Since £ {3} = 1/(s — 3), we set v(s) = s — 3. Then q(s)v(s) = (s —
6)(s 4+ 1)(s — 3). Since By, = {e®, e, €3} and B, = {e%,e"} we have
yp = a1€>, a test function. Substituting y, into the differential equation
gives —12a;e3! = e3t. It follows that a; = —1/12. The general solution is
y = T5e% + c1e% + cae". Since y' = e + 6c1€% — cae! the initial
condition imply

d+ a + o =2

Z 4+ 6 — o =1

It is easy to calculate that ¢; = 10/21 and co = 135/84. Thus y =
—1,3t | 10 6t | 135 —t

ﬁe + ﬁe + ge .

The characteristic polynomial is g(s) = s? + 1. Since £{10e*} =
10/(s—2), we set v(s) = s—2. Then q(s)v(s) = (s>+1)(s—2). Since By, =
{cost,sint,e*} and B, = {cost,sint} we have y, = a1e*’, a test func-
tion. Substituting y, into the differential equation gives 5a;e* = 10e%
and hence a; = 2. The general solution is y = 2e2' + ¢ cost + cysint.
Since y' = 4e?" — ¢y sint + ¢ cost the initial conditions imply

2 + =

0
4 + co = 0

and so ¢; = —2 and ¢y = —4. Thus y = 2e?' — 2cost — 4sint.

SECTION 3.5

1.

The characteristic polynomial is g(s) = s> —4 = (s — 2)(s + 2) and
L£{e %"} =1/(s+6). Thus

B 1 - p(s)
L = 9639676 —s+6 T G961

A particular solution is y, = 3%676)5 and the general solution is y =
3_126—615 + cre?t 4 cpe2t
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. The characteristic polynomial is q(s) = s2 + 5s + 6 = (s + 2)(s + 3) and

L£{e 2"} =1/(s+2). Thus

_ 1 _ 1 p(s)
Bl ey oy Sl s o e

A particular solution is y, = te~2* and the general solution is y = te™ 2" +
—2t —3t
cie + coe

. The characteristic polynomial is q(s) = s? +2s — 8 = (s — 2)(s + 4) and

L£{6e "} =6/(s+4). Thus

6 —1 p(s)
L = = + .
W= G " GraE G2
A particular solution is y, = —te™* and the general solution is y =

—te~ % 4 et 4 g

The characteristic polynomial is ¢(s) = s> +6s+ 9 = (s + 3)? and
L{25e*} =25/((s — 2)?). Thus

25 1 2 1 p(s)

el P RS Ay B s I P

2 ot
56

A particular solution is y, = te* — and the general solution is

Y= t62t _ %6215 + 0167315 + CQteigt

. The characteristic polynomial is g(s) = s? — 85+ 25 = (s — 4)?> + 9 and

L {36te" sin3t} = 216(s —4)/((s — 4)* + 9)%. Thus

216(s — 4)

Ly} = — s a5
((s—4)2+9)

This is a partial fraction. Table 2.5 gives y = —3t2e*t cos 3t + te*! sin 3t.

A particular solution is y, = —3t%e* cos 3t + te** sin 3¢ and the general

solution is y = —3t%e* cos 3t + te*! sin 3t + c1e*t cos 3t + cpe?? sin 3t

The characteristic polynomial is g(s) = s> +2s +1 = (s + 1)? and
L{cost} = s/(s* +1). Thus

- s _l 1 p(s)
‘C{y}_(s+1)2(52+1)_252+1 (s +1)2

A particular solution is y, = %sint and the general solution is y =
Isint+cre™t + cate™!
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SECTION 3.6

1.

11.

The force is 16 lbs. A length of 6 inches is 1/2 ft. The spring constant is
k=16/(1/2) = 32 lbs/ft.

. The force exerted by the mass is 40-9.8 = 392 N. Thus k& = 392/.8 = 490

N/m.

. The force is 4 lbs and the velocity is 1/2 ft per second. So p =

Force/velocity = % = 8 lbs s/ft.

Let z be the force. Then 100 = z/4 so = = 400 lbs.

. The mass is m = 6. The spring constant is given by £ = 2/.1 = 20. The

damping constant is p = 0. Since no external force is mentioned we may
assume it is zero. The initial conditions are y(0) = .1 m and y’(0) = 0.
The following equation

6y’ +20y=0, y(0)=.1, ¥'(0)=0

represents the model for the motion of the body. The characteristic poly-
nomial is g(s) = 65 + 20 = 6(s2 + \/10/3 ). Thus y = ¢; cos /10/3¢ +
o 8in 1/10/3t. The initial conditions imply ¢; = 1/10 and ¢z = 0. Thus

1
Y= 1gCos 10/3t.

The motion is undamped free or simple harmonic motion. Since y is
written in the form y = Acoswt + ¢ we can read off the amplitude,
frequency, and phase shift; they are A =1/10, 8 = +/10/3, and ¢ = 0.

The mass is m = 16/32 = 1/2 slugs. The spring constant k is given
by k = 16/(6/12) = 32. The damping constant is given by u = 4/2 =
2. Since no external force is mentioned we may assume it is zero. The
initial conditions are y(0) = 1 and y’(0) = 1. The following equation
1y +2y +32y =0, y(0) =1, ¥'(0) = 1 models the motion of the body.
The characteristic polynomial is g(s) = 352 +2s+32 = 1 (s? +4s+64) =

L((s+2)% +/60"). Thus
Yy = cle_% cos V60t + cze_2’5 sin V/60¢.

The initial conditions imply ¢; = 1 and ¢ = 3/4/60. Thus

3
= e ?' cos V60t + e 2t sin V60t.
Y /60
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The discriminant of the characteristic equation is D = 2% — 4. (1/2) -
32 = —60 < 0 so the motion is underdamped free motion. Let A =

1+ (5 ) /23720, If tané = 3/v/60 = 1/60/20 then ¢ ~ .3695.

We can write
23
y =1/ 2—06_2t cos(V 60t + ¢).

13. The mass is m = 2/32 = 1/16 slug. The spring constant k is given by k =
2/(4/12) = 6 and the damping constant is x4 = 0. The initial conditions
are y(0) = 0 and y/(0) = 8/12 = 2/3. The equation &y + 6y = 0 or
equivalently y” + 96y = 0 with initial conditions y(0) = 0, ¥'(0) = 2/3
models the motion of the body. The characteristic polynomial is ¢(s) =
524+ 96 so y = ¢, cos VI6t + co sin v/96t. The initial conditions imply

cp = 0 and ¢ = 5/66 Thus y = sm\/ 6t = 36 V6 (og (\/ 6t — —) The
motion is undamped free or s1mple harmomc motion so the mass crosses
equilibrium.

15. By the quadratic formula the roots of ¢(s) = ms? + us + k are

—p =+ \/,u2—4mk —u
5= 1/ -
2m 2m

If the discriminant D = u? — 4mk is negative then the roots are complex

and the real part is 52 which is negative. If the discriminant is zero then
5+ is a negative double root. If the discriminant is positive then both
roots are real and distinct. It is enough to show that the larger of the

two, 7 = 3k 44/ (%)2 — £ is negative. Let p = - + (%)2 — £ and
observe that it is positive. Further,

I (i)z_ﬁ M (L)2_£
o= <2m+ 2m m 2m+ 2m m
I G .
4m?2 4 m
k
= —— <0
m

Since p > 0 it follows the r < 0.

It follows that a solution to my” + py’ + ky = 0 is of the following form

1. y = c1e™t + cpe™! where r; and 7o are negative.

2. y = (c1 + cat)e™ where r is negative
3. y = c1e* cos Bt + coe™ sin Bt where « is negative
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In each case lim;_, o y(t) = 0.

SECTION 4.1

11.

. yes; (D* — 3D)y = €, order 3, q(s) = s® — 3s, nonhomogeneous

. no, because of the presence of 3*

a) L(e?) = 8e?' —4(2e%) =0

b) L(37% = —8e=2 —4(—2e72) =0

¢) L(2) = 0—4(0) = 0
L
L

(
(
(
(a) Le ' =e "+ 5e " +4e ! =10e*

(b) Lcost = cost+ 5(—cost)+4cost =0

(¢) Lsin2t =16sin2t+ 5(—4sin2t) + 4sin2t =0

2t

. %', e72' and 1 are homogeneous solution so yj, = c1e? + coe 2! 4 c3 are

homogeneous solutions for all scalars ¢1, ¢o, and c3. A particular solution
is y, = te?’. Thus y(t) = y,(t) + yn(t) = te® + c1€®* + cae ™2 + c3 where
c1, co, and cg are arbitrary constants

From Exercise 9 we have y(t) = y,(t) +yn(t) = te*' + c1e* + coe ™% + c3.
Since

2 1 ere2t 4 cpe2t 4 gy
Yy’ (14 2t)e? + 2c1e* — 2cpe™
y' = (4+4t)e® + dcie® + dege™?t

we have
2=90) = c14+ca+cs
-1=9(0) = 1+2c; —2co
16 = y/I(O) = 4 + 401 + 402,
from which follows that ¢; = 1, co = 2, and ¢3 = —1. Thus y(t) =

tth + e2t + 267215 _ 1
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SECTION 4.2

11.

. The characteristic polynomial is ¢(s) = s =1 = (s = 1)(s* + s+ 1) =

(s —1)((s+1/2)*+3/4). Thus B, = {et,e*%tcos %gt,e’%tsin ‘/7515} It

follows that y(t) = cre™" + coe™ 2% cos @t + cze”2tsin @t

. The characteristic polynomial is q(s) = s* —1 = (s2 = 1)(s> + 1) =

(s —1)(s+1)(s* + 1). Thus B, = {e',e ", cost,sint}. It follows that
y(t) = cret + cpe~t + casint + cqcost

. The characteristic polynomial is q(s) = s* —5s% +4 = (s> — 1)(s? —4) =

s—1)(s+1)(s=2)(s+2). Thus B, = {et, et e, e 2t} . It follows that
q
y(t) = cret + cae™t + c3e? + cpe™ 2

The characteristic polynomial is q(s) = (s + 2)(s*> + 25). Thus B, =
{e‘Qt, cos 5t, sin 5t} . It follows that y(t) = c1e™2! + ¢3 cos 5t + c3 sin 5t.

. The characteristic polynomial is ¢(s) = (s + 3)(s — 1)(s + 3)? = (s —

1)(s + 3)% Thus B, = {e’,e 3" te™3 273"} . It follows that y(t) =
cret + coe 3 + cate ™3 4 cqt2e .

The characteristic polynomial is q(s) = s* — 1 = (s2 = 1)(s? + 1) =
(s = 1)(s + 1)(s* + 1). Thus B, = {e', et cost,sint}. It follows that
y(t) = cret + cae™t + c3 cost + ¢y sint. Since

(t) = cre' +coe '+ c3cost + cysint
y'(t) = cie' —coe™! —cysint + ¢y cost
y'(t) = cie' + e —czcost — cysint
y"'(t) = cre' —coe 4 czsint — cqcost
we have
—1=1y(0) c1+ e+ c3
6=950) = c1—ca+cy
-3 = y”(O) = ¢1+c2—cC3
2 =4""(0) c1—Cy—cy
from which we get ¢ = 1, ¢ = —3, ¢c3 = 1, and ¢4 = 2. Hence y =

et —3e~t + cost + 2sint
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SECTION 4.3

1. Since ¢(s) = s> —s = s(s — 1)(s + 1) we have B, = {1,e’,e"'} and
since q(s)v(s) = s(s — 1)(s + 1)? we have By, = {1,¢e’,e7t te~'}. Thus
By, \ By = {te7'} and y = cte™ ! is the test function.

3. q(s) = s(s — 1)(s + 1) we have B, = {1,¢,e '} and since g(s)v(s) =
s(s—1)(s+1)(s—2) we have By, = {1,e’,e~*,e?}. Thus By, \ By = {€?'}
and y = ce? is the test function.

5. We have q(s) = s> —s = s(s — 1)(s + 1) and L{e'} = . Let v(s) =
s — 1. Then q(s)v(s) = s(s — 1)%(s + 1), B, = {l,e,e t} and By, =

{1,e!,tet, e} and By, \ By = {te'}. It follows that y = cte’ is the test
function. Since

= cte'

y' c(1+t)e
y” c(2 +t)e
y" = c(3+t)e

we have ¢(3 + t)e! — ¢(1 + t)e! = e'. Simplifying we get 2ce’ = €' which
implies ¢ = 1/2. Tt follows that y = %tet +cret + coel + 5

7. We have q(s) = s* =552 +4 = (s> —1)(s?—4) = (s—1)(s+1)(s—2)(s+2))
andﬁ{e2t} ( ) =s—2. Then q(s)v(s) = (s —1)(s +1)(s —
2)2(s + 2 = {e e ! e e} and By, = {ef, e, e te?t e},
Thus By, \B = {te?}. It follows that y = cte?" is the test function and

y = cte?!

y = c(142t)e*
y' = c(4+4t)e*
y" = c(12+ 8t)e*

y W = (324 16t)e*

Substituting into the differential equation and simplifying gives 12ce? =
e*'. We thus get ¢ = 1/12. It follows that y = 5te?" + cie’ + cae™" +
2 4 o o2t
4
9. We have q(s) = s3 —s=s(s—1)(s+1) and L {e'} = —L=. Thus Y (s) =
One iteration of the partial fraction decompos1t10n algorithm

1
s(s+1)(s—1)2"
gives
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Incomplete (s — 1)-chain

1 1/2
s(s+1)(s—1)2 (s —1)2
p(s)

s(s+1)(s—1)

It follows that y, = %E‘l {ﬁ} = %tet and the general solution is

Yy = %tet +cre b+ coet + c3

11. We have g(s) = s(s®> +4) and L{t} = S% Thus Y(s) = The

1
s3(s24+4) "
partial fraction decomposition algorithm gives

Incomplete s-chain
A
s3(s2 4+ 4) s3
—s/4 0
s2(s2 +4)
—-1/4
s(s?2+4)

It follows that y, = % and the general solution is y = % +c1+cocos2t+

c3 sin 2t.

13. We have ¢(s) = s® —s?+s5s—1=(s—1)(s>+1) and £ {4cost} = Sfﬁ.
Thus Y (s) = (3_1)‘(1%1)2. The partial fraction decomposition algorithm
gives

Incomplete s + 1-chain

4s —2s+2
G-I | Er1e
p(s)
(s—=1)(s2+1)
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It follows from Table 2.9 that y, = (—tsint +sint — tcost). But since
sint is a homogeneous solution we can write the general solution as y =
—t(sint + cost) + c1e’ + ca cost + casint.

SECTION 4.4

1. Here L1 = D — 6 and Ly = D. It is easy to see that L = ¢(D), where
q(s) = s> —6s+8 = (s — 2)(s — 4). Therefore y; and y> are linear
combinations of B, = {e?,e%"}. Next we recursively extend the initial
values to derivatives of order 1 to get

yi(0) = 2 y2(0) = -1
v1(0) = 16 yp(0) = 4

If y = c1e? + cpe®® then

aa + c = y(0)
261 + 462 = y/(O)

For y; we get
C1 + 2 = 2
2c1 + 4cs = 16

which gives ¢; = —4 and ¢z = 6. Thus y;(t) = —4e?' + 6e*’. For yo we
get

ci + ¢ = -1

2c1 + 4deo

Il
S

which gives ¢; = —4 and co = 3. Thus y2(t) = —4e? + 3ett.

3. Here Ly = D and Ly = D. It is easy to see that L = ¢(D), where ¢(s) =
52+4. Therefore y; and ys are linear combinations of B, = {cos 2t, sin 2t}.
Next we recursively extend the initial values to derivatives of order 1 to
get

yl(O) =1 yQ(O) = -1
y1(0) = =2 y5(0) = 2
If y = ¢1 cos 2t + co sin 2t then
a1 = y(0)
2c2 = y'(0)
For y1 we get
C1 = 1

202 = -2
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which gives ¢; = 1 and ¢o = —1. Thus y; (t) = cos 2t — sin 2t. For y» we
get
C1 = -1
202 = 2

which gives ¢; = —1 and ¢o = 1. Thus and y2(t) = — cos 2t + sin 2¢.

. Here Ly = D+4 and Ly = D*—6D +23. Tt is easy to see that L = ¢(D),

where ¢(s) = (s+4)(s2—65+23)—90 = (s2—1)(5s—2) = (s+1)(s—1)(s—2).
Therefore y1 and y; are linear combinations of B, = {e~*,e’, e }. Next
we recursively extend the initial values to derivatives of order 2 to get

y1(0) = 0 y2(0) = 2
y1(0) = 20 yp(0) = 2
y/(0) = —60  y5(0) = —34.
If y = cre™t + caet + c3e?! then
¢ + ¢ + ¢33 = y(O)

—c1 + ¢ + 23 = Y(0)
1+ c2 + 4des = y'(0).

For y1 we get

cpT + ¢ + c¢c3 = 0
—c1 + ¢ 4+ 2¢c3 = 20
C1 + c2 + 463 = —60.

which gives ¢; = —20, ca = 40, and ¢3 = —20. Thus y;(t) = —20e™" +
40e! — 20€?t. For y, we get

cpT + ¢ + c¢c3 = 2
—c1 + ¢ 4+ 2c3 = 2
ci + ¢ + 4dec3 = —34.

which gives ¢; = —6, c3 = 20, and ¢3 = —12. Thus and y»(t) = —6e~* +
20et — 12€2.

Here L, = D? + 2D + 6 and Ly, = D? —2D +6. Tt is easy to see that
L = q(D), where g(s) = (s* +2s+6)(s* =25+ 6) —45 = s* + 852 — 9 =
(s2 = 1)(s*+9) = (s — 1)(s + 1)(s*> +9). Therefore y; and ys are linear
combinations of B, = {e’,e™*, cos 3t,sin3t}. Next we recursively extend
the initial values to derivatives of order 3 to get

y1(0) = 0 y2(0) = 6
»1(0) = 0 y2(0) = 6
y1(0) = 30 Y2 (0) = —24
vi’(0) = =30 45'(0) —84
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If y = cre! + coe™t + c3 cos 3t + ¢4 sin 3t then

a + ca + e = y(0)
c1 — Cy + 3cs = y(0)
c + ¢ — 9cs = y"(0)
c1 — Cy — 27¢4 = y"(0)
For y; we get
cp + ¢ + c3 = 0
c1 — Co + 3¢y = 0
cp + ¢ — 963 = 30
1 — Co — 27¢y = —-30

which gives ¢ = 0, ca = 3, ¢c3 = —3, and ¢4 = 1. Thus y;(¢t) = 3e™t —
3 cos 3t 4 sin 3t. For yo we get

c1 + ¢ + C3 = 6
1 — Co + 3c4s = 6
c1 + ¢ — 9c3 = 24
ciT — C2 — 2764 = -84

which gives ¢; = 0, ¢ = 3, c3 = 3 and ¢4 = 3. Thus and yo(t) =
3e~t + 3 cos 3t + 3sin 3t.

9. Here a =2, b =1, and ¢ = 2 and the coupled system that describes the
motion is given by

v +3y1 = o
Yy +2y2 = 2y1.

Let L; = D? + 3 and Ly = D? + 2. Then y1 and yo a solutions to
q(D)y = 0, where q(s) = (s*+3)(s?+2)—2 = s*+5s?+4 = (s*+1)(s*+4).
Thus y; and y» a linear combinations of B, = {cost,sint, cos 2, sin 2t}.
Next we recursively extend the initial values to derivatives of order 3 to
get

y1(0) = 3 y2(0) = 0
y1(0) = 3 y2(0) = 0
y1(0) = -9 y3(0) = 6
yi'(0) = =9 53'(0) 6
If y = ¢y cost + cosint + c3 cos 2t + ¢4 sin 2t then
c1 + 3 = y(0)
co + 2¢4 = y'(0)

—c1 — e = 4"(0)
—Cy — 8cs = Y"(
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For y1 we get

C1 + C3 = 3
(6] + 2C4 = 3
—c1 — 4es = -9
—C2 — 864 = -9

which gives ¢y =1, ¢ = 1, ¢3 = 2, and ¢4 = 1. Thus y; () = cost+sint+
2 cos 2t + sin 2¢. For yo we get

c1 + c3 =
C2 + 2c¢y
—C1 — 403
—C2 — 804 =

|
oo o

which gives ¢1 =2, ca =2, ¢35 = —2 and ¢4 = —1. Thus yo(t) = 2cost +
2sint — 2 cos 2t — sin 2t.

11. 1. We begin by taking the Laplace transform of each equation above to
get

q1(s)Yi(s) —p1(s) = AiYa(s)
q2(5)Ya(s) —pa(s) = AYi(s)

which can be rewritten:

q1(8)Y1(s) — MYa(s) = pi(s)
a2(s)Ya(s) — A2Yi(s) = pa(s).

In matrix form this becomes

("5 ) (205) = G5)
2. The inverse of the coefficient matrix is
<‘J1_()=2 fhzs);l)l B Q1(8)Q2(81) —A1Ag <‘J2()‘2 Q1(5)31>
and therefore

(;2/1((5)) - ql(s)qz(sl) — A2 (‘IZ(/\SE Q1(5)31> (Pl;l((:)>
_ 1 ( p1(s)a2(s) + Aipa(s ) .

q1(8)q2(s) — Mg \p2(8)q1(s) + Aap1(s

13. We first take the Laplace transform of each equation to get
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sYi(s)—2-1
sYa(s) — (=2) — Ya(s)

—2Y>(s)
2Y1(s).

We associate the Y7 and Y5. In matrix form we get

)

(=D

By matrix inversion we get

() = (22 .20)
(7

Go1Pt4

1

1

We now get by Laplace inversion

)

0

1

2

(
)

2 s—1

25+ 2
(s—1)2+4 (—25—|—6

)

(yl (t)) B ( 2¢et cos 2t + 2et sin 2t>

Y2 (t)

—2et cos 2t + 2et sin 2t

()

2(s—1)+4
G-1)2+22

= (2(51)+4
(s—1)2+22

15. We first take the Laplace transform of each equation to get

SYl (8) -1+ 2Y1
52Y5(s) — 3 — 2(sYa(s)) + 5Ya(s)

We associate the Y7 and Y5. In matrix form we get

s+ 2 -5
-2 s2-2s+5
5\ /1
+5 3

By matrix inversion we get
Yi(s)\  [s+2
Ya(s) | -2 %2 —12s

_ 1 s2 —2s
T 3435

s(s?2+1)

We now get by Laplace inversion

+5
2 s

35+ 8

Yi(s)
Ya(s)

)
1 (52—25—1-20) _

)

)
(

5Ya(s)

J)

20 _19°

S

s g

5241
-
s2+4+1

-2

+3

)

_1
241

i

s2+1

)

7
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y1(t)\ _ (20 —19cost — 2sint
ya(t) ) 8 —8cost + 3sint ) -

SECTION 4.5

11.

. The only characteristic mode is e . Thus the zero-input response is

y(t) = ce=5'. The initial condition a = y(0) = 10 implies ¢ = 10. Thus
y(t) = 10e 75, The characteristic value is —5, to the left of the imaginary
axis. Hence the system is stable.

. The characteristic polynomial is ¢(s) = s> —4s+3 = (s —3)(s — 1). The

characteristic modes is {e,e*}. Thus y(t) = cie’ + c2e. The initial
condition a = (2,4) = (y(0),4'(0)) implies ¢; = 1 and ¢z = 1. Thus the
zero-input response is y(t) = et +¢e3t. The characteristic value are 1,3 and
both lie to the right of the imaginary axis. Hence the system is unstable.

. The characteristic polynomial is q(s) = s> +4s +5 = (s +2)? + 1. The

characteristic modes are {e~2* cost,e?*sint }. Thus y(t) = c1e™* cost+
cze?!sint. The initial condition a = (0,1) = (y(0),’(0)) implies ¢; =
0 and ¢z = 1. Thus the zero-input response is y(t) = e *'sint. The
characteristic value are —2 + i,—2 — ¢ and both lie to the left of the
imaginary axis. Hence the system is stable.

The characteristic polynomial is ¢(s) = s? + 6s + 9 = (s + 3)%. The
characteristic modes are {e ™', te=3'}. Thus y(t) = c1e > +cate 3. The
initial condition @ = (1,1) = (y(0),y’(0)) implies ¢; = 1 and ¢3 = 4. Thus
the zero-input response is y(t) = e 3! + 4te~3!. The characteristic value
is —3 with multiplicity 2 lies to the left of the imaginary axis. Hence the
system is stable.

. The characteristic polynomial is g(s) = s2 —2s+2 = (s — 1) + 1.

The characteristic modes are {efcost,e!sint}. Thus y(t) = ciel cost +
co€e! sint. The initial condition a = (1,2) = (y(0),%’(0)) implies ¢; = 1
and co = 1. Thus the zero-input response is y(t) = e’ cost + e’ sint. The
characteristic values are {1 4 ¢,1 — ¢} and lie to the right of the imaginary
axis. Hence the system is unstable.

The characteristic polynomial is g(s) = (s+1)(s?>+1). The characteristic
modes are {e !, cost,sint}. Thus y(t) = cie " +cg cost+cs sint. The ini-
tial condition @ = (1,—1,1) = (y(0),4'(0),4”(0)) implies ¢; = 1, c2 = 0,
and c3 = 0. Thus the zero-input response is y(t) = e~*. The characteristic
value are —1, 4, and —i. The system is then marginally stable.
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13.

15.

17.

19.

The characteristic mode is e~ so y(t) = cet. For the unit impulse we
have y(0) = 1 and this implies ¢ = 1. Thus y(t) = e~ ¢

The characteristic polynomial is q(s) = s2 —4 = (s —2)(s +2) and hence
the characteristic modes are {e*,e 2'}. Hence, y(t) = c1e?" + coe™ 2"
For the unit impulse we have y(0) = 0 and y’(0) = 1 and this implies
c1=1/4and ¢ = —1/4 . Thus y(t) = e — Te7*"

The characteristic polynomial is ¢(s) = s>+ s = s(s?+1). The character-

istic modes are {1, cos 2t,sin 2¢t}. For the unit impulse we have y(0) = 0,
y'(0) = 0, and y”(0) = 1 and this implies ¢; = 1, c2 = —1 and ¢3 = 0.
Thus y(t) =1 — cos(t).

Since f is bounded there is an M such that |f(¢)] < M for all ¢ > 0. We
then have

¢
’tkeo‘t cos Bt * f(t)] = / z*e M cos Brf(t — x) dx
0

IN

/t e ()| da

= C+p) ok

where C and p(t) are as in Exercise 18, which also implies that t*e* cos Bt*
f is bounded. The argument for t*¢®* sin 5t * f is the same.

SECTION 5.1

1.

3.

5.

11.

13.

No, it is not linear because of the presence of the product y'y.
yes, nonhomogeneous, yes

yes, nonhomogeneous, no

. yes, nonhomogeneous, no

. No, it is not linear because of the presence of siny.

yes, homogeneous, no

L) =t 3) +t(—t2) -t =@2-1-1)t"'=0
L(1) = t2(0) +(0) =1 = -1
(2 2( z t(1)—t=0

1
t:
4 L") =t2r(r — Dt 2+ t(rt" ) —t" = (r? = 1)t"
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15. y, = C(2t —t*)e”" and y)] = C(t* — 4t 4 2)e". Thus

Cyy +ty, —yp = C{° =4t +2t)e”" + C(—t> + 3t* — 2t)e ™" + C(—t?)e ™
= O(=2t%)e"

The equation C(—2t2)e_t =2t implies C' = _71

17. If y = et then ¥y = —e % and vy’ = €7 ! so that Ly = (t — 1)e™t —
t(—e ) +et = 2tet. Parts (1) follows. If y = e’ then Ly = (t—1)(e) —
t(e')+(e') = 0. It follows that y = e’ is a solution to Ly = 0. If y = ¢ then
y' =1landy” =0. Thus Ly = (t—1)(0)—t(1)+¢ = 0. Part (2) now follows.
By linearity every function of the form y(t) = e ~*+cjef +cat is a solution
to Ly = 2te~*, where ¢; and ¢y are constants. If we want a solution to
L(y) = 2te~* with y(0) = a and y'(0) = b, then we need to solve for ¢;
and cg: Since y(t) = et + ciet + cat we have y/(t) = —e™t + c1e! + c.
Hence,

a = y0)=14¢
b = 4 (0)=—-1+c1 +co.

These equations give ¢; = a — 1 and ¢c; = b — a + 2. Particular choices of
a and b give the answers for Part (3).

(B)a. y(t) =et —et +2t

(3)b. y(t) =e '+ (0)e' + (1)t =€t +1¢
(3)c. y(t) =e P+ —et + 3t

3)d. y(t) =e "+ (a—1)e'+ (b—a+2)t

19. Write the equation in the standard form:

3 1
y// 4 gy/ _ t_zy — t2.
The forcing function is continuous on R while the coefficient functions,
% and —t%, are continuous except at ¢ = 0. Thus the largest intervals of
common continuity are (0, co) and (—oo, 0). Since the initial conditions
are given at to = —1 it follows from Theorem 6 that the interval (—oo, 0)
is the largest interval with a unique solution.

21. Write the equation in the standard form:

I Y cost

sint  sint’
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The intervals of continuity are of the form (kr, (k + 1)7), k € Z. Since
to = % it follows that the maximal interval for a unique solution is (0, ).

23. The common interval of continuity of the coefficient functions is (3, co)
and tg = 10 is in this interval.

25. The initial condition occurs at ¢t = 0 which is precisely where as(t) = t2
has a zero. Theorem 6 does not apply.

27. The assumptions say that y1(to) = y2(to) and y](to) = yh(to). Both
and gy therefore satisfies the same initial conditions. By the uniqueness
part of Theorem 6 y; = yso.

SECTION 5.2

—

. dependent; 2t and 5t are multiples of each other.

3. independent; If ¢; Int + cptlnt = 0 then evaluating at ¢t = e and t = €2
gives ¢1 + eca = 0 and 2¢; + 2e?c; = 0. These equations imply that c¢;
and ¢ are both zero so {Int¢,¢Int} is linearly independent.

5. independent, If ¢; In 2t 4 ¢ In5¢ = 0 then evaluating at t =1 and t = e
gives (In2)c; + (In5)ce = 0 and (1 + In2)e; + (In5 + 1)cg = 0. These
equations imply that ¢; and cp are both zero so {Int,tInt} is linearly
independent.

7. fiit) =e' —1 and fJ(t) = e'. Thus (t — 1)f] —tfi + fr=({t—1)(e") —
t(e' —1)+e' —t = 0. Similarly, f4(t) = 1 and fY(t) = 0. Thus (¢t —1)f§ —
tfy 4+ fa = —t(1) +t = 0. Now,

w(t) = =e' —t— (e =)t =(1—t)

el —1 1

et —t t‘

On the other hand the coefficient function of 3’ in the standard form of

the differential equation is a1 (t) = —74; = —1 — 2+ Integrating gives

fot —1--Ldz=—-2—Inlz—1||) = —t+In(1—¢), (since z —1 < 0) and
e~ Joam@dr — ot(1 — ) At t = 0 we have w(1) = 1 so Abel’s formula
is verified. It follows from Proposition 4 that f; and f; are linearly inde-
pendent. By Theorem 2 the solution set is {c1(e! —t) + cat : c1,c2 € R}

9. f{(t) _ 251n 2Int) f//( ) _ 2sm(21nt) 4cos 21nt), f ( ) _ 2cos(t21nii)7 and

é/(t) _ 74sm(21nt) 2cos(21Int)  Thus tgf + tfl + 4f1 _ 2Sln(2 lnt)
4cos(2Int) —2 s1n(2 Int) +4 cos(2 Int) = 0. Similarly, t?f) +tf) +4fs =
—4sin(21Int) — 2cos(21Int) + 2cos(21Int) + 4sin(21nt) = O. Now,
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1 Solutions
cos(2Int)  sin(2lnt)
w(t) =|—-2sin(2lnt) 2cos(2lnt)| = e
t t

On the other hand the coefficient function of " in the standard form of
the differential equation is a1 (t) = % Integrating gives flt %dw =1Int and
e~ Jo m(@)dz — 1/t. At t =1 we have w(1) = 1 so Abel’s formula is veri-
fied. It follows from Proposition 4 that f; and f> are linearly independent.
By Theorem 2 the solution set is {¢1 cos(21Int) + cosin(21nt) : ¢1,c2 € R}

1. Suppose at® +b[t3| = 0 on (—00,00). Then for t =1 and t = —1 we

get

a+b =0
—a+b = 0.
These equations imply a = b = 0. So y; and y» are linearly indepen-

dent.
-3t2 if t<0

. Observe that vy} (t) = 3t% and yh(t) = Ift<o0

3t2 if t>0.
=
then w(y1,y2)(t) = (3t2 a2 > = 0. If ¢ > 0 then w(yy,y2)(t) =
N
<3 2 342 > = 0. It follows that the Wronskian is zero for all ¢t €
(—00, 00).

. The condition that the coefficient function as(t) be nonzero in Theo-

rem 2 and Proposition 4 is essential. Here the coefficient function, #2,
of y" is zero at t = 0, so Proposition 4 does not apply on (—oo, 00).
The largest open intervals on which ¢? is nonzero are (—oo,0) and
(0,00). On each of these intervals y; and yo are linearly dependent.

. Consider the cases t < 0 and t > 0. The verification is then straight-

forward.

. Again the condition that the coefficient function as(t) be nonzero is

essential. The Uniqueness and Existence theorem does not apply.

SECTION 5.3

1. The indicial polynomial is Q(s) = s? + s — 2 = (s + 2)(s — 1). There are

two distinct roots 1 and —2. The fundamental set is {t, t_2}. The general
solution is y(t) = c1t + cat 2.
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3.

11.

13.

15.

The indicial polynomial is Q(s) = 9s% — 6s + 1 = (3s — 1)2. There is one
root, 1/3, with multiplicity 2. The fundamental set is {t%,t% lnt}. The

general solution is y(t) = ¢1t3 + ot 3 Int.

. The indicial polynomial is Q(s) = 4s? — 4s + 1 = (25 — 1)%2. The root is

% with multiplicity 2. The fundamental set is {t%,t% lnt}. The general
solution is y(t) = 112 + cot? Int.
The indicial polynomial is Q(s) = s + 65+ 9 = (s + 3)2. The root is —3

with multiplicity 2. The fundamental set is {t_3, t=31n t}. The general
solution is y(t) = c1t 73 + cot 3 Int.

. The indicial polynomial is Q(s) = s —4 = (s — 2)(s + 2). There are two

distinct roots, 2 and —2. The fundamental set is {t2, t_2}. The general
solution is y(t) = c1t? + cat 2.

The indicial polynomial is Q(s) = s? — 4s + 13 = (s — 2)? + 9. There
are two complex roots, 2 + 3¢ and 2 — 3¢. The fundamental set is
{t? cos(3Int),¢*sin(31Int)}. The general solution is y(t) = c1t? cos(3Int)+
cat?sin(31Int).

The indicial polynomial is Q(s) = 4s* —4s+1 = (2s — 1)(2s — 1). There
is a double root, r = % The fundamental set is {t% , t3 In t}. The general

solution is y(t) = ¢1£% + ¢t2 Int. The initial conditions imply
c1 = 2

1
561 +co = 0.

Thus ¢; =2 and ¢ = —1. Hence y = 2t1/2 — ¢'/2Int

The coefficient functions for the given equation in standard form are
a1(t) = —4/t and az(t) = 6/t both of which are not defined at the initial
condition ty = 0. Thus the uniqueness and existence theorem does not
guarantee a solution. In fact, the condition that y’(0) exist presupposes
that y is defined near ¢ = 0. For t positive the indicial polynomial is
Q(s) = s2 =55+ 6 = (s — 6)(s + 1) and therefore y(t) = c1t5 + cot 1.
The only way that y can be extended to t = 0 is that co = 0. In this case
y(t) = c1t® cannot satisfy the given initial conditions. Thus, no solution
is possible.
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SECTION 5.4

1. By L’Hospital’s rule lim;_,q ebtzeat = b — a. So Theorem 4 applies and
gives
bt at o]
e’ —e 1 1
L ——— = _ d
{ t } () /5 o—b o—a’
M—-b s—2b
= 1. 1 —_ 1
Mlinoon(M—a> n(s—a)
s—a
=1
(5
, - . . cos bt — cosat 9 9
3. Apply L’Hospital’s rule twice to get thm 2T = a* — b°. Now
—00

use Exercise 2 to get
cosbt — cos at e % + a?
M M
= lim / In(o? + a?) do — / In(e? + %) do | .
M—o0 s s

We now use two facts from calculus:
1. [In(2? 4+ a®)dz = zIn(2? + a?) — 22 4+ 2atan™!(z/a) + C
2. lim zln (””ZJ”’Q) =0

2 2
z—00 z24b

The first fact is shown by integration by parts and the second fact is
shown by L’Hospitals rule. We now get (after some simplifications)

bt — " 2 b2 b
£ SR () = shn (S ) +2atan ! (2) — 2btant (2
$2 52+ a? § 5

5. Applying the Laplace transform we get

Y,+3S+2Y: 2y0
52+ s s24+s’

The integrating factor is I = s*(s + 1); we get Y (s) = 2% + %

Laplace inversion gives

y(t) = yoe L+ Ct—14+eh)
= (yo—i—C)e_t—l—C(t—l).

Let ¢y = C and ¢2 = yo + C to get y(t) = cre™t + ca(t — 1).
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7.

11.

13.

15.

17.

—Yo
(s +2)2
Y(s) = Z?2 + C. However, since limg_; o, Y (s) = 0 we must have C = 0.

s

Applying the Laplace transform we get Y'(s) = and therefore

Hence y(t) = yoe 2.

6
. Applying the Laplace transform we get Y'(s) + TSlY(s) = 0. An
s
integrating factor is I = (s? + 1)3. We then get Y (s) = ﬁ, and
s

y(t) = (C/8) ((3 — t?)sint — 3t cost)

- 1 1
Apply the Laplace transform to get Y'(s) = _—% _ yo [ - — ——).
s(s—1) s s—1
0

Then Y (s) = yoln (il) + C. Take C' = 0 since lim,_,o0 Y (s) =
5 —

t
—1
Hence y(t) = yoe T
Apply the Laplace transform, simplify, and get Y'(s) = (82%3{:—%6) =
1 1 §—2
Yo - . Then Y(s) =yoln [ ——= | + C. Take C = 0. Then
s—2 s—3 s—3
o3t _ o2t
v = (7).
Apply the Laplace transform, simplify, and get Y'(s) = L
s(s?+1)
21 1 1 s . .
m = —yom — 21 (g — m) Integrating gives Y (s) =

211
—yotan~1(s) +y;In (S —5 ) +C. Since lims_,» Y (s) = 0 we must have
s

s2+1

5 . Therefore
s

1
C = yog and hence Y (s) = yotan—! (_) + 1y 1n<
s
sint 1 —cost
y(t) =yo—— + 24— —

We use the formula
dm n dk dn—k
G0y =3 (1) G0 ot

Observe that

and
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It now follows that

nk:()
> ()5
(n(t)

1 Solutions

21. Hint: Take the Laplace transform of each side. Use the previous exercise
and the binomial theorem.

23. We compute the Laplace transform of both sides. We’ll do a piece at a

time.

We have written each so that the common factor is

coefficients are

L{(2n+1)

o} (s)

— 1)

= (2n+ 1)(587

(S _ 1)71—1
Sn+2

n+1

(2n+1)(s(s —1)).

L{—=tl,} (s)

— ( (35;11)" ) /

(s —1)nt
Sn+2

(n+1-s).

—nL{ln_1}(s)

(s

(S _ 1)77,71
Sn+2

_ 1)7171

Sn

(—ns?).

(s — 1)1t

s The
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n+1—s+2n+1)(s(s — 1)) — ns?
= (n+1)(s*=2s+1)
(n+1)(5 — 1)?

The right hand side is now

e <(n—|—1)(s—1) o

(s — 1)+t
Sn+2

= L{lny1}(s)-

Taking the inverse Laplace transform completes the verification.

(s~ 1)”1)

25. First of all fooo e U, (t)dt = L{l,} (1) = 0. Thus

/ e Uy (x)dt
t

= - /t e "y (x)dx
0
= —et /OO el (z) dx
= —e_t(e(’)5 * U (1)).
By the convolution theorem

L{e" 1y} (s)

B 1 (s—=1)"

Tos—1 gntl

(s—1)nt
gn+1

_ (s —1)n1t <1_ 5—1)
s™ S
(s—Dr ' (s=1)"
sn - Sn-i—l
= L7H{laa(O)} - L7 (1)}
It follows by inversion that ef * ¢, = £,_1 — £, and substituting this
formula into the previous calculation gives the needed result.
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SECTION 5.5

1.

11.

13.

15.

Let yo(t) = t?u(t). Then t*u” + t3u' = 0, which gives v/ = ¢t~ and
u(t) = Int. Substituting gives yo(t) = t? Int. The general solution can be
written y(t) = c1t? + cat?Int.

. Let yo(t) = t2u(t). Then 4t3u” + 434/ = 0 leads to v/ = 1/t and hence

u(t) = Int. Thus y2(t) = vtInt. The general solution can be written

y(t) = c1Vt + cov/tInt.

. Let yo(t) = tu(t). Then u satisfies t3u” — t3u’ = 0. Thus v/ = e and

u = et. It follows that y2(t) = te! is a second independent solution. The
general solution can be written y(t) = c1t + cotel.

Let yo(t) = u(t) sint?. Then u(t) satisfies ¢ sin t?u” +(4t? cos t?> —sin t?)u’ =
1

1 cos t2
0 and hence u_/ = —4t—= ox It follows that u’' = t csc? t2 and therefore
U sin
u(t) = St cott?. We now get ya(t) = = cost?. The general solution can

be written y(t) = ¢1 sint? + ¢z cost2.

. Let y2(t) = u(t)tant. Then v’ tant + 2u’sec’t = 0 which gives v/ =

cot?t = csc?t — 1. Hence u = —cott — ¢ and y2(t) = —1 — ttant. The
general solution can be written y(t) = ¢1 tant + c2(1 + ¢t tant).

The functions tant and sect are continuous except at points of the
form 7 + 2nm, n € Z. We will work in the interval (—m/2,7/2).
Let y2(t) = wu(t)tant. Then u”tant + u/(tan’t + 2) = 0 and hence
v — _tant — 2cott. It follows that In|u/| = In|cost| — 2In|sint| and

w’

thus u' = costsin~>¢. Further u(t) = =L and we have ys(t) = —sect.

The general solution can be written y(t) = ¢ tant 4 cg sect.

Let yo = u 1ii§0§t2t. Then u(t) satisfies v sin 2t +4u’ = 0 and hence % =

—4csc2t. We now get Inw’ = 21In|csc2t + cot 2¢|. Thus v’ = (csc%t +
cot 2t)? = csc? 2t + 2 csc 2t cot 2t + cot? 2t = 2csc? 2t + 2 csc 2t cot 2t — 1.

By integrating we get u = —cot2t — csc2t —t = —% —t. It now
follows that yo = —1 — 1‘3:‘;3; The general solution can be written

_ sin 2t tsin 2t
y(t) = it + 2 (1 *+ Thcos 2t)'

Let y2(t) = (1 —t?)u(t). Substitution gives (1 —¢2)%u” —4t(1 —t*)u’ =0
1" 2t

and hence %7 = —27=5. From this we get v’ = (1_%)2 Integrating u’ by

partial fractions give u = %1ft2 + iln (%) and hence

11 oo (141
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The general solution can be written

1 1 1+¢
_ 2 Lot
y=c(1 t)+cz(2t+4(1 t)ln(l_t>).

SECTION 5.6

1. sint and cost form a fundamental set for the homogeneous solutions. Let
yp(t) = ug cost + ugsint. Then the matrix equation

cost sint\ fu) O\ . . N o,
(_ sinf cos t) ( ,2> = (sint) implies u}(t) = —sin“t = 5(cos2t — 1)

and u2( ) = costsint = (sin2t). Integration give ul(t) = I(sin(2t) —
2t) = (smtcost —t) and us(t) = ;1 cos2t = S}(2cos2t — 1). This
implies yp( ) = Isint — Ltcost. Since :sint is a homogeneous solution

we can write the general solutlon in the form y(t) = _Qltcos t+cicost+
co sint. We observe that a particular solution is the imaginary part of a so-
lution to y”’ +y = e®. We use the incomplete partial fraction method and
get Y(s) = m This can be written Y (s) = - = Z)Q + Zg(zﬂ)

From this we get y,(t) = Im( 1{(s 7 }) Site' = Zttcost.

The general solution is y(t) = S tcost + ¢; cost + ¢z sint.

3. The functions e’ cos 2t and e sin 2¢ form a fundamental set. Let y,(t) =
cret cos 2t + coet sin 2t. Then the matrix equation
/
W (et cos 2t, e sin 2t) <Z,1) = (69) implies that u}(t) = S sin2¢ and
2
uh(t) = 3 cos2t. Hence, ul(t) = lcos2t and us(t) = 1sin2t. From this
we get y,(t) = e cos2 2t + 1e s1n2 2t = 1e'. On the other hand, the
method of undetermined coeﬁiments implies that a particular solution
is of the form y,(t) = Ce'. Substitution gives 4Ce’ = e’ and hence
C = 1. It follows that y,(t) = fe’. Furthermore, the general solution is
y(t) = Le' + cre’ cos 2t + coe’ sin 2t.

5. A fundamental set is {e e? } The matrix equation

et 2t u 0
(et 262t> <u'1) - (e3t> implies ) (t) = —e*" and uy(t) = e'. Hence
2

ui(t) = Ste¥, us(t) = e and y,(t) = Fte?e + efe? = L1e3. The
general solution is y(t) = 3t+cle +cge?!. The method of undetermined
coefficients implies that a particular solution is of the form y, = Ce?'.
Substitution gives 2Ce* = 3¢* and hence C' = 1. The general solution
is as above.
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7.

11.

13.

15.

17.

1 Solutions

A fundamental set is {e?,te’}. The matrix equation

et tet\ [} 0y . ..
(et ol _|_tet) (ué) = (i) implies v} (t) = —1 and u(t) = +. Hence,

z

ur(t) = —t, ua(t) = Int, and y,(t) = —te’ + tlnte’. Since —te’ is a

homogeneous solution we can write the general solution as y(t) = ¢ In te’ +
t t

cie’ + cote’.

. The associated homogeneous equation is Cauchy-Euler with indicial equa-

tion s2—3s42 = (s—2)(s—1). It follows that {¢,¢*} forms a fundamental
set. We put the given equation is standard form to get y” — 2y/+ 2y = t2.
Thus f(t) = t2. The matrix equation

L (ur) (0 implies u}(t) = —t% and u)(t) = t. Hence
1 2t) \uj t2 1 2
ui(t) = =2, us(t) = &, and y,(t) = =2t + L2 = £ Tt follows that the
4
general solution is y(t) = & + 1t + cot?.

The homogeneous equation is Cauchy-Euler with indicial equation s% —

25+ 1 = (s — 1)2. It follows that {t,tInt} is a fundamental set. After
writing in standard form we see the forcing function f(t) is % The matrix
equation

/
(1t mttff) (Z/1> = (?) implies v} (t) = _1“‘5 and ub(t) = % Hence
A 1

?
up(t) = —1;121:7 u2(t) = Int, and y,(t) = _Ttln2t+ tin®t = %hl2 t. The

general solution is y(t) = % In?t + c1t + cot In't.

The matrix equation

!
(tant see t) (u1> = (2) implies «) () =t and ub(t) = —tsint.

sec’t secttant) \ub
Hence u1(t) = %, ug(t) = tcost — sint, and y,(t) = %tant + (tcost —
sint)sect = % tant + ¢ — tant. Since tant is a homogeneous solution we

can write the general solution as y(t) = % tant +t + cq tant + cy sect.

After put in standard form the forcing function f is 4¢*. The matrix
equation

cost? sint?\ (] 0\ . .. .
(—2tsint2 2tc032t> (ué) = (4t4> implies u}(t) = —2t®sint? and

ub(t) = 2t3 cos t?. Integration by parts gives uy(t) = t? cost? — sint? and
us(t) = t?sint? +cos t2. Hence y, (t) = t? cos? t? —cos t? sin t? + % sin® 12 +
cost?sint? = t2. The general solution is y(t) = t? + ¢1 cost? + co sint2.

Let a and ¢ be in the interval I. Let z; and 2o be the definite integrals
defined as follows:
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[ @@
alf) = /aw(y1,y2)($)d

_ [ @i
20 = [ e

These definite integrals determine the constant of integration in Theorem
1 so that z1(a) = z2(a) = 0. It follows that

Yp(t) = ()y1()+22(t)+y2(
_ / —y2(x)y (t) f(2) f vt "y (@)ya () f(x)
a (y1,y2 z) “w(yr,y) (@)
_ / (y1(@)y2(t) — y2(2)y (t)) f(@) da
a (yl,yz)( )
[ =3
Y1 Y2
B /a yi(z) y2(x) fla)do
yi(z) ya(z)

19. Let y1(t) = e % and yo(t) = €. Then {y1,y2} is a fundamental set. We
have

yi(x) y2(x)
yit)  y2(t)

and

— e—ameat _eame—at — ea(t—m) _e—a(t—m) — 2sinh(a(t—ac))

efat eat

w(ylqu)(‘r) = ’_aeat aeat

= 2a.

Thus

i) = [ 2 o

1
= —f(t) x sinhat.
a

Applying the Laplace transform to 3" — ay = f, with initial conditions
y(0) = 4/ (0) = 0, gives s?Y (s) — a?Y (s) = F(s). Solving for Y (s) we get

F(s) 1 a

2 _ g2 a 82 — a2

Y(s) = F(s).

S

The convolution theorem gives a particular solution

yp(t) = ésinh at * f(t).
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21. Let y1(t) = e and y(t) = €. Then {y1,%2} is a fundamental set. We

have ( :
X x
yyll (t§ yjz(t; = etTel — Mrett = e ehrtat
and -
w(y1,y2)(.’l]) = ae® bebw = (b - a)e(a-l-b)w'
Thus

t eam-{-bt _ ebw-i—at
Yp(t) = /o mf(x)dx
1

t
— — /0 (eb(tfm) _ ea(tfz))f(x) dx

ﬁf(t) * (ebt — e,

Applying the Laplace transform to y” — (a + b)y’ 4+ aby = f, with initial
conditions y(0) = ¢(0) = 0, gives s2Y (s) — (a+b)sY (s) +abY (s) = F(s).
Solving for Y'(s) we get

Py 1 (1 1 .
Y(S)_(s—a)(s—b)_a—b<s—a s—b)F(>'

The convolution theorem gives a particular solution

SECTION 6.1

1. Graph (c)
3. Graph (¢)
5. Graph (f)
7. Graph (h)
9. [ f(t)dt = [T(t> —d)dt+ [J0dt+ [J(~t+3)dt = (t3/3—4t)|] +0+
(—2/2+3t)|2 = (8/3 — 8) + (—25/2 + 15) — (—9/2+ 9) = —22/3.

11. f027r |sinz| dz = foﬂsinxdx—kfjﬂ—sin;pdx = —cosz|p + Cos:z:|72:’ 4
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13

15

17

19.

21.

23.

25.

27.

LS f@dt= [ —t)dt+ [ 2(t —3)dt + [{2dt =1/2+1+4=11/2
S fydu= [ udu+ [F2—u)dut [y 1du=1/2+1/2+4=5.

. A is true since y(t) satisfies the differential equation on each subinterval.
B is true since the left and right limits agree at ¢ = 2. C is not true since

y(0) =14#2.

A is true since y(t) satisfies the differential equation on each subinterval.
B is false since lim;_,o- y(t) = 1+ e~8 while lim,_,o+ y(¢) = 1. C is false
since B is false.

A is true since y(t) satisfies the differential equation on each subinterval.

B is true since lim,_,;- y(t) = —2e + e = lim,_,1+ y(t). C is false since
lim,_,;- 3/ (t) = —3e + 2¢2 while lim,_,,+ ¥/(t) = 3e% — 2e. D is false since
C is false.

A is true since y(t) satisfies the differential equation on each subinterval.

B is true since lim,_,;- y(t) = —2e + €% = lim,_,,+ y(¢). C is true since
lim,_,;- ¥/ (t) = —3e +2¢% = lim,_,1+ %/ (t). D is true since y(0) = 3'(0) =
0.

The general solution of ¥y’ —y = 1 on the interval [0, 2) is found by
using the integrating factor e *. The general solution is y(t) = —1 + ce'
and the initial condition y(0) = 0 gives ¢ = 1, so that y(¢t) = —1 + € for
t € [0, 2). Continuity of y(t) at t = 2 will then give y(2) = lim;_,o- y(t) =
—1 + €2, which will provide the initial condition for the next interval
[2, 4). The general solution of ¥/ —y = —1 on [2,4) is y(t) = 1 + ke’.
Thus —1 + e = y(2) = 1 + ke? and solve for k to get k = —2e72 + 1,
so that y(t) = 1+ (=272 + 1)e! for t € [2, 4). Continuity will then give
y(4) = 1+ (=2e7? + 1)e?, which will provide the initial condition for
the next interval [4, co). The general solution to ¥’ —y = 0 on [4, c0)
is y(t) = be' and the constant b is obtained from the initial condition
bet = y(4) = 1+ (—2e72 + 1)e*, which gives b = e™* —2¢72 + 1, so
that y(t) = (e7* — 272 + 1)e! for t € [4, 00). Putting these three pieces
together, we find that the solution is

—1+eét if0<t<?2,
y(t) =<1 —2et2 4 ¢t if2<t<4
et~ — 22 L et if4 <t < .

The general solution of ' —y = f(¢) on any interval is found by using
the integrating factor e~t. The general solution on the interval [0, 1)
is y(t) = ae' and since the initial condition is y(0) = 0, the solution on
[0, 1) is y(t) = 0. Continuity then given y(1) = 0, which will be the initial



94

29.

33.

1 Solutions

condition for the interval [1, 2). The general solution of y/ —y =t —1 on
the interval [1, 2) is y(t) = —t + be! and the initial condition y(1) = 0
gives 0 = —1+bel sothat b = e~ L. Thus y(t) = —t+e le! = —t+e!~! for
t € [0, 2). Continuity of y(t) at t = 2 will then give y(2) = lim;_,»- y(t) =
—2 + e!, which will provide the initial condition for the next interval
[2, 3). The general solution of ¥ —y =3 —ton [2, 3) is y(t) =t — 2+ ce'.
Thus —2 + e! = y(2) = ce? and solve for ¢ to get ¢ = —2e2 + e 1, so
that y(t) =t — 2+ (—2e 2+ e Hel =t —2—2et"2 + el for t € [2, 3).
Continuity will then give y(3) = 1—2e!+¢e2, which will provide the initial
condition for the next interval [3, co). The general solution to y' —y =0
on [4, 00) is y(t) = ke' and the constant k is obtained from the initial
condition ke = y(3) = 1 — 2e! + €2, which gives ¢ = 73 — 2e72 + ¢ 1,
so that y(t) = (e —2e 2+ e el =et3 —2e!"2 ¢! for t € [3, 00).
Putting these three pieces together, we find that the solution is

0 if0<t<l,
—t+et~! if1<t<2,
t—2—2e"2 4t if2<t<3

et™3 — 272 4 et if3<t < o0.

y(t) =

The characteristic polynomial of the equation y” —y = f(t) is s2 — 1 =
(s—1)(s+1) so the homogeneous equation has the solution yy(t) = ae’ +
be~! for constants a and b. On the interval [0, 1] the equation y”" —y =t
has a particular solution y,(t) = —t so the general solution has the form
y(t) = —t + ae® + be~t. The initial conditions give 0 = y(0) = a + b and
1=19'(0) = —1+a—b. Solving givesa =1,b= —1so y(t) = —t+e' —e*
on [0, 1). By continuity it follows that y(1) = —1+e! —e~! and 3/(1) =
—1 +e' + e~ ! and these constitute the initial values for the equation
y” —y = 0 on the interval [1, co). The general solution on this interval is
y(t) = ael+be ' and at t = 1 we get y(1) = ae’+be™! = —1+el—e~! and
y'(1) = ael —be™! = —1+ e+ e~ L. Solving for a and b gives a = 1 — e~ !
and b = —1 so that y(t) = (1 —e 1)e! —e™! = et — !~ — e7L. Putting
the two pieces together gives

(t) = —t+e —et if0<t<],
v = et —et7l—eml 1<t < .

1. |f(®)] = [sin(1/t)] < 1 for all ¢ # 0, while |f(0)] =10 =0< 1.

2. It is enough to observe that lim; .o+ does not exist. But letting ¢,, =
L gives f(t,) = sinnm = 0 for all positive integers n, while letting
tn = gy gives f(tn) = sin(1/t,) = sin((4n + 1)7/2) = sin(2n7 +
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%) = 1 so there is one sequence ¢, — 0 with f(t,,) — 0 while another
sequence t,, — 0 with f(¢,) — 1 so f(t) cannot be continuous at 0.
3. To be piecewise continuous, f(¢) would have to have a limit at ¢

approaches 0 from above, and this is not true as shown in part 2.

SECTION 6.2

0 ift<2,
1. f(t)=3h(t—2)—h(t—5)=43 if2<t<5, Thus, the graph is
2 ift>5.
Y
3 | —
2 : I
|
1 |
ot
0123 456 7 8

3. This function is g(t — 1)h(t — 1) where g(t) = t, so the graph of f(t) is
the graph of g(t) = t translated 1 unit to the right and then truncated at
t = 1, with the graph before ¢ = 1 replaced by the line y = 0. Thus the
graph is
Y
2

1

0 t
o 1 2 3

5. This function is just t? truncated at ¢ = 2, with the graph before t = 2
replaced by the line y = 0. Thus the graph is

ob———— ¢
o 1 2 3

where the dashed line is the part of the ¢ graph that has been truncated.
It is only shown for emphasis and it is not part of the graph.
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7. This is the function cos 2t shifted 7 units to the right and then truncated
at t = m. The graph is
Y

I WAW/
TR

9. (a) (t —2)X[2,00)(t); (b) (£ —2)h(t — 2);
(€) L{(t=2)h(t—2)} = e 2L {t} = e~ 2552

11, () (£ +2)Xp2,00) (1): (b) (£ + 2t — 2);
(©) L{(t+2)h(t —2)) = 2 L{(1 +2) +2) = (i n %).

s2 s

13. (a) t2X[4,00)(1); (b) t2h(t — 4);
() L{t?h(t —4)} = e L{(t+4)*} = e L {t? + 8t + 16}

i6745 3+§+1_6
- s3 52 s /)

15. (a) (t = 4)*X[2,00)(t); (b) (t — 4)*h(t — 2);
() L{t—42h(t—2)} =e2L{((t+2)—4)*} =e 2L{t? — 4t + 4}

(244
= € _ — .
s3  s2 s

17. (a) €'X(1,00)(t); (b) €'R(t — 4);
(c) L{e'h(t —4)} = e "L {e'T} = e 'L {e'}
_ 674(571)

s—1°

19. (a) te'X(4,00)(t); (D) te'h(t — 4);
(c) L{te'h(t —4)} = e S L{(t +4)e'T} = e~ L {te! + 4e'}

—4(s—1 1 4
= e )((3—1)2 +m>-
21. (a) txjo,1)(t) + (2 = O)X[1,00) (1) (b) 4+ (2 = 2t)A(t — 1);
(0) L{t+ (2= 20h(t — 1)} = £ {t} + =L {(2 — 2(t + 1))}

1 2e~°

23. (a) t*x[0,2)(t) + 4x[2, 3)(t) + (7T — t) X3, 00) (£);
(b) 2+ (4 — t2)h(t — 2) + (3 — t)h(t — 3);
(c) L{t?+ (4 —t>)h(t—2)+ (3—t)h(t —3)}
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=L{t*}+eBL{4—(t+2)*} +e3L{3— (t+3)}
2 Y ( 2 4 e™3s

= —¢ L

83 3 52 52
25. (a) Y07 o(t = 1)Xnunt1) (1);
(b) t— Zfzo:l h(t —n);
(© £~ h =) = 40 = X £ ()
=2 Dot eT =27 Sy (e79)"
1 e’

2 s(l—es)
2. (8) 02041 iannsn (05 () ~(t-+1) + 2557 01— 20

22 s s(l—e 29

—3s
%Lﬁ”{ez }:h@—azrl{%}
S S
t—t—3

= h(t =3) ()]s = (t = 3)h(t =3) =

. e~ TS B 3 . 1
e T

0 if0<t<3,
t—3 ift>3.

t—t—m
= h(t —m) (sint)|,,, , = h(t —m)sin(t — )
_]o ifo<t<m, )0 if0<t<m,
B sin(t —m) ift>n | —sint ift> .

e

—TSs 1
33. 00\ pg-mgtd
£ {s2+2s+5} (t=m) L {82+23+5}

:h@—ﬂﬁq{@IT%Iﬁ}

= %ef(t’”) sin2(t — m)h(t — ) =

t—t—m

=h(t—m) (3¢ 'sin2t
t—t—m

0 ifo<t<n,
%e_(t_”) sin2t if t > .

)‘tﬂtfﬂ'

a5 00 {0\ pgog e
. s2+4) s?+4 ) s
=h(t—2) (3sin2t)|, , , = 3h(t—2)sin2(t —2)
_Jo if0<t<?2
© | dsin2(t—2) ift>2.

97
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37. 1 ﬁ =h(t—4) L1 5
5243542 524+ 3542

=ht=4 L7 {s—?—Z_sj-l}

t—t—4

t—t—4
= h(t=4) (e =), = h(t—4) (e —e0-)
if0<t<4,

/—/H

2e—2 (t=4) _ o=(t=4) jf¢ >4

w53 ey

t—=t—>5
t ifo<t<5b
—t—h(t—5)(t =t (t—5)h(t —5) = o
(t=5) Dlises =t = (E =B =5) =3 /=
41. L7 e o b = h(t =)L
{e 52 +65+13} (t=m) {52 + 65+ 13} t—st—m
:h(t—ﬂ') £1{M}
(S + 3)2 + 2?2 t—t—m
B 2(s+3) }
=h(t—m) LT — "
( ™) {(5+3)2+22 t—t—m
-5
t— £—1 -
Fhat-m) {<s+3>2+22}mw

h(
= h(t —m) (2% cos2t — Se P sin2t)|, |, _
h(t — m)e 3= (2cos2(t — m) — 2 sin2(t — 7))
0 ifo<t<m,
e—3(t=m) (2 cos 2t — gsin 2t) if t > .
43. Let b > 0. Since f; and fo are piecewise continuous on [0,00) they
only have finitely many jump discontinuities on [0,b). It follows that

f1+c¢f2 have only finitely many jump on [0, ). Thus f1 + c¢f2 is piecewise
continuous on [0, 00).

SECTION 6.3

1. We write the forcing function as f(t) = 3h(t — 1). Applying the Laplace
transform, partial fractions, and simplifying gives

-3 -3 1
Y(s) = —2 e 5=_2(=_ -,
() s(s+2)e 2 <s 3—1—2)6

Laplace inversion now gives
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3 0 if 0<t<1
= —Sh(t—1 (1— ‘2“‘1)): < '
y=—3h(t=1) e 31— D) i 1<t <00

3. We write the forcing function as f(t) = 2x[2,3) = 2h(t — 2) — 2h(t — 3).
Applying the Laplace transform, partial fractions, and simplifying gives

Y(s) = 8(52— 3) (6_25 - 6_38)

72 1 _1 —2s _ ,—3s
N 3(3—3 s>(e <)

Laplace inversion now gives

g (22 = 1) n(t—2) = (279 = 1) n(t - 3))

y =
0 if 0<t<?2
= 2 (3072 1) if 2<t<3
% (63(’572) — 63(t’3)) if 3<t<

5. We write the forcing function as

f(t) = 12e’x70,1) + 12ex71,)
= 12¢' —12(e' — e)h(t — 1).

Applying the Laplace transform, partial fractions, and simplifying gives

2 12 s 12e 12e
P PR (<s—1><s—4>_s<s+4>)

6 [ S S
T s—a1 s-1 ¢ N\sTiTsmats )

Laplace inversion now gives

y = 6e —4det —¢ (—46t71 + 4D 4 3) h(t —1)
= 6e" —4et +4e'h(t — 1) — e 3h(t — 1) — 3eh(t — 1)

Gett — 4et fo<t<«l1
et —ett=3 _3¢ if 1<t<oo

7. Applying the Laplace transform, partial fractions, and simplifying gives
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—3s

s(s2+9)

_ L s ) s
T 9\s $2+49 '

Laplace inversion now gives

o

if 0<t<3

1
y:§(1—cos3(t—3))h(t—3)={ (1—cos3(t—3)) if 3<t<oo

O~

9. Write the forcing function as f(t) = 6x1,3) = 6h(t — 1) — 6h(t — 3). Now
apply the Laplace transform, partial fractions, and simplify to get
6 (e
s(s+2)(s+3)
1 3 2

_ - v = -5 _ ,—3s
B (s s—|—2+s—|—3>(6 ‘ )

Now we take the inverse Laplace transform and simplify to get

Y(S) _ -5 —35)

e

y = (1 _3em20-1) 4 2e*3<t*1>) h(t — 1)

if 0<t<1
_ 3e=20t=1) | 9p—3(t—1) if 1<t<3
3e=2(t=3) _ 30=2(t=1) _ 2,=3(t=3) 1 2,=3(t-1)  if 3<¢ < 00

- (1 — 3em2(t-3) 4 2e—3<t—3>) h(t — 3)
0
1

11. Apply the Laplace transform, partial fractions, and simplify to get

1 1.
Y(s) = (S+1)2+S(S+1)26 ’

_ 1 + 1 1 +1 —3s
o (s+1)2 (s+1)2 s+1 s ‘

Laplace inversion gives

y = te '+ (—(t —3)e 73 = (t=3) 4 1) h(t —3)
= te '+ (1 —(t— 2)6*“*3)) h(t — 3)

B te—t if 0<t<3
| l4tet—(t—2e Y if 3<t<oo
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13. For the first three minutes, source one adds salt at a rate of 1% -215—?5] =
2%. and after that source two takes over and adds salt at a rate of
51fb1 282 — 10lbs Thyg the rate at which salt is being added is given

ga. min min

by the function

t =
1) 10  if 3<t < o0.

2X10,3) + 10X[3,00)
= 2(1— h(t — 3)) + 10(h(t — 3))
= 24 8h(t—3).

{2 if 0<t<3

The output rate of salt is given by # -2 = # Ibs/min. We are thus
led to the differential equation

Yy + %y(t) =2+8h(t-3), y(0)=0.

We take the Laplace transform of both sides and use partial fractions to
get

2 8e~3s
sG+1/2)  ss+1/2)

4 4,16 16
= _———— e I — .
s s+1/2 s s+1/2

Laplace inversion now gives

Y(s) =

—(t—3)

y(t) = 4—4eT +16h(t—3) —16e =  h(t —3)
B {4—4ez‘ if 0<t<3

—(t—3)

20 — 4e> — 16e— 2 if t> 3.

15. For the first two minutes, source one adds salt at a rate of 1% . 3% =
3%. Thereafter source two takes over for two minutes but the input rate
of salt is 0. Thereafter source on take over again and adds salt to the tank
at a rate of 3%. Thus the rate at which salt is being added is given by

the function

3 if0<t<?2

0 if 2<t<4

3 if4<t< o
3X[0,2) + 3X[4,00)
3(1 — h(t — 2) + h(t — 4)).

f(t)
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102
Yt .3 = 34(t) kg/min. We are thus

The output rate of salt is given by =5 16
led to the differential equation
3
Y+ ToV(t) =3(1 = h(t =2) + h(t = 4)), y(0)=2.
We take the Laplace transform of both sides, simplify, and use partial

fractions to get

2 3
Y — 1— —2s —4s
6 = M T rsan e e
1 1 1
— _O _ L _O _ 70 (6745 _ 6725).
s s+3/10 s s+3/10

Laplace inversion now gives
10 — 8e=3¢/10 (10 - 106*3“*2)/10) h(t —2)

y(t) =
+ (10 - 10e—3<t—4>/10) h(t — 4)
10 — 8¢ —3t/10 ifo<t<?2
= { 10e=3(t=2)/10 _ g,—3t/10 if 2<t<4
if 4<t< oo

10 — 8e=3t/10 1 10e=3(t=2)/10 _ 1()e—3(t=4)/10

SECTION 6.4

Take the Laplace transform, solve for Y (s), and simplify to get Y (s) =
2;2 Laplace inversion then gives
e—?(t—l)h(t _ 1)

0 ifo<t<1
e 20-1) f1<t<oo’

y:

Take the Laplace transform, solve for Y'(s), and simplify to get Y (s) =

2 e—4s . . .
- + <=7 - Laplace inversion then gives

2¢tt 2Vt — 4)
o 2et ifo<t<4
)2t et i<t < oo

Y
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5.

11.

We begin by taking the Laplace transform of each side and simplifying

to get Y(s) = 52—1+4 + 221. Laplace inversion then gives

1 1
vy =5 sin 2t 4+ 3 sin2(t — m)h(t — )

1 1
3 sin 2t + 3 sin(2t) h(t — m)

sm2t o jfo<t<mw
sin2t fr<t<oo’

Apply the Laplace transform, partial fractions, and simplify to get

s+3 N 2e~2s
(s+1)(s+3) (s+1)(s+3)

1 n 1 1 o
- e “%.
s+1 s+1 s+4+3

y = e '+ (e_(t_2) — e_S(t_2)) h(t — 2)

e ifo<t<2
e t4e (72 _ 302 if 2<t <00

Y(s) =

Laplace inversion gives

. Take the Laplace transform, apply partial fractions, and simplify to get

s+1 3
Y = - -F
(s) (5+2)2+(s+2)26
1 1 3

—S

5+22 s+2 (s+22°
Laplace inversion now gives

y = te? —e 2 4+ 3(t—1)e 2Vt - 1)
e e if 0<t<1
- te=2t — =2t 4 3(t _ 1)6*2(%1) if 1<t<oo '

The input rate of salt is 6 + 493 while the output rate is 3%. We thus

have the differential equation y’ + Ty = 6 + 453, y(0) = 0. Take the
Laplace transform, apply partial fractions, and simplify to get
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6 4 s
s(s+1/4) + s+1/4e
24 24 4 .
S syi4 sriac

Y(s) =

Laplace inversion now gives

y = 24—24e it +4e 1Dt — 3)
24 — 24e~ 7t if 0<t<3
24 — e~ it 4 453 if 3<t< oo

13. Clearly, y(0) = 0. The input rate is do+d2+34+0¢ while the output rate is
y. We are thus led to the differential equation ¢y’ +y = Zi:o dor, y(0) =
0. Take the Laplace transform and solve for Y(s) to get

i e—2ks

Y(s) = .

P +1

Laplace inversion gives
3

y = Z e~ 2R p (1 — 2k)
k=0
et if 0<t<?2
et e~ (t=2) if 2<t<4

et 4+ e (t=2) 4 o= (t—4) if 4<t<6
et 4 e (t72) 4 o= (t—4) 4 ¢~ (t-6) if 6<t<

1

Using the formula 1 4+7r + 72+ 49" = 1*{7”: we get
3 3 3
y(6) — Ze—(6—2k) — 26—219 — Z(e—Z)k
k=0 k=0 k=0

1—(e2)"

15. The mass is m = 2. The spring constant k is given by k = 8/1 = 8.
The damping constant is given by p = 8/1 = 8. The external force is
2d4. The initial conditions are y(0) = .1 and y’(0) = .05. The equation
2y" + 8y’ + 8y = 244, y(0) = .1, 3/(0) = .05 models the motion of
the body. Divide by two to get y” + 4y’ + 4y = 4. Apply the Laplace
transform to get
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1 1
Y — —4s
() s+2  (s+2)2 ‘
Laplace inversion now gives
L o —2(t—4)
y = 3¢ + (t—4)e h(t —4)
ke if 0<t<4
B Le 24 (t—4)e 2D if 4<t<oo

105

17. Clearly m =1, 4 =0, and k = 1. The forcing function is ég + 0, + - - - +
Osr = 22:0 0% The differential equation that describes the motion is

5
y// + y = Z(sﬂ,k
k=0

Apply the Laplace transform to get

—nks

5
Yis) = 2824—1'

k=0

Laplace inversion now gives

(sin(t — wk))h(t — 7k)

NS
Il
>~
S]] Mcn
=)

= (=1)*(sint)h(t — 7k)

el
Il
=)

sint if 0<t<m
0 if #<t< 27
sint if 2r<t< 3w

sint if 47 <t < 5w
0 if br <t< o

The graph is given below.

0 if 3r<t<dr’

L JANEVA

™ 21 3 4 51 61
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At t = 0 the hammer imparts a velocity to the system causing harmonic
motion. At ¢ = 7 the hammer strikes in precisely the right way to stop
the motion. Then at t = 27 the process repeats.

19. The value of y(t) at t = ¢ for y given by Exercise 18 is ype™*¢. Thus the
differential equation we need to solve is ¥/ + ay = 0, y(c) = yoe~**+k, on
the interval [c,00). We get the general solution y(t) = be~*'. The initial
condition implies be™*¢ = yge™*° + k. Solving for b gives b = yy + ke®°.
Thus

y= yoe—at + ke—a(t—c),

on the interval [¢, ).

SECTION 6.5

—s

1. F(s) =< and G(s) = 1 — % Thus F(s)G(s) = ﬁ — o1 Par-
tial fractions gives F'(s)G(s) = ( 1 - %) - ( 1 — %) e~ * and Laplace

inversion gives

frglt) = e —1— (e =1)n(t—1)
_ {et—l if0<t<l

et —et™l if 1<t<oo
3. F(s)=e*L{t+1} = (L +1)e* and G(s) = L (e73 — e™*). Thus

F(5)G(s) = (i+i) (et — 5

Laplace inversion now gives

Fig = (“‘24)2 +(t—4)) h(t — 4) — (“‘25)2 +(t—5)) h(t — 5)

0 if 0<t<4
(=4 .

T+(t_4) if 4<t<5b
t—7/2 if 5<t<oo

5. F(s) =1 —L1e72 and G(s) = 1 — Le72. Thus

F(s)G(s) = si2 (1—2e7% e %)
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Laplace inversion now gives

frxg = t—=2(t—2)h(t—2)+ (t —4)h(t — 4)

t if 0<t<?2
= —t+4 if 2<t<4
0 if 4<t< o

sint * (dp + ) = sint +sin(t — m)h(t — )
= sint — (sint)h(t — )
{sint if0<t<m

0 if t<t<oo

9. The unit impulse response function is ((t) = £7! {513} = e3!. The

homogeneous solution is y, = 2e3. Observe that Y,(s) = —1:¢ =

% (813 — %) e~ 25, Tt follows that the particular solution is
yp = Cx(h(t—2))
= L7H{Y(s)}
N _
= 3 (e 1) h(t —2).

and
Y = Ynt+Yp
1
= 2™ 42 (63“*2) - 1) h(t —2)
B 2e3 if 0<t<oo
o2+ R (S 1) if 1<t<oo

11. The unit impulse response function is ((t) = £71 {s}rs} = ¢ 8 The

homogeneous solution is y, = —2e~%". The particular solution is y, =
¢ * X13,5)- Observe that
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Yp(s) = ‘C{yp}
B 1 6735 6755
T s+8 S S
R VAT WA DA
8\s s+38 '
It follows that
Yp = £t {Yp(s)}
=l s gy L (] a8 g —
- 8(1 e )h(t 3) 8(1 e )h(t 5).
and
Y = Ynt+Yp

13. The unit impulse response function is ((t) = £~} {

_9e 8t 4 % (1 - e*8<t*3>) h(t —3) — % (1 -

e*8<t*5>) h(t — 5)

— 98t if 0<t<3
_26—8t + % (1 _ e—S(t—?))) lf 3 S t < 5
98t 4 % (e—s(t—5) _ e—S(t—3)) if 5<t< oo

5219} = % sin 3t. The

homogeneous solution is y, = cos3t. For the particular solution y, we

have

Yp sin 3t * X[0,27)

W= Wl

t
/ sin(3(t — u))x[o,2x) du
0

{ 3 sin(3(t — w)) du
fo% sin(3(t — u)) du

1]1—cosdt
910

w| =

if 0<t<2nm

if 0<t<2nr

if 2r<t< o

if 2n<t<oo

15. Let y be the homogenous solution to ¢(D)y = 0 with the given initial
conditions. Observe that

and thus

skY (s
£ {Dky} - {s"iff((s; —1/an

if k<n
if k=n
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17.

19.

21.

k .
ars"Y (s) it k<n
LiarD"yt = :
{“’“ y} {ans"Y(s) ~1 ifk=n

Therefore £{q(D)y} = q(s)Y (s) — 1 = 0 from which we get

Hence y = ( is the unit impulse response function.

Suppose agl 4+ a1¢' + -+ an_1¢"~Y = 0. Apply the Laplace transform
and use Exercise 16 to get

ap 4+ a1S+ - ap_18" !

q(s)

It follows that the numerator must be identically 0 and hence the coef-
ficients ax = 0, for each k. Thus {C, ..., §("_1)} is linearly indepen-
dent.

=0.

This follows from Exercises 17 and 18.

By the input derivative formula we get
k—1
L {Dky} =Y (s) =" lyg — - —yp1 = "V (s) — Z slyp_1-1,
1=0

for k > 1. It follows that

n k—1
L{a(D)y} = a(s)Y (s) =Y > ars'yr—1-1.
k=1 1=0
Therefore
n k—1 Sl
Y(s) = Z Z Ok =< Yk—1-1-
k=11=0 q(s)
Laplace inversion and Exercise 15 give
n k-1
y() =Y > ar(Wye 1.
k=11=0

Reversing the order of the sum gives
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—

n—

y(t) = Z < z”: akykz1> ¢W

=0 k=Il+1
n—1 /n—I—1
l
= E apri1yn | ¢V,
=0 k=0

where in the second line and second sum we shifted k to k +1 + 1. It
follows that the coefficients are given by

n—Il—1
= E Ak+14+1Yk-
k=0

23. We have ¢(s) = s> —2s+ 1 = (s — 1)? and the unit impulse response

function is ¢ = £71 {(5—11)2 } = tet. To compute ¢y we write

1 -2 1
2 -3

and get ¢ = —2-241-(=3) = —7. For ¢; we consider

and get ¢c; = 1-2 = 2. It follows from Exercise 21 that

y = co+el
= —Tte' +2(e" +tet)
2¢! — 5tel.
25. We have ¢(s) = s34+ 5 = 5(52 + 1). Partial fractions give 5(52;4-1) =
% — wg- Thus ¢ = L7 1{q(s)} =1 — cost. To compute ¢y we write
0

101
1014

and get co =1+ 4 = 5. For ¢; we consider

0101
10 4

and get ¢; = 0. For ¢z we consider
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and get co = 1. It follows from Exercise 21 that

y = coC+el +exl”
= 5(1 —cost) 4+ 0(sint) + 1(cost)

= 5 —4cost.
SECTION 6.6
1.
Z(t - n)2X[n,n+1)(t) = (< t >1)2.
n=0
3.
oo 1 %)
Z n2x[3n,3(n+l))(t) = § Z(3n)2X[3n,3(n+l))(t)
n=0 n=0
1
= 5([t]3)2-
5.
o0 o'} 3
Z(t +1)X[2n2nr1) (H) = Z(t —2n+ 5211))([2”72(”“))(15)
n=0 n=0
3
= <t>3 +§[t]2
7.
1
LU(<t>s)) = oz lid — et =3);

1 1 L
- (3_1 e ,c{et+3}>

1 1 e 3%¢3
l1—e3s\s—1 s—1

1— e—S(s—l) 1

1—e 3 s—1°
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L{f(<t>z)} =

11. Since <t >,=1t — [t], we have [t], = t— <t >,. Hence
L{[tlp} = L{t} - L{<t >y}

_ 11 <1 _ pi”>
sz §2 1 —eps
pe **

s(1—eps)

_r

s(ers —1)

13. On the interval [2n,2n + 2) we have f(t) = e~2" thus

o0

f(t) = Z e72”)([211,211-{-2)(15)-

n=0

We now have
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LLf([t)2)}
15.
LL([tp)}
17. Let F(s) = %

113
) on (e—Zns — e~ (2n+2)s
> e
n=0 5

oo

B B 1— 6—25
E e 2ne 2ns
S

n=0

1— 6725

)

i e*Qn(erl)
n=0
1—e28 s —2(s41) n
—— ()
n=0
1—e 2 1
s 1—e 204D

l—e 2 1

e

= D ) LAXup.nrm }
n=0
oo e~ nps _ e—(n+1)ps
= > f(np) .
n=0

oo

1—e?? —nps
L= 5™ g
n=0

We first write

& —4(s—2

E 1-e ( )e—4ns
s—2

n=0

> e—4ns _ 686_4(n+1)5

nZ:O §—2

Laplace inversion now gives
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L7YF(s)} = Z 24t — dn) — 32T R(E — 4(n + 1))

= i 24 (h(t — 4n) — h(t — 4(n +1)))

o0

= Z 672(4n)X[4n,4(n+1))
n=0

_ e2te—2[t]4 _ e2(t—[t]4) — e2<t>a

19.

cHE) = eyt {5

n=0
S (e A pn)
n=0
= —“tZZ )" e PNV (N+1)p)

N=0n=0
ap N+1

— —at Z 1 — _eap

N+1 a(N+1)p

oo 1— (=
- tz l—l—eap

o Hﬂ# if te[Np,(N+1)p), (N even)
= e
et i te [Np, (N + 1)p), (N odd)

[t]p
J—at 1+ (1) » edltlrtr)
14 e

SECTION 6.7

1. On the interval [0,2) the input rate is 2 -4 = 8 lbs salt per minute.
On the interval [2,4) the input rate is 1 -4 = 4 lbs salt per minute.
The input function f(t) is periodic with period 4. We can thus write
f(t) =4+ 4sws(t). The output rate is M 4. The resulting differential
equation that models this problem is
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4
Taking the Laplace transform and simplifying gives

4 n 4 1
s(s+2)  s(s+2)l4e 2

Y(s) =

Partial fractions gives

410 10
s(s+ 2) s s+ 2
and hence
10 10 10 1 10 1
Y(s)=— — - _ .
(s) s 5—|—% s 14+e 28 s—|—%1—|—e*25
Let
10 10
Yi(s) = — —
1(8) S s—l—%
10 1
Y5 = ——
2(s) s 14+e2s
10 1
Y- = ——
3(5) s+214e 2

Example 6.6.2 and Exercise 6.6.19 are useful for taking the inverse
Laplace transforms of Y5 and Y3. We get

—2t

y1(t) = 10—10e75
yg(t) = 1OSW2(t)

2t

10e7s i [’ if t€[2N,2(N +1)), N even
y3(t) = 1 1+es 4N .
1+es —e% if t € [2N,2(N +1)), N odd

;Zt
= T (1t (i)
1+es

It now follows that

y(t) y1(t) +y2(t) — y3(t)
10e 5"

1+es

10— 10e 5 + 105w (t) — (1 + e%(—l)“/%e%[ﬂ?)

When ¢t = 2N and N is even then
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—29N 6%22N 4 29N
y(2N) =20 — 10e5 2N — 10— (1+6565 )

1+4e5

Continuing y(2N) to all ¢ > 0 gives
=2¢ et 4 24
I(t) =20~ 107" — 10— (1+eses )
+e3

a function whose graph bounds the graph of y from below. In a similar
way for t = 2N, N odd, we get

=24
u(t) =10 — 10e 5t — 102" (1—e%e§t),
1+e3

whose graph bounds the graph of y from above. Now observe that
10 10
© ~1310 and lim u(t) = 10 + —

lim I(t) =20 —
oo *) 1+ e5 t—00 1+ e5

s
s

~ 16.9

Thus the amount of salt fluctuates from 13.10 pounds to 16.90 pounds in
the long term.

3. The input function is 5%~ | d2, = 5do(< t >2). and therefore the dif-
ferential equation that models this system is

1
Y+ Y= 500(< t >2), y(0)=0.

By Proposition 6.6.6 the Laplace transform gives

5) 1

Y(s) = —5——5-
(s) P

By Theorem 6.6.7 Laplace inversion gives

oo N
yit) =5 (Ze_%(t_%)> X[2N,2(N+1))

1 e
= 5e 2tz ST XEN2(v+)
N=0
1t€%[t]2+1 1
— Be~3
¢ e—1

The solution is sandwiched in between a lower and upper curve. The
upper curve, u(t), is obtained by setting ¢ = 2m to be an even integer in
the formula for the solution and then continuing it to all reals. We obtain
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[2m]2+1 _ q z2m+1l _ q
15, €2 e
2m) = He~ 22™ =be 2
u(2m) e p— e p—
Thus .
1, esttl 1 e — e 2t
t) = be 2! =5
u(t) © e—1 e—1

In a similar way, the lower curve, I(t), is obtained by setting ¢ = 2(m+1)~
( slightly less than the even integer 2(m + 1)) and continuing to all reals.
We obtain )
1—e 3t
I(t) =5—

(t) ]

An easy calculation gives

limg oo u(t) = 525 ~7.91 and lim; o0 I(t) = 5;1 ~ 2091,
This means that the salt fluctuation in the tank varies between 2.91 and
7.91 pounds for large values of ¢.

5. Let y(¢) be the number of allegators at time ¢ measured in months. We
assume the Malthusian growth model ¥’ = ry. Thus y(t) = y(0)e™ =
3000e™. To determine the growth rate r we know y(—12) = 2500 (12
months earlier there were 2500 allegators). Thus 2500 = 3000e 12" and
hence r = % In % The elite force of Cajun allegator hunters instanta-
neously remove 40 allegators at the beginning of each month. This can
be modeled by 40(dp+0d1+---) = 405p(< ¢ >1). The mathematical model
is thus

y' =71y —4060(< t >1), y(0) = 3000,

where r = L In % We apply the Laplace transform and use Proposition

12
6.6.6 to get
3000 1 1
Y(s) = —40 .
(5) s—r s—rl—e s
Let
3000
Y =
1(5) s—r
1 1
Ya(s) = 40

s—rl—es

Then Y (s) = Yi(s) + Ya(s). We use Theorem 6.6.7 to get
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y1(t) = 3000e"

00 N
ya(t) = 40 <Z€T(tn)> X[N,N+1)

N=0 \n=0
. > 1— efr(NJrl)
= 40e" Z o XINN+
N=0
et — e—r([t]l—t—i-l)
1—e"

= 40

It follows now that

y(t) = n(t) —ya(t)

rt _ —r([t]li—t+1)
— 3000e™ —405——C

1—e"
To determine the population at the beginning of 5 years = 60 months we
compute

60 T

y(60) = 3000e60T—4061;f
—e s

= 7464.96 — 3988.16
3477

SECTION 6.8

1. Since ¢ = /2 is not an odd multiple of 7 we get

y(t) = 2(2swi(H) = (=) (cos <t >1 —asin <t >1))
—2(cost + asint)),

where a = % Since % = % is irrational the motion is non periodic

3. Since ¢ = 27 is not an odd multiple of © we get

1
yt) = = (2 swa(t) — (=D cosm < t >4 — cosmf)
1
= — _ _1\[t/2h
= (2 swa(t) — cosmt (( 1) + 1)) ,

where we have used the identity cosm < ¢t >2= cosnt. Since %

rational the motion is periodic.

=2 1is
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5. Since ¢ = 7 is an odd multiple of 7 we get y(t) = Z (swy(t) — [t]1 cos it — cost).
Resonance occurs.

7. Since ¢f = 7 is not a multiple of 27 and v = 0 we get

y(t) = sint+sin <t >,
+ (14 (=D ysint,

where we have used sin < t >,= (—1)[//7lt sint. Since % = % is rational
the motion is periodic.

—sinl

9. Since ¢ = 1 is not a multiple of 27 and v = =75 we get
y(t) = sint+ycost+sin <t >; —ycos <t >q,

where v = 1:?()“511. Since % = % is not rational the motion is non

periodic.
11. Since Sc = 27 we get

y(t) = 2(sint) (1 + [t/27]1).

Resonance occurs.

13. First we have
N N
Z (eie)" — Z et
n=0 n=0
N
= Zcosn@ + ¢ sinnf
n=0
N N
= Zcosn@ —i—iZsinn@.
n=0 n=0
On the other hand,
ZN: (ew)" B SN+ q
N et —1
n=0

cos(N +1)0 — 1 +isin(N +1)0
cosf — 1+ isinf

cos(N +1)0 —1+isin(N +1)0 cosf —1—isind
cosf — 1+ isinf "cosf—1—isind

The product of the denominators simplifies to 2 — 2 cosf. The product
of the numerators has a real and imaginary part. Call them R and I,
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respectively. Then
R = (cos((N+1)8)—1)(cosf — 1)+ sin((N + 1)) sin 6
= cos((N +1)0) cos® + sin((N + 1)8) sinf — cos(N + 1) — cos6 + 1

cos(NO) — cos(N) cos + sin(N6) sinf — cosf + 1
= (cos(NO)+1)(1 — cos @) + sin(N6)sin b

and
I = sin((N+1)8)(cosf —1) —sinf(cos((N +1)8) — 1)
= sin((N + 1)8) cos 8 — sin((N + 1)8) 4 sin 6 — cos((N + 1)) sin 6
= sin(N@) — sin(NO) cos § — cos(NO)sin § + sin 0
= sin(N@)(1 — cos ) + sin (1 — cos(NF)).

Equating real and imaginary parts and simplifying now gives

al R
Zcosn@ = —
o 2 — 2cosf

(cos(N6) + 1)(1 — cos @) + sin(IN) sin 6
2—2cosd

1
= 5(1+cosN9+’ysinN9)
and
N
I
ng —
;smn 2 —2cosf
_ sin(NO)(1 — cosf) 4 sin (1 — cos(N6))
N 2 —2cosf
1
= E(sinNH—l-*y(l—cosN@))
15. Let
N 1 N
R(v) = cosnv = = (1 4+ cosNv + ysin Nv) = Re ety
(v) n; 5 vsin Nv) ;
N N
I(v) = Zsmm}:—(sian—l—*y(l—cost)):ImZem”,
n=0 n=0

as in Exercise 13. Now
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N N
Z cos(u +nv) = Re Z eilutnv)
n=0 n=0

, N
— Re (eiu Z ein'u)
n=0

= Re((cosu+isinu)(R(v) + il (v)))
= (cosu)R(v) — (sinu)I(v)

3 (cosu + cosucos Nv + 7 cos usin Nv)
~3 (sinusin Nv + y(sin u — sinu cos Nv))

1
=3 (cosu + cos(u 4+ Nv) + y(—sinu + sin(u + Nv)) .

Similarly,
N N
Z sin(fu +nv) = Im Z ellutnv)
n=0 n=0
N
— Im <eiu Z einv)

n=0
= Im((cosu + isinu)(R(v) + il(v)))
= (sinwu)R(v) + (cosu)I(v)

= — (sinu+ sinucos Nv + ysinusin Nv)

1
B (cosusin Nv + y(cosu — cosu cos Nv))
(sinw + sin(u + Nv) + y(cosu — cos(u + Nv))) .

l\3|>—~—|- N |

SECTION 7.1

1. The ratio test gives ("+1) —1.R=1.

3. The ratio test gives 2n+2172"! —0. R = oo.

nt)! (n+1)
5. The ratio test gives W =n+1—o00 R=0.
7. t is a factor in this series which we factor out to get ¢ Z ):) " Since

t is a polynomial its presence will not change the radlus of convergence.
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o) n,n
Let u = t? in the new powers series to get Eo (7(12)71)7,1 . The ratio test
n=

. (71)714»1(2”)! _ 1 . .
gives | {=fymznr2)! e 0. The radius of convergence in u

and hence t is co.

9. The expression in the denominator can be written 1'3'5”'1(2"“) = 1'2'?’2'_44.'_'.(22:"’1) =
oo 29n4n
2"((21n2+31)‘n) = (22714;1!)! and the given power series is Eo % The ratio
n=
. ((n+1)NH22" 1 (2n41)! _ (n41)%2 1 _
test gives “—C e = Garsengy 3 D= 2
o0
11. Use the geometric series to get ﬁ = %11_15 = %1 Zo (%)n =
n=
o0
- E a'rtz+1
n=0
oo oo
sint 1 (71)71t2n+1 - (71)7115271
13. == =4 > @ntD)! 2. @n+I)l -
n=0 n=0

15. Recall that tan=*t = [ H-% dt. Using the result of Exercise 10 we get

n t2n+1

tan~"t = > [(=1)"*"dt +C = 3 (~1)" 5575 + C. Since tan~' 0 =0
n=0 n=0

it follows that C'= 0. Thus tan~1¢t = > (—1)"’522::

n=0

oo
17. Since tant is odd we can write tant = Y da, 12" and hence sint =
n=0

o0
cost ». d2n+1t2"+1. Writing out a few terms gives t — t3—?; + t5—5, — e =

(1- Z—;i 2—4! — ) (dyt 4 dst3 + d°t5 - - ). Collecting like powers of ¢ gives
the following recursion relations
d =1

Solving these equations gives
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d = 1
1
d3:§2
tn
dr = o=

Thus tant =1+ 143 4+ 245 4 1474 ...

19. e'sint = (1—|—t-|-t2_2!_|_t3 +

3 5
1 (1+1 T - L+ L) =t ()R (FH+
I+ (FF + )t + (5 —

L =t 2 5 — Lt

|)—A!’i| S
_|_

[\

21. The ratio test gives infinite radius of convergence. Let f(¢) be the func-
tion defined by the given power series. Then

f) = Sy e

n=0 !
_ ;(—1)” (% + %) n

> 1 > 1
— ;(—1)" o= 1)!tn + ;(—1)"515"
- ti(—l)’”li—n, + i (_t,)n

n=0 ' n=0 n:

= —tet4e?

23. It is easy to check that the interval of convergence is (—1,1). Let f(¢) be
the function defined by the given power series. Then

/f(t)dt = > (n+1) tn: +c

n+1
n=0

oo
=ty t"+c
n=0

Differentiation gives
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25. It is not hard to see that the interval of convergence is (—1,1). Let f(¢)
be the given power series. A partial fraction decomposition gives

SN S SR S
2n+1)2n—1) 2\2n—-1 2n+1)°

Therefore
1 0 t2n+1 1 o0 t2n+1

H==) — -y ——.
1®) 244m—1 24=2n+1

t2n+1

o) 2n+1 o)
Let fl(t) = ano t2n_1 and fQ(t) = ano InFl- Then fl(t) = —t+
£ 1n 1=t by Exercise 24. Observe that f2(0) =0 and

2
A = > "
n=0

1 11 11

1
T2 21+t 21—t

Integration and the fact that f>(0) = 0 gives fa(t) = % 1In %L, It follows
now that

N =

ft) = s(fi(t) = f2(t))

_ 1<_t+ﬁlnﬂ_lmﬁ>
2 21—t 21—t

—t t2—1_ 1+t

e
5 T Ty

27. The binomial theorem: (a +b)" = Y _, (7)a*b"".

29. The ratio &+ is % if n is even and 2 if n is odd. Thus lim does

Cn n—o00
not exist. The ratio test does not apply. The root test gives that /c, is

1 if n is odd and /2 if n is even. As n approaches co both even and odd
terms approach 1. It follows that the radius of convergence is 1.

Cn41
C

n

31. Suppose f(™)(t) = e%pn(%) where p,, is a polynomial. Then f(*1(t) =
7 (&) Pa(PHn(7) () €T = €T pusa(}), where poya (2) = 22 (pu ()~
p!.(x)). By mathematical induction it follows that f(™)(t) = e Pn (4)
forallmn=1,2,....

33. Since f(t) = 0 for t < 0 clearly 11%1 f™(t) = 0 The previous problems
t—0—

imply that the right hand limits are also zero. Thus f(™) (0) exist and is
0.
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SECTION 7.2

. Let y(t) = > cut™. Then cpyo =
n=0

m. Consider even and odd

X Lon
cases to get co, = (2072), and capy1 = ﬁ Thus y(t) = co >, % +
n=0

c1 Z (;ZT;), = ¢gcosht+ ¢ sinht. (see Example 7.1.7) We observe that

the characterlstic polynomial is s> — 1 = (s — 1)(s + 1) so {e e} is
a fundamental set. But cosht = % and sinht = < ——; the set
{cosht,sinht} is also a fundamental set.

. Let y(t) = Y cut™. Then cppa(n +2)(n + 1) + k?c, = 0 or cppo =
n=0

—%. We consider first the even case.

k¢
n:O 62:—(2&0
ke kic
n:2 C4:—4.32: 4!0
6
’]’L:4 CGZ—kCO

From this it follows that cg, = (—=1)" ’?2 Ik The odd case is similar. We

get copy1 = (—1)"%. The power series expansion becomes
oo
y(t) = Z cnt”
= o Z
k2n+1t2n+1

+ clz (2n+1)!

= ¢pcos kt + ¢1 sin kt.

k2nt2n

o0
5. Let y(t) = > c¢ut™. Then the recurrence relation is
n=0

n+2)(n+1epr2 — (n—2)(n+ 1), =0
or
n— 20
n+2"

Cn4+2 =
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Since there is a difference of two in the indices we consider the even and
odd case. We consider first the even case.

n=20 Coy = —C(Cp
n=2 642%0220
n=4 c6:%04:()

It follows that co,, = 0 for all n = 2,3,.... Thus

Z Cznt2n = ¢o+ Cgt2 =+ 0t4 + .-
n=0
= co(l —17)

and hence yo(t) = 1 — t2. We now consider the odd case.

n=1 c3 = %101
n=23 -1 _ 1
= Cs = 5C3 53C1
3 1
n:5 C7:7C5:—ﬁC1
5 1
n="7 Cg = §C5 —ﬁC1
From this we see that cop41 = Wién—l) Thus
0 St t2n+1
2 1
ZC2n+1t n+ = —Clz—(2n+ 1)(2”— 1)
n=0 n=0

t2n+1

and hence y (t) = — Eo GrinEe—n - By Exercise 7.1.25 we can write y;

t t2-1 1+t
t)=—-— In(—).
nit)=5-—3 n(1—t>

The general solution is

y(t) = co(1—1*) —¢ <%+%ln (1—1))

(See also Exercise 5.5.15.)

as

o0
7. Let y(¢t) = Y ¢,t™. Then the recurrence relation is
n=0
2 n—1

Cn42 = ——Cnt1 — — 77— Cn-
P 2 T k2 (n+ 1)
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For the first several terms we get

1 1
n= ca = 0c1 + 5¢0 = 5700
n=1 032%02—02%00
1 1
n= C4 = 7C3 — 73C2= 300
_ 3 2 3 2
n = Cy = 504—m03 ECQ—ECQ— ECO
In general,
1
Cn = _'007 n—273a
We now get

y(t) = D cat”
n=0

[o ]
= co+ct+ chtn

n=2
[e%S) m
= (61 —Co)t+Co+Cot+Cozm
n=2
= (Cl - Co)t + Coet

co(el —t) + crt.

o]
9. Let y(t) = > c¢ut™. Then the recurrence relation is

n=0
n—2)n—-3
Cnt2 = — Cn
2T 2t 1)
The even case gives:
n=>0 C2 —%Co = —300
n=2 Cq4 =

Hence
oo
Z Cznt2n = ¢p+ 02t2 = Co(l — 3t2).
n=0

The odd case gives
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n=1 3 =—301
n= c; =0
n==>5 cr =0
Hence
Z an+1t2n+l = Clt + CgtB =C (t — g)

n=0
The general solution is

y(t) = co(1 — 3t3) + ¢1 (t — g).

11. Let n be an integer. Then e™* = (e'*)". By Euler’s formula this is

(cosz +isinz)™ = cosnz + isinnz.

13. By de Moivre’s formula sin(n + 1)z is the imaginary part of (cosz +
isinz)"*1. The binomial theorem gives

cos(n+ 1)x +isin(n+ 1)z = (cosz + isinz)" ™!

n+1
n+1 ke k.
= E ( i )cos"Jrl k ik sin® o
k=0

Only the odd powers of i contribute to the imaginary part. It follows that

5]

1 . . ‘
sin(n+ 1)z = Im E (;_:_ 1) cos" T (2IHD) g (204 gin20H o
; J

Jj=0

5]

nf3

(n+1 . .
(—1)/ _+ cos" ™% z(1 — cos® x)’ sin ,
- 27+1

Jj=0
where we use the greatest integer function |z | to denote the greatest inte-

ger less than or equal to x. Now replace t = cos x and using the definition
sin U, (cosz) = sin(n + 1)z to get Uy (t) = Z]LE(J (—=1)7 (;jill)t"_%(l —
t2)7. Tt follows that sin nx is a product of sin z and a polynomial in cos z.

15. We have
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sin((n+2)z) =sin((n+1)z+z) = sin((n+1)z) cosz+ cos((n+1)x) sinx
and hence

(sinx)Up41(cosz) = (sinz)Uy,(x) cos x + (sinx) Ty 41 (cos ).

Now divide by sinx and let ¢ = cosx. We get

Ups1(t) = tUn (t) + Topa (£).

17. By using the sum and difference formula it is easy to verify the following
trigonometric identity:

2sinacosb = sin(a + b) + sin(a — b).
Let a = (n+ 1)z and b = 2. Then

2coszsin(n + 1)x = sin((n + 2)x) + sin(nz)
and hence

2(cosz)Up(cosz)/sinz = Upy1(cosz)/sinx + U,_1(cosx)/ sinx.
Now cancel out sinz and let ¢t = cosx.

19. By using the sum and difference formula it is easy to verify the following
trigonometric identity:

2sinasinb = cos(b — a) — cos(a + b).
Let a = x and b = nx. Then

2sinzsinnz = cos((n — 1)z) — cos((n + 1)z)
and hence

2U,,—1(cosx) = Ty—1(cosx) — Tp41(cos x).
Now let t = cosz, replace n by n + 1, and divide by 2.

SECTION 7.3

1. The function # is analytic except at t = 1 and t = —1. The function
1
T+t

is analytic except at ¢t = —1. It follows that t = 1 and ¢t = —1 are

the only singular points. Observe that (¢t — 1) (ﬁ) = =L

177 Is analytic
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11.

13.

1 Solutions

at 1 and (t —1)? (%th) is analytic at ¢t = 1. It follows that 1 is a regular

singular point. Also observe that (¢ + 1) (#) = ﬁ is analytic at —1

and (t +1)? (#t) = (1 +1) is analytic at ¢t = —1. It follows that —1 is

a regular singular point. Thus 1 and —1 are regular points.

. Both 3¢(1 —t) and % are analytic. There are no singular points and

hence no regular points.

. We first write it in standard form: y” + 1y’ + 4y = 0. While the coeffi-

cient of y is analytic the coefficient of 3 is % is analytic except at ¢ = 0.

It follows that ¢t = 0 is a singular point. Observe that ¢ (%) =1—-tis
analytic and 4t2 is too. It follows that ¢t = 0 is a regular point.

The indicial equation is q(s) = s(s—1) +2s = s> +s = s(s+1) The expo-
nents of singularity are 0 and —1. Theorem 2 guarantees one Frobenius
solution but there could be two.

. In standard form the equation is t>y” +¢(1 —t)y’ + Aty = 0. The indicial

equation is q(s) = s(s — 1) + s = s The exponent of singularity is 0
with multiplicity 2. Theorem 2 guarantees that there is one Frobenius
solution. The other has a logarithmic term.

> —1)"¢2" > 1) . . o .
yi(t) = > ((2;)%), =13 ( (12)n)t! = 1sint. y, is done similarly.
n=0 n=0
Let y(t) = t~2v(t). Then y'(t) = —2t3v(t) + t~20'(t) and y"(t) =

6t~ (t) — 4t=30'(t) + t~ 20" (t). From which we get

t2y" = 6t 2v(t) — 41/ (t) + 0" (t)
Sty’ = —10t 2u(t) + 5t~/ (t)
4y = 4t ().

Adding these terms and remembering that we are assuming the y is a
solution we get
0=t"1'(t) +0"(t).

From this we get 11’}—,: = =1 Integrating we get Inv/(t) = —Int and hence
v/'(t) = 1. Integrating again gives v(t) = Int. It follows that y(¢) = ¢t~ Int
is a second independent solution. The indicial polynomial is ¢(s) = s(s —
1)+5s+4 = (s—2)2 Case 3 of the theorem guarantees that one solution
is a Frobenius solution and the other has logarithmic term.

In each case below we let y = "> >° | ¢,t™ where we assume ¢ # 0 and

r is the exponent of singularity.
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15.

17.

Indicial polynomial: p(s) = s(s — 3); exponents of singularity s = 0 and
s =3.
n=20 co(r)(r—3)=0
n=1c(r—2)(r+1)=0
n>1c,n+r)(n+r—3)=—cp_1

r=3:
nodd ¢,=0
y(t) = 3co Yo (71)771((22:::32))!#7““ = 3co(sint — tcost).

r=0: One is lead to the equation Ocg = 0 and we can take c3 = 0. Thus

nodd ¢,=0

-1 7n+12 —1
n=~2m czm:coi( )" (2m—1)

2m)!

0o —1)ym L (9m—1)¢2™ .
y(t) = co Zmzo( D (2(:1)! e co(tsint 4 cost).

General Solution: y = ¢;(sint — tcost) + ca(tsint + cost).

Indicial polynomial: p(s) = (s — 1)?; exponents of singularity s = 1,
multiplicity 2. There is one Frobenius solution.

r=1:Let y(t) =Y " cut""t. Then
n>1 n2¢, —nc,—1 =0.

This is easy to solve. We get ¢, = %CO and hence
— 1
_ S oantl t
y(t) = co ZO n!t = cote’.
o

Logarithmic Solution: Let y;(#) = te'. The second independent solu-
tion is necessarily of the form

o0
y(t) =y () Int+ Y cnt"t
n=0
Substitution into the differential equation leads to
o0
t2e! + Z(n%n —nep, )" = 0.
n=1

We write out the power series for t2e? and add corresponding coefficients
to get
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19.

1 Solutions
1
(n—1)"

The following list is a straightforward verification:

n2cn —NCp—1+

n=1 ¢ =-1

=3 (1+1)
n=3 03:%(14—%4—%)
n=4 0422—!1(1—1-%-0—%—!—%).

General Solution:

o0
Spt™
= cyte ttlt—t§ n :
Y cle+02(en Z "

Indicial polynomial: p(s) = (s —2)(s+1); exponents of singularity s = 2
and s = —1.

n=0c(r—2)(r+1)=0
n>1c,(n+r—2)n+r+1)=—-ch1(n+r—1)

(1) + 1)
(n+3)! 7’
y(t) = 600 ZZO:O W = 600 (% + ﬁ)

¢
r=-1: The recursion relation becomes c¢,(n — 3)(n) = ¢,—1(n — 2) = 0.
Thus

cn = 6co n>1

n=1 c=-3
n=2 c =0
n=3 06320

We can take c; = 0 and then ¢, = 0 for all n > 2. We now have y(t) =
-1 ty _ co (2-t
ot (1-5) =2 (5)-

General Solution: y = ¢; 2 + ¢, (t+2)e”"

t
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21. Indicial polynomial: p(s) = s(s — 2); exponents of singularity » = 0 and
r=2.
n=0 cor(r—2)=0
n>1 cp(n+r)n+r—2)=—cp_1(n+r—23)
n—1

r=2: The recursion relation becomes ¢, = ~ gy Cn-1- For n =1 we

see that ¢; = 0 and hence ¢,, = 0 for all n > 1. It follows that y(t) = cot>
is a solution.

r=0: The recursion relation becomes ¢, (n)(n — 2) = —c,_1(n — 3) = 0.
Thus

n=1 —c=-

n=2 0cy=—-2¢c¢ =<«

The n = 2 case implies an inconsistency in the recursion relation since
co # 0. Since y1(t) = t? is a Frobenius solution a second independent
solution can be written in the form

y(t) =" Int + »_ cnt".

n=0

Substitution leads to
3+ 262 + (—c1 — 2c0)t + Z(cn(n)(n —2)+cp1(n=3)t" =0
n=2

and the following relations:

n=1 —c1 —2¢cH =0

n=2 2—c =0

n=3 14+3c3=0

n>4 nn—2)c, +(n—3)cp—3=0.

We now have ¢ = —1, ¢1 = 2, ¢3 = —1/3. ¢2 can be arbitrary so we choose
co =0, and ¢, = %, for n > 4. A straightforward calculation
gives
2(—1)"
o = 21"
nl(n —2)
A second independent solution is
3 X 2(—1)m"
t) =t*Int —14+2t— — —— .
y2(t) n +( + 3+n_4n!(n_2)>

General Solution: y = c1t? + cays(t).
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23.

25.

1 Solutions

Indicial polynomial: p(s) = (s +1); exponents of singularity r = +i. Let
r = i (the case r = —i gives equivalent results). The recursion relation
that arises from y(t) = Y oo gent™ s cp((n+ i) +1) —cpo1((n — 2+
i) 4+ 1) = 0 and hence

(n—2)(n—2+2)
n(n + 2i)

Cp = Cn—1-

A straightforward calculation gives the first few terms as follows:

_ _1-2i
n=1 cl—ﬁco
n=2 c=0
n=23 63:0

and hence ¢, = 0 for all n > 2. Therefore y(t) = co(t* + (%) ).

Since t > 0 we can write t' = e = coslnt+isinlnt, by Euler’s formula.
Separating the real and imaginary parts we get two independent solutions

ilnt

yi1(t) = —3coslnt —4sinlnt + 5tcoslnt
y2(t) = —3sinlnt+4coslnt + 5tsinlnt.

Indicial polynomial: p(s) = (s®+1); exponents of singularity r = +i. Let
r = i (the case r = —i gives equivalent results). The recursion relation
that arises from y(t) = > 7 ¢, t" 1 is

n=1 C1 = (o
n>2 cp((n+i)+1)+cp1(-2n—2i+1)+c,2=0

A straightforward calculation gives the first few terms as follows:

n=1 ¢ =cp

n=2 czz%co
n=3 c3= 30
n=4 c4 = 3.

An easy induction argument gives

Cp = —'CO.
n.

We now get
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o0
n=0

s tn-‘ri
= CO
n!
n=0
= Cotzet .

Since t > 0 we can write t' = ¢'"* = cosInt+isinlnt, by Euler’s formula.

Now separating the real and imaginary parts we get two independent
solutions
y1(t) = e'coslnt and yo(t) = e’'sinInt.

SECTION 7.4

1. Let - -
y(t) _ t2k+1 Z Cntn _ Z Cntn+2k+1
n=0 n=0
Then
ty'(t) = > (n+2k)(n+2k+ 1)ct" "
n=0

2ity'(t) = > 2i(n+ 2k)c, 1"
n=1

—2ky'(t) = Y —2k(n+2k+ 1)c,t"

n=0

—2iky(t)

00
Z —2ikcn,1tn+2k
n=1

By assumption the sum of the series is zero. The n = 0 terms in the first
and third sum give (2k)(2k+1)co—2k(2k+1)co = 0. Thus we can start all
the series at n = 1. For n > 1 we get n(n+2k+1)c, +2i(n+ k)cp—1 =0
which implies

_ —2i(n+k)
" on(n+ 2k + 1)cn_1.

Since ¢g # 0 it follows from this recursion relation that ¢, # 0 for all
n > 0. Therefore the Frobenius solution y(t) is not a polynomial.

3. Since differentiation respects the real and imaginary parts of complex-
valued functions we have
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Bi(t) = Re(bg(t)e™)
By (t) = Re((b(t)e™)") = Re((b,(t) +_ibk(t))6”)
By(t) Re((by(t) + 2iby,(t) — bi(t))e™).

It follows now from Proposition 4 that

0 = *Bj(t) — 2ktB}(t) + (t* + 2k) By (t)

= t?*Re(bg(t)e™)” — 2kt Re(by(t)e™) + (t* + 2k) Re(bg(t)e™)
Re((£2 (b}l (t) + 2ib},(t) — br(t)) — 2kt (b}, (t) + ibg(t)) + (12 + 2k)br(t))e™)

= Re (b} (t) + 2t(it — k)b, (t) — 2k (it — 1)by(t))e™) .

Apply Lemma 6 to get

2L (t) + 2t (it — k)b)(t) — 2k (it — 1)bx(t) =

S
5. Let g(t) = ,671 {m} Then

Llta®} =~ € o0b =4 ()
(5 Db 2ke(s - )

(52— 1)
 2ks®—(sP—1)  (2k—1)(s*—1)+2k
ERCE G (52— 1)kt1

2k -1 2k

(82 _ l)k + (82 _ 1)k+1 :

Divide by 2k, solve for the second term in the last line, and apply the
inverse Laplace transform to get

g{ﬁ} = o0 - l)ﬁl{ﬁ}
- 5 e - S o)

By the definition of Cy and Dy we get

1 2k —1
TR CH0) = g Des(0) e

Simplifying gives the result.
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7.

11.

Multiply the equation in Exercise 5 by ¢ and use the formula in Exercise
4 to get Dyy1(t) = t2Dy_1 — (2k — 1) Dy, (t). Now shift k and the formula
follows.

. By the Input Derivative Principle we have

S CCLO) = g (L0} - Cul0)
CE
- ﬁﬁ{])k(f)}

Laplace inversion gives the first formula. In a similar way the Input
Derivative Principle gives

S LADLOY = g (sLADk()} — Di(0))

2

- (s2 — 1)k+1
s2—1 1

T (2R + (s2 — 1)kH1

1 1
= (52— 1)F + (52— 1)kH1

1 1

sl (OO} + e LG}

Simplifying and Laplace inversion gives the result.

Since s2 — 1 = (s — 1)(s + 1) it follows that W is an s — 1-chain
and an s + 1-chain, each of length k£ + 1. Hence there are constants «,,
and [, so that

k+1

1 Qo ﬂn
(sZ— 1R+ Z (s—1)" T G+

n=1
Now replace s by —s. The left-hand side does not change so we get

1
(s2 — 1)k+1

A (077} ﬁn
(s—17 " (—s+ 1)

(M7 11
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It follows now by the uniqueness of partial fraction decompositions that
Bn = (—1)"ay.
Laplace inversion now gives

o e T

k+1 tn—l . tn—l
= n n 1"
;O‘ mom© T e

k+1 t’n,fl (
= O{niet — Qp, &
nZ:1 (n—1)! (n—1)!

Let f(t) = Zf;ll an%. Then

£t {W} = f(t)e' — f(~t)e "

Up to the constant 2¥k!, the polynomial f(t) is c(t). A similar argument
gives the second part of the problem.

13. 1. It is easy to see from the definition of ¢; and Exercise 5 that cg

satisfies
chra(t) = 2ex(t) — (26 + B)ep s (1)

and therefore c;12(0) = —(2k+3)ck+1(0). An easy check gives ¢1 (t) =

£=1 and thus ¢;(0) = L. Recursively we get

a0 =3 3(0) = —5ex(0) = =32
c2(0) = =3c1(0) = 2 c4(0) = Tes(0) = T:53

Inductively, we get

CL (O)

2. From Exercise 4 it is easy to see that di(t) = tcx—1 and so d.(0) =

_1)k-1 _
Ckfl(o) = ( 1)2k(k(3(1k)! 1))!-

15. Merely put the previous calculations together.
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SECTION 8.1

01

11 1 -3 2 -8
1. B+C=|-1 7|, B=C=]| 5 —-1|, and2B—3C= |13 —6
0 3 -2 1 -5 1
3 4 3 -1 7
3. A(B—l—C):AB—i—AC:[ }, (B+C)A=13 1 25
1 13
5 0 12
(6 4 —1 -8
5. AB=1|0 2 -8 2
2 -1 9 -5
(8 0
4 =5
7. CA= 3 14
10 11
8 9 —48
9. ABC=| 4 0 —48
-2 3 40
0 0 1
15. [3 =5 -1
0 0 5
17. (a) Choose, for example, A = [8 (1)} and B = [(1) 8}
(b) (A+ B)? = A%2 +2AB + B? precisely when AB = BA.
n_ |1 n
0.5 1]
01 Vo . 1 ¢
21. (a) [1 O} A= [U } the two rows of A are switched. (b) [
1

23.

V1 + cv2
v

139

4~

; to the first row is added ¢ times the second row while the

second row is unchanged, (c) to the second row is added ¢ times the first
row while the first row is unchanged. (d) the first row is multiplied by a
while the second row is unchanged, (e) the second row is multiplied by a

while the first row is unchanged.
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1 Solutions

F(01)F(62)
[cosh@; sinh6;] [coshfs sinh 6y
|sinh#; cosh6;| |sinhfy coshbs

[cosh 6, cosh s + sinh 67 sinh #s  cosh 65 sinh 05 + sinh 6; cosh 6
| sinh 6 cosh 63 + cosh 6 sinh ) sinh 67 sinh 62 + cosh 6 cosh 02

_cosh(t?l + 92) sinh(91 + 92)
_Sinh(91 + 92) COSh(ol + 92)

F(91 + 6‘2),

We used the addition formulas for sinh and cosh in the second line.

SECTION 8.2

1 4 3 . 2 1 4 312
11 -1 4 11 —-14
1. A= 5 0 1'% Z,b_ 1,and[A|b]— o0 111l
01 -1 6 01 —-1|6
] — 3 + 4zq4 + 3z5 = 2
3 5$1 + 3{E2 — 3173 — X4 — 3{E5 = 1
' 3r1 — 2x9 + 8x3 + 4xy4 — 3x5 = 3
—8r1 + 2x9 + 2z4 + x5 = —4
5. RREF
010 3
7. m2(1/2)(A) =10 0 1 3
0 00O
1010 3
9. ta(—3)(A) =10 1 3 4 1
00 0O00O0
100 —-11 -8
11. |10 1 0 -4 -2
001 9 6
1 2 00 3
0010 2
13. 00O01O0
00000
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15.

OO OO
OO o~ O
OO O N

17. (0 O
x

19. |y| =
z

21. x] _a[_ﬂ,aeR

LY 1
[ 14/3
23. |y| = 1/3
E —2/3
0] 1
25. |3 +a{0],aeR
4] 0
27. 0
[—1
29. 0
| 1
[—34
—40
31. 39
|1
1 1
33. The equation =a 1| +b|—1]| has solution a =2 and b = 3. By
2 0

is a solution.

5

-1

4

5
Proposition 7 | —1
4
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—7/2 -3/2
35. If x; is the solution set for Ax = b; then x; = 7/2|, xo = 3/2],
—3/2 ~1/2
7
and x3 = |—6].
3
SECTION 8.3
4 -1
1. [_3 J
3. not invertible
5. not invertible
(-6 5 13
7. 5 —4 -—11
-1 1 3
[—20 39/2 —22 13
0 7 -9/2 5 -3
" |-22 29/2 -17 10
| 9 —6 7T —4
0 0 -1 1
1 0 0 0
1. 0 1 1 -1
-1 -1 0 1
4 —1112 5
_A-1h _
13. x = 4 b_{_?) J [3]_[_3}
—2 4 4 -2 16
15. x=A"b=4 -2 -1 4| | 1| =L |11
—6 2 2 2 18
—58 39 —44 26 1 19
14 -9 10 —6 0 —4
_oAq-1p 1 _
1T x=A"b=31_ 4 99 —34 20| |-1| = |15
18 —12 14 -8 2 —6

19. (Af)~1 = (A1)t
21. F(0)~' = F(—0)
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SECTION 8.4

© N o w

13.

15.

17.

19.

21.

23.

25.

. 10

1
—21
2
0
s—3 1
52—és+8|: 1 S—3:| s=2,4
(s —1)? 3 s—1
ﬁ 0 (8—1)2 0] s=1
0 3(s—1) (s—1)
s2+s 4s+4 0
e |5 — 1 2+ 0| s=—1,%2i
s—4 4s+4 s2+4
no inverse
[ 4 -4 4
1
s|-1 3 -1
-5 -1 3
[2 —98 9502
110 3 —297
10 0 6
55  —95 44 171
1[50 =85 40 —150
15170 —125 59 —216
65 —115 52 —198
2 1 1 2
det A =1, det A(1,b) = det 3 4 =5, and det A(2,b) = det 3 3| =

—3. It follows that ;1 =5/1 =5 and 22 = —3/1 = -3
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-2 0 -2
27. det A = —10, det A(1,b) = det | 1 -2 0| = —16, det A(2,b) =
2 2 -1
1 -2 -2 1 0 =2
det [2 1 0| =—11, and det A(3,b) =det |2 —2 1| = —18. It
1 2 -1 1 2 2

follows that 21 = 16/10, z2 = 11/10, and x5 = 18/10.

SECTION 8.5

1. The characteristic polynomial is c4(s) = (s — 1)(s — 2). The eigenvalues

are thus s = 1,2. The eigenspaces are F, = Span{ {(1)]} and Fy =

w1}

3. The characteristic polynomial is c4(s) = s —2s+1 = (s — 1)2. The only
eigenvalue is s = 1. The eigenspace is £ = Span{ [_ ﬂ }

5. The characteristic polynomial is c4(s) = s +2s—3 = (s+3)(s—1). The
eigenvalues are thus s = —3, 1. The eigenspaces are E_3 = Span { [_ﬂ }

w5, = sy { [}

7. The characteristic polynomial is ca(s) = s? +2s + 10 = (s + 1)? + 3%

The eigenvalues are thus s = —1 £ 3¢. The eigenspaces are E_143; =
7T+ _ 7T—1
Span{[ 10 ]} and F_j_3; = Span{[ 10 ]}
1
9. The eigenvalues are s = —2,3. E_5 = Span 21,111 3, B3 =
0 1
1
Span of ;,
-1
0
11. The eigenvalues are s = 0,2,3. Ey = NS(A) = Span{ (2| 3, Fy =
1
2 0

Span 2| », E3 = Span 1
1 1
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13. We write ca(s) = (s — 2)((s — 2)? + 1) to see that the eigenvalues are
2 —4+ 3
s = 2,2+ 4. F; = Span 3| ¢, Fayi = Span 442 , By =
1 5
—4 -3
Span 4 -2
5

SECTION 9.2

1. nonlinear, because of the presence of the product y1ys.

3. We may write the system in the form

, _|sint 0
Y= 1 cost|Y

It is linear and homogeneous, but not constant coefficient.

5. We write the system in the form

<

Il
OO N
_ o oo
O OO
O = = O

<

It is linear, constant coefficient, and homogeneous.

7. First note that y1(0) = 0 and y2(0) = 1, so the initial condition is satis-

fied. Then 0 . o
e Y@ | et —3e
Yy (t) - |:yé (t):| - |:2et _ 3e3t:|

5 2o = [
[26;_—336;‘5] '
5 —2

Thus y'(t) = {4 _J y(t), as required.

while

9. First note that y1(0) = 1 and y2(0) = 3, so the initial condition is satis-
fied. Then
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while

2 —1] [ et +tet n et . 2¢ t 4+ 2tet — 3e7t — tet + €t
3 —2| [3e~t +tet etl T |3e7t + 3te! — 6et — 2tet + €t
. —e bt tet + €t
T | =3et4tet + et

, 2 -1 et .
Thus y'(t) = 3 _9 y(t) + o] 3 required.

In solutions, 11-15, y = {Zﬂ} = [2{]
Y2 Y
11. Let y1 = y and yo = y'. Then y3 = ¢' = yo and yp = y" = =5y’ — 6y +
et = [Zl , this can be expressed in vector
2

= —6y; — bya + €%, Letting y =

AT E|

13. Let y3 = y and yo = ¢'. Then y} = v/ = yo and 9, = ¢’ = k*y +

zl , this can be expressed in
2

form as

Acoswt = k?y; + Acoswt. Letting y =

vector form as
;10 1 0 10
Yy = [k2 O} U [Acoswt]  y(0)= [O] :

15. Let y; =y and yo =y'. Then yj =y' =yo and yh = ¢" = -2y — Ly =

—t%yl — %yg. Letting y = [Zl} , this can be expressed in vector form as
2

—3e73 1
/ —
a0 L]
1
19. y'(t) = | 2t
t_l
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2 -2 2 —2
1| e —e ec+e -2
23. 1 {2 —e2—e2 2 _e2
(4 8
25. 112 16}
r1 1
s 52
o ]
|s5 s—2

w
[\
Y

=

2—s s—3
53 s2—6s+13

!
29. % m (5"'31)2‘|

1 -1
31. 2 {_1 J

33. [1 2t 3¢%

2s 2 1 n 1 -1 n 1
s2—1 s2—-1| |s+1 s—1 s+1 s-—1
35. We have 9 9s |7 | —1 . 1 1 . 1 . Laplace
s2—1 s2-1 s+1 s—1 s4+1 s-—-1
. . ' et et et — et
inversion gives
& el — et ot 4t
SECTION 9.3
1.
1 o0
A=l
1 0
2 _
2=
1 o0
3 _
AT = 0 —8]
n |1 0
= Gyl

It follows now that
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A? A3
et = I+At+§t2+§t3+m

= [l S ralo camlrorals cole

et 0
o e

3.
T
A2 (1) (1):21
a3 = (1) (1):2,4

It follows now that A™ = I if n is even and A™ = A if n is odd. Thus

A? A3
At 42 43
e = I+ At+ 2!15 +3!t +
t2 3t to

2 3o
= I(1+—+—+--->+A<t+—+—+--->

21 4! 3! 5!
= Jcosht+ Asinht

_ |cosht sinht
~ |sinht cosht|”

5.
(1 1
A=l
s ]2 2
AT = 2 2
4 4
3 _
A= a g
n _2n71 2n71
A = _271—1 2n—1

It follows now that
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A?
et = I+At+7t2+
10 tt
-y
The (1,1) entry is

> 2n—1tn

1+
n=1

The (1,2) entry is

AB

el ST

3!
1

2!

2t2 2t2
2t 92| T

3

2n71tn
2n—1tn

149

[+

Since the (1,1) entry and the (2,2) entry are equal and the (1,2) entry
and the (2,1) entry are equal we have

oAt _

110t
7 t3¢€

1,12 1
7 t3¢€ 2
1
2

+
+
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010
A= |-100
| 00 2
[— 00
A? = 0 -1 0
| 0 04
[0 -1 0
A = |1 00
0 08
[1 0 0
A* = |01 0
0 0 16
01 0
A5 = |-1 0 0
| 0 0 32

The (1,1) entry and the (2,2) entry of e are equal and are

2 t4
cost=1— 21 + il
The (1,2) entry and the (2, 1) entry of e have opposite signs. The (2, 1)
entry is
, N &
Slnt:t—g—Fa— .
The (3,3) entry is
2t)*
e =1+2t+ (23 +

All other entries are zero thus

cost sint O
e = | —sint cost 0
0 0 e

9. The characteristic polynomial is ca(s) = s(s — 3) and sI — A =

5s—2 -1
s g (sI — A)~t = [*¢28 681 A bartial fraction
2 s—2 5(533) 5(55713)
decomposition of each entry gives

2 1 1 1

L5 3 1 3 73

(SI—A)I——[2 T [2 5l -
s15 5] 57315 3
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Thus et = L71(s] — A)~! =

11. The characteristic polynomial is c4(s) = (s—3)(s+1)+5 = s> —2s+2 =

(s—1)24+1and s — A = [S I 3 8151]. Thus the resolvent matrix is
s+]2. 52
(sI — A1 = l(si)l 1 (551_)3“1 which we write as
G121 (=121
e =1 0
_ s—1)2+1 s—1)2+4+1 s—1)2+1
(SI—A)lzl -1 s—1 ‘|+[ 0 —2 ‘|
G121 (s-1)241 G=1)241
Therefore
At | €' cost + 2etsint 5etsin t
c = —elsint el cost — 2e’sint
s =1 -1
13. The characteristic polynomial is ca(s) = s and sI—A = [0 s —1].
0 0 s
i 1ttt
Thus (sI—A)"'= |0 1 Llande=|g 1 ¢
o o 1 00 1
1 01 . Mt | cost sint
15. Let M = {_1 0} and N = 2. Then by Example 6 e™" = _gint cost|”

Thus
At eMt 0
€ = 0 eNt
cost sint O

= —sint cost O
0 0 e

SECTION 9.4

1. The characteristic matrix and characteristic polynomial are

s—2 1

SI—A—|: 1 s] and ca(s) =s*—2s+1=(s—1)2
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The characteristic polynomial has root 1 with multiplicity 2.

The standard basis of &, is B., = {e', te'}. It follows that
et = Me' + Ntet.
Differentiating we obtain

Aett = Me! + N(et + teh)
= (M + N)e' + Nte'.

Now, evaluate each equation at ¢ = 0 to obtain:

I = M
A = M+N.
from which we get
M =1
N A-1T
Thus,
et = Iet + (A —I)te!

o, [o-1,,
_ [O 1}e+[1 _1]156
B et +tet  —tet
o tet et — tet

gives
At = My + Most.

Differentiating and evaluating at ¢ = 0 gives

M, = 1T
My = A.
Thus
AL 1+2¢t t .
-4t 1-2t

1 Solutions

. ca(s) =(s—2)(s+2)+4= s> Thus B., = {1, t} and Fulmer’s method

. The characteristic polynomial is c4(s) = s> —2s+2 = (s — 1) + 1. The

standard basis of &, is B., = {e' cost, e’ sint}. It follows that
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et = Met cost + Net sint.

Differentiating and evaluating at ¢t = 0 gives

I = M

A = M+N.
from which we get

M =1

N A-1T

Thus,

et = Telcost+ (A —I)etsint

{et cost 0 ] [3et sint —10e’sin t]

0 et cost etsint —3elsint
~ [etcost+ 3etsint —10e’ sint
- etsint et cost — 3etsint

7. The characteristic polynomial is ca(s) = s? — 4 and has roots —2, 2. The
standard basis of &, is B, = {€*', e7?'}. It follows that

et = Me? + Ne™2t,
Differentiating and evaluating at ¢t = 0 gives

I = M+N
A = 2M —2N.

from which we get
- Yaton
4
1
= ——(A-2I).

Thus,
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At (A+20)e* — %(A —20)e %

—7 1] 5 1[-11 11]
{—7 11]e a7 7€

==

—Te%t 4 Te=2  11e%t —Te 2t

RNy

|:—762t +1le 2t 11e2t — 11621

9. The characteristic polynomial is c4(s) = s? — 4s + 13 = ((s — 2)% + 3?).
The standard basis of &, is Be, = {€* cos3t, e*! sin3t}. It follows that

et = Me?t cos 3t + Net sin 3t.

Differentiating and evaluating at ¢t = 0 gives

I = M
A = 2M +3N.

from which we get

M =1

N = %(A—ﬂ)_[

8 13
-5 =8|

Thus,
1
et = TIe?*cos3t + §<A — Ie*sin 3t

B [e% cos 3t 0 } [ 8e'sin3t 13e* sin 31

0 €% cos 3t —5e?*sin3t —8e?! sin 3t
_ [e?' cos3t + 8e* sin 3t 13e? sin 3¢
N —5e?t sin 3t €% cos 3t — 8e?' sin 3t

11. The characteristic polynomial is c4(s) = (s + 2)2. The standard basis is
Be, = {e7%, te"?}. It follows that

et = Me 2 + Nte 2t
Differentiating and evaluating at ¢ = 0 gives

I = M
A = —-2M+ N.

from which we get
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M =1
-1 1
v ava[1)
Thus,
et = Tem2 4 (A4 20)te™
e 2 0 —te 2 te2t
- { 0 e2t} + [—tem tth}
67215 _ t672t t672t
- |: _t672t 67215 +t82t:|
13. In this case B., = {1, e, e7t}. It follows that
e = M 4+ Ne' + Pet.
Differentiating and evaluating at ¢t = 0 gives

M+N+P =1

N-P = A
N+4+P = A?
from which we get
M = 1-4A7
A2+ A
N = 2;
A —A
P = 5

Thus,

et = M+ Net + Pe?

2 0 -1 000 -1 01
= 100 O0|/+]|0 1 0|let+| 0 0 0]e?
2 0 -1 000 -2 0 2

[2—¢t 0 —1+4et
= 0 et 0
_2 — 27t 0 —1+42et

15. The standard basis of &, is

Be, = {et, et cost, e sint}.
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17.

Therefore
et = Me! + Netsint + Pe cost.
Differentiating twice and simplifying we get the system:

e = Me! + Netsint + Pet cost

AeM = Me' + (N — P)e'sint + (N + P)e cost
A%eA = Met — 2Petsint + 2Net cost.

Now evaluating at ¢t = 0 gives

I = M+P
A= M+N+P
A2 = M +2N

and solving gives

N = A-1
M = A*-2A+2]
p —A*+24-1.
1 1 1
2 2
A straightforward calculation gives A2 = |2 0 —2| and
1 1
3 L3
1 1 L 1
0 -5 0 5 0 3 5 0
N=|1 0 -1, M=|0 0 0f, and P= 01
1 1 1 1
0 5 0 5 0 5 -5 0
Hence,
1 1 1 1 1
» 2 09 0 =5 O0p 2 0 —3
e = |00 0fle" 4+ |1 0 —1fe'sint+ 01 0
1 1 1 1 1
2 0 3 0 5 0 -3 0 3

et +etcost —etsint el —elcost
2¢tsint  2elcost —2elsint

el —etcost efsint et +efcost

In this case B, = {ef, cos2t, sin 2t}. It follows that
et = Me' + N cos2t + Psin2t.

Differentiating twice and evaluating at ¢t = 0 gives

1 Solutions

= O N

et cost
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from which we get

Thus,

At

-1 0 1
A2+ 41
M = ;_ = 000
-2 0 2]
2 0 -1
1 — A2
N = 5 = 01 0
2 0 —1]
0 -1 0
— A2 A—4T
P = #: 2 0 —1
0 -1 0
Met + N cos2t + Psin 2t
—1 0 1 2 0 -1 0 -1
00 0|let+1]0 1 Of cos2t+ (2 0
_—2 0 2 2 0 -1 0 —1
[ —et +2cos2t —sin2t ef — cos2t
2sin 2t cos 2t —sin 2t
| —2¢’ +2cos2t —sin2t 2e’ —cos2t

0
-1
0

19. In this case B., = {cost, sint, tcost, tsint}. It follows that

e = M cost + Nsint + Ptcost + Qtsint.

Differentiating three times and evaluating at ¢ = 0 gives

M =1

N+P = A
—M4+2Q = A?
—-N-3P = A3

from which we get

sin 2t

157



158

21.

1 Solutions

1000
0100
M= I'= 0010
0 0 01
[0 1 0 0]
N A(A* +31) 10 00
B 2 o 00 01
| 00 -1 0]
-1 0 1 0]
p_ —A(A2+I)_ 0 -1 01
N 2 T |-1 010
| 0 -1 0 1}
0 -1 0 1]
Q- A2+Ii 1 0 -1 0
N 2 0 -1 01
11 0 -1 0f
Thus,
e = Mcost+ Nsint + Ptcost + Qtsint
cost —tcost sint —tsint tcost tsint
—sint +tsint cost —tcost —tsint tcost
—tcost —tsint cost +tcost sint+tsint
tsint —tcost —sint —tsint cost+ tcost

The standard basis is B., = {e", te"} so that eA? = Me™ + Nte™.
Fulmer’s method gives

I = M
A = rM+N

which are easily solved to give
M=I and N=(A-rl).

Hence,
e =Te" + (A—rte™ = (I 4 (A —rI)t)e™. (1)
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SECTION 9.5

—t

0
wo- [ AL -]

3. The characteristic polynomial is c4(s) = (s —2)?. Thus B., = {e?,te*'}
and

1. Tt is easy to see that et = |° 3(3 . Thus
e

eAt = Myt + Mste?.

Differentiating and evaluating at ¢t = 0 gives

I = M
A = 2M; + Ms.
At €2t t€2t
and hence M; = I and My = A — 21. We thus get e”* = 0 62,5} and

(t) B e2t tth _1 B _e2t + 2t€2t
Y - 0 e2t 21 — 26215
5. The characteristic polynomial is ca(s) = s> —1 = (s + 1)(s — 1). Thus

B., ={et et} and
et = Mye™t + Mye'.

Differentiating and evaluating at ¢t = 0 gives

I = M+ M,
A —M; + M.

and hence My = $(—A + 1) and My = 1(A + I). We thus get e =
1| 3et—e™t —ettet
2 3¢t —3e7t —et +3et and

(t)*l et —e™t  —et4e ] [1] [ et
YW =35 13et —3e=t —et +3et| [3] T [3et|"

7. The characteristic polynomial is ca(s) = (s — 1)2. Thus B., = {e!,te’}
and
eAt = Myet + Motet.

Differentiating and evaluating at ¢t = 0 gives
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I = M
A = M+ M,.
A et +2tet —4tet
and hence My = I and My = A—I. We thus get et = tet et — otet
et + otet —4tet] [ 1 et — 2tet
and y(t) = tet et —atet| |1 et — tet

9. The characteristic polynomial is ca(s) = (s + 1)(s? + 4). Thus B., =
{e™t cos2t,sin 2t} and

eAt = Mie ™t + My cos 2t + Mssin 2t.
Differentiating and evaluating at ¢ = 0 gives

I = M+ M,
A = —M;+2M;
A% = M, —4AM,.

and hence
1 000
M, = g(A2+4I)= 000
-1 01
1 100
My = —g(AQ—I): 010
100
) 020
My = —(A?+5A+41)=|-1/2 0 0
10 020

cos2t 2sin2t 0
We thus get et = —5sin2t  cos2t 0| and hence
—et+cos2t 2sin2t et

cos2t 2sin2t 0] [2 2 cos 2t + 2sin 2t
y(t) = —Lgin2t cos2t 0 1| = cos 2t — sin 2t
2

2
—e t+cos2t 2sin2t et 2cos 2t + 2sin 2t

11. A straightforward calculation gives

At _—t 10 ¢ . 01
et =e cos2t{0 1 +e “sin2t 1 0

It follows that
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ypt) = eAtyo

_ ¢ 10 . 01 1
= (e cos2t[0 1 + e 'sin2t 10 0

e tcos2t
—e~tsin2t|

and

y, = e xf(t)

. _t 10 —t . 01 5
= (e COSQt[O 1]—|—e sin 2t {_1 O]>*[O}

= e fcos2tx1 > +e tsin2t x 1 0
0 -5

—t —t 1 ¢ ¢ . 0

= (1 —e"cos2t+ 2e "sin2t) 0 + (2 —2e " cos2t — e " sin 2t) 1

1 —e tcos2t + 2e tsin 2t
—2+2e tcos2t+ e tsin2t|

It now follows that

y(t) Yn tYp

B 1+ 2e tsin2t
T | —2+42etcos2t

13. A straightforward calculation gives
At _ —t 1 O —t . O —2
e’ =e cos2t[0 1 + e "sin2¢ 12 0
It follows that

yn(t) = ey,

= (e_tCOSQt [(1) ﬂ +e fsin2t L/g _SD [_ﬂ

et cos 2t [_ﬂ + e tsin 2t [ﬂ

and
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y, = e« f(t)
= (etcos 2t [(1) (1)] +e tsin2t L/g _(2)}> * ﬁ]
= ((e'cos2t)*1) [ﬂ + ((e "sin2t) % 1) [_g}

(1 —e " cos2t 4 2e~"sin 2t) [ﬂ + = (2—2¢ " cos2t — e sin2t) [_3}

1
5

(S

2etsin 2t
T |l1—e"tcos2t|”

It now follows that

y(t) Y+ Yy

2 2 2¢ tsin 2t
I b
= e "cos2t [_1] + e "sin2t [J + [1 e tcos 24
2e ' cos 2t + det sin 2t
1+ e tsin2t — 2e tcos2t|"

15. A straightforward calculation gives

Ati t 1 O t 4 2
c e [o 1 T s —a

It follows that

y,(t) = ey,

and

It now follows that
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yt) = y,tvy,
2tet 1
- [et — 4tet} (e —t=1) {—2}

_ 2tet +et —t—1
T | —Atet — et +2t+2

17. A straightforward calculation gives

100 -1 11 00 0
eAMt=et|—-1 1 1|+t | 0 0 O +e2| 1 0 -1
100 -1 11 -1 0 1
Clearly
0
yu(t) = |0
0
while
y,(t) = e« f(t)

1 -1 | —2]
1 -1 [ 0]
= (¥ —et) | —1| + (e —tet —e) | O] +te?| 2
1 —1 -2,
tet
= |2te?t — 2t 4 ¢t
—2te?t + tet
It now follows that
tet
y(t) = y,+y, = |2te* -+
—2te?t + tet

19. y; and yo are related to each other as follows:
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21.

1 Solutions

i = 2-2y;
/

Yo = 2y1—y2
with initial conditions y1(0) = 4 and y3(0) = 0. Let A = [_g _(1)],
ft) = B], and y(0) = B] We need to solve the system ¢y’ = Ay + f,

y(0) = [3] . It is easy to check that

at |00 1 0] o
e—[2le—|—_ e .

It follows that

and

It now follows that

y(t) = yn(t) +y,(0)

- [

The concentration of salt in Tank 2 is 1/2 if ya(t) = 1. We thus solve
ya(t) = 1, ie. 2 +4e t —6e 2 = 1 for t. Let = e~*. Then —622 +
4z + 1 = 0. The quadratic formula gives z = %. Since = > 0 we
have et = 2 = HT@. Solving for ¢ we get t = —1In (%T@) = 0.1504
minutes or 9.02 seconds.

y1 and yo are related to each other as follows:

Yy = 2+ 3y2— 5y
Yo = 2+45y1—Ty2
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with initial conditions y1(0) = 0 and y2(0) = 0. Let A = [_g _E;],
ft) = B], and y(0) = {8] We need to solve the system ¢y’ = Ay + f,

y(0) = {8] . It is easy to check that

© T8 |53 s |-5 5|

Clearly y;, = 0 while

y(t) =y,(t) = = f(t)

Thus

1— 672t

1— e—2t

~—
|

yi(t
yal(t

~—
|

SECTION 9.6

1. The characteristic polynomial is c4(s) = s2—1 = (s+1)(s—1). There are
two distinct eigenvalues, Ay = —1 and Ay = 1. An easy calculation give

that v; = {_ﬂ is an eigenvector with eigenvalue —1 and vy = {_ﬂ is an

eigenvector with eigenvalue 1. Let P = [_1 _ﬂ Then J = P~1AP =
_(1) 1l Since there is a distinct positive and negative real eigenvalue

the critical point is a saddle.

3. The characteristic polynomial is c4(s) = s> +4s+5 = (s+2)?+1 and has

complex roots —2+1. A calculation gives an eigenvector v = 3= g} for
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11.

13.

1 Solutions

—2 — 1. Let v; = [_g] and vy = [_(ﬂ Let P = [vl vz} = [_g _(1)],
-2

Then J = P71AP = { 1

:;] and the origin is a stable spiral node.

. In this case A is of type J3 with positive eigenvalue 2. The origin is an

unstable star node.

The characteristic polynomial is c4(s) = s2—6s+8 = (s—2)(s—4). There
are two distinct eigenvalues, Ay = 2 and A\ = 4. An easy calculation gives

that v; = [_ﬂ is an eigenvector with eigenvalue 2 and vy = [ ] is an
1 3

-1 -1

-1

eigenvector with eigenvalue 4. Let P = [ ] . Then J = P71AP =

[(2) ﬂ . Since both eigenvalues are positive the origin is an unstable node.

. The characteristic polynomial is ca(s) = s —2s+5 = (s — 1) + 22,

-1+

So 14 2i are the eigenvalues. An eigenvector for 1 — 2i is [ 4

]. Let

1 -2
40 2 1

star node.

P = {_1 1}. Then J = P71AP = [ } The origin is an unstable

Let (z,y) be a point on the P(L). Suppose P~ = Z b]. Let {ﬂ =

p-1 [ﬂ — [Z;C—i—’——sggﬂ . Then (u,v) is on L and so

0 = Du+FEv+F
= D(ax+by) + E(cx +dy) + F

= (Da+ Ec)x+ (Db+ Ed)y + F
D'z +E'y+ F,

where (D', E') = (Da+ Ec, Db+ Ed) = (D, E)P~!. It follows that (z,y)
satisfies the equation of a line. A line goes through the origin if and only
if FF = 0. If the equation for L has F' = 0 then the above calculation
shows the equation for P(L) does too.

Let C be the graph of a power curve in the (u,v) plane and P(C) the
transform of C. Let (z,y) be a point of P(C) and (u,v) the point on
C such that P m = ﬂ If Pt = [“ b} then m = [‘w N by].
v Y c d v cx + dy
Replace u and v in the equation Au + Bv = (Cu + Dv)? by ax + by
and cx + dy, respectively. We then get (Aa + Be)x 4+ (Ab + Bd)y =
((Ca+ Dc)x + (Cb+ Dd)y)P. Thus P(C) is the graph of a power curve.
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15. The characteristic polynomial takes the form ca(s) = s?—(tr A)s+det A.
Let A = tr A. Since det A = 0 we have ca(s) = s> — s = s(s — \). Now
consider two cases:

A # 0: In this case A has two distinct eigenvalues, 0 and A. Let v; be an
eigenvector with eigenvalue 0 and vy an eigenvector with eigenvalue
A. Then v; and vy are linearly independent. If P = [vl Vs ] then P
is invertible and

0 0

AP = [Av; Avy [ =[0 M | = [0 “2}[0 A

] = PJy.
Now multiply both sides on the left by P~! to get that P~1AP = J;.

A = 0: In this case ca(s) = s%. Since A is not zero there must be a vector v,
that is not an eigenvector. Let vo = Awv;. Then vs is an eigenvector
with eigenvalue 0 since, by the Cayley-Hamilton theorem,

AUQ = szl =0.

Now let P = [vl Vo } Then

AP= Al v ] =[Aoy Avs]=[es 0] =0 vz]ﬁ’ Oo]zp[(l) 00].

Now multiply both sides on the left by P~! to get that P~1AP = J,.

C2
each point on the v-axis is an equilibrium point. Now assume ¢; # 0.
Zl} is u(t) = ¢ and v(t) = teg + co.
2
The path (u(t),v(t)) = (c1,¢2) +t(0,¢1), t € R, is a vertical line that
passes through the initial condition (c1, o) and points upward if ¢; > 0
and downward it ¢; < 0. The phase portrait is given below:

17. If ¢ = [cl} then the equation Joc = 0 implies ¢; = 0. It follows that

The solution to w’ = Jow, w(0) =
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19.

21.

23. y

1 Solutions

It is not difficult to see that e = I + tA. Let v; be an eigenvector. By
Lemma 9.5.9, e**v; = v1. So each eigenvector is an equilibrium point.
Let v be a vector that is not an eigenvector. By the Cayley-Hamilton
theorem A%v = 0 so Av is an eigenvector. Furthermore ety = v + tAv.
The trajectory is a line parallel to Av going through v.

Assume ¢; > 0 and thus z > 0 (the case where ¢; < 0 is similar). We

1 1
have y' = ne/er L bofollows that lim y = —oo if A > 0 and
A Ao z—0+
lim y = o0 if A <0.
r—0t

"= i and the result follows.
T

SECTION 9.7

1.

3.

—e7t 2e% —2 1] [e7t €%
Observe that &' (t) = [—et 8€2t:| = [_4 3] [et 4e2t] = A(t)P(t).

Also, det B(t) = 4e' — €' = 3e! # 0. Thus P(t) is a fundamental matrix.
The general solution can be written in the form y(t) = P(t)c, where

c= [21] is a constant vector. The initial condition implies y(0) = @(0)c
2

1 {1 1| || | ec1+ee

-2 o 1 4 (6] o Cl—|—402 ’

Solving for ¢ we get ¢; = 2 and ¢o = —1. It follows that
ot o2t 9¢—t _ o2t
y(t) = P(t)c =2 Lt} - {462:5} = |:2et - 4€2t:| .

The standard fundamental matrix at ¢t = 0 is
et e [1 1 -1
et 4e?| |1 4
et % 4 -1
et 4e?| | -1 1

{ Je—t — 2  _e=t 4 621

'S
—~
~
~—
|
by
—~
~
~—
by
—~
=)
=
L
I

Wl = Wl

de7t —4e?t —emt 4 4e?t

Observe that
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[ tcos(t2/2) —ts1n(t2/2)}
tsin(t?/2) 2— cos(t?/2) 2
_ [ } [smt /2) cosgt /2)]
b(1).

cos(t?/2) —sin(t?/2)

Also, det &(t) = —sin2(t2/2) — cos?(t?/2) = —1 # 0. Thus H(t) is a
fundamental matrix. The general solution can be written in the form
y(t) = D(t)c, where ¢ = [zl
2

implies y(0) = &(0)c or

ol = ol 2] = 2]

Thus ¢; = 0 and ¢y = 1. It follows that

is a constant vector. The initial condition

yio) = @ =0 [ [ ool [ ooty

The standard fundamental matrix at ¢ = 0 is

wr-somar - [ o
~ [sin(¢2/2)  cos(t?/2)] [0 1
~ |cos(t?/2) —sin(t?/2)] [1 O]
[ cos(t?/2) sin(t?/2)]
T [—sin(#?/2) cos(t?/2)]”

5. Observe that

@’(t) _ —cost+tsint —sint —tcost
sint +tcost —cost+tsint

~[1/t 1] [~tcost —tsint
- [l |

-1 1/t tsint —tcost
= A(t)D(t).

Also, det ®(t) = t? cos? t + t?sin®t = t? # 0. Thus H(t) is a fundamental
matrix. The general solution can be written in the form y(t) = ®(¢)c,

where ¢ = cl is a constant vector. The initial condition implies y(7) =
2

B(r)e or RNt
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Thus ¢; = 1/7 and ¢3 = —1/7. It follows that

1 {—tcost 1 | —tsint t |—cost+sint
y(t) = P(t)e = — [ tsint} T {—tcost] T { cost—i—sint} ‘

The standard fundamental matrix at ¢ = 7 is

-1
_ —tcost —tsint| |m O
P(t) = d(t)P(r) ! = [ tsint —tcost} {0 W]

1 [—t cost —tsin t}

p tsint —tcost|’

7. Observe that
di’(t) _ [O te]

[m 1/4 R

Also, det B(t) = e' +te' —e! = te! # 0. Thus H(t) is a fundamental matrix.
The general solution can be written in the form y(t) = P(t)c, where

c= [21] is a constant vector. The initial condition implies y(0) = @(0)c
2

B

Thus ¢; = —3 and ¢3 = 1/e. It follows that

y(t) = B(1)c = —3 [_ﬂ +é [(t N UZZ] = [(t N UZZj N 2} :

The standard fundamental matrix at ¢t = 0 is

W(t) = B()P(0) " = [_1 (t_l)ZZ] [—1 O]_l

3y
t
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- 1
9. Let A = (1) ; . Then A(t) = ;A. We first compute e4*. The charac-

teristic polynomial, c4(s) is

S 1

ca(s) =det (sI — A) = det [_1 s_9

]252—25—1—1:(5—1)2.

It follows that B., = {e*, ue*}. Using Fulmer’s method we have e?* =
e“M; + ue* M,. Differentiating and evaluating at u = 0 gives

I = M,
A = M+ Ms.
10 -1 -1
It follows that M1 =1 = 01 and Mo =A—1= 1 1 . Thus
Au |10 w =1 =1
e =e [0 1 —+ ue 1 E

Since Int is an antiderivative of % and In1 = 0 we have by Proposition
12

o(t) = M [(1) ﬂ + (Int)e! {_1 _ﬂ

t—tlnt —tInt
tlnt t+tlnt|’

is the standard fundamental matrix for y'(¢t) = A(t)y(¢) at ¢ = 1. The
homogeneous solution is given by

yu(t) = ¥(t)y(1)
_|t—=tlnt —tlnt| |2| |2t —2tInt
- tlnt t+tlnt| |0 2tInt| "’

The particular solution is given by

t
w(o) [ ) ) du

1
_ |t—tlnt —tint tl 1+Inu Inu 1d
N tlnt t+tlnt| J; w | —lnu 1—-Inu| |1 b

_ {t—tlnt —tlnt]lnt{_l] du

Y,(t)

tint t+tint 1

tint [_ﬂ
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It follows that

2t — 2tInt tint . 2t —tint
—tInt ’

y(t) = yn(t) +y,(t) = [ 9%t Int| T tint

3 5
11. Let A= {_1 _3
of A'is ca(s) = 52 — 4 = (s — 2)(s +2). Hence Be, = {¢*,e™'} and

} . Then A(t) = sec(t)A. The characteristic polynomial

e = Mye*™ + Mye 2.

Differentiating and evaluating at u = 0 give the equations I = M; + M>
and A = 2M; — 2M5. It follows that

1[5 5 1[-1 -5
Ml_Z{—l —1} and MQ_Z[ 1 5]

and

e = — _ _
—€2u+€ 2u _e2u+5e 2u

Au 1 |: 5e2u _ 67271 562u _ 562u:|
4

Ifo(t) = fot secudu = In|sect + tant| then ¥(t) = eA®) If X = (sect +
tant)? then X! = (sect — tant)? and

1 1
5X —— bBX —-5—
1 X X
) = ] 1 1
X+ = —-X+5=
+X + X
_ [sec?t + 3secttant + tan? ¢ 5secttant
o —secttant sec?t — 3secttant + tan®t| "

From this it follows that the homogeneous solution is

sec?t + 3secttant + tan?t¢ 5secttant| |2
yn(t)

—secttant sec?t— 3secttant + tan®t| |1

_ [2sec?t+1lsecttant + 2tan’t
o sec?t — 5secttant 4 tant

Since the forcing function f is identically zero the particular solution is
zero. Hence y = y,,.

13. Let v1(t) and v2(t) denote the volume of brine in Tank 1 and Tank
2, respectively. Then v1(t) = va(t) = 2 — t. The following differential
equations describe the system
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W) = —=2 () £ n(t) +6

2—-t 2—-t
1 3

ya(t) = 5 —¥1(t) = 5 92(t) +0,

with initial conditions y;(0) = 0 and y2(0) = 20. In matrix form, y'(t) =
A(t)y(t) + f(t), we have

o= [=Y 8=t ro=[] =[]

-1
Let a(t) = 7= Then we can write A(t) = a(t)A where

3 -1
-3
The characteristic polynomial is c4(s) = s2 — 65 +8 = (s — 2)(s — 4).

We now have B, = {e*, e} It follows that e = Mye?" + Mye'".
Differentiating and setting u = 0 we get

I = M+ M,
A = 2M; +4M>.

An easy calculation gives

1 11 1
1 1 1 -1
and
Pl I Ty
SR FE | R ul R |
—1

Let b(t) = f(f a(u) du = fot

mental matrix is

du = In % Then the standard funda-
—u

(2 —1)? {1 1] N (2—1t)* [_1 —1]

!p(t) = eAulu:b(t) = 8 1 1 32 1 1 .

For the homogeneous solution we have
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8 {1 1] 28} + 8 ;ét)4 [—-1 __i} [28]

For the particular solution straightforward calculations give

2 2-u?+4 (2-u)?-4
4{@—uﬁ—4 @—uﬁ+4’

0

and

Finally, we get

b0 = w0 [ @ s
_ ((2;“2 B HJF@;—;)LIH _ﬂ>/0t!l7_1(u)f(u)du

e e

We now add the homogeneous and particular solutions together and sim-
plify to get

y(t) = y,+vy,

- (2-1) B] F2—t)? H + (2;“4 {‘g} .

We now get
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n(t) = 42-t)+2-t)2-=(2-1t)*

=~ w >~ w

pa(t) = 22-0+@2-1)°+ 7217

The amount of fluid in each tank after 1 minute is v1(1) = v2(1) = 1.
Thus the concentrations (grams/L) of salt in Tank 1 is y1(1)/1 and in
Tank 2 is y2(1)/1, i.e.
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