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Append”ifc A
COMPLEX NUMBERS

A.1 Complex Numbers

The history of numbers starts in the stone age, about 30,000 years ago. TLong before hu-
mans could read or write, a caveman who counted the deer he killed by a series of notches
carved into a bone, introduced mankind to the natural counting numbers 1,2,3,4,--.
‘To be able to describe quantities and their relations among each other, the first human
civilizations expanded the number system first to rational numbers (integers and frac-
tions) and then to real numbers (rational numbers and irrational numbers like v/2 and
7}. Finally in 1545, to be able to tackle more advanced computational problems in his
book about The Great Art (Ars Uaona), Girolamo Cardano brought the complex num-
bers {real numbers and “imaginary” numbers like /—1) into existence. Unfortunately,
450 years later and after changing the whole of mathematics forever, complex numbers
are still greeted by the general public with suspicion and cnnﬁ_qmn

The problem is that most folks still think of numbers as entities that are used solely
to describe quantities. This works reasonably well if one restricts the number universe
to the real numbers, but fails miserably if one considers Lomplox munberq ne one will
ever catch +/—1 pounds ot crawfish, not even a ma.thema,t;cmn

In.- ma_thematics, numbers are'uf;ed to do mmputations and it is a matter of fact
that nowadays-alrnost all serious computations in mathematics require somewhere along
“the line-the e vt targest possible number system given to mankind: the complex
nuribers. Although complex numbers are useless to desctibe %he weight of vour catch of
the day, they are 1na1tspénsa_bie. if, for example, you want to make a sound mathematical

EfF i

prediction about the beha\qor of any blolocr"u,al chemical: or physical system in time.
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Slnce the ancient G1 eeks, the algebmx concept of a real number is assomafed with
the geome’rrzc concept of a pomt oh a line (the number line), and thewstwo coneepts are
still used as synonyms. Similarly, (omplex numbem can be givena srmplc c8ncrete, ge-
ometric interpretation as points in a plane; L.e:, any complex number z ‘corresponds to
4 point, in the plane {the-rmimber plane) and can be represented in Cartesmn (Oordmate’s
as z = (z,y), where z and y are real numbers.

We know from Calculus II that every point z = {a,y) in the plane can be described
~also in polar coordinates as z = [, 7], where r = [z] = /u? + y? denotes the radius
(length, modulus, norm, absoiute value, distance to the origin) of the point
2, and where o = arg{z) is the angle (in radians) between the positive z-axis and the
line joining 0 and z. Note that o can he determined by the equation tan @ = y/z, when
z # 0, and knowledge of which quadrant the number z 1s n. Be aware that « is not
unique; adding 27k to « gives another angle (argument) for z.

We identify the real numbers with the x-axis in the plane; ie., a real number z is
identified with the point {x,0) of the plane, and vice versa. Thus, the real numbers are
a subset of the complex numbers. As poiuted out above, in mathematics the defining
property of numbers is not that they describe quantities, but that we can do computa-
tions with them: ie., we should be able to add and multiply them. The addition and
multiplication of points in the plane are defined in such a way that

(a) they coincide on the x-axis (real numbers) with the usual addition and multipli-
cation of real numbers, and

(b) -all rules of algebra for real numbers (points on the x-axis) extend to complex
numbers (points in the plane).” :

Addition: we add complex numbers coordinate-wise in Cartesian coordinates. That
is, if z; = (z1,11) and 2y = (23,32}, then '

7+ zp= (T, 1) + (T2, 42) = (31 + T2, 1 + Y2}

\/Iultxph{'atlon' we multiply compk,\ numbers in polar coerdinates by adding their -

ngles o and multiplying their radii r-{in polar (001d1nates) That is, if z; = [rxl 7"1]

and 23 = [0y, Ty], then

2129 (&= {(},’1 —+ Cfg,f‘ng:[.

The definttion of multiplik:at.ié}n' of poteds Tn the plane is an extension of the famifiar
' rule for multiplication of signed real numbers: plus times plus is plus, minus-#imes minus
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is plus, plus times minus is minus. To see this, we identify the real n_u'mbefs 2 and —3
with the complex numbers z; = {2,0) = [0, 2] and 23 = (3,0} = [, 3]. Then

whlch is nof at all surpnsmrf sizce we all knou that 2- -3 = —§, and (—3)* = 9. What
this illustrates is part (a); namely, the arithmetic-of real numbers is the same whether
considered in their own right, or considered as a subset of the complex mimberb

To demonstrate the multiplication of complex numbers (points in the plane) Whlch are
not real (not on the x-axis), consider z == (1,1) = [7, V2 and z5 = (1, —1) = [—~Z,v/2].

Then
S V2. VRl =[0,2]= (2.0) = 2.

If one defines multiplication of points in the plane as above, the point i := (0,1) =
[£:1] has the property that

1) =[r, 1] = (~1,0) = -1.

Thus, one defines

V=1:=i=(0,1).

Notice that 4/—1 is not on the z-axis and is therefore not a real number. Employing 4
and identifying the point (1,0) with the real number 1, one can now write a complex
number z = (z,y} in the standard algebraic form z = = + iy: i.e.,

z=(2,y) = (2,0) + (0,y) = 2(1,0) + (0, 1)y = z + iy.

Iz = (z,y) = x + iy, then the real number z := Rez is called the real part and the
real number y 1= Im 2z is called the imaginary part of z (which is one of the worst
musnorers in the history of science since there is absolutely nothing imaginary about
y)- |

The ba51c rules of algebra carry over to complex numbers if we simply remember the
1denr1tv # =-—1.1In pdltlclllrll if 2y =z +iyy and 2= 15 + 2’;1; then

:z = (11 + iy )1

i) = X1ty -+ iYL F T3y + i
= (7112*J1y)+ i

Hoyyp + Totn) = (D172 = i, T +T2th).

This aigebfa;c.‘rule is often easier to use-than the geometrié definition .'ij‘imﬂfi'plicatian |
given above. For example, if z; = (1,1) = 1+ and 2z, = (1,~1) = 1 — 4, then the
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computation zyzp = (1 + {1 —1%) = 1 —142 = 2 is more familiar than the one given above
using the polar coordinates of z; and z. ' ' B

‘The formula for division of two complex numbers (points in the plane) is less obvious;.
and is.most conveniently expressed in terms of the complex conjuaate z = (z, wy)
z — iy of a complex number z = {r.y) = & +ty. Note that z ¥ w = Z -+, 2 = 20,
and _ _

z
and Imz = —

PP =2+t =2z, Rez=

Using complex conjugates, we divide complex numbers using the formula

Z

w _ 2
N |2

B
@

w

As an example we divide the complex number z = (1,1) = I4+i by w = (3, —1) = 3—1.
Then '

z_l+i_ (149341 244 1 2
w  3—i (3-9B+d 10 5 3

[o2 R N

. 1
ﬁ:(g;

Let z = (z,y) be a complex number with polar coordinates z = {a,r]. Then [z] =
r =22 +y? Rez =z = lzjc z =y = |z|sine, and tana = y/x. Thus we
obtain the following exponential form of the complex number z; ie.,

= o, 7] = (2, ) = [2}(cos o, sin @) = |z|(cos o + isin o) = |2]e™,

where the last identity requires Euler’s formula relating the complex exponential and
trigonometric functions. The most natural means of understanding the validity of Euler’s
formula is via the power series expansions of €, sinz, and cos z, which were studied in
calculus. Recall that the exponential function e has a power series expansion

o
.

n=>0
which converges for all z € R. This infinite series makes perfectly good sense if z is
replaced by eny complex number z, and morecver, it can be shown that the resulting
~ series converges for all z € C. Thus we define the comp}ex exponentlai function by

means of the convergent series
. T

n== 0 . .
It can be shewn that tliis funttlou e* satisfies the expected- functlonal equation, that is

8;’_1+zz = ¢%lp®2
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: Smce el = 1 it follows that — = 7%, Eui_er’s formula- will be obtained by ta.king z =it

el
imrPefinition 1; e, '
& oo (’!‘.t)n = 2 .é.& 4 Itﬁ
e’ = Z oy —1+n‘—§—33—!+gfz§—---
n=0 .
tZ t-l 13 t5 ] o
= (1—_‘“*Jrjf—"')—f—-é(f.gl———f-_-"'):CQSf+iSiﬂf:(CQSf,Sint),

where one has to know that the two series following the last equahtv are the Taylor
series expansions for cost and sin#, respectively. Thus we have proved Euler’s formula,
which we formally state as a theorem.

| Theorem Al (Euler s Formula). For azl! t € R we have

7 —cosf%—z‘ﬂnt—(cosf smt)*[sf 1]. 0

Example A.1.2. Write z = —1 +{ in exponential form.

» Solution. Note that z — (=1,1) so that = = —1 y=1,7= |zl = /(-1 + 12 =
\/5 and tana = y/x = 1. Thus, o = ~: or a =+ But z is in the 2nd quadrant, so
o = <. Thus the polar coordinates of z are [ir f 2] and the exponential form of z is

\/_ é : >

Example A.1.3. Write z = 2¢% in Cartesian form.

p Solution.

e
i
<
-.i_ :
f
o
~

|

Using the exponential form of a complex number gives yet another description of the

_ multiplication of two complex nmnbexs Suppose that z 2 aﬂd o are given in exponential .

form, that is, z; = r1e’® and zo = 7 )em’ Then '

212 = (rls V) (ryet®?) = (?‘17"2)6{@1':"”‘2),

 Of course, this is nothing more than a reiteration of the definition of multiplication of
complex numbers; ie., if z; = {ay. 7] and 2 = [an, 7., then 220 = [ + (g, T179]. '
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' Example A.1.4. Find z = \/ That is, find all z su(h that 22 =g, |

Ly
2

§ ution Obserxe that ¢ = (0, 1) = [7/2 1] = ‘Hence, if z = €'% then 2% =
E : .o

V2 = ¢ == 50 that

’:T+. 7 \/544\/5 \/7_2_(14_)

2z = COS — 78— = — i = AR

4 2 2 2

Also note that i = (31291 go that w = o5+ = e g™ = —eT = —z is another square
root of 1. S

Example A.1.5. Find all complex solutions to the equation z* = 1.

» Solution. Note that 1 = e?™% for any integer k. Thus the cube roots of 1 are obtained
by dividing the possible arguments of 1 by 3 since raising a complex munber to the third
power multiplies the aloument bv 3 (cmd also cubes Tho modulu‘%) Thus the possible
i _ 1 _ V3
—i % <
2 -

g .

cube roots of 1 are 1, wﬁes = 1—!—‘ i and w? =35

We will conclude this section by summarizing some of the properties of the complex
exponential function. The proofs are straight forw ard calculations based on Euler’s
formula and are left to the reader.

Theorem A.1.6. Let z= 1 +iy. Then
1.6 ="t = FL cosy +ie"siny. That is Ree® =e”cosy and Ime®'= eTsiny.

2. le*l = e”. That is, the modulus of € is the exponential of the real part of z.

eiy Jviy
3. cosy = eere
2
_ i _ iy .

4 SiIl’J = e [l

2.
Example A 1.7. COmpute the rcal and unag,mam palts of the complex function
2t ) (2 + 3ij¢’ ¥,
» Solution. Smce 2{t) = (24 3 )({,Ob 2 4 4sin 5t) (2cos 2 — 3sin '%t-) +(3 cos "—; +
2sin 2)i, it follows that Re z(t) =2cos 2 35111 and Im z(t) = 3cos 2 + 2sin. <
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%22z and 2! using

Exercises

(=1,1). Find z-w, &,

1. Let z = (1,1) and w
(a) the polar coordinates,

{b) the standard forms z + iy, -
49

(c) the exponential forms.
9. Find |
() (1203 +4) () (L+2)7 (©) ——zjsé (@) (2_3¢)1(2+ Gl
(d) e _ -1

Solve cach of the following equations for z and check your result.
2 240
== (o) +1=2+i

() 21

zZ—1%

z

(a) 2+3)z4+2=14

4. Find the modulus of each of the following complex mimbers.
N 13 1+ 24t —
(a) 4+3i (0) 2+)7 () o7 (@) H*tg where t € R.

Find all complex numbers z such that {z — 1 = |z — 2|. What does this equation mean

geometrically?
Determine the region in the complex plane € described by the ineguality

|2 — 1 +1z—3] <4

(Give a geometric description of the region.
7. Compute: (a) (b) V3 +4s

24+ 2
Write each of the following complex numbers in exponential form.
5 ()3

1
svg @

() 3+4i (b)3—4i (¢) (3+4)2 (d)

9. Find the real and imaginary parts of each of the following functions
(a) {2+ 33)3(—':-1—1')15 (b) selitin () el 3t (—3—ipt

10. (&) Find the value of the sum
. L - . ) 'y. I . -

Hint: Compare the sum to a finite geometric series.
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(b) Compute sin(2) + sin(4) + - + sin(2=27)

11. Find all of the cube roots of 8. That is, find all solutions to the equation 2% == 8i.-

12. By multiplying out ¢?e* and compating it to e+9)

, rederive the addition formulas for
the cosine and sine functions. : ’
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11.
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Appendix A

(Bl

.: \/ifii%; 1 :-.(-1 1) = W1+?—' =T \f] \fé‘
? = (\/—(05 )+ z\/_sm =

z = (1,’1):13{; 2.2

[

z-w = =2, 2=, % =4 =
i(%vgﬁ+2+i%\/2\/§ 2) since cosg—" = \/ /2 and sin{Z “Em

y.-x

;2 =32+ 32i,
@-5+100 () -3+4i @ F-Fi Dfs-d ©§-§
(3) - (c) check your result  (d) z =372 + 2k )1 for all integérs_ k.

Always either 5 or 1.

The vertical line z = —. The distance between two points 2, w in the plane is given

by {z — w|. Hence, the equation describes the set of points z in the plane which
are equidistant from 1 and 2.

This is the set of points inside the ellipse with foci (1,0) and {3,0) and major axis

of length 4.
i (\/\/:iﬂ +iV/V2-T) (b) (2 + 1)
(a) Seita.n (4/3) ~ 9271 (b) 56—3’1’.51.11“1(4/3) (c) 2562“&1141(-4/3} (d) ée#itan‘l(*l/%

(e) Be™  (f) 36?'2

(a) Real: 27" cost—3e " sin¢; Imaginary: 3™ cos t+26 qmt (b) Real: —¢™ sin 2¢;
Imaginary: e” cos2t {c) Real: e7' cos2t; Imaginary: e “sin 2t

1__8722

(b)

(a) If z = 2rkidfor k an integer, the sum is n.” Otherwise the sum is o

0

—9% 340, 3+ 20



