
Finite Abelian Group Supplement

This supplement is meant to provide a proof of the structure theorem for finite abelian groups
employing only elementary concepts of group theory. Another proof will be provided later in the
course using the structure theorem for finitely generated modules over principal ideal domains.

Direct Products

Definition 1. The direct product G1×G2×· · ·×Gn of groups G1, G2, . . ., Gn is the set of n-tuples
(g1, g2, . . . , gn) where gi ∈ Gi with the group operation defined componentwise:

(g1, g2, . . . , gn)(h1, h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn).

The group operation in the above definition is written multiplicatively, but in concrete situa-
tions, whatever is the natural group operation on the Gi will be followed. In particular, abelian
groups will generally be written with the group operation +.

Example 2. 1. Suppose Gi = R for 1 ≤ i ≤ n. Then R×R×· · ·×R (n-factors) is the ordinary
Euclidean n-space Rn with the usual vector addition:

(a1, a2, . . . , an) + (b1, b2, . . . , n) = (a1 + b1, a2 + b2, . . . , an + bn).

2. Let G1 = R and G2 = R∗ where the group operation in G1 is addition and the group operation
in the second group is multiplication. Then the group operation on G1 ×G2 is

(a, b)(c, d) = (a + c, bd).

3. For an even more general example of a product with different operations on each factor, let
G1 = Z, G2 = S3, and G3 = GL2(R). Then the operation on G1 ×G2 ×G3 is given by

(n, α,

[
a b
c d

]
)(m, β,

[
p q
r s

]
) = (n + m, αβ,

[
ap + br aq + bs
cp + dr cq + ds

]
).

4. Do not confuse a group whose elements happen to be represented as ordered n-tuples of
elements of groups Gi with the direct product G1 × G2 × · · · × Gn. As a concrete example,
let G = {(a, b) : a ∈ R∗, b ∈ R} where the group operation is given by

(a, b)(c, d) = (ac, ad + b).

As a set G = R∗ ×R, but the group operation on G is not that of the direct product R∗ ×R
group, which has the group operation

(a, b)(c, d) = (ac, b + d).

Proposition 3. If G1, G2, . . ., Gn are groups, their direct product G is a group of order |G1| |G2| · · · |Gn|.
This means that if any Gi is infinite, then so is G.

Proof. The verification of the group axioms is straightforward from the componentwise definition
of the group operation on G. We note that the identity of G is eG = (eG1 , eG2 , . . . , eGn), which we
will, of course, continue to denote by e, and the inverse of (g1, g2, . . . , gn) is (g−1

1 , g−1
2 , . . . , g−1

n ).
The formula for the order of G is clear.
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Let G = G1×G2×· · ·Gn and for 1 ≤ i ≤ n define homomorphisms πi : G → Gi and µi : Gi → G
by

πi(g1, g2, . . . , gn) = gi and µi(g) = (e, . . . , e, g, e, . . . , e),

where the g appears in the ith component. Note the following facts:

• The image of µi, Im(µi), is a subgroup of G isomorphic to Gi. Moreover, µi C G. Thus, the
direct product G contains a normal subgroup G̃i = Im(µi) isomorphic to Gi.

• Using the notation in the previous part, if x ∈ G̃i, y ∈ G̃j for i 6= j, then xy = yx.

• The homomorphism πi is surjective, and the kernel of πi is the subgroup of G consisting of
all n-tuples with e in the ith position:

Ker(πi) = {(g1, . . . , gi−1, e, gi+1, . . . , gn) : gj ∈ Gj , j 6= i} .

• For each i, πi ◦ µi = 1Gi , where 1Gi : Gi → Gi is the identity homomorphism (1Gi(g) = g for
all g ∈ Gi).

Proposition 4. If G = G1 ×G2 × · · ·Gn and g = (g1, g2, . . . , gn), then the order of g is

o(g) = lcm {o(g1), o(g2), . . . , o(gn)} .

Proof. For all k ∈ Z,
gk = (gk

1 , gk
2 , . . . , gk

n),

so that gk = e ∈ G if and only if gk
i = e ∈ Gi for all i. Thus, gk = e if and only if k is a multiple

of o(gi) for all i. Since the order of g is the smallest positive k such that gk = e, it follows that we
are looking for the smallest positive k such that k is a multiple of o(gi) for all i. Thus,

o(g) = lcm {o(g1), o(g2), . . . , o(gn)} ,

as required.

Proposition 5. Let m, n ∈ N.

1. Zm × Zm
∼= Zmn if and only if gcd(m, n) = 1.

2. If n = pr1
1 pr2

2 · · · prk
k is the prime factorization of n, then

Zn
∼= Zp

r1
1
× Zp

r2
2
× · · · × Zp

rk
k

.

Proof. Since part 2 follows immediately from part 1 by induction on k, it is only necessary to prove
part 1. Let Zm = 〈a〉 and Zn = 〈b〉 where o(a) = m and o(b) = n. Let l = lcm {m, n}. Since m
and n are assumed to be relatively prime, it follows that l = mn. By Proposition 4 it follows that
o(a, b) = lcm {o(a), o(b)} = mn. Since |Zm × Zn| = mn we conclude that Zm × Zn = 〈(a, b)〉 so
that Zm × Zn is cyclic of order mn, which is what we wanted to prove.

Example 6. 1. Let p be a prime and let n ∈ N. Define a group Epn by

Epn = Zp × Zp × · · ·Zp (n factors).

The group Epn is an abelian group of order pn with the property that every nonidentity
element has order p. Since Zp and hence Epn is written additively, what this means is that
for every x ∈ Epn , px = 0. Such a group is said to be an elementary abelian p-group.
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2. For p a prime, we claim that the elementary abelian group E = Ep2 = Zp×Zp of order p2 has
exactly p + 1 subgroups of order p. Note that this means that there are more than the two
obvious ones coming from the two coordinate copies of Zp. Since each nonidentity element of
E has order p, each of these nonidentity elements generates a cyclic subgroup of order p. By
Lagrange’s theorem, distinct subgroups of order p intersect only in the identity. Thus, the
p2 − 1 nonidentity elements of E are partitioned into subsets of size p− 1, where each subset
consists of the nonidentity elements of some subgroup of order p. Thus, there must be

p2 − 1
p− 1

= p + 1

subgroups of order p. If p = 2 then the 3 subgroups of Z2 × Z2 of order 2 are:

〈(1, 0)〉 = {(0, 0), (1, 0)} ,

〈(0, 1)〉 = {(0, 0), (0, 1)} , and
〈(1, 1)〉 = {(0, 0), (1, 1)} .

If p = 3 then the 4 subgroups of Z3 × Z3 of order 3 are:

〈(1, 0)〉 = {(0, 0), (1, 0), (2, 0)} ,

〈(0, 1)〉 = {(0, 0), (0, 1), (0, 2)} ,

〈(1, 1)〉 = {(0, 0), (1, 1), (2, 2)} , and
〈(2, 1)〉 = {(0, 0), (2, 1), (1, 2)} .

We now consider how to recognize if a group G can be written as a direct product of subgroups.
The main result is the following recognition theorem.

Theorem 7. Suppose that G is a group with subgroups H and K such that

1. H and K are normal in G,

2. H ∩K = 〈e〉, and

3. G = HK = {hk : h ∈ H, k ∈ K} .

Then G ∼= H ×K.

Proof. First note that hypotheses 1 and 2 imply that hk = kh for all h ∈ H and k ∈ K. To see this,
consider the element c = hkh−1k−1. Since K is normal, hkh−1 ∈ K so that c = (hkh−1)k−1 ∈ K.
But since H is normal, kh−1k−1 ∈ H so that c = h(kh−1k−1) ∈ H. Hence c ∈ H ∩ K = 〈e〉 so
hkh−1k−1 = e, i.e, hk = kh. Thus every element of h commutes with every element of k. Define a
function ϕ : H ×K → G by

ϕ((h, k)) = hk.

Since
ϕ((h, k)(h′, k′)) = ϕ((hh′, kk′)) = hh′kk′ = hkh′k′ = ϕ((h, k))ϕ((h′, k′)),

it follows that ϕ is a group homomorphism. (Note that the third equality used the fact that
h′k = kh′.) By assumption 3, ϕ is surjective. Suppose that ϕ((h, k)) = e. Thus assume that
hk = e. Then h = k−1 so that h ∈ H ∩K = 〈e〉. Hence h = e and also k = e so that Ker(ϕ) = 〈e〉.
Thus, we have shown that ϕ is an isomorphism.

3



Finite Abelian Group Supplement

Definition 8. When a group G has subgroups H and K satisfying the conditions of Theorem 7,
then we say that G is the internal direct product of H and K. When emphasis is called for, we will
say that H ×K is the external direct product.

Theorem 7 can be extended by induction to any number of subgroups of G. The proof of the
following such extension is left as an exercise.

Theorem 9. Suppose that G is a group with subgroups Gi (1 ≤ i ≤ n) such that

1. Gi is normal in G for all i,

2. Gi ∩ (G1 · · ·Gi−1Gi+1 · · ·Gn) = 〈e〉, and

3. G = G1G2 · · ·Gn = {g1g2 · · · gn : gi ∈ Gi for all i} .

Then G ∼= G1 ×G2 × · · · ×Gn.

Proof. Exercise.

Finite Abelian Groups

Our goal is to prove that every finite abelian group can be written as a direct product of cyclic
subgroups, and that certain uniqueness properties of this decomposition are valid. We start with
the following lemma.

Lemma 10. Let G be a finite abelian group of order m. If p is a prime that divides m, then G has
an element of order p.

Proof. Write m = pn. The proof is by induction on n. If n = 1 then |G| = p and G is cyclic of
prime order p. In this case any nonidentity element of G has order p. Now suppose that n > 1
and that any abelian group G′ with |G′| = pn′ for n′ < n has an element of order p. Let H be
a maximal subgroup of G. If p divides |H|, then H (and hence G) has an element of order p by
the induction hypothesis. If p does not divide |H|, we proceed as follows. Since G is abelian, H
is a normal subgroup of G and we can form the quotient group G/H. Let π : G → G/H be the
projection map (π(a) = a + H). If K is a proper subgroup of G/H, then π−1(K) is a subgroup
of G properly between G and H. Since H is assumed to be maximal, this is not possible. Hence
G/H must be a cyclic group of prime order. Since |G/H| = |G| / |H| and since p does not divide
the order of |H|, but it does divide |G|, it follows that |G/H| = p. Thus, there is a y ∈ G such that
〈y + H〉 = G/H. This means that if π = π|〈y〉 then Im(π) = G/H and Ker(π) = 〈y〉 ∩H. Hence
p = |G/H| = [〈y〉 : H ∩ 〈y〉] divides |〈y〉|, and then an application of the fundamental theorem on
finite cyclic groups shows that the cyclic group 〈y〉 has an element of order p .

If G is a group and p is a prime, we will let Gp denote the subset of G consisting of all elements
whose order is a power of p.

Proposition 11. If G is an abelian group and p is a prime, then Gp is a subgroup of G.

Proof. Since the group G is abelian, we will use additive notation for the group operation. Then,
the order of a ∈ G is the smallest positive m such that ma = 0, so that

Gp = {a ∈ G : pra = 0 for some r ≥ 0} .

Thus, if a, b ∈ Gp, then pra = 0 and psb = 0 so that, if t is the larger of r and s, pt(a − b) =
pta− ptb = 0. Hence a− b ∈ Gp, so Gp is a subgroup.
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Remark 12. The above result is not true if G is not abelian. For example, if G = S3, then
G2 = {(1), (1, 2), (1, 3), (2, 3)}, which is not a subgroup of S3.

A group G is a p-group, where p is a prime, if every element of G has order a power of p. By
Lemma 10, an abelian group is a p-group if and only if |G| = pk for some k. Our first decomposition
theorem is that every finite abelian group can be decomposed as a direct product of p-groups, where
the primes p are those that divide |G|.
Theorem 13. Let G be a finite abelian group and let m = |G| = pr1

1 pr2
2 · · · prk

k , where p1, p2, . . .,
pk are the distinct primes that divide m. Then

G ∼= Gp1 ×Gp2 × · · · ×Gpk
.

Proof. First note that Lemma 10 implies that Gpj 6= 〈0〉 for each j. Now, define a homomorphism

ϕ : Gp1 ×Gp2 × · · · ×Gpk
→ G

by ϕ(a1, a2, . . . , ak) = a1 + a2 + · · ·+ ak. It is clear that ϕ is a group homomorphism. Our proof
will be completed by showing that ϕ is both injective and surjective.

Injective. Suppose that a = (a1, a2, . . . , ak) ∈ Ker(ϕ). Then a1 + a2 + · · · ak = 0 so that

a1 = −(a2 + · · ·+ ak). (1)

Since aj ∈ Gpj , we have that p
tj
j aj = 0 for some tj > 0. If n = pt2

2 · · · ptk
k , then naj = 0 for 2 ≤ j ≤ k

and Equation (1) shows that na1 = 0 so that the order of a1 divides n, the order of a1 is also a
power pt1

1 , and since n and p1 are relatively prime, this means that t1 = 0. Hence a1 = 0. The
same argument works to show that aj = 0 for all j, so that a = 0 and ϕ is injective.

Surjective. Let mi = m/pri
i for 1 ≤ i ≤ k. Then m1, m2, . . ., mk are relatively prime integers,

and hence we can find integers v1, v2, . . ., vk such that 1 = m1v1 + m2v2 + · · · + mkvk. If a ∈ G,
multiply this equation by a to get

a = m1v1a + m2v2a + · · ·+ mkvka = a1 + a2 + · · ·+ ak,

where ai = mivia. Since pri
i mi = m = |G| it follows that pri

i ai = mvia = 0 so ai ∈ Gpi . Hence
a = ϕ(a1, a2, . . . , ak) so that ϕ is surjective.

Our next step is to show that any finite abelian p-group can be decomposed as a direct product
of cyclic groups. According to Theorem 13, it is sufficient to show that any abelian group of prime
power order can be written as a product of cyclic groups. The proof will make use of the following
characterization of cyclic abelian p-groups.

Lemma 14. Suppose that G is a finite abelian p-group. If G has a unique subgroup of order p,
then G is cyclic.

Proof. Since G is a p-group, |G| = pr for some r ≥ 1. We argue by induction on the exponent r.
If r = 1, then |G| = p is prime and G is cyclic. Now suppose that r > 1 and that any abelian
p group of order less than pr which has a unique subgroup of order p is cyclic. Let ϕ : G → G
be the homomorphism ϕ(x) = px. Then K = Ker(ϕ) is the unique subgroup of G of order p,
and G/K ∼= ϕ(G) = pG. Since every subgroup of pG is also a subgroup of G, it follows that
pG has a unique subgroup of order p, and |pG| = pr−1. By induction, we conclude that pG is
cyclic, say pG = 〈y〉. But y = px since y ∈ pG. We claim that G = 〈x〉. To see this, note that
prx = pr−1y = 0, but pkx = pk−1y 6= 0 for any k ≤ r since the order of y is pr−1. Thus, the order
of x is pr, and hence x is a generator of G.
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Lemma 15. Let G be a finite abelian p-group, and let H be a cyclic subgroup of maximal order.
Then there is a subgroup K of G such that G is the internal direct product of H and K

Proof. The proof is by induction on |G| = pr. If |G| = 1 then G = 〈0〉 and we are done. Suppose
that |G| = pr > 1. If G has an element of order pr, then G is cyclic, and we are done (let K = 〈0〉).
If not, |H| = pt with 1 ≤ t < r. Since G is not cyclic, the previous lemma implies that there must
be a cyclic subgroup L of G of order p other than the unique subgroup of H of order p. Hence,
we must have L ∩ H = 〈0〉. Now consider the standard homomorphism π : G → G/L. Since no
homomorphic image of G can have a cyclic subgroup of order larger that |H|, it follows that π(H) =
(H +L)/L ∼= H is cyclic of maximal order in G/L. By the induction hypothesis, G/L = π(H)×K
for some subgroup K of G/L. Let K = π−1(K) ⊂ G. Since G/L = ((H + L)/L) + K/L it follows
that G = (H +L)+K = H +K because L ⊆ K. If a ∈ H∩K then π(a) ∈ π(H)∩π(K) = 0 ∈ G/L.
Thus a ∈ L and a ∈ H so a = 0. Thus G ∼= H ×K by Theorem 7.

A finite abelian p-group G is said to be of type (pr1 , · · · , prk) if G is isomorphic to the product
of cyclic groups of orders pri for 1 ≤ i ≤ k.

Theorem 16. Every finite abelian p-group G is isomorphic to a product of cyclic p-groups. If G
is of type (pr1 , · · · , prk) with

r1 ≥ r2 ≥ · · · ≥ rk ≥ 1,

then the sequence of integers (r1, . . . , rk) is uniquely determined by G.

Proof. Existence. The existence of the factorization is now easy. If G is not cyclic, let G1 be a
maximal cyclic subgroup of G. By Lemma 15, G has a subgroup K such that G ∼= G1 ×K. By
induction K is isomorphic to a product of cyclic subgroups, and hence G is also.

Uniqueness. We will prove uniqueness of the type by induction on |G|. Suppose that G can
be written in two ways as a direct sum of cyclic groups, say of type

(pr1 , . . . , prk) and (pm
1 , . . . , pmt)

with r1 ≥ · · · ≥ rk ≥ 1 and m1 ≥ · · · ≥ mt ≥ 1. If

G = G1 ×G2 × · · · ×Gs

then the subgroup pG can also be written as a direct product

pG = (pG1)× (pG2)× · · · × (pG2).

This follows immediately from Theorem 9. Thus pG is a finite abelian p-group of order strictly less
than |G| (since any elements of order p are in the kernel of the map x 7→ px). Moreover, pG is of
type

(pr1−1, . . . , prk−1) and (pm1−1, . . . , pmt−1),

where we adopt the convention that if some exponent ri or mj is 1, then the factor corresponding
to pri−1 or pmj−1 in pG is the trivial group 0. By our induction hypothesis, the subsequence of

(r1 − 1, . . . , rk − 1)

consisting of those integers ≥ 1 is uniquely determined by the group pG, and hence is the same as
the corresponding subsequence of

(m1 − 1, . . . , mt − 1).
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That is, we have ri − 1 = mi − 1 for all those integers i such that ri − 1 or mi − 1 ≥ 1. Hence
ri = mi for all these integers i, and the two sequences

(pr1 , . . . , prk) and (pm
1 , . . . , pmt)

can differ only in their last components, which are equal to p. These correspond to the factors of
type (p, . . . , p) where the p occurs u times in the first sequence and v times in the second sequence.
Thus, there is an natural number n such that G is of type

(pr1 , . . . , prn , p, . . . , p︸ ︷︷ ︸
u times

) and (pr
1, . . . , prn , p, . . . , p︸ ︷︷ ︸

v times

).

Then the order of G is given by

pr1+···+rnpu = pr1+···+rnpv,

so that u = v, and the number of p factors is also the same in every factorization of G.

Combining Theorems 13 and 16 gives what is known as the elementary divisor form of the
structure theorem for finite abelian groups.

Theorem 17. Let G be an abelian group of order m > 1 and let

m = pr1
1 pr2

2 · · · prk
k

be the factorization of m into distinct prime powers. Then

1. G ∼= G1 ×G2 × · · · ×Gk where |Gi| = pri.

2. For 1 ≤ i ≤ k,
Gi
∼= Z

p
t1i
i
× Z

p
t2i
i
× · · · × Z

p
tsii
i

,

where ti1 ≥ t2i ≥ · · · ≥ tsii ≥ 1 and t1i + t2i + · · ·+ tsii = ri.

3. The decompositions given by parts 1 and 2 are unique.

Definition 18. The prime powers p
tji

i described in the preceding theorem are called the elementary
divisors of G, and the decomposition described in the theorem is known as the elementary divisor
decomposition of G.

The content of Theorem 17 is that a finite abelian group is uniquely determined, up to group
isomorphism, by the elementary divisors. For example, the elementary abelian group Epn (see
Example 6) has elementary divisors p, p, . . ., p (n copies).
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