Instructions. Answer each of the questions on your own paper and put your name on each page of your paper.

The following definitions are provided for your convenience: If R is an integral domain, recall that an element a of R is a unit if $a b=1$ for some $b \in R$; an element a is prime if a is not a unit and whenever $a \mid b c$ then $a \mid b$ or $a \mid c$; and an element a is irreducible if a is not a unit and whenever $a=b c$ then either b or c is a unit.

1. (a) Define the terms prime ideal and maximal ideal in a commutative ring R with identity.

- Solution. See Definitions 2.15 and 2.19, Pages 62,63 of the text.
(b) Let R be a commutative ring with identity. If M is a maximal ideal of R, prove that M is a prime ideal.
- Solution. This is Theorem 2.21, Page 63 of the text. Two proofs are given there. Here is yet another. Suppose that $a b \in M$ but $a \notin M$. Then the ideal $M+\langle a\rangle$ properly contains M since $a \notin M$. Thus $M+\langle a\rangle=R$ and we have an equation $m+a c=1$, where $m \in M$ and $c \in R$. Multiply by b to get $b=b m+a b c \in M$ since $m \in M$ and $a b \in M$. Thus, M is prime.
(c) For the polynomial ring $R=\mathbb{Z}[X]$, show that the principal ideal $P=\langle X\rangle$ is an example of a nonzero prime ideal P of R such that P is not maximal.
- Solution. Let $\varphi: \mathbb{Z}[X] \rightarrow \mathbb{Z}$ by $\varphi(f(X))=f(0)$. Then φ is a surjective ring homomorphism with $\operatorname{Ker}(\varphi)=\langle X\rangle$. Thus $\mathbb{Z}[X] /\langle X\rangle \cong \mathbb{Z}$, which is an integral domain but not a field. Thus, $\langle X\rangle$ is prime but not maximal.

2. Let $R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$.
(a) Why is R an integral domain?

- Solution. R is a subring of an integral domain, namely \mathbb{C}, and hence an integral domain.
(b) What are the units in R ?
- Solution. Suppose $a+b \sqrt{-5}$ is a unit of R. Then there is an equation in R : $1=$ $(a+b \sqrt{-5})(c+d \sqrt{-5})$. Multiplying by the complex conjugates gives an equation $1=$ $\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$ in integers. Thus we must have $a^{2}+5 b^{2}=1$, which can only happen if $b=0$. Hence $a^{2}=1$ so $a= \pm 1$ and $R^{*}=\{ \pm 1\}$.
(c) Is the element 2 irreducible in R ?
- Solution. Suppose we can write $2=(a+b \sqrt{-5})(c+d \sqrt{-5})$ in R. Multiplying by the complex conjugates gives an equation in integers

$$
\begin{equation*}
4=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right) \tag{*}
\end{equation*}
$$

Thus, each integer on the right is either 1,2 , or 4 . But the equation $x^{2}+5 y^{2}=2$ has no solutions in integers since $y \neq 0 \Longrightarrow x^{2}+5 y^{2} \geq 5$, so we must have $y=0$. But that would require $x^{2}=2$, which has no solutions in integers. Hence, one of the two factors
on the right is 1 and the other is 4 . So either $a^{2}+5 b^{2}=1$ or $c^{2}+5 d^{2}=1$, which gives, as in the previous part, that $a+b \sqrt{-5}= \pm 1$ or $c+d \sqrt{-5}= \pm 1$. That is, if 2 factors in R then one of the factors is a unit, so that 2 is irreducible in R
(d) Is 2 a prime element of R ?

Solution. No. 2 is not prime since $2=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$, so 2 divides the product $(1+\sqrt{-5})(1-\sqrt{-5})$, but 2 does not divide $1 \pm \sqrt{-5}$ in R.
3. Let \mathbb{F} be a field and let R be the following subring of the ring of 2×2 matrices $M_{2}(\mathbb{F})$:

$$
R=\left\{\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]: a, b, c, \in \mathbb{F}\right\}
$$

and let $J=\left\{\left[\begin{array}{ll}0 & d \\ 0 & 0\end{array}\right]: d \in \mathbb{F}\right\} \subseteq R$. Show that J is a (two-sided) ideal of R and that there is a ring isomorphism

$$
\varphi: R / J \rightarrow D
$$

where,

$$
D=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]: a, c, \in \mathbb{F}\right\}
$$

is the subring of $M_{2}(\mathbb{F})$ consisting of diagonal matrices.
Solution. Define $f: R \rightarrow D$ by

$$
f\left(\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]\right)=\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]
$$

Since

$$
\begin{aligned}
f\left(\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & c^{\prime}
\end{array}\right]\right) & =f\left(\left[\begin{array}{cc}
a a^{\prime} & a b^{\prime}+b c^{\prime} \\
0 & c c^{\prime}
\end{array}\right]\right)=\left[\begin{array}{cc}
a a^{\prime} & 0 \\
0 & c c^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]\left[\begin{array}{cc}
a^{\prime} & 0 \\
0 & c^{\prime}
\end{array}\right]=f\left(\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]\right) f\left(\left[\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & c^{\prime}
\end{array}\right]\right) .
\end{aligned}
$$

Thus f preserves multiplication and preservation of addition is similar. Hence f is a ring homomorphism with $\operatorname{Ker}(f)=J$. Moreover, f is surjective so the first isomorphism theorem gives a ring isomorphism

$$
\varphi=\bar{f}: R / J \rightarrow D
$$

4. Recall that if V is a vector space over a field \mathbb{F} and $T: V \rightarrow V$ is a linear transformation, then the vector space V is made into an $\mathbb{F}[X]$ module V_{T} by defining the scalar multiplication

$$
f(X) v=f(T)(v)
$$

For this exercise, we will let $\mathbb{F}=\mathbb{R}, V=\mathbb{R}^{2}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ will be the \mathbb{R}-linear transformation defined by the formula

$$
T\left(x_{1}, x_{2}\right)=\left(2 x_{1}, 3 x_{2}\right)
$$

Answer the following questions concerning the $\mathbb{R}[X]$ module V_{T} determined by this linear transformation T. Let $v=\left(x_{1}, x_{2}\right)$.
(a) Find all v such that $X v=2 v$ and find all v such that $X v=3 v$.

- Solution. $X v=2 v$ if and only if $\left(2 x_{1}, 3 x_{2}\right)=\left(2 x_{1}, 2 x_{2}\right)$ which is true if and only if $x_{2}=0$. Thus, $X v=2 v \Longleftrightarrow v=\left(x_{1}, 0\right)$, and similarly, $X v=3 v \Longleftrightarrow v=\left(0, x_{2}\right)$.
(b) Show $X v=c v$ for some $c \in \mathbb{R}$ and $v \neq 0$ if and only if $c \in\{2,3\}$.
- Solution. If $v=\left(x_{1}, x_{2}\right)$, then $X v=c v \Longleftrightarrow 2 x_{1}=c x_{1}$ and $3 x_{2}=c x_{2}$. If $x_{1} \neq 0$ then this forces $c=2$, while $x_{2} \neq 0$ forces $c=3$.
(c) Compute $\left(X^{2}-5 X+6\right) v$.
- Solution. If $v=\left(x_{1}, x_{2}\right)$, then $\left(X^{2}-5 X+6\right) v=(X-3)(X-2) v=(X-3)\left(0, x_{2}\right)=$ (0, 0).
(d) There are exactly two $\mathbb{R}[X]$-submodules of V in addition to $\{0\}$ and V. Find them.
- Solution. By part (b), the only T-invariant subspaces of V (other than $\{0\}$ and V) are the two coordinate axes $V_{1}=\left\{\left(x_{1}, 0\right): x_{1} \in \mathbb{R}\right\}$ and $V_{2}=\left\{\left(0, x_{2}\right): x_{2} \in \mathbb{R}\right\}$. Thus, V_{1} and V_{2} are the only two $\mathbb{R}[X]$-submodules of V_{T} other than $\{0\}$ and V.

