Do the following exercises from Judson: Chapter 4, Section 4.4: 7, 11, 14, 22 (b), (d); 30

- 7. What are all of the cyclic subgroups of the quaternion group Q_8 ?
 - ▶ Solution. $Q_8 = \{\pm 1, \pm I, \pm J, \pm K\}$. The distinct cyclic subgroups are
 - $\langle 1 \rangle = \{1\}$
 - $\langle -1 \rangle = \{\pm 1\}$
 - $\langle I \rangle = \langle -I \rangle = \{1, -1, I, -I\}$
 - $\langle K \rangle = \langle -J \rangle = \{1, -1, K, -K\}$
 - $\langle J \rangle = \langle -K \rangle = \{1, -1, J, -J\}$

11. If $a^{24} = e$ in a group G, what are the possible orders of a?

▶ Solution. If $a^k = e$, then the order of *a* divides *k*. Thus, the possible orders of *a* are the divisors of 24, that is, 1, 2, 3, 4, 6, 8, 12, 24.

14. Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$ be elements of $\operatorname{GL}_2(\mathbb{R})$. Show that A and B have finite orders, but AB does not.

► Solution.
$$A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
, $A^3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, $A^4 = (A^2)^2 = I$ so the order of A is 4.
 $B^2 = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$, $B^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ so the order of B is 3.
 $AB = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ and for each $n \in \mathbb{N}$, $(AB)^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix} \neq I$. Thus, the order of AB is infinite.

- 22. (b) Calculate $2257^{341} \pmod{5681}$.
 - ► Solution. Use repeated squares:

$$\begin{array}{ll} 2257^{2^1} = 2257^2 \pmod{5681} &= 5099 \\ 2257^{2^2} = 5099^2 \pmod{5681} &= 3545 \\ 2257^{2^3} = 3545^2 \pmod{5681} &= 653 \\ 2257^{2^4} = 653^2 \pmod{5681} &= 334 \\ 2257^{2^5} = 334^2 \pmod{5681} &= 3617 \\ 2257^{2^6} = 3817^2 \pmod{5681} &= 5027 \\ 2257^{2^7} = 5027^2 \pmod{5681} &= 1641 \\ 2257^{2^8} = 1641^2 \pmod{5681} &= 87 \end{array}$$

Since $341 = 2^0 + 2^2 + 2^4 + 2^6 + 2^8$,

$$2257^{341} = 2257^{2^0+2^2+2^4+2^6+2^8} \pmod{5681}$$
$$= 2257^{2^0} \cdot 2257^{2^2} \cdot 2257^{2^4} \cdot 2257^{2^6} \cdot 2257^{2^8} \pmod{5681}$$
$$= 2257 \cdot 3545 \cdot 334 \cdot 5027 \cdot 87 \pmod{5681}$$
$$= 2876 \pmod{5681}.$$

◀

(d) Calculate: $971^{321} \pmod{765}$

▶ Solution. Use repeated squares after first reducing mod 765. 971 = 206pmod765 so $971^{321} \pmod{765} = 206^{321} \pmod{765}$ and

$206^{2^1} = 206^2$	$\pmod{765}$	= 361
$206^{2^2} = 361^2$	$\pmod{765}$	= 271
$206^{2^3} = 271^2$	$\pmod{765}$	= 1

Thus, $206^{2^k} = 1 \pmod{765}$ for all $k \ge 3$. Since $321 = 2^0 + 2^6 + 2^8$ it follows that

$$971^{321} = 206^{321} \pmod{765}$$

= $206^{2^0 + 2^6 + 2^8} \pmod{765}$
= $206^{2^0} \cdot 206^{2^6} \cdot 206^{2^8} \pmod{765}$
= $206 \cdot 1 \cdot 1 \pmod{765}$
= $206 \pmod{765}$.

30. Suppose that G is a group and let $a, b \in G$. Prove that if |a| = m and |n| = n with gcd(m, n) = 1, then $\langle a \rangle \cap \langle b \rangle = \{e\}$.

▶ Solution. Let c be an arbitrary element of $\langle a \rangle \cap \langle b \rangle$. Then $c = a^k$ and the order of c divides the order m of a. Also, $c = b^l$ so the order of c divides the order n of b. Thus, the order of c is a common divisor of a and b and hence a divisor of the gcd(m, n) = 1. Thus, the order of c is 1 and the only element with order 1 is the identity e, so that c = e. Since c was an arbitrary element of $\langle a \rangle \cap \langle b \rangle$ it follows that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Exercises not from the text:

1. Find all generators of the cyclic group $G = \langle g \rangle$ if:

(a)
$$|g| = 18$$
 (b) $|G| = \infty$

▶ Solution. (a) g^k is a generator of G if and only if gcd(k, 18) = 1. Thus, the generators are g^k for $k \in \{1, 5, 7, 11, 13, 17\}$.

(b) The only generators are g and g^{-1} .

2. Let $G = \langle g \rangle$ with |g| = 24. List all of the generators for the unique subgroup of G of order 8.

▶ Solution. The unique subgroup of G of order 8 is the cyclic subgroup $\langle g^3 \rangle$. The generators of this cyclic group are all of the powers $(g^3)^k$ where $gcd(k\,8) = 1$. Thus, k = 1, 3, 5, 7 so the generators of $\langle g^3 \rangle$ are g^3, g^9, g^{15} , and g^{21} .

3. In each case determine whether G is cyclic.

(a) G = U(12) (b) G = U(11)

▶ Solution. (a) $U(12) = \{1, 5, 7, 11\}$ and $1^2 = 1$, $5^2 = 1$, $7^2 = 1$, and $11^2 = 1$ so all elements have order 2, and hence cannot generate all of U(12). Thus, U(12) is not cyclic.

(b) U(11) is cyclic. In fact, $U(11) = \langle 2 \rangle$ since the powers of 2 modulo 11 fill up all of the 10 elements of $U(11) = \mathbb{Z}_{11} \setminus \{0\}$.

- 4. Let |g| = 18 in a group G. Compute:

 (a) |g⁸|
 (b) |g⁵|
 (c) |g³|

 ▶ Solution. (a) |g⁸| = 18/gcd(8, 18) = 18/2 = 9.
 (b) |g⁵| = 18/gcd(5, 18) = 18.
 (c) |g³| = 18/3 = 6.
- 5. In each case find all the subgroups of $G = \langle g \rangle$ and draw the lattice diagram.
 - (a) $|g| = p^2$, where p is prime. **Answer:** $\langle e \rangle$, $\langle g^p \rangle$, $\langle g \rangle$.

▶ Solution. Subgroups are $\langle 1 \rangle$, $\langle g^p \rangle$, $\langle g \rangle = G$. The subgroup diagram for G is

$$\begin{array}{c}
G\\
|\\\langle g^p \rangle\\
|\\\langle 1 \rangle
\end{array}$$

(b) $|g| = p^3$, where p is prime. **Answer:** $\langle e \rangle$, $\langle g^{p^2} \rangle$, $\langle g^p \rangle$, $\langle g \rangle$.

Math 4200

▶ Solution. Subgroups are $\langle 1 \rangle$, $\langle g^{p^2} \rangle$, $\langle g^p \rangle$, $\langle g \rangle = G$. The subgroup diagram for G is

(c) |g| = pq, where p and q are distinct primes. **Answer:** $\langle e \rangle$, $\langle g^p \rangle$, $\langle g^q \rangle$, $\langle g \rangle$.

▶ Solution. Subgroups are $\langle 1 \rangle$, $\langle g^p \rangle$, $\langle g^q \rangle$, $\langle g^q \rangle$. The subgroup diagram for G is

(d) $|g| = p^2 q$, where p and q are distinct primes. **Answer:** $\langle e \rangle$, $\langle g^{p^2} \rangle$, $\langle g^{pq} \rangle$, $\langle g^{p} \rangle$, $\langle g^{q} \rangle$, $\langle g^{q} \rangle$.

▶ Solution. Subgroups are $\langle 1 \rangle$, $\langle g^{p^2} \rangle$, $\langle g^{p} \rangle$, $\langle g^{q} \rangle$, $\langle g^{pq} \rangle$, $\langle g \rangle$. The subgroup diagram for G is

◀

6. Let |g| = 40. List all of the elements of $\langle g \rangle$ that have order 10.

▶ Solution. Since the order of g^k is $40/\gcd(k, 40)$ we need all k with $\gcd(k, 40) = 4$. This is all integers of the form 4r where $\gcd(r, 40) = 1$. Hence r = 1, 3, 7, 9, so k = 4, 12, 28, 36. 7. Prove that $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \middle| n \in \mathbb{Z} \right\}$ is a cyclic subgroup of $\operatorname{GL}_2(\mathbb{R})$.

▶ Solution. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then $A \in \operatorname{GL}_2(\mathbb{R})$ since it is invertible because $A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. It is sufficient to show that $H = \langle A \rangle$. But for n > 0, $A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$, which is easy to see by induction, and $A^{-n} = (A^{-1})^n = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$. Thus, H consists of all the powers of A, so it is a cyclic subgroup with generator A.