Do the following exercises from Judson: Chapter 4, Section 4.4: 7, 11, 14, 22 (b), (d); 30

- 7. What are all of the cyclic subgroups of the quaternion group Q_8 ?
	- ▶ Solution. $Q_8 = {\pm 1, \pm I, \pm J, \pm K}$. The distinct cyclic subgroups are
		- $\langle 1 \rangle = \{1\}$
		- $\langle -1 \rangle = {\pm 1}$
		- $\langle I \rangle = \langle -I \rangle = \{1, -1, I, -I\}$
		- $\langle K \rangle = \langle -J \rangle = \{1, -1, K, -K\}$
		- $\langle J \rangle = \langle -K \rangle = \{1, -1, J, -J\}$

◭

11. If $a^{24} = e$ in a group G, what are the possible orders of a?

Solution. If $a^k = e$, then the order of a divides k. Thus, the possible orders of a are the divisors of 24, that is, $1, 2, 3, 4, 6, 8, 12, 24$.

14. Let $A =$ $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $B =$ $\begin{bmatrix} 0 & -1 \end{bmatrix}$ 1 −1 be elements of $GL_2(\mathbb{R})$. Show that A and B have finite orders, but AB does not.

$$
\blacktriangleright \text{ Solution. } A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, A^3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, A^4 = (A^2)^2 = I \text{ so the order of } A \text{ is 4.}
$$

\n
$$
B^2 = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}, B^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ so the order of } B \text{ is 3.}
$$

\n
$$
AB = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \text{ and for each } n \in \mathbb{N}, (AB)^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix} \neq I. \text{ Thus, the order of } AB \text{ is infinite.}
$$

- 22. (b) Calculate 2257³⁴¹ (mod 5681).
	- ▶ Solution. Use repeated squares:

$$
2257^{2^1} = 2257^2 \pmod{5681} = 5099
$$

\n
$$
2257^{2^2} = 5099^2 \pmod{5681} = 3545
$$

\n
$$
2257^{2^3} = 3545^2 \pmod{5681} = 653
$$

\n
$$
2257^{2^4} = 653^2 \pmod{5681} = 334
$$

\n
$$
2257^{2^5} = 334^2 \pmod{5681} = 3617
$$

\n
$$
2257^{2^6} = 3817^2 \pmod{5681} = 5027
$$

\n
$$
2257^{2^7} = 5027^2 \pmod{5681} = 1641
$$

\n
$$
2257^{2^8} = 1641^2 \pmod{5681} = 87
$$

Since $341 = 2^0 + 2^2 + 2^4 + 2^6 + 2^8$,

$$
2257^{341} = 2257^{2^0+2^2+2^4+2^6+2^8} \pmod{5681}
$$

= 2257^{2^0} \cdot 2257^{2^2} \cdot 2257^{2^4} \cdot 2257^{2^6} \cdot 2257^{2^8} \pmod{5681}
= 2257 \cdot 3545 \cdot 334 \cdot 5027 \cdot 87 \pmod{5681}
= 2876 \pmod{5681}.

◭

(d) Calculate: 971³²¹ (mod 765)

 \triangleright Solution. Use repeated squares after first reducing mod 765. 971 = 206pmod765 so $971^{321} \pmod{765} = 206^{321} \pmod{765}$ and

Thus, $206^{2^k} = 1 \pmod{765}$ for all $k \geq 3$. Since $321 = 2^0 + 2^6 + 2^8$ it follows that

$$
971^{321} = 206^{321} \pmod{765}
$$

= 206²⁰⁺²⁶⁺²⁸ (mod 765)
= 206²⁰ \cdot 206²⁶ \cdot 206²⁸ (mod 765)
= 206 \cdot 1 \cdot 1 \pmod{765}
= 206 \pmod{765}.

30. Suppose that G is a group and let a, $b \in G$. Prove that if $|a| = m$ and $|n| = n$ with $gcd(m, n) = 1$, then $\langle a \rangle \cap \langle b \rangle = \{e\}.$

► Solution. Let c be an arbitrary element of $\langle a \rangle \cap \langle b \rangle$. Then $c = a^k$ and the order of c divides the order m of a. Also, $c = b^l$ so the order of c divides the order n of b. Thus, the order of c is a common divisor of a and b and hence a divisor of the $gcd(m, n) = 1$. Thus, the order of c is 1 and the only element with order 1 is the identity e , so that $c = e$. Since c was an arbitrary element of $\langle a \rangle \cap \langle b \rangle$ it follows that $\langle a \rangle \cap \langle b \rangle = \{e\}$. ◀

Exercises not from the text:

1. Find all generators of the cyclic group $G = \langle g \rangle$ if:

(a)
$$
|g| = 18
$$
 \n(b) $|G| = \infty$

◭

Solution. (a) g^k is a generator of G if and only if $gcd(k, 18) = 1$. Thus, the generators are g^k for $k \in \{1, 5, 7, 11, 13, 17\}.$

(b) The only generators are g and g^{-1}

2. Let $G = \langle g \rangle$ with $|g| = 24$. List all of the generators for the unique subgroup of G of order 8.

▶ Solution. The unique subgroup of G of order 8 is the cyclic subgroup $\langle g^3 \rangle$. The generators of this cyclic group are all of the powers $(g^3)^k$ where $gcd(k 8) = 1$. Thus, $k = 1, 3, 5, 7$ so the generators of $\langle g^3 \rangle$ are g^3, g^9, g^{15} , and g^{21} \mathbf{A}

3. In each case determine whether G is cyclic.

(a) $G = U(12)$ (b) $G = U(11)$

▶ Solution. (a) $U(12) = \{1, 5, 7, 11\}$ and $1^2 = 1, 5^2 = 1, 7^2 = 1$, and $11^2 = 1$ so all elements have order 2, and hence cannot generate all of $U(12)$. Thus, $U(12)$ is not cyclic.

(b) $U(11)$ is cyclic. In fact, $U(11) = \langle 2 \rangle$ since the powers of 2 modulo 11 fill up all of the 10 elements of $U(11) = \mathbb{Z}_{11} \setminus \{0\}.$

4. Let $|g| = 18$ in a group G. Compute:

(a) $|g^8$ | (b) $|g^5|$ | (c) $|g^3|$ Solution. (a) $|g^8| = 18/\text{gcd}(8, 18) = 18/2 = 9.$ (b) $|g^5| = 18/\text{gcd}(5, 18) = 18.$ (c) $|g^3| = 18/3 = 6$.

- 5. In each case find all the subgroups of $G = \langle g \rangle$ and draw the lattice diagram.
	- (a) $|g| = p^2$, where p is prime. **Answer:** $\langle e \rangle$, $\langle g^p \rangle$, $\langle g \rangle$.

Solution. Subgroups are $\langle 1 \rangle$, $\langle g^p \rangle$, $\langle g \rangle = G$. The subgroup diagram for G is

$$
\begin{array}{c}\nG \\
|\n\langle g^p \rangle \\
|\n\langle 1 \rangle\n\end{array}
$$

(b) $|g| = p^3$, where p is prime. **Answer:** $\langle e \rangle$, $\langle g^{p^2} \rangle$, $\langle g^{p} \rangle$, $\langle g \rangle$.

◭

. ◭

Solution. Subgroups are $\langle 1 \rangle$, $\langle g^{p^2} \rangle$, $\langle g^{p} \rangle$, $\langle g \rangle = G$. The subgroup diagram for G is

◭

◭

(c) $|g| = pq$, where p and q are distinct primes. Answer: $\langle e \rangle$, $\langle g^p \rangle$, $\langle g^q \rangle$, $\langle g \rangle$.

Solution. Subgroups are $\langle 1 \rangle$, $\langle g^p \rangle$, $\langle g^q \rangle$, $\langle g \rangle$. The subgroup diagram for G is

(d) $|g| = p^2 q$, where p and q are distinct primes. Answer: $\langle e \rangle$, $\langle g^{p^2} \rangle$, $\langle g^{pq} \rangle$, $\langle g^p \rangle$, $\langle g^q \rangle$, $\langle g \rangle$.

Solution. Subgroups are $\langle 1 \rangle$, $\langle g^{p^2} \rangle$, $\langle g^{p} \rangle$, $\langle g^{q} \rangle$, $\langle g^{pq} \rangle$, $\langle g \rangle$. The subgroup diagram for G is

◭

6. Let $|g| = 40$. List all of the elements of $\langle g \rangle$ that have order 10.

Solution. Since the order of g^k is $40/\gcd(k, 40)$ we need all k with $gcd(k, 40) = 4$. This is all integers of the form $4r$ where $gcd(r, 40) = 1$. Hence $r = 1, 3, 7, 9$, so $k = 4$, $12, 28, 36.$ 7. Prove that $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \right\}$ $n \in \mathbb{Z}$ is a cyclic subgroup of $GL_2(\mathbb{R})$.

Solution. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then $A \in GL_2(\mathbb{R})$ since it is invertible because $A^{-1} =$ $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. It is sufficient to show that $H = \langle A \rangle$. But for $n > 0$, $A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$, which is easy to see by induction, and $A^{-n} = (A^{-1})^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$. Thus, H consists of all the powers of A , so it is a cyclic subgroup with generator \overrightarrow{A} .