
RESEARCH STATEMENT

AVIN SUNUWAR

A. Introduction

My research focuses on the structural properties of 3-connected graphs within graph theory.
Specifically, I explore extensions and generalizations of classical results, such as Tutte’s Wheel
Theorem, by extending Tutte’s Wheel Theorem and developing new Chain Theorems for specific
subclasses of 3-connected graphs. There are many known results regarding the characterization of
H-free graphs, where H is a small graph on less than 15 edges. (See [2, 5, 7, 10, 11, 15]). My
results help simplify the proof of the earlier known results. Furthermore, this work aims to provide
a pathway to developing and improving algorithms that may be used to characterize H-free graphs
of edge sizes 15 and above.

In my thesis, I present several new Chain Theorems. I have improved the Tutte’s Wheel Theorem
by limiting the graph operations to edge addition and a vertex split where one of the new vertex
is always cubic. This significantly reduces computational time in algorithms for generating 3-
connected graphs. Additionally, I have also generalized the block-tree theorem for a collection of
non-crossing separators.

In addition to these theorems, I have implemented Sagemath on Python. The program can
construct 3-connected graphs, and perform a minor relation test for a choice of forbidden graph.
When the result for a H-free list is finite, the program can generate the list of maximal H-free
graphs.

B. Chain Theorems

Below are the Chain Theorems that I have established.

1. Chain Theorem on 3-connected graphs. Tutte’s wheel theorem [14] plays a crucial role in
characterizing H-free graphs for small H, particularly when H has up to 15 edges. The theorem
provides a foundational result in graph theory, describing how wheels are central to understanding
3-connected graphs. For small H, the exclusion of H helps identify important structural properties
and leads to characterizations of graphs that avoid certain configurations. This characterization is
vital for studying graph minors and contributes to broader areas like graph coloring, planarity, and
the decomposition of graphs into simpler components.
We begin with a few definitions.

Definition 1.1. A wheel on n+ 1 vertices (n ≥ 3), denoted by Wn, is obtained from a cycle on n
vertices by adding a new vertex and making this vertex adjacent to all vertices on the cycle.

Notice that the smallest wheel W3 is K4. We denote the class of wheels by W.

Definition 1.2. Let G be a graph. If u, v are nonadjacent vertices of G, then G+ uv is obtained
from G by adding a new edge uv.

Definition 1.3. If v has a degree at least four, then by splitting v we mean the operation of first
deleting v from G, then adding two new adjacent vertices v′, v′′ and joining each neighbor of v to
exactly one of v′, v′′ such that each of v′, v′′ has degree at least three in the new graph.
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Definition 1.4. If v has degree at least four, then 3-splitting v means splitting v such that either
v′ or v′′ has degree 3.

The next is a classical result of Tutte, which explains how 3-connected graphs are generated.

Theorem 1.5. (Tutte’s Wheel Theorem) [14] A non-wheel graph G is 3-connected if and only if G
is constructed from a wheel by repeatedly adding edges and splitting vertices.

The theorem was improved such that the starting graph needed was only W4.

Theorem 1.6. (Ding and Qin) [4] A non-wheel graph G is 3-connected if and only G is constructed
from W4 by repeatedly adding edges and splitting vertices.

We further improved the theorem by restricting the vertex splitting operation to 3-splitting,
which reduced the computation time for generating 3-connected graphs from W4.

Theorem 1.7. (S., Ding, 2023+) A non-wheel graph G is 3-connected if and only if G is constructed
from W4 by repeatedly adding edges and 3-splitting vertices.

2. Generalized Chain Theorem On Rooted graphs. For a 3-connected graph, we were
interested in scenarios where the two operations of adding an edge and 3-splitting a vertex are
avoided on a set R ⊆ V (G).

Definition 2.1. A separator S of a graph G is a subset of V (G) such that G\S is disconnected.

Definition 2.2. A k-separator for a connected graph G is a subset S of V (G) such that |S| = k
and G\S is disconnected.

Our motivation was to examine the components of G\S for a 3-connected graph G over a 3-
separator S. This would allow us to analyze whether a particular minor is possible. A rooted graph
is a pair (G,R), where G is a graph and R is a set of vertices of G with 0 < |R| and G[R] is a
clique. A ∆-graph is a rooted graph (G,R) such that G is 3-connected, and G\R is connected.

For any integers n > 2 and k > 3, let Wn
⊕

3Kk denote the graph obtained by identifying a

traingle of Wn with a traingle of Kk. For any integers n > 2 and k ≥ 0, let Wk
n be the rooted graph

(G,R), where if k > 3, then G = Wn
⊕

3Kk and R = V (Kk). If k ≤ 3, then G = Wn and R is a
set of vertices of k-clique of G.

Theorem 2.3. (S., Ding,2024+) A rooted graph (G,R), where |R| = k, is a ∆-graph if and only
if G = Wk

n or (G,R) is constructed from (Wk
4 , V (Kk)) by repeatedly adding edges and 3-splitting

vertices.

Note that Theorem 1.7 is the special case of Theorem 2.3 whenever k = 1.

3. Chain Theorem on Smoothly 3-Connected Graphs. Next, we were interested in 3-
connected graphs with a special property.

Definition 3.1. Let G be a 3-connected graph with S3 the set of separators of size 3. G is smoothly
3-connected(S3C) if for every S ∈ S3, G\S has exactly two components.

We were interested in having a chain theorem for the class of S3C graphs. Having such a chain
theorem would guarantee that all graphs in the class could be constructed from W4 while keeping
each of the intermediate constructions also in the class of S3C graphs.

Definition 3.2. A 3-split on a S3C graph G is called non-smooth if the resulting graph is no longer
S3C. A 3-split that preserves S3C is called smooth.

Theorem 3.3. A graph G is smoothly 3-connected if and only if G is a wheel or G is constructed
from W4 by repeatedly performing the two operations of adding an edge and applying a smooth
3-split on a vertex.
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C. Generalization of a Block Tree Decomposition

We aimed to examine S-fragments of 3-connected graphs over 3-separators and sought a tree
structure that captures the decomposition of the graph into its connected components and separa-
tors. There has been plenty of work on graph decomposition, for example, Clique tree decompo-
sition, atom tree decomposition, and chordal tree decomposition. (See [1, 8, 12, 13]). We wanted
a generalization that would also apply to all the previously formulated decompositions. We first
define a few terms.

Definition 3.4. A set X ⊆ V (G) is separated by a separator S if at least two components of G\S
contain vertices of X.

Remark. By the above definition, any subset of S is not separated by S.

Definition 3.5. Let G1, . . . , Gk (k ≥ 2) be the connected components of G\S. Then we define
S-fragments of G as Fi = G[S ∪ V (Gi)] (i = 1, 2, . . . , k) with all possible edges added between
vertices in S.

Definition 3.6. Let G1, . . . , Gk(k ≥ 2) be the components of G\S. Then S is called genuine if
NG(V (Gi)) = S holds for at least two components. Then, if NG(V (Gi)) = S, we call Gi a genuine
component of S and Fi a genuine S-fragment of G.

Definition 3.7. Let S be a set of separators of G such that no separator in S is separated by any
other separator in S. Then, we call S a set of non-crossing separators.

Definition 3.8. A separator S of a graph G is called a clique separator if G[S] is a complete graph.

4. Layout Tree.

Definition 4.1. Let G = (V,E) be connected and S be a set of separators of G. We say that a
labeled tree T is a layout tree of (G,S) if it satisfies the following two properties:

(T1) V (T ) ⊇ S is a set of subsets of V such that ∪{X : X ∈ V (T )} = V (G).
(T2) for each S ∈ S, if T1, . . . , Tk are all the {S}-fragments of T , then k ≥ 2, and for each

i ∈ {1, . . . , k}, Gi := ∪{G[X] : X ∈ V (Ti)} is a union of S-fragments of G; moreover,
V (Gi ∩Gj) = S holds for all distinct i, j.

We call a layout tree of (G,S) strong if it holds the property:

(T2∗) the collection Gi in (T2) are all the S-fragments of G.

Lemma 4.2. If there exists a layout tree of (G,S), then there exists a layout tree T that also
satisfies the following properties:

(T3) V (T )− S is stable in T .
(T4) S is stable in T .
(T5) If SX ∈ E(T ) with S ∈ S and X ̸∈ S, then S ⊆ X.
(T6) If S ∈ S, then dT (S) = 2.

Moreover, if there exists a layout tree of (G,S) that is strong, then there exists a strong layout tree
T satisfying (T3− 6).

Theorem 4.3. Let G = (V,E) be a connected graph, and let S be a set of genuine non-crossing
separators of G. Then, a layout tree T exists for (G,S). Moreover, if the members of S are all
minimal, then a strong layout tree T exists for (G,S).

Proposition 4.4. Let S1, S2 be 3-separator of 3-connected graph G. If S1 is not smooth, then S1

does not separate S2.

Lemma 4.5. The collection of all non-smooth 3-separators of a graph G is a set of genuine non-
crossing separators.
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Theorem 4.6. Let G be a 3-connected graph and let S be a collection of non-smooth 3-separators
in G. There exists a strong layout-tree of (G,S). Moreover, if S contains all the non-smooth 3-
separators in G, then, each non-separator node in the strong layout-tree corresponds to a unique
smoothly 3-connected minor of G.

D. Applications

For a graph H, we denote F(H) as the class of all H-free 3-connected graphs. Prism-free graphs
have been characterized. Let K be the class of 3-connected graphs G for which there exists a set
X of three vertices such that G\X is edgeless. Equivalently, such a graph G is obtained from K3,n

(n ≥ 1) by adding edges to its color class of size three. The following result, which characterizes
prism-free graphs, can also be proved using Theorem 2.3 and Theorem 3.3 established above.

Theorem 4.7. (Dirac 1963, Lovasz 1965). [5, 9] F(Prism) = {K5} ∪W ∪K.

Let K⊥
5 denote the graph obtained by 3-splitting a vertex in K5. The following result can be

proved using the above two theorem along with the Sagemath program to find the maximal smoothly
3-connected graphs.

Theorem 4.8. (Oxley 1989) F(W5) consists of K and 3-connected minors of graphs in {Cube,
Octahedron, Pyramid, K⊥

5 }.

E. Future Works

5. Characterization of H-free graphs for large minors of Petersen Graph. In graph
theory, H-free graphs are central to several longstanding open problems. For instance, Hadwiger’s
Conjecture (1943) states that every Kn-free graph is n−1 colorable. Today, this conjecture remains
“one of the deepest unsolved problems in graph theory”.

Another longstanding problem of this kind is Tutte’s 4-flow conjecture, which asserts that every
bridgeless Petersen-free graph admits a 4-flow. It is generally believed that knowing the struc-
tures of Kn-free graphs and Petersen-free graphs, respectively, would lead to a solution to the
corresponding conjecture.

In their Graph-Minors project, Robertson and Seymour obtained, for every graph H, an approx-
imate structure for H-free graphs. However, this result is insufficient to address the conjectures
mentioned above. Note that both K6 and Petersen graph have fifteen edges. Currently, there is no
connected graph H with that many edges for which H-free graphs are completely characterized.

There are known results for minors of Petersen graph that are of sizes 12 and 13. (See [6]).
The next step is to characterize H-free graphs for a Petersen minor of size 14, with the goal of
extending this approach to K6. We aim to gradually characterize H-free graphs for increasingly
larger minors, ultimately including graphs with 15 edges such as K6 and the Petersen graph.

6. More Chain Theorem. The current motivation is to find more chain theorems to under-
stand the structures of various classes of 3-connected graphs. One of the particular interest is on
simplifying the known result of (Oct\e)-free graphs [3].

A 3-sum of two 3-connected graphs G1, G2 is obtained by identifying a triangle of G1 with a
triangle of G2. Some common edges could be deleted after the identification, as long as no degree-
two vertices are created. It is not difficult to verify that the resulting graph is always 3-connected.

Let S be the set of graphs obtained by 3-summing wheels and Prisms over a common triangle. In
other words, every graph in S is constructed from a set of wheels and Prisms, each with a specified
triangle, by identifying all these specified triangles. Edges of these triangles could be deleted after
the identification. It is worth pointing out that every 3-connected minor of a graph in S remains
in S. Because 3-connected minors of a wheel are till wheels and 3-connected minors of a Prism are
also wheels. The class S is contained in F(Oct\e).
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Another class that will help simplify the result is a class of smoothly 3-connected graphs with an
added property that if S is a 3-separator for a smoothly 3-connected graph G, then neither of the
two S-fragments of G is a Wn (n ≥ 5). We will denote this class as T . The class T has graphs that
are close to graphs in S. For example, if G ∈ S and G is a 3-sum of a large wheel and a prism,
then the graph H obtained by adding an edge to the wheel is in the class T . Graphs similar to
H contain Oct\e as a minor. Hence, having a chain theorem for the class T would help make a
conclusion regarding S. It can then be concluded that any other 3-connected graphs constructed
from a graph in S by adding and edge to a wheel must contain Oct\e as a minor. The rest of the
finite graphs in F(Oct\e) can be determined by computer construction.

F. Conclusion

In conclusion, using the chain theorems and computer program for minor testing, I have demon-
strated simpler ways of characterizing F(H) for graphs H of edge sizes up to 12.

Bibliography

[1] A. Berry, R. Pogorelcnik, and G. Simonet. Organizing the atoms of the clique separator de-
composition into an atom tree. Discrete Applied Mathematics, 177:1–13, 2014.

[2] G. Ding. A characterization of graphs with no octahedron minor. Journal of Graph Theory,
74(2):143–162, 2013.

[3] G. Ding and C. Liu. Excluding a small minor. Discrete Applied Mathematics, 161(3):355–368,
2013.

[4] G. Ding and C. Qin. Strengthened chain theorems for different versions of 4-connectivity, 2020.
[5] G. Dirac. Some results concerning the structure of graphs. Canadian Mathematical Bulletin,

6(2):183–210, 1963.
[6] A. B. Ferguson. Excluding Two Minors of the Petersen Graph. Ph.d. dissertation, Louisiana

State University and Agricultural and Mechanical College, 2015. LSU Doctoral Dissertations,
No. 63.

[7] D. W. Hall. A note on primitive skew curves. Bulletin of the American Mathematical Society,
49:935–936, 1943.

[8] L. Ibarra. The clique-separator graph for chordal graphs. Discrete Applied Mathematics,
157(8):1737–1749, 2009.

[9] L. Lovász. On graphs not containing independent circuits. Mat. Lapok, 16(289-299):7, 1965.
[10] J. Maharry. A characterization of graphs with no cube minor. Journal of Combinatorial Theory,

Series B, 80(2):179–201, 2000.
[11] J. G. Oxley. The regular matroids with no 5-wheel minor. Journal of Combinatorial Theory,

Series B, 46(3):292–305, 1989.
[12] G. Simonet and A. Berry. Properties and recognition of atom graphs. Algorithms, 15(8), 2022.
[13] R. E. Tarjan. Decomposition by clique separators. Discrete mathematics, 55(2):221–232, 1985.
[14] W. T. Tutte. A theory of 3-connected graphs. 1961.
[15] K. V. Wagner. Bemerkungen zu hadwigers vermutung. Mathematische Annalen, 141:433–451,

1960.


	A. Introduction
	B. Chain Theorems
	1. Chain Theorem on 3-connected graphs.
	2. Generalized Chain Theorem On Rooted graphs.
	3. Chain Theorem on Smoothly 3-Connected Graphs

	C. Generalization of a Block Tree Decomposition
	4. Layout Tree

	D. Applications
	E. Future Works
	5. Characterization of H-free graphs for large minors of Petersen Graph.
	6. More Chain Theorem

	F. Conclusion
	Bibliography
	Bibliography

